blob: 1f9b2578acaea49d22cd86d4f7e7536fd23701bb [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_x86.h"
#include "mirror/array-inl.h"
#include "mirror/string.h"
namespace art HIDDEN {
namespace x86 {
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<X86Assembler*>(GetAssembler())-> // NOLINT
void LocationsBuilderX86::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
HInstruction* input = instruction->InputAt(0);
bool is_zero = IsZeroBitPattern(input);
switch (instruction->GetPackedType()) {
case DataType::Type::kInt64:
// Long needs extra temporary to load from the register pair.
if (!is_zero) {
locations->AddTemp(Location::RequiresFpuRegister());
}
FALLTHROUGH_INTENDED;
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
locations->SetInAt(0, is_zero ? Location::ConstantLocation(input)
: Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, is_zero ? Location::ConstantLocation(input)
: Location::RequiresFpuRegister());
locations->SetOut(is_zero ? Location::RequiresFpuRegister()
: Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void InstructionCodeGeneratorX86::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
bool cpu_has_avx = CpuHasAvxFeatureFlag();
// Shorthand for any type of zero.
if (IsZeroBitPattern(instruction->InputAt(0))) {
cpu_has_avx ? __ vxorps(dst, dst, dst) : __ xorps(dst, dst);
return;
}
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ movd(dst, locations->InAt(0).AsRegister<Register>());
__ punpcklbw(dst, dst);
__ punpcklwd(dst, dst);
__ pshufd(dst, dst, Immediate(0));
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ movd(dst, locations->InAt(0).AsRegister<Register>());
__ punpcklwd(dst, dst);
__ pshufd(dst, dst, Immediate(0));
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ movd(dst, locations->InAt(0).AsRegister<Register>());
__ pshufd(dst, dst, Immediate(0));
break;
case DataType::Type::kInt64: {
DCHECK_EQ(2u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ movd(dst, locations->InAt(0).AsRegisterPairLow<Register>());
__ movd(tmp, locations->InAt(0).AsRegisterPairHigh<Register>());
__ punpckldq(dst, tmp);
__ punpcklqdq(dst, dst);
break;
}
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
DCHECK(locations->InAt(0).Equals(locations->Out()));
__ shufps(dst, dst, Immediate(0));
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
DCHECK(locations->InAt(0).Equals(locations->Out()));
__ shufpd(dst, dst, Immediate(0));
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecExtractScalar(HVecExtractScalar* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kInt64:
// Long needs extra temporary to store into the register pair.
locations->AddTemp(Location::RequiresFpuRegister());
FALLTHROUGH_INTENDED;
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void InstructionCodeGeneratorX86::VisitVecExtractScalar(HVecExtractScalar* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16: // TODO: up to here, and?
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
case DataType::Type::kInt32:
DCHECK_LE(4u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ movd(locations->Out().AsRegister<Register>(), src);
break;
case DataType::Type::kInt64: {
DCHECK_EQ(2u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ movd(locations->Out().AsRegisterPairLow<Register>(), src);
__ pshufd(tmp, src, Immediate(1));
__ movd(locations->Out().AsRegisterPairHigh<Register>(), tmp);
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 4u);
DCHECK(locations->InAt(0).Equals(locations->Out())); // no code required
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
// Helper to set up locations for vector unary operations.
static void CreateVecUnOpLocations(ArenaAllocator* allocator, HVecUnaryOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecReduce(HVecReduce* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
// Long reduction or min/max require a temporary.
if (instruction->GetPackedType() == DataType::Type::kInt64 ||
instruction->GetReductionKind() == HVecReduce::kMin ||
instruction->GetReductionKind() == HVecReduce::kMax) {
instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::VisitVecReduce(HVecReduce* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
switch (instruction->GetReductionKind()) {
case HVecReduce::kSum:
__ movaps(dst, src);
__ phaddd(dst, dst);
__ phaddd(dst, dst);
break;
case HVecReduce::kMin:
case HVecReduce::kMax:
// Historical note: We've had a broken implementation here. b/117863065
// Do not draw on the old code if we ever want to bring MIN/MAX reduction back.
LOG(FATAL) << "Unsupported reduction type.";
}
break;
case DataType::Type::kInt64: {
DCHECK_EQ(2u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
switch (instruction->GetReductionKind()) {
case HVecReduce::kSum:
__ movaps(tmp, src);
__ movaps(dst, src);
__ punpckhqdq(tmp, tmp);
__ paddq(dst, tmp);
break;
case HVecReduce::kMin:
case HVecReduce::kMax:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
}
break;
}
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecCnv(HVecCnv* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecCnv(HVecCnv* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DataType::Type from = instruction->GetInputType();
DataType::Type to = instruction->GetResultType();
if (from == DataType::Type::kInt32 && to == DataType::Type::kFloat32) {
DCHECK_EQ(4u, instruction->GetVectorLength());
__ cvtdq2ps(dst, src);
} else {
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
}
}
void LocationsBuilderX86::VisitVecNeg(HVecNeg* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecNeg(HVecNeg* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ pxor(dst, dst);
__ psubb(dst, src);
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pxor(dst, dst);
__ psubw(dst, src);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pxor(dst, dst);
__ psubd(dst, src);
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ pxor(dst, dst);
__ psubq(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ xorps(dst, dst);
__ subps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ xorpd(dst, dst);
__ subpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecAbs(HVecAbs* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
// Integral-abs requires a temporary for the comparison.
if (instruction->GetPackedType() == DataType::Type::kInt32) {
instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::VisitVecAbs(HVecAbs* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kInt32: {
DCHECK_EQ(4u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ movaps(dst, src);
__ pxor(tmp, tmp);
__ pcmpgtd(tmp, dst);
__ pxor(dst, tmp);
__ psubd(dst, tmp);
break;
}
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pcmpeqb(dst, dst); // all ones
__ psrld(dst, Immediate(1));
__ andps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ pcmpeqb(dst, dst); // all ones
__ psrlq(dst, Immediate(1));
__ andpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecNot(HVecNot* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
// Boolean-not requires a temporary to construct the 16 x one.
if (instruction->GetPackedType() == DataType::Type::kBool) {
instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::VisitVecNot(HVecNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kBool: { // special case boolean-not
DCHECK_EQ(16u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ pxor(dst, dst);
__ pcmpeqb(tmp, tmp); // all ones
__ psubb(dst, tmp); // 16 x one
__ pxor(dst, src);
break;
}
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ pcmpeqb(dst, dst); // all ones
__ pxor(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pcmpeqb(dst, dst); // all ones
__ xorps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ pcmpeqb(dst, dst); // all ones
__ xorpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
// Helper to set up locations for vector binary operations.
static void CreateVecBinOpLocations(ArenaAllocator* allocator, HVecBinaryOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
static void CreateVecTerOpLocations(ArenaAllocator* allocator, HVecOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecAdd(HVecAdd* instruction) {
if (CpuHasAvxFeatureFlag()) {
CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction);
} else {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
}
void InstructionCodeGeneratorX86::VisitVecAdd(HVecAdd* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister other_src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(cpu_has_avx || other_src == dst);
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
cpu_has_avx ? __ vpaddb(dst, other_src, src) : __ paddb(dst, src);
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
cpu_has_avx ? __ vpaddw(dst, other_src, src) : __ paddw(dst, src);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vpaddd(dst, other_src, src) : __ paddd(dst, src);
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vpaddq(dst, other_src, src) : __ paddq(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vaddps(dst, other_src, src) : __ addps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vaddpd(dst, other_src, src) : __ addpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecSaturationAdd(HVecSaturationAdd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecSaturationAdd(HVecSaturationAdd* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ paddusb(dst, src);
break;
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ paddsb(dst, src);
break;
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ paddusw(dst, src);
break;
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ paddsw(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(instruction->IsRounded());
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ pavgb(dst, src);
break;
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pavgw(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecSub(HVecSub* instruction) {
if (CpuHasAvxFeatureFlag()) {
CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction);
} else {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
}
void InstructionCodeGeneratorX86::VisitVecSub(HVecSub* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister other_src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(cpu_has_avx || other_src == dst);
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
cpu_has_avx ? __ vpsubb(dst, other_src, src) : __ psubb(dst, src);
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
cpu_has_avx ? __ vpsubw(dst, other_src, src) : __ psubw(dst, src);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vpsubd(dst, other_src, src) : __ psubd(dst, src);
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vpsubq(dst, other_src, src) : __ psubq(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vsubps(dst, other_src, src) : __ subps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vsubpd(dst, other_src, src) : __ subpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecSaturationSub(HVecSaturationSub* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecSaturationSub(HVecSaturationSub* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ psubusb(dst, src);
break;
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ psubsb(dst, src);
break;
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psubusw(dst, src);
break;
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psubsw(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecMul(HVecMul* instruction) {
if (CpuHasAvxFeatureFlag()) {
CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction);
} else {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
}
void InstructionCodeGeneratorX86::VisitVecMul(HVecMul* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister other_src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(cpu_has_avx || other_src == dst);
switch (instruction->GetPackedType()) {
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
cpu_has_avx ? __ vpmullw(dst, other_src, src) : __ pmullw(dst, src);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vpmulld(dst, other_src, src) : __ pmulld(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vmulps(dst, other_src, src) : __ mulps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vmulpd(dst, other_src, src) : __ mulpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecDiv(HVecDiv* instruction) {
if (CpuHasAvxFeatureFlag()) {
CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction);
} else {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
}
void InstructionCodeGeneratorX86::VisitVecDiv(HVecDiv* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister other_src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(cpu_has_avx || other_src == dst);
switch (instruction->GetPackedType()) {
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vdivps(dst, other_src, src) : __ divps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vdivpd(dst, other_src, src) : __ divpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecMin(HVecMin* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecMin(HVecMin* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ pminub(dst, src);
break;
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ pminsb(dst, src);
break;
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pminuw(dst, src);
break;
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pminsw(dst, src);
break;
case DataType::Type::kUint32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pminud(dst, src);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pminsd(dst, src);
break;
// Next cases are sloppy wrt 0.0 vs -0.0.
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ minps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ minpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecMax(HVecMax* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecMax(HVecMax* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ pmaxub(dst, src);
break;
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ pmaxsb(dst, src);
break;
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pmaxuw(dst, src);
break;
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pmaxsw(dst, src);
break;
case DataType::Type::kUint32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pmaxud(dst, src);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pmaxsd(dst, src);
break;
// Next cases are sloppy wrt 0.0 vs -0.0.
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ maxps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ maxpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecAnd(HVecAnd* instruction) {
if (CpuHasAvxFeatureFlag()) {
CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction);
} else {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
}
void InstructionCodeGeneratorX86::VisitVecAnd(HVecAnd* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister other_src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(cpu_has_avx || other_src == dst);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
cpu_has_avx ? __ vpand(dst, other_src, src) : __ pand(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vandps(dst, other_src, src) : __ andps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vandpd(dst, other_src, src) : __ andpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecAndNot(HVecAndNot* instruction) {
if (CpuHasAvxFeatureFlag()) {
CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction);
} else {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
}
void InstructionCodeGeneratorX86::VisitVecAndNot(HVecAndNot* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister other_src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(cpu_has_avx || other_src == dst);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
cpu_has_avx ? __ vpandn(dst, other_src, src) : __ pandn(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vandnps(dst, other_src, src) : __ andnps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vandnpd(dst, other_src, src) : __ andnpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecOr(HVecOr* instruction) {
if (CpuHasAvxFeatureFlag()) {
CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction);
} else {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
}
void InstructionCodeGeneratorX86::VisitVecOr(HVecOr* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister other_src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(cpu_has_avx || other_src == dst);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
cpu_has_avx ? __ vpor(dst, other_src, src) : __ por(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vorps(dst, other_src, src) : __ orps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vorpd(dst, other_src, src) : __ orpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecXor(HVecXor* instruction) {
if (CpuHasAvxFeatureFlag()) {
CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction);
} else {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
}
void InstructionCodeGeneratorX86::VisitVecXor(HVecXor* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister other_src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(cpu_has_avx || other_src == dst);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
cpu_has_avx ? __ vpxor(dst, other_src, src) : __ pxor(dst, src);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
cpu_has_avx ? __ vxorps(dst, other_src, src) : __ xorps(dst, src);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
cpu_has_avx ? __ vxorpd(dst, other_src, src) : __ xorpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
// Helper to set up locations for vector shift operations.
static void CreateVecShiftLocations(ArenaAllocator* allocator, HVecBinaryOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecShl(HVecShl* instruction) {
CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecShl(HVecShl* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psllw(dst, Immediate(static_cast<uint8_t>(value)));
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pslld(dst, Immediate(static_cast<uint8_t>(value)));
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ psllq(dst, Immediate(static_cast<uint8_t>(value)));
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecShr(HVecShr* instruction) {
CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecShr(HVecShr* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psraw(dst, Immediate(static_cast<uint8_t>(value)));
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ psrad(dst, Immediate(static_cast<uint8_t>(value)));
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecUShr(HVecUShr* instruction) {
CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecUShr(HVecUShr* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psrlw(dst, Immediate(static_cast<uint8_t>(value)));
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ psrld(dst, Immediate(static_cast<uint8_t>(value)));
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ psrlq(dst, Immediate(static_cast<uint8_t>(value)));
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecSetScalars(HVecSetScalars* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
DCHECK_EQ(1u, instruction->InputCount()); // only one input currently implemented
HInstruction* input = instruction->InputAt(0);
bool is_zero = IsZeroBitPattern(input);
switch (instruction->GetPackedType()) {
case DataType::Type::kInt64:
// Long needs extra temporary to load from register pairs.
if (!is_zero) {
locations->AddTemp(Location::RequiresFpuRegister());
}
FALLTHROUGH_INTENDED;
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
locations->SetInAt(0, is_zero ? Location::ConstantLocation(input)
: Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, is_zero ? Location::ConstantLocation(input)
: Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void InstructionCodeGeneratorX86::VisitVecSetScalars(HVecSetScalars* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK_EQ(1u, instruction->InputCount()); // only one input currently implemented
// Zero out all other elements first.
bool cpu_has_avx = CpuHasAvxFeatureFlag();
cpu_has_avx ? __ vxorps(dst, dst, dst) : __ xorps(dst, dst);
// Shorthand for any type of zero.
if (IsZeroBitPattern(instruction->InputAt(0))) {
return;
}
// Set required elements.
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16: // TODO: up to here, and?
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ movd(dst, locations->InAt(0).AsRegister<Register>());
break;
case DataType::Type::kInt64: {
DCHECK_EQ(2u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ xorps(tmp, tmp);
__ movd(dst, locations->InAt(0).AsRegisterPairLow<Register>());
__ movd(tmp, locations->InAt(0).AsRegisterPairHigh<Register>());
__ punpckldq(dst, tmp);
break;
}
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ movss(dst, locations->InAt(1).AsFpuRegister<XmmRegister>());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ movsd(dst, locations->InAt(1).AsFpuRegister<XmmRegister>());
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
// Helper to set up locations for vector accumulations.
static void CreateVecAccumLocations(ArenaAllocator* allocator, HVecOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetInAt(2, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) {
CreateVecAccumLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) {
// TODO: pmaddwd?
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void LocationsBuilderX86::VisitVecSADAccumulate(HVecSADAccumulate* instruction) {
CreateVecAccumLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecSADAccumulate(HVecSADAccumulate* instruction) {
// TODO: psadbw for unsigned?
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void LocationsBuilderX86::VisitVecDotProd(HVecDotProd* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetInAt(2, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresFpuRegister());
}
void InstructionCodeGeneratorX86::VisitVecDotProd(HVecDotProd* instruction) {
bool cpu_has_avx = CpuHasAvxFeatureFlag();
LocationSummary* locations = instruction->GetLocations();
XmmRegister acc = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister left = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister right = locations->InAt(2).AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case DataType::Type::kInt32: {
DCHECK_EQ(4u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
if (!cpu_has_avx) {
__ movaps(tmp, right);
__ pmaddwd(tmp, left);
__ paddd(acc, tmp);
} else {
__ vpmaddwd(tmp, left, right);
__ vpaddd(acc, acc, tmp);
}
break;
}
default:
LOG(FATAL) << "Unsupported SIMD Type" << instruction->GetPackedType();
UNREACHABLE();
}
}
// Helper to set up locations for vector memory operations.
static void CreateVecMemLocations(ArenaAllocator* allocator,
HVecMemoryOperation* instruction,
bool is_load) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (is_load) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RequiresFpuRegister());
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
// Helper to construct address for vector memory operations.
static Address VecAddress(LocationSummary* locations, size_t size, bool is_string_char_at) {
Location base = locations->InAt(0);
Location index = locations->InAt(1);
ScaleFactor scale = TIMES_1;
switch (size) {
case 2: scale = TIMES_2; break;
case 4: scale = TIMES_4; break;
case 8: scale = TIMES_8; break;
default: break;
}
// Incorporate the string or array offset in the address computation.
uint32_t offset = is_string_char_at
? mirror::String::ValueOffset().Uint32Value()
: mirror::Array::DataOffset(size).Uint32Value();
return CodeGeneratorX86::ArrayAddress(base.AsRegister<Register>(), index, scale, offset);
}
void LocationsBuilderX86::VisitVecLoad(HVecLoad* instruction) {
CreateVecMemLocations(GetGraph()->GetAllocator(), instruction, /*is_load*/ true);
// String load requires a temporary for the compressed load.
if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::VisitVecLoad(HVecLoad* instruction) {
LocationSummary* locations = instruction->GetLocations();
size_t size = DataType::Size(instruction->GetPackedType());
Address address = VecAddress(locations, size, instruction->IsStringCharAt());
XmmRegister reg = locations->Out().AsFpuRegister<XmmRegister>();
bool is_aligned16 = instruction->GetAlignment().IsAlignedAt(16);
switch (instruction->GetPackedType()) {
case DataType::Type::kInt16: // (short) s.charAt(.) can yield HVecLoad/Int16/StringCharAt.
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
// Special handling of compressed/uncompressed string load.
if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
NearLabel done, not_compressed;
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
// Test compression bit.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
__ testb(Address(locations->InAt(0).AsRegister<Register>(), count_offset), Immediate(1));
__ j(kNotZero, &not_compressed);
// Zero extend 8 compressed bytes into 8 chars.
__ movsd(reg, VecAddress(locations, 1, instruction->IsStringCharAt()));
__ pxor(tmp, tmp);
__ punpcklbw(reg, tmp);
__ jmp(&done);
// Load 4 direct uncompressed chars.
__ Bind(&not_compressed);
is_aligned16 ? __ movdqa(reg, address) : __ movdqu(reg, address);
__ Bind(&done);
return;
}
FALLTHROUGH_INTENDED;
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
is_aligned16 ? __ movdqa(reg, address) : __ movdqu(reg, address);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
is_aligned16 ? __ movaps(reg, address) : __ movups(reg, address);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
is_aligned16 ? __ movapd(reg, address) : __ movupd(reg, address);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecStore(HVecStore* instruction) {
CreateVecMemLocations(GetGraph()->GetAllocator(), instruction, /*is_load*/ false);
}
void InstructionCodeGeneratorX86::VisitVecStore(HVecStore* instruction) {
LocationSummary* locations = instruction->GetLocations();
size_t size = DataType::Size(instruction->GetPackedType());
Address address = VecAddress(locations, size, /*is_string_char_at*/ false);
XmmRegister reg = locations->InAt(2).AsFpuRegister<XmmRegister>();
bool is_aligned16 = instruction->GetAlignment().IsAlignedAt(16);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
is_aligned16 ? __ movdqa(address, reg) : __ movdqu(address, reg);
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
is_aligned16 ? __ movaps(address, reg) : __ movups(address, reg);
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
is_aligned16 ? __ movapd(address, reg) : __ movupd(address, reg);
break;
default:
LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecPredSetAll(HVecPredSetAll* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void InstructionCodeGeneratorX86::VisitVecPredSetAll(HVecPredSetAll* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void LocationsBuilderX86::VisitVecPredWhile(HVecPredWhile* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void InstructionCodeGeneratorX86::VisitVecPredWhile(HVecPredWhile* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void LocationsBuilderX86::VisitVecPredToBoolean(HVecPredToBoolean* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void InstructionCodeGeneratorX86::VisitVecPredToBoolean(HVecPredToBoolean* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void LocationsBuilderX86::VisitVecCondition(HVecCondition* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void InstructionCodeGeneratorX86::VisitVecCondition(HVecCondition* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void LocationsBuilderX86::VisitVecPredNot(HVecPredNot* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
void InstructionCodeGeneratorX86::VisitVecPredNot(HVecPredNot* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
UNREACHABLE();
}
#undef __
} // namespace x86
} // namespace art