| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "calling_convention_arm.h" |
| |
| #include <android-base/logging.h> |
| |
| #include "arch/arm/jni_frame_arm.h" |
| #include "arch/instruction_set.h" |
| #include "base/macros.h" |
| #include "utils/arm/managed_register_arm.h" |
| |
| namespace art HIDDEN { |
| namespace arm { |
| |
| // |
| // JNI calling convention constants. |
| // |
| |
| // List of parameters passed via registers for JNI. |
| // JNI uses soft-float, so there is only a GPR list. |
| static constexpr Register kJniArgumentRegisters[] = { |
| R0, R1, R2, R3 |
| }; |
| |
| static_assert(kJniArgumentRegisterCount == arraysize(kJniArgumentRegisters)); |
| |
| // |
| // Managed calling convention constants. |
| // |
| |
| // Used by hard float. (General purpose registers.) |
| static constexpr ManagedRegister kHFCoreArgumentRegisters[] = { |
| ArmManagedRegister::FromCoreRegister(R0), |
| ArmManagedRegister::FromCoreRegister(R1), |
| ArmManagedRegister::FromCoreRegister(R2), |
| ArmManagedRegister::FromCoreRegister(R3), |
| }; |
| static constexpr size_t kHFCoreArgumentRegistersCount = arraysize(kHFCoreArgumentRegisters); |
| |
| // (VFP single-precision registers.) |
| static constexpr SRegister kHFSArgumentRegisters[] = { |
| S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15 |
| }; |
| static constexpr size_t kHFSArgumentRegistersCount = arraysize(kHFSArgumentRegisters); |
| |
| // (VFP double-precision registers.) |
| static constexpr DRegister kHFDArgumentRegisters[] = { |
| D0, D1, D2, D3, D4, D5, D6, D7 |
| }; |
| static constexpr size_t kHFDArgumentRegistersCount = arraysize(kHFDArgumentRegisters); |
| |
| static_assert(kHFDArgumentRegistersCount * 2 == kHFSArgumentRegistersCount, |
| "ks d argument registers mismatch"); |
| |
| // |
| // Shared managed+JNI calling convention constants. |
| // |
| |
| static constexpr ManagedRegister kCalleeSaveRegisters[] = { |
| // Core registers. |
| ArmManagedRegister::FromCoreRegister(R5), |
| ArmManagedRegister::FromCoreRegister(R6), |
| ArmManagedRegister::FromCoreRegister(R7), |
| ArmManagedRegister::FromCoreRegister(R8), |
| ArmManagedRegister::FromCoreRegister(R10), |
| ArmManagedRegister::FromCoreRegister(R11), |
| ArmManagedRegister::FromCoreRegister(LR), |
| // Hard float registers. |
| ArmManagedRegister::FromSRegister(S16), |
| ArmManagedRegister::FromSRegister(S17), |
| ArmManagedRegister::FromSRegister(S18), |
| ArmManagedRegister::FromSRegister(S19), |
| ArmManagedRegister::FromSRegister(S20), |
| ArmManagedRegister::FromSRegister(S21), |
| ArmManagedRegister::FromSRegister(S22), |
| ArmManagedRegister::FromSRegister(S23), |
| ArmManagedRegister::FromSRegister(S24), |
| ArmManagedRegister::FromSRegister(S25), |
| ArmManagedRegister::FromSRegister(S26), |
| ArmManagedRegister::FromSRegister(S27), |
| ArmManagedRegister::FromSRegister(S28), |
| ArmManagedRegister::FromSRegister(S29), |
| ArmManagedRegister::FromSRegister(S30), |
| ArmManagedRegister::FromSRegister(S31) |
| }; |
| |
| template <size_t size> |
| static constexpr uint32_t CalculateCoreCalleeSpillMask( |
| const ManagedRegister (&callee_saves)[size]) { |
| // LR is a special callee save which is not reported by CalleeSaveRegisters(). |
| uint32_t result = 0u; |
| for (auto&& r : callee_saves) { |
| if (r.AsArm().IsCoreRegister()) { |
| result |= (1u << r.AsArm().AsCoreRegister()); |
| } |
| } |
| return result; |
| } |
| |
| template <size_t size> |
| static constexpr uint32_t CalculateFpCalleeSpillMask(const ManagedRegister (&callee_saves)[size]) { |
| uint32_t result = 0u; |
| for (auto&& r : callee_saves) { |
| if (r.AsArm().IsSRegister()) { |
| result |= (1u << r.AsArm().AsSRegister()); |
| } |
| } |
| return result; |
| } |
| |
| static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(kCalleeSaveRegisters); |
| static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask(kCalleeSaveRegisters); |
| |
| static constexpr ManagedRegister kAapcsCalleeSaveRegisters[] = { |
| // Core registers. |
| ArmManagedRegister::FromCoreRegister(R4), |
| ArmManagedRegister::FromCoreRegister(R5), |
| ArmManagedRegister::FromCoreRegister(R6), |
| ArmManagedRegister::FromCoreRegister(R7), |
| ArmManagedRegister::FromCoreRegister(R8), |
| ArmManagedRegister::FromCoreRegister(R9), // The platform register is callee-save on Android. |
| ArmManagedRegister::FromCoreRegister(R10), |
| ArmManagedRegister::FromCoreRegister(R11), |
| ArmManagedRegister::FromCoreRegister(LR), |
| // Hard float registers. |
| ArmManagedRegister::FromSRegister(S16), |
| ArmManagedRegister::FromSRegister(S17), |
| ArmManagedRegister::FromSRegister(S18), |
| ArmManagedRegister::FromSRegister(S19), |
| ArmManagedRegister::FromSRegister(S20), |
| ArmManagedRegister::FromSRegister(S21), |
| ArmManagedRegister::FromSRegister(S22), |
| ArmManagedRegister::FromSRegister(S23), |
| ArmManagedRegister::FromSRegister(S24), |
| ArmManagedRegister::FromSRegister(S25), |
| ArmManagedRegister::FromSRegister(S26), |
| ArmManagedRegister::FromSRegister(S27), |
| ArmManagedRegister::FromSRegister(S28), |
| ArmManagedRegister::FromSRegister(S29), |
| ArmManagedRegister::FromSRegister(S30), |
| ArmManagedRegister::FromSRegister(S31) |
| }; |
| |
| static constexpr uint32_t kAapcsCoreCalleeSpillMask = |
| CalculateCoreCalleeSpillMask(kAapcsCalleeSaveRegisters); |
| static constexpr uint32_t kAapcsFpCalleeSpillMask = |
| CalculateFpCalleeSpillMask(kAapcsCalleeSaveRegisters); |
| |
| // Calling convention |
| |
| ManagedRegister ArmManagedRuntimeCallingConvention::ReturnRegister() const { |
| switch (GetShorty()[0]) { |
| case 'V': |
| return ArmManagedRegister::NoRegister(); |
| case 'D': |
| return ArmManagedRegister::FromDRegister(D0); |
| case 'F': |
| return ArmManagedRegister::FromSRegister(S0); |
| case 'J': |
| return ArmManagedRegister::FromRegisterPair(R0_R1); |
| default: |
| return ArmManagedRegister::FromCoreRegister(R0); |
| } |
| } |
| |
| ManagedRegister ArmJniCallingConvention::ReturnRegister() const { |
| switch (GetShorty()[0]) { |
| case 'V': |
| return ArmManagedRegister::NoRegister(); |
| case 'D': |
| case 'J': |
| return ArmManagedRegister::FromRegisterPair(R0_R1); |
| default: |
| return ArmManagedRegister::FromCoreRegister(R0); |
| } |
| } |
| |
| ManagedRegister ArmJniCallingConvention::IntReturnRegister() const { |
| return ArmManagedRegister::FromCoreRegister(R0); |
| } |
| |
| // Managed runtime calling convention |
| |
| ManagedRegister ArmManagedRuntimeCallingConvention::MethodRegister() { |
| return ArmManagedRegister::FromCoreRegister(R0); |
| } |
| |
| ManagedRegister ArmManagedRuntimeCallingConvention::ArgumentRegisterForMethodExitHook() { |
| return ArmManagedRegister::FromCoreRegister(R2); |
| } |
| |
| void ArmManagedRuntimeCallingConvention::ResetIterator(FrameOffset displacement) { |
| ManagedRuntimeCallingConvention::ResetIterator(displacement); |
| gpr_index_ = 1u; // Skip r0 for ArtMethod* |
| float_index_ = 0u; |
| double_index_ = 0u; |
| } |
| |
| void ArmManagedRuntimeCallingConvention::Next() { |
| if (IsCurrentParamAFloatOrDouble()) { |
| if (float_index_ % 2 == 0) { |
| // The register for the current float is the same as the first register for double. |
| DCHECK_EQ(float_index_, double_index_ * 2u); |
| } else { |
| // There is a space for an extra float before space for a double. |
| DCHECK_LT(float_index_, double_index_ * 2u); |
| } |
| if (IsCurrentParamADouble()) { |
| double_index_ += 1u; |
| if (float_index_ % 2 == 0) { |
| float_index_ = double_index_ * 2u; |
| } |
| } else { |
| if (float_index_ % 2 == 0) { |
| float_index_ += 1u; |
| double_index_ += 1u; // Leaves space for one more float before the next double. |
| } else { |
| float_index_ = double_index_ * 2u; |
| } |
| } |
| } else { // Not a float/double. |
| if (IsCurrentParamALong()) { |
| // Note that the alignment to even register is done lazily. |
| gpr_index_ = RoundUp(gpr_index_, 2u) + 2u; |
| } else { |
| gpr_index_ += 1u; |
| } |
| } |
| ManagedRuntimeCallingConvention::Next(); |
| } |
| |
| bool ArmManagedRuntimeCallingConvention::IsCurrentParamInRegister() { |
| if (IsCurrentParamAFloatOrDouble()) { |
| if (IsCurrentParamADouble()) { |
| return double_index_ < kHFDArgumentRegistersCount; |
| } else { |
| return float_index_ < kHFSArgumentRegistersCount; |
| } |
| } else { |
| if (IsCurrentParamALong()) { |
| // Round up to even register and do not split a long between the last register and the stack. |
| return RoundUp(gpr_index_, 2u) + 1u < kHFCoreArgumentRegistersCount; |
| } else { |
| return gpr_index_ < kHFCoreArgumentRegistersCount; |
| } |
| } |
| } |
| |
| bool ArmManagedRuntimeCallingConvention::IsCurrentParamOnStack() { |
| return !IsCurrentParamInRegister(); |
| } |
| |
| ManagedRegister ArmManagedRuntimeCallingConvention::CurrentParamRegister() { |
| DCHECK(IsCurrentParamInRegister()); |
| if (IsCurrentParamAFloatOrDouble()) { |
| if (IsCurrentParamADouble()) { |
| return ArmManagedRegister::FromDRegister(kHFDArgumentRegisters[double_index_]); |
| } else { |
| return ArmManagedRegister::FromSRegister(kHFSArgumentRegisters[float_index_]); |
| } |
| } else { |
| if (IsCurrentParamALong()) { |
| // Currently the only register pair for a long parameter is r2-r3. |
| // Note that the alignment to even register is done lazily. |
| CHECK_EQ(RoundUp(gpr_index_, 2u), 2u); |
| return ArmManagedRegister::FromRegisterPair(R2_R3); |
| } else { |
| return kHFCoreArgumentRegisters[gpr_index_]; |
| } |
| } |
| } |
| |
| FrameOffset ArmManagedRuntimeCallingConvention::CurrentParamStackOffset() { |
| return FrameOffset(displacement_.Int32Value() + // displacement |
| kFramePointerSize + // Method* |
| (itr_slots_ * kFramePointerSize)); // offset into in args |
| } |
| |
| // JNI calling convention |
| |
| ArmJniCallingConvention::ArmJniCallingConvention(bool is_static, |
| bool is_synchronized, |
| bool is_fast_native, |
| bool is_critical_native, |
| const char* shorty) |
| : JniCallingConvention(is_static, |
| is_synchronized, |
| is_fast_native, |
| is_critical_native, |
| shorty, |
| kArmPointerSize) { |
| // AAPCS 4.1 specifies fundamental alignments for each type. All of our stack arguments are |
| // usually 4-byte aligned, however longs and doubles must be 8 bytes aligned. Add padding to |
| // maintain 8-byte alignment invariant. |
| // |
| // Compute padding to ensure longs and doubles are not split in AAPCS. |
| size_t shift = 0; |
| |
| size_t cur_arg, cur_reg; |
| if (LIKELY(HasExtraArgumentsForJni())) { |
| // Ignore the 'this' jobject or jclass for static methods and the JNIEnv. |
| // We start at the aligned register r2. |
| // |
| // Ignore the first 2 parameters because they are guaranteed to be aligned. |
| cur_arg = NumImplicitArgs(); // skip the "this" arg. |
| cur_reg = 2; // skip {r0=JNIEnv, r1=jobject} / {r0=JNIEnv, r1=jclass} parameters (start at r2). |
| } else { |
| // Check every parameter. |
| cur_arg = 0; |
| cur_reg = 0; |
| } |
| |
| // TODO: Maybe should just use IsCurrentParamALongOrDouble instead to be cleaner? |
| // (this just seems like an unnecessary micro-optimization). |
| |
| // Shift across a logical register mapping that looks like: |
| // |
| // | r0 | r1 | r2 | r3 | SP | SP+4| SP+8 | SP+12 | ... | SP+n | SP+n+4 | |
| // |
| // (where SP is some arbitrary stack pointer that our 0th stack arg would go into). |
| // |
| // Any time there would normally be a long/double in an odd logical register, |
| // we have to push out the rest of the mappings by 4 bytes to maintain an 8-byte alignment. |
| // |
| // This works for both physical register pairs {r0, r1}, {r2, r3} and for when |
| // the value is on the stack. |
| // |
| // For example: |
| // (a) long would normally go into r1, but we shift it into r2 |
| // | INT | (PAD) | LONG | |
| // | r0 | r1 | r2 | r3 | |
| // |
| // (b) long would normally go into r3, but we shift it into SP |
| // | INT | INT | INT | (PAD) | LONG | |
| // | r0 | r1 | r2 | r3 | SP+4 SP+8| |
| // |
| // where INT is any <=4 byte arg, and LONG is any 8-byte arg. |
| for (; cur_arg < NumArgs(); cur_arg++) { |
| if (IsParamALongOrDouble(cur_arg)) { |
| if ((cur_reg & 1) != 0) { // check that it's in a logical contiguous register pair |
| shift += 4; |
| cur_reg++; // additional bump to ensure alignment |
| } |
| cur_reg += 2; // bump the iterator twice for every long argument |
| } else { |
| cur_reg++; // bump the iterator for every non-long argument |
| } |
| } |
| |
| if (cur_reg <= kJniArgumentRegisterCount) { |
| // As a special case when, as a result of shifting (or not) there are no arguments on the stack, |
| // we actually have 0 stack padding. |
| // |
| // For example with @CriticalNative and: |
| // (int, long) -> shifts the long but doesn't need to pad the stack |
| // |
| // shift |
| // \/ |
| // | INT | (PAD) | LONG | (EMPTY) ... |
| // | r0 | r1 | r2 | r3 | SP ... |
| // /\ |
| // no stack padding |
| padding_ = 0; |
| } else { |
| padding_ = shift; |
| } |
| |
| // TODO: add some new JNI tests for @CriticalNative that introduced new edge cases |
| // (a) Using r0,r1 pair = f(long,...) |
| // (b) Shifting r1 long into r2,r3 pair = f(int, long, int, ...); |
| // (c) Shifting but not introducing a stack padding = f(int, long); |
| } |
| |
| uint32_t ArmJniCallingConvention::CoreSpillMask() const { |
| // Compute spill mask to agree with callee saves initialized in the constructor |
| return is_critical_native_ ? 0u : kCoreCalleeSpillMask; |
| } |
| |
| uint32_t ArmJniCallingConvention::FpSpillMask() const { |
| return is_critical_native_ ? 0u : kFpCalleeSpillMask; |
| } |
| |
| ArrayRef<const ManagedRegister> ArmJniCallingConvention::CalleeSaveScratchRegisters() const { |
| DCHECK(!IsCriticalNative()); |
| // Use R5-R8, R10-R11 from managed callee saves. |
| constexpr size_t kStart = 0u; |
| constexpr size_t kLength = 6u; |
| static_assert(kCalleeSaveRegisters[kStart].Equals(ArmManagedRegister::FromCoreRegister(R5))); |
| static_assert(kCalleeSaveRegisters[kStart + kLength - 1u].Equals( |
| ArmManagedRegister::FromCoreRegister(R11))); |
| static_assert((kCoreCalleeSpillMask & (1u << R9)) == 0u); // Does not contain thread register R9. |
| static_assert((kCoreCalleeSpillMask & ~kAapcsCoreCalleeSpillMask) == 0u); |
| return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters).SubArray(kStart, kLength); |
| } |
| |
| ArrayRef<const ManagedRegister> ArmJniCallingConvention::ArgumentScratchRegisters() const { |
| DCHECK(!IsCriticalNative()); |
| ArrayRef<const ManagedRegister> scratch_regs(kHFCoreArgumentRegisters); |
| // Exclude return registers (R0-R1) even if unused. Using the same scratch registers helps |
| // making more JNI stubs identical for better reuse, such as deduplicating them in oat files. |
| static_assert(kHFCoreArgumentRegisters[0].Equals(ArmManagedRegister::FromCoreRegister(R0))); |
| static_assert(kHFCoreArgumentRegisters[1].Equals(ArmManagedRegister::FromCoreRegister(R1))); |
| scratch_regs = scratch_regs.SubArray(/*pos=*/ 2u); |
| DCHECK(std::none_of(scratch_regs.begin(), |
| scratch_regs.end(), |
| [return_reg = ReturnRegister().AsArm()](ManagedRegister reg) { |
| return return_reg.Overlaps(reg.AsArm()); |
| })); |
| return scratch_regs; |
| } |
| |
| size_t ArmJniCallingConvention::FrameSize() const { |
| if (UNLIKELY(is_critical_native_)) { |
| CHECK(!SpillsMethod()); |
| CHECK(!HasLocalReferenceSegmentState()); |
| return 0u; // There is no managed frame for @CriticalNative. |
| } |
| |
| // Method*, callee save area size, local reference segment state |
| DCHECK(SpillsMethod()); |
| const size_t method_ptr_size = static_cast<size_t>(kArmPointerSize); |
| const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize; |
| size_t total_size = method_ptr_size + callee_save_area_size; |
| |
| DCHECK(HasLocalReferenceSegmentState()); |
| // Cookie is saved in one of the spilled registers. |
| |
| return RoundUp(total_size, kStackAlignment); |
| } |
| |
| size_t ArmJniCallingConvention::OutFrameSize() const { |
| // Count param args, including JNIEnv* and jclass*; count 8-byte args twice. |
| size_t all_args = NumberOfExtraArgumentsForJni() + NumArgs() + NumLongOrDoubleArgs(); |
| // Account for arguments passed through r0-r3. (No FP args, AAPCS32 is soft-float.) |
| size_t stack_args = all_args - std::min(kJniArgumentRegisterCount, all_args); |
| // The size of outgoing arguments. |
| size_t size = stack_args * kFramePointerSize + padding_; |
| |
| // @CriticalNative can use tail call as all managed callee saves are preserved by AAPCS. |
| static_assert((kCoreCalleeSpillMask & ~kAapcsCoreCalleeSpillMask) == 0u); |
| static_assert((kFpCalleeSpillMask & ~kAapcsFpCalleeSpillMask) == 0u); |
| |
| // For @CriticalNative, we can make a tail call if there are no stack args and the |
| // return type is not an FP type (otherwise we need to move the result to FP register). |
| DCHECK(!RequiresSmallResultTypeExtension()); |
| if (is_critical_native_ && (size != 0u || GetShorty()[0] == 'F' || GetShorty()[0] == 'D')) { |
| size += kFramePointerSize; // We need to spill LR with the args. |
| } |
| size_t out_args_size = RoundUp(size, kAapcsStackAlignment); |
| if (UNLIKELY(IsCriticalNative())) { |
| DCHECK_EQ(out_args_size, GetCriticalNativeStubFrameSize(GetShorty(), NumArgs() + 1u)); |
| } |
| return out_args_size; |
| } |
| |
| ArrayRef<const ManagedRegister> ArmJniCallingConvention::CalleeSaveRegisters() const { |
| if (UNLIKELY(IsCriticalNative())) { |
| if (UseTailCall()) { |
| return ArrayRef<const ManagedRegister>(); // Do not spill anything. |
| } else { |
| // Spill LR with out args. |
| static_assert((kCoreCalleeSpillMask >> LR) == 1u); // Contains LR as the highest bit. |
| constexpr size_t lr_index = POPCOUNT(kCoreCalleeSpillMask) - 1u; |
| static_assert(kCalleeSaveRegisters[lr_index].Equals( |
| ArmManagedRegister::FromCoreRegister(LR))); |
| return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters).SubArray( |
| /*pos*/ lr_index, /*length=*/ 1u); |
| } |
| } else { |
| return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters); |
| } |
| } |
| |
| // JniCallingConvention ABI follows AAPCS where longs and doubles must occur |
| // in even register numbers and stack slots |
| void ArmJniCallingConvention::Next() { |
| // Update the iterator by usual JNI rules. |
| JniCallingConvention::Next(); |
| |
| if (LIKELY(HasNext())) { // Avoid CHECK failure for IsCurrentParam |
| // Ensure slot is 8-byte aligned for longs/doubles (AAPCS). |
| if (IsCurrentParamALongOrDouble() && ((itr_slots_ & 0x1u) != 0)) { |
| // itr_slots_ needs to be an even number, according to AAPCS. |
| itr_slots_++; |
| } |
| } |
| } |
| |
| bool ArmJniCallingConvention::IsCurrentParamInRegister() { |
| return itr_slots_ < kJniArgumentRegisterCount; |
| } |
| |
| bool ArmJniCallingConvention::IsCurrentParamOnStack() { |
| return !IsCurrentParamInRegister(); |
| } |
| |
| ManagedRegister ArmJniCallingConvention::CurrentParamRegister() { |
| CHECK_LT(itr_slots_, kJniArgumentRegisterCount); |
| if (IsCurrentParamALongOrDouble()) { |
| // AAPCS 5.1.1 requires 64-bit values to be in a consecutive register pair: |
| // "A double-word sized type is passed in two consecutive registers (e.g., r0 and r1, or r2 and |
| // r3). The content of the registers is as if the value had been loaded from memory |
| // representation with a single LDM instruction." |
| if (itr_slots_ == 0u) { |
| return ArmManagedRegister::FromRegisterPair(R0_R1); |
| } else if (itr_slots_ == 2u) { |
| return ArmManagedRegister::FromRegisterPair(R2_R3); |
| } else { |
| // The register can either be R0 (+R1) or R2 (+R3). Cannot be other values. |
| LOG(FATAL) << "Invalid iterator register position for a long/double " << itr_args_; |
| UNREACHABLE(); |
| } |
| } else { |
| // All other types can fit into one register. |
| return ArmManagedRegister::FromCoreRegister(kJniArgumentRegisters[itr_slots_]); |
| } |
| } |
| |
| FrameOffset ArmJniCallingConvention::CurrentParamStackOffset() { |
| CHECK_GE(itr_slots_, kJniArgumentRegisterCount); |
| size_t offset = |
| displacement_.Int32Value() |
| - OutFrameSize() |
| + ((itr_slots_ - kJniArgumentRegisterCount) * kFramePointerSize); |
| CHECK_LT(offset, OutFrameSize()); |
| return FrameOffset(offset); |
| } |
| |
| // R4 is neither managed callee-save, nor argument register. It is suitable for use as the |
| // locking argument for synchronized methods and hidden argument for @CriticalNative methods. |
| // (It is native callee-save but the value coming from managed code can be clobbered.) |
| static void AssertR4IsNeitherCalleeSaveNorArgumentRegister() { |
| // TODO: Change to static_assert; std::none_of should be constexpr since C++20. |
| DCHECK(std::none_of(kCalleeSaveRegisters, |
| kCalleeSaveRegisters + std::size(kCalleeSaveRegisters), |
| [](ManagedRegister callee_save) constexpr { |
| return callee_save.Equals(ArmManagedRegister::FromCoreRegister(R4)); |
| })); |
| DCHECK(std::none_of(kJniArgumentRegisters, |
| kJniArgumentRegisters + std::size(kJniArgumentRegisters), |
| [](Register arg) { return arg == R4; })); |
| } |
| |
| ManagedRegister ArmJniCallingConvention::LockingArgumentRegister() const { |
| DCHECK(!IsFastNative()); |
| DCHECK(!IsCriticalNative()); |
| DCHECK(IsSynchronized()); |
| AssertR4IsNeitherCalleeSaveNorArgumentRegister(); |
| return ArmManagedRegister::FromCoreRegister(R4); |
| } |
| |
| ManagedRegister ArmJniCallingConvention::HiddenArgumentRegister() const { |
| CHECK(IsCriticalNative()); |
| AssertR4IsNeitherCalleeSaveNorArgumentRegister(); |
| return ArmManagedRegister::FromCoreRegister(R4); |
| } |
| |
| // Whether to use tail call (used only for @CriticalNative). |
| bool ArmJniCallingConvention::UseTailCall() const { |
| CHECK(IsCriticalNative()); |
| return OutFrameSize() == 0u; |
| } |
| |
| } // namespace arm |
| } // namespace art |