| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_STACK_H_ |
| #define ART_RUNTIME_STACK_H_ |
| |
| #include <stdint.h> |
| #include <string> |
| |
| #include "arch/instruction_set.h" |
| #include "base/macros.h" |
| #include "base/mutex.h" |
| #include "dex_file.h" |
| #include "gc_root.h" |
| #include "quick/quick_method_frame_info.h" |
| #include "read_barrier.h" |
| #include "stack_reference.h" |
| #include "verify_object.h" |
| |
| namespace art { |
| |
| namespace mirror { |
| class Object; |
| } // namespace mirror |
| |
| class ArtMethod; |
| class Context; |
| class HandleScope; |
| class InlineInfo; |
| class OatQuickMethodHeader; |
| class ScopedObjectAccess; |
| class ShadowFrame; |
| class StackVisitor; |
| class Thread; |
| union JValue; |
| |
| // The kind of vreg being accessed in calls to Set/GetVReg. |
| enum VRegKind { |
| kReferenceVReg, |
| kIntVReg, |
| kFloatVReg, |
| kLongLoVReg, |
| kLongHiVReg, |
| kDoubleLoVReg, |
| kDoubleHiVReg, |
| kConstant, |
| kImpreciseConstant, |
| kUndefined, |
| }; |
| std::ostream& operator<<(std::ostream& os, const VRegKind& rhs); |
| |
| // Forward declaration. Just calls the destructor. |
| struct ShadowFrameDeleter; |
| using ShadowFrameAllocaUniquePtr = std::unique_ptr<ShadowFrame, ShadowFrameDeleter>; |
| |
| // Size in bytes of the should_deoptimize flag on stack. |
| // We just need 4 bytes for our purpose regardless of the architecture. Frame size |
| // calculation will automatically do alignment for the final frame size. |
| static constexpr size_t kShouldDeoptimizeFlagSize = 4; |
| |
| // Counting locks by storing object pointers into a vector. Duplicate entries mark recursive locks. |
| // The vector will be visited with the ShadowFrame during GC (so all the locked-on objects are |
| // thread roots). |
| // Note: implementation is split so that the call sites may be optimized to no-ops in case no |
| // lock counting is necessary. The actual implementation is in the cc file to avoid |
| // dependencies. |
| class LockCountData { |
| public: |
| // Add the given object to the list of monitors, that is, objects that have been locked. This |
| // will not throw (but be skipped if there is an exception pending on entry). |
| void AddMonitor(Thread* self, mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Try to remove the given object from the monitor list, indicating an unlock operation. |
| // This will throw an IllegalMonitorStateException (clearing any already pending exception), in |
| // case that there wasn't a lock recorded for the object. |
| void RemoveMonitorOrThrow(Thread* self, |
| const mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Check whether all acquired monitors have been released. This will potentially throw an |
| // IllegalMonitorStateException, clearing any already pending exception. Returns true if the |
| // check shows that everything is OK wrt/ lock counting, false otherwise. |
| bool CheckAllMonitorsReleasedOrThrow(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| template <typename T, typename... Args> |
| void VisitMonitors(T visitor, Args&&... args) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (monitors_ != nullptr) { |
| // Visitors may change the Object*. Be careful with the foreach loop. |
| for (mirror::Object*& obj : *monitors_) { |
| visitor(/* inout */ &obj, std::forward<Args>(args)...); |
| } |
| } |
| } |
| |
| private: |
| // Stores references to the locked-on objects. As noted, this should be visited during thread |
| // marking. |
| std::unique_ptr<std::vector<mirror::Object*>> monitors_; |
| }; |
| |
| // ShadowFrame has 2 possible layouts: |
| // - interpreter - separate VRegs and reference arrays. References are in the reference array. |
| // - JNI - just VRegs, but where every VReg holds a reference. |
| class ShadowFrame { |
| public: |
| // Compute size of ShadowFrame in bytes assuming it has a reference array. |
| static size_t ComputeSize(uint32_t num_vregs) { |
| return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) + |
| (sizeof(StackReference<mirror::Object>) * num_vregs); |
| } |
| |
| // Create ShadowFrame in heap for deoptimization. |
| static ShadowFrame* CreateDeoptimizedFrame(uint32_t num_vregs, ShadowFrame* link, |
| ArtMethod* method, uint32_t dex_pc) { |
| uint8_t* memory = new uint8_t[ComputeSize(num_vregs)]; |
| return CreateShadowFrameImpl(num_vregs, link, method, dex_pc, memory); |
| } |
| |
| // Delete a ShadowFrame allocated on the heap for deoptimization. |
| static void DeleteDeoptimizedFrame(ShadowFrame* sf) { |
| sf->~ShadowFrame(); // Explicitly destruct. |
| uint8_t* memory = reinterpret_cast<uint8_t*>(sf); |
| delete[] memory; |
| } |
| |
| // Create a shadow frame in a fresh alloca. This needs to be in the context of the caller. |
| // Inlining doesn't work, the compiler will still undo the alloca. So this needs to be a macro. |
| #define CREATE_SHADOW_FRAME(num_vregs, link, method, dex_pc) ({ \ |
| size_t frame_size = ShadowFrame::ComputeSize(num_vregs); \ |
| void* alloca_mem = alloca(frame_size); \ |
| ShadowFrameAllocaUniquePtr( \ |
| ShadowFrame::CreateShadowFrameImpl((num_vregs), (link), (method), (dex_pc), \ |
| (alloca_mem))); \ |
| }) |
| |
| ~ShadowFrame() {} |
| |
| // TODO(iam): Clean references array up since they're always there, |
| // we don't need to do conditionals. |
| bool HasReferenceArray() const { |
| return true; |
| } |
| |
| uint32_t NumberOfVRegs() const { |
| return number_of_vregs_; |
| } |
| |
| uint32_t GetDexPC() const { |
| return (dex_pc_ptr_ == nullptr) ? dex_pc_ : dex_pc_ptr_ - code_item_->insns_; |
| } |
| |
| int16_t GetCachedHotnessCountdown() const { |
| return cached_hotness_countdown_; |
| } |
| |
| void SetCachedHotnessCountdown(int16_t cached_hotness_countdown) { |
| cached_hotness_countdown_ = cached_hotness_countdown; |
| } |
| |
| int16_t GetHotnessCountdown() const { |
| return hotness_countdown_; |
| } |
| |
| void SetHotnessCountdown(int16_t hotness_countdown) { |
| hotness_countdown_ = hotness_countdown; |
| } |
| |
| void SetDexPC(uint32_t dex_pc) { |
| dex_pc_ = dex_pc; |
| dex_pc_ptr_ = nullptr; |
| } |
| |
| ShadowFrame* GetLink() const { |
| return link_; |
| } |
| |
| void SetLink(ShadowFrame* frame) { |
| DCHECK_NE(this, frame); |
| link_ = frame; |
| } |
| |
| int32_t GetVReg(size_t i) const { |
| DCHECK_LT(i, NumberOfVRegs()); |
| const uint32_t* vreg = &vregs_[i]; |
| return *reinterpret_cast<const int32_t*>(vreg); |
| } |
| |
| // Shorts are extended to Ints in VRegs. Interpreter intrinsics needs them as shorts. |
| int16_t GetVRegShort(size_t i) const { |
| return static_cast<int16_t>(GetVReg(i)); |
| } |
| |
| uint32_t* GetVRegAddr(size_t i) { |
| return &vregs_[i]; |
| } |
| |
| uint32_t* GetShadowRefAddr(size_t i) { |
| DCHECK(HasReferenceArray()); |
| DCHECK_LT(i, NumberOfVRegs()); |
| return &vregs_[i + NumberOfVRegs()]; |
| } |
| |
| void SetCodeItem(const DexFile::CodeItem* code_item) { |
| code_item_ = code_item; |
| } |
| |
| const DexFile::CodeItem* GetCodeItem() const { |
| return code_item_; |
| } |
| |
| float GetVRegFloat(size_t i) const { |
| DCHECK_LT(i, NumberOfVRegs()); |
| // NOTE: Strict-aliasing? |
| const uint32_t* vreg = &vregs_[i]; |
| return *reinterpret_cast<const float*>(vreg); |
| } |
| |
| int64_t GetVRegLong(size_t i) const { |
| DCHECK_LT(i, NumberOfVRegs()); |
| const uint32_t* vreg = &vregs_[i]; |
| typedef const int64_t unaligned_int64 __attribute__ ((aligned (4))); |
| return *reinterpret_cast<unaligned_int64*>(vreg); |
| } |
| |
| double GetVRegDouble(size_t i) const { |
| DCHECK_LT(i, NumberOfVRegs()); |
| const uint32_t* vreg = &vregs_[i]; |
| typedef const double unaligned_double __attribute__ ((aligned (4))); |
| return *reinterpret_cast<unaligned_double*>(vreg); |
| } |
| |
| // Look up the reference given its virtual register number. |
| // If this returns non-null then this does not mean the vreg is currently a reference |
| // on non-moving collectors. Check that the raw reg with GetVReg is equal to this if not certain. |
| template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> |
| mirror::Object* GetVRegReference(size_t i) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| mirror::Object* ref; |
| if (HasReferenceArray()) { |
| ref = References()[i].AsMirrorPtr(); |
| } else { |
| const uint32_t* vreg_ptr = &vregs_[i]; |
| ref = reinterpret_cast<const StackReference<mirror::Object>*>(vreg_ptr)->AsMirrorPtr(); |
| } |
| if (kUseReadBarrier) { |
| ReadBarrier::AssertToSpaceInvariant(ref); |
| } |
| if (kVerifyFlags & kVerifyReads) { |
| VerifyObject(ref); |
| } |
| return ref; |
| } |
| |
| // Get view of vregs as range of consecutive arguments starting at i. |
| uint32_t* GetVRegArgs(size_t i) { |
| return &vregs_[i]; |
| } |
| |
| void SetVReg(size_t i, int32_t val) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| uint32_t* vreg = &vregs_[i]; |
| *reinterpret_cast<int32_t*>(vreg) = val; |
| // This is needed for moving collectors since these can update the vreg references if they |
| // happen to agree with references in the reference array. |
| if (kMovingCollector && HasReferenceArray()) { |
| References()[i].Clear(); |
| } |
| } |
| |
| void SetVRegFloat(size_t i, float val) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| uint32_t* vreg = &vregs_[i]; |
| *reinterpret_cast<float*>(vreg) = val; |
| // This is needed for moving collectors since these can update the vreg references if they |
| // happen to agree with references in the reference array. |
| if (kMovingCollector && HasReferenceArray()) { |
| References()[i].Clear(); |
| } |
| } |
| |
| void SetVRegLong(size_t i, int64_t val) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| uint32_t* vreg = &vregs_[i]; |
| typedef int64_t unaligned_int64 __attribute__ ((aligned (4))); |
| *reinterpret_cast<unaligned_int64*>(vreg) = val; |
| // This is needed for moving collectors since these can update the vreg references if they |
| // happen to agree with references in the reference array. |
| if (kMovingCollector && HasReferenceArray()) { |
| References()[i].Clear(); |
| References()[i + 1].Clear(); |
| } |
| } |
| |
| void SetVRegDouble(size_t i, double val) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| uint32_t* vreg = &vregs_[i]; |
| typedef double unaligned_double __attribute__ ((aligned (4))); |
| *reinterpret_cast<unaligned_double*>(vreg) = val; |
| // This is needed for moving collectors since these can update the vreg references if they |
| // happen to agree with references in the reference array. |
| if (kMovingCollector && HasReferenceArray()) { |
| References()[i].Clear(); |
| References()[i + 1].Clear(); |
| } |
| } |
| |
| template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> |
| void SetVRegReference(size_t i, mirror::Object* val) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| if (kVerifyFlags & kVerifyWrites) { |
| VerifyObject(val); |
| } |
| if (kUseReadBarrier) { |
| ReadBarrier::AssertToSpaceInvariant(val); |
| } |
| uint32_t* vreg = &vregs_[i]; |
| reinterpret_cast<StackReference<mirror::Object>*>(vreg)->Assign(val); |
| if (HasReferenceArray()) { |
| References()[i].Assign(val); |
| } |
| } |
| |
| void SetMethod(ArtMethod* method) REQUIRES(Locks::mutator_lock_) { |
| DCHECK(method != nullptr); |
| DCHECK(method_ != nullptr); |
| method_ = method; |
| } |
| |
| ArtMethod* GetMethod() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(method_ != nullptr); |
| return method_; |
| } |
| |
| mirror::Object* GetThisObject() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| mirror::Object* GetThisObject(uint16_t num_ins) const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| bool Contains(StackReference<mirror::Object>* shadow_frame_entry_obj) const { |
| if (HasReferenceArray()) { |
| return ((&References()[0] <= shadow_frame_entry_obj) && |
| (shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1]))); |
| } else { |
| uint32_t* shadow_frame_entry = reinterpret_cast<uint32_t*>(shadow_frame_entry_obj); |
| return ((&vregs_[0] <= shadow_frame_entry) && |
| (shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1]))); |
| } |
| } |
| |
| LockCountData& GetLockCountData() { |
| return lock_count_data_; |
| } |
| |
| static size_t LockCountDataOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, lock_count_data_); |
| } |
| |
| static size_t LinkOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, link_); |
| } |
| |
| static size_t MethodOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, method_); |
| } |
| |
| static size_t DexPCOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, dex_pc_); |
| } |
| |
| static size_t NumberOfVRegsOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_); |
| } |
| |
| static size_t VRegsOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, vregs_); |
| } |
| |
| static size_t ResultRegisterOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, result_register_); |
| } |
| |
| static size_t DexPCPtrOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, dex_pc_ptr_); |
| } |
| |
| static size_t CodeItemOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, code_item_); |
| } |
| |
| static size_t CachedHotnessCountdownOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, cached_hotness_countdown_); |
| } |
| |
| static size_t HotnessCountdownOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, hotness_countdown_); |
| } |
| |
| // Create ShadowFrame for interpreter using provided memory. |
| static ShadowFrame* CreateShadowFrameImpl(uint32_t num_vregs, |
| ShadowFrame* link, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| void* memory) { |
| return new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true); |
| } |
| |
| const uint16_t* GetDexPCPtr() { |
| return dex_pc_ptr_; |
| } |
| |
| void SetDexPCPtr(uint16_t* dex_pc_ptr) { |
| dex_pc_ptr_ = dex_pc_ptr; |
| } |
| |
| JValue* GetResultRegister() { |
| return result_register_; |
| } |
| |
| private: |
| ShadowFrame(uint32_t num_vregs, ShadowFrame* link, ArtMethod* method, |
| uint32_t dex_pc, bool has_reference_array) |
| : link_(link), method_(method), result_register_(nullptr), dex_pc_ptr_(nullptr), |
| code_item_(nullptr), number_of_vregs_(num_vregs), dex_pc_(dex_pc) { |
| // TODO(iam): Remove this parameter, it's an an artifact of portable removal |
| DCHECK(has_reference_array); |
| if (has_reference_array) { |
| memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(StackReference<mirror::Object>))); |
| } else { |
| memset(vregs_, 0, num_vregs * sizeof(uint32_t)); |
| } |
| } |
| |
| const StackReference<mirror::Object>* References() const { |
| DCHECK(HasReferenceArray()); |
| const uint32_t* vreg_end = &vregs_[NumberOfVRegs()]; |
| return reinterpret_cast<const StackReference<mirror::Object>*>(vreg_end); |
| } |
| |
| StackReference<mirror::Object>* References() { |
| return const_cast<StackReference<mirror::Object>*>( |
| const_cast<const ShadowFrame*>(this)->References()); |
| } |
| |
| // Link to previous shadow frame or null. |
| ShadowFrame* link_; |
| ArtMethod* method_; |
| JValue* result_register_; |
| const uint16_t* dex_pc_ptr_; |
| const DexFile::CodeItem* code_item_; |
| LockCountData lock_count_data_; // This may contain GC roots when lock counting is active. |
| const uint32_t number_of_vregs_; |
| uint32_t dex_pc_; |
| int16_t cached_hotness_countdown_; |
| int16_t hotness_countdown_; |
| |
| // This is a two-part array: |
| // - [0..number_of_vregs) holds the raw virtual registers, and each element here is always 4 |
| // bytes. |
| // - [number_of_vregs..number_of_vregs*2) holds only reference registers. Each element here is |
| // ptr-sized. |
| // In other words when a primitive is stored in vX, the second (reference) part of the array will |
| // be null. When a reference is stored in vX, the second (reference) part of the array will be a |
| // copy of vX. |
| uint32_t vregs_[0]; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame); |
| }; |
| |
| struct ShadowFrameDeleter { |
| inline void operator()(ShadowFrame* frame) { |
| if (frame != nullptr) { |
| frame->~ShadowFrame(); |
| } |
| } |
| }; |
| |
| class JavaFrameRootInfo FINAL : public RootInfo { |
| public: |
| JavaFrameRootInfo(uint32_t thread_id, const StackVisitor* stack_visitor, size_t vreg) |
| : RootInfo(kRootJavaFrame, thread_id), stack_visitor_(stack_visitor), vreg_(vreg) { |
| } |
| void Describe(std::ostream& os) const OVERRIDE |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| size_t GetVReg() const { |
| return vreg_; |
| } |
| const StackVisitor* GetVisitor() const { |
| return stack_visitor_; |
| } |
| |
| private: |
| const StackVisitor* const stack_visitor_; |
| const size_t vreg_; |
| }; |
| |
| // The managed stack is used to record fragments of managed code stacks. Managed code stacks |
| // may either be shadow frames or lists of frames using fixed frame sizes. Transition records are |
| // necessary for transitions between code using different frame layouts and transitions into native |
| // code. |
| class PACKED(4) ManagedStack { |
| public: |
| ManagedStack() |
| : top_quick_frame_(nullptr), link_(nullptr), top_shadow_frame_(nullptr) {} |
| |
| void PushManagedStackFragment(ManagedStack* fragment) { |
| // Copy this top fragment into given fragment. |
| memcpy(fragment, this, sizeof(ManagedStack)); |
| // Clear this fragment, which has become the top. |
| memset(this, 0, sizeof(ManagedStack)); |
| // Link our top fragment onto the given fragment. |
| link_ = fragment; |
| } |
| |
| void PopManagedStackFragment(const ManagedStack& fragment) { |
| DCHECK(&fragment == link_); |
| // Copy this given fragment back to the top. |
| memcpy(this, &fragment, sizeof(ManagedStack)); |
| } |
| |
| ManagedStack* GetLink() const { |
| return link_; |
| } |
| |
| ArtMethod** GetTopQuickFrame() const { |
| return top_quick_frame_; |
| } |
| |
| void SetTopQuickFrame(ArtMethod** top) { |
| DCHECK(top_shadow_frame_ == nullptr); |
| top_quick_frame_ = top; |
| } |
| |
| static size_t TopQuickFrameOffset() { |
| return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_); |
| } |
| |
| ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) { |
| DCHECK(top_quick_frame_ == nullptr); |
| ShadowFrame* old_frame = top_shadow_frame_; |
| top_shadow_frame_ = new_top_frame; |
| new_top_frame->SetLink(old_frame); |
| return old_frame; |
| } |
| |
| ShadowFrame* PopShadowFrame() { |
| DCHECK(top_quick_frame_ == nullptr); |
| CHECK(top_shadow_frame_ != nullptr); |
| ShadowFrame* frame = top_shadow_frame_; |
| top_shadow_frame_ = frame->GetLink(); |
| return frame; |
| } |
| |
| ShadowFrame* GetTopShadowFrame() const { |
| return top_shadow_frame_; |
| } |
| |
| void SetTopShadowFrame(ShadowFrame* top) { |
| DCHECK(top_quick_frame_ == nullptr); |
| top_shadow_frame_ = top; |
| } |
| |
| static size_t TopShadowFrameOffset() { |
| return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_); |
| } |
| |
| size_t NumJniShadowFrameReferences() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| bool ShadowFramesContain(StackReference<mirror::Object>* shadow_frame_entry) const; |
| |
| private: |
| ArtMethod** top_quick_frame_; |
| ManagedStack* link_; |
| ShadowFrame* top_shadow_frame_; |
| }; |
| |
| class StackVisitor { |
| public: |
| // This enum defines a flag to control whether inlined frames are included |
| // when walking the stack. |
| enum class StackWalkKind { |
| kIncludeInlinedFrames, |
| kSkipInlinedFrames, |
| }; |
| |
| protected: |
| StackVisitor(Thread* thread, |
| Context* context, |
| StackWalkKind walk_kind, |
| bool check_suspended = true); |
| |
| bool GetRegisterIfAccessible(uint32_t reg, VRegKind kind, uint32_t* val) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| public: |
| virtual ~StackVisitor() {} |
| |
| // Return 'true' if we should continue to visit more frames, 'false' to stop. |
| virtual bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) = 0; |
| |
| enum class CountTransitions { |
| kYes, |
| kNo, |
| }; |
| |
| template <CountTransitions kCount = CountTransitions::kYes> |
| void WalkStack(bool include_transitions = false) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| Thread* GetThread() const { |
| return thread_; |
| } |
| |
| ArtMethod* GetMethod() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Sets this stack frame's method pointer. This requires a full lock of the MutatorLock. This |
| // doesn't work with inlined methods. |
| void SetMethod(ArtMethod* method) REQUIRES(Locks::mutator_lock_); |
| |
| ArtMethod* GetOuterMethod() const { |
| return *GetCurrentQuickFrame(); |
| } |
| |
| bool IsShadowFrame() const { |
| return cur_shadow_frame_ != nullptr; |
| } |
| |
| uint32_t GetDexPc(bool abort_on_failure = true) const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| mirror::Object* GetThisObject() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| size_t GetNativePcOffset() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Returns the height of the stack in the managed stack frames, including transitions. |
| size_t GetFrameHeight() REQUIRES_SHARED(Locks::mutator_lock_) { |
| return GetNumFrames() - cur_depth_ - 1; |
| } |
| |
| // Returns a frame ID for JDWP use, starting from 1. |
| size_t GetFrameId() REQUIRES_SHARED(Locks::mutator_lock_) { |
| return GetFrameHeight() + 1; |
| } |
| |
| size_t GetNumFrames() REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (num_frames_ == 0) { |
| num_frames_ = ComputeNumFrames(thread_, walk_kind_); |
| } |
| return num_frames_; |
| } |
| |
| size_t GetFrameDepth() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| return cur_depth_; |
| } |
| |
| // Get the method and dex pc immediately after the one that's currently being visited. |
| bool GetNextMethodAndDexPc(ArtMethod** next_method, uint32_t* next_dex_pc) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| bool GetVReg(ArtMethod* m, uint16_t vreg, VRegKind kind, uint32_t* val) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| bool GetVRegPair(ArtMethod* m, uint16_t vreg, VRegKind kind_lo, VRegKind kind_hi, |
| uint64_t* val) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Values will be set in debugger shadow frames. Debugger will make sure deoptimization |
| // is triggered to make the values effective. |
| bool SetVReg(ArtMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Values will be set in debugger shadow frames. Debugger will make sure deoptimization |
| // is triggered to make the values effective. |
| bool SetVRegPair(ArtMethod* m, |
| uint16_t vreg, |
| uint64_t new_value, |
| VRegKind kind_lo, |
| VRegKind kind_hi) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| uintptr_t* GetGPRAddress(uint32_t reg) const; |
| |
| // This is a fast-path for getting/setting values in a quick frame. |
| uint32_t* GetVRegAddrFromQuickCode(ArtMethod** cur_quick_frame, |
| const DexFile::CodeItem* code_item, |
| uint32_t core_spills, uint32_t fp_spills, size_t frame_size, |
| uint16_t vreg) const { |
| int offset = GetVRegOffsetFromQuickCode( |
| code_item, core_spills, fp_spills, frame_size, vreg, kRuntimeISA); |
| DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame()); |
| uint8_t* vreg_addr = reinterpret_cast<uint8_t*>(cur_quick_frame) + offset; |
| return reinterpret_cast<uint32_t*>(vreg_addr); |
| } |
| |
| uintptr_t GetReturnPc() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void SetReturnPc(uintptr_t new_ret_pc) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| /* |
| * Return sp-relative offset for a Dalvik virtual register, compiler |
| * spill or Method* in bytes using Method*. |
| * Note that (reg == -1) denotes an invalid Dalvik register. For the |
| * positive values, the Dalvik registers come first, followed by the |
| * Method*, followed by other special temporaries if any, followed by |
| * regular compiler temporary. As of now we only have the Method* as |
| * as a special compiler temporary. |
| * A compiler temporary can be thought of as a virtual register that |
| * does not exist in the dex but holds intermediate values to help |
| * optimizations and code generation. A special compiler temporary is |
| * one whose location in frame is well known while non-special ones |
| * do not have a requirement on location in frame as long as code |
| * generator itself knows how to access them. |
| * |
| * +-------------------------------+ |
| * | IN[ins-1] | {Note: resides in caller's frame} |
| * | . | |
| * | IN[0] | |
| * | caller's ArtMethod | ... ArtMethod* |
| * +===============================+ {Note: start of callee's frame} |
| * | core callee-save spill | {variable sized} |
| * +-------------------------------+ |
| * | fp callee-save spill | |
| * +-------------------------------+ |
| * | filler word | {For compatibility, if V[locals-1] used as wide |
| * +-------------------------------+ |
| * | V[locals-1] | |
| * | V[locals-2] | |
| * | . | |
| * | . | ... (reg == 2) |
| * | V[1] | ... (reg == 1) |
| * | V[0] | ... (reg == 0) <---- "locals_start" |
| * +-------------------------------+ |
| * | stack alignment padding | {0 to (kStackAlignWords-1) of padding} |
| * +-------------------------------+ |
| * | Compiler temp region | ... (reg >= max_num_special_temps) |
| * | . | |
| * | . | |
| * | V[max_num_special_temps + 1] | |
| * | V[max_num_special_temps + 0] | |
| * +-------------------------------+ |
| * | OUT[outs-1] | |
| * | OUT[outs-2] | |
| * | . | |
| * | OUT[0] | |
| * | ArtMethod* | ... (reg == num_total_code_regs == special_temp_value) <<== sp, 16-byte aligned |
| * +===============================+ |
| */ |
| static int GetVRegOffsetFromQuickCode(const DexFile::CodeItem* code_item, |
| uint32_t core_spills, uint32_t fp_spills, |
| size_t frame_size, int reg, InstructionSet isa); |
| |
| static int GetOutVROffset(uint16_t out_num, InstructionSet isa) { |
| // According to stack model, the first out is above the Method referernce. |
| return static_cast<size_t>(InstructionSetPointerSize(isa)) + out_num * sizeof(uint32_t); |
| } |
| |
| bool IsInInlinedFrame() const { |
| return current_inlining_depth_ != 0; |
| } |
| |
| size_t GetCurrentInliningDepth() const { |
| return current_inlining_depth_; |
| } |
| |
| uintptr_t GetCurrentQuickFramePc() const { |
| return cur_quick_frame_pc_; |
| } |
| |
| ArtMethod** GetCurrentQuickFrame() const { |
| return cur_quick_frame_; |
| } |
| |
| ShadowFrame* GetCurrentShadowFrame() const { |
| return cur_shadow_frame_; |
| } |
| |
| HandleScope* GetCurrentHandleScope(size_t pointer_size) const { |
| ArtMethod** sp = GetCurrentQuickFrame(); |
| // Skip ArtMethod*; handle scope comes next; |
| return reinterpret_cast<HandleScope*>(reinterpret_cast<uintptr_t>(sp) + pointer_size); |
| } |
| |
| std::string DescribeLocation() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| static size_t ComputeNumFrames(Thread* thread, StackWalkKind walk_kind) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| static void DescribeStack(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| const OatQuickMethodHeader* GetCurrentOatQuickMethodHeader() const { |
| return cur_oat_quick_method_header_; |
| } |
| |
| QuickMethodFrameInfo GetCurrentQuickFrameInfo() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| // Private constructor known in the case that num_frames_ has already been computed. |
| StackVisitor(Thread* thread, |
| Context* context, |
| StackWalkKind walk_kind, |
| size_t num_frames, |
| bool check_suspended = true) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| bool IsAccessibleRegister(uint32_t reg, bool is_float) const { |
| return is_float ? IsAccessibleFPR(reg) : IsAccessibleGPR(reg); |
| } |
| uintptr_t GetRegister(uint32_t reg, bool is_float) const { |
| DCHECK(IsAccessibleRegister(reg, is_float)); |
| return is_float ? GetFPR(reg) : GetGPR(reg); |
| } |
| |
| bool IsAccessibleGPR(uint32_t reg) const; |
| uintptr_t GetGPR(uint32_t reg) const; |
| |
| bool IsAccessibleFPR(uint32_t reg) const; |
| uintptr_t GetFPR(uint32_t reg) const; |
| |
| bool GetVRegFromDebuggerShadowFrame(uint16_t vreg, VRegKind kind, uint32_t* val) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| bool GetVRegFromOptimizedCode(ArtMethod* m, uint16_t vreg, VRegKind kind, |
| uint32_t* val) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| bool GetVRegPairFromDebuggerShadowFrame(uint16_t vreg, VRegKind kind_lo, VRegKind kind_hi, |
| uint64_t* val) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| bool GetVRegPairFromOptimizedCode(ArtMethod* m, uint16_t vreg, |
| VRegKind kind_lo, VRegKind kind_hi, |
| uint64_t* val) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| bool GetRegisterPairIfAccessible(uint32_t reg_lo, uint32_t reg_hi, VRegKind kind_lo, |
| uint64_t* val) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void SanityCheckFrame() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| InlineInfo GetCurrentInlineInfo() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| Thread* const thread_; |
| const StackWalkKind walk_kind_; |
| ShadowFrame* cur_shadow_frame_; |
| ArtMethod** cur_quick_frame_; |
| uintptr_t cur_quick_frame_pc_; |
| const OatQuickMethodHeader* cur_oat_quick_method_header_; |
| // Lazily computed, number of frames in the stack. |
| size_t num_frames_; |
| // Depth of the frame we're currently at. |
| size_t cur_depth_; |
| // Current inlining depth of the method we are currently at. |
| // 0 if there is no inlined frame. |
| size_t current_inlining_depth_; |
| |
| protected: |
| Context* const context_; |
| const bool check_suspended_; |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_STACK_H_ |