| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "utils.h" |
| |
| #include <inttypes.h> |
| #include <pthread.h> |
| #include <sys/stat.h> |
| #include <sys/syscall.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <unistd.h> |
| #include <memory> |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/stl_util.h" |
| #include "base/unix_file/fd_file.h" |
| #include "dex_file-inl.h" |
| #include "dex_instruction.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/string.h" |
| #include "oat_quick_method_header.h" |
| #include "os.h" |
| #include "scoped_thread_state_change.h" |
| #include "utf-inl.h" |
| |
| #if defined(__APPLE__) |
| #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED |
| #include <sys/syscall.h> |
| #endif |
| |
| #if defined(__linux__) |
| #include <linux/unistd.h> |
| #endif |
| |
| namespace art { |
| |
| pid_t GetTid() { |
| #if defined(__APPLE__) |
| uint64_t owner; |
| CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__); // Requires Mac OS 10.6 |
| return owner; |
| #elif defined(__BIONIC__) |
| return gettid(); |
| #else |
| return syscall(__NR_gettid); |
| #endif |
| } |
| |
| std::string GetThreadName(pid_t tid) { |
| std::string result; |
| if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) { |
| result.resize(result.size() - 1); // Lose the trailing '\n'. |
| } else { |
| result = "<unknown>"; |
| } |
| return result; |
| } |
| |
| void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) { |
| #if defined(__APPLE__) |
| *stack_size = pthread_get_stacksize_np(thread); |
| void* stack_addr = pthread_get_stackaddr_np(thread); |
| |
| // Check whether stack_addr is the base or end of the stack. |
| // (On Mac OS 10.7, it's the end.) |
| int stack_variable; |
| if (stack_addr > &stack_variable) { |
| *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size; |
| } else { |
| *stack_base = stack_addr; |
| } |
| |
| // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac. |
| pthread_attr_t attributes; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); |
| #else |
| pthread_attr_t attributes; |
| CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); |
| |
| #if defined(__GLIBC__) |
| // If we're the main thread, check whether we were run with an unlimited stack. In that case, |
| // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection |
| // will be broken because we'll die long before we get close to 2GB. |
| bool is_main_thread = (::art::GetTid() == getpid()); |
| if (is_main_thread) { |
| rlimit stack_limit; |
| if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { |
| PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; |
| } |
| if (stack_limit.rlim_cur == RLIM_INFINITY) { |
| size_t old_stack_size = *stack_size; |
| |
| // Use the kernel default limit as our size, and adjust the base to match. |
| *stack_size = 8 * MB; |
| *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size); |
| |
| VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" |
| << " to " << PrettySize(*stack_size) |
| << " with base " << *stack_base; |
| } |
| } |
| #endif |
| |
| #endif |
| } |
| |
| bool ReadFileToString(const std::string& file_name, std::string* result) { |
| File file(file_name, O_RDONLY, false); |
| if (!file.IsOpened()) { |
| return false; |
| } |
| |
| std::vector<char> buf(8 * KB); |
| while (true) { |
| int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[0], buf.size())); |
| if (n == -1) { |
| return false; |
| } |
| if (n == 0) { |
| return true; |
| } |
| result->append(&buf[0], n); |
| } |
| } |
| |
| bool PrintFileToLog(const std::string& file_name, LogSeverity level) { |
| File file(file_name, O_RDONLY, false); |
| if (!file.IsOpened()) { |
| return false; |
| } |
| |
| constexpr size_t kBufSize = 256; // Small buffer. Avoid stack overflow and stack size warnings. |
| char buf[kBufSize + 1]; // +1 for terminator. |
| size_t filled_to = 0; |
| while (true) { |
| DCHECK_LT(filled_to, kBufSize); |
| int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[filled_to], kBufSize - filled_to)); |
| if (n <= 0) { |
| // Print the rest of the buffer, if it exists. |
| if (filled_to > 0) { |
| buf[filled_to] = 0; |
| LOG(level) << buf; |
| } |
| return n == 0; |
| } |
| // Scan for '\n'. |
| size_t i = filled_to; |
| bool found_newline = false; |
| for (; i < filled_to + n; ++i) { |
| if (buf[i] == '\n') { |
| // Found a line break, that's something to print now. |
| buf[i] = 0; |
| LOG(level) << buf; |
| // Copy the rest to the front. |
| if (i + 1 < filled_to + n) { |
| memmove(&buf[0], &buf[i + 1], filled_to + n - i - 1); |
| filled_to = filled_to + n - i - 1; |
| } else { |
| filled_to = 0; |
| } |
| found_newline = true; |
| break; |
| } |
| } |
| if (found_newline) { |
| continue; |
| } else { |
| filled_to += n; |
| // Check if we must flush now. |
| if (filled_to == kBufSize) { |
| buf[kBufSize] = 0; |
| LOG(level) << buf; |
| filled_to = 0; |
| } |
| } |
| } |
| } |
| |
| std::string PrettyDescriptor(mirror::String* java_descriptor) { |
| if (java_descriptor == nullptr) { |
| return "null"; |
| } |
| return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str()); |
| } |
| |
| std::string PrettyDescriptor(mirror::Class* klass) { |
| if (klass == nullptr) { |
| return "null"; |
| } |
| std::string temp; |
| return PrettyDescriptor(klass->GetDescriptor(&temp)); |
| } |
| |
| std::string PrettyDescriptor(const char* descriptor) { |
| // Count the number of '['s to get the dimensionality. |
| const char* c = descriptor; |
| size_t dim = 0; |
| while (*c == '[') { |
| dim++; |
| c++; |
| } |
| |
| // Reference or primitive? |
| if (*c == 'L') { |
| // "[[La/b/C;" -> "a.b.C[][]". |
| c++; // Skip the 'L'. |
| } else { |
| // "[[B" -> "byte[][]". |
| // To make life easier, we make primitives look like unqualified |
| // reference types. |
| switch (*c) { |
| case 'B': c = "byte;"; break; |
| case 'C': c = "char;"; break; |
| case 'D': c = "double;"; break; |
| case 'F': c = "float;"; break; |
| case 'I': c = "int;"; break; |
| case 'J': c = "long;"; break; |
| case 'S': c = "short;"; break; |
| case 'Z': c = "boolean;"; break; |
| case 'V': c = "void;"; break; // Used when decoding return types. |
| default: return descriptor; |
| } |
| } |
| |
| // At this point, 'c' is a string of the form "fully/qualified/Type;" |
| // or "primitive;". Rewrite the type with '.' instead of '/': |
| std::string result; |
| const char* p = c; |
| while (*p != ';') { |
| char ch = *p++; |
| if (ch == '/') { |
| ch = '.'; |
| } |
| result.push_back(ch); |
| } |
| // ...and replace the semicolon with 'dim' "[]" pairs: |
| for (size_t i = 0; i < dim; ++i) { |
| result += "[]"; |
| } |
| return result; |
| } |
| |
| std::string PrettyField(ArtField* f, bool with_type) { |
| if (f == nullptr) { |
| return "null"; |
| } |
| std::string result; |
| if (with_type) { |
| result += PrettyDescriptor(f->GetTypeDescriptor()); |
| result += ' '; |
| } |
| std::string temp; |
| result += PrettyDescriptor(f->GetDeclaringClass()->GetDescriptor(&temp)); |
| result += '.'; |
| result += f->GetName(); |
| return result; |
| } |
| |
| std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) { |
| if (field_idx >= dex_file.NumFieldIds()) { |
| return StringPrintf("<<invalid-field-idx-%d>>", field_idx); |
| } |
| const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); |
| std::string result; |
| if (with_type) { |
| result += dex_file.GetFieldTypeDescriptor(field_id); |
| result += ' '; |
| } |
| result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id)); |
| result += '.'; |
| result += dex_file.GetFieldName(field_id); |
| return result; |
| } |
| |
| std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) { |
| if (type_idx >= dex_file.NumTypeIds()) { |
| return StringPrintf("<<invalid-type-idx-%d>>", type_idx); |
| } |
| const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx); |
| return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id)); |
| } |
| |
| std::string PrettyArguments(const char* signature) { |
| std::string result; |
| result += '('; |
| CHECK_EQ(*signature, '('); |
| ++signature; // Skip the '('. |
| while (*signature != ')') { |
| size_t argument_length = 0; |
| while (signature[argument_length] == '[') { |
| ++argument_length; |
| } |
| if (signature[argument_length] == 'L') { |
| argument_length = (strchr(signature, ';') - signature + 1); |
| } else { |
| ++argument_length; |
| } |
| { |
| std::string argument_descriptor(signature, argument_length); |
| result += PrettyDescriptor(argument_descriptor.c_str()); |
| } |
| if (signature[argument_length] != ')') { |
| result += ", "; |
| } |
| signature += argument_length; |
| } |
| CHECK_EQ(*signature, ')'); |
| ++signature; // Skip the ')'. |
| result += ')'; |
| return result; |
| } |
| |
| std::string PrettyReturnType(const char* signature) { |
| const char* return_type = strchr(signature, ')'); |
| CHECK(return_type != nullptr); |
| ++return_type; // Skip ')'. |
| return PrettyDescriptor(return_type); |
| } |
| |
| std::string PrettyMethod(ArtMethod* m, bool with_signature) { |
| if (m == nullptr) { |
| return "null"; |
| } |
| if (!m->IsRuntimeMethod()) { |
| m = m->GetInterfaceMethodIfProxy(Runtime::Current()->GetClassLinker()->GetImagePointerSize()); |
| } |
| std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor())); |
| result += '.'; |
| result += m->GetName(); |
| if (UNLIKELY(m->IsFastNative())) { |
| result += "!"; |
| } |
| if (with_signature) { |
| const Signature signature = m->GetSignature(); |
| std::string sig_as_string(signature.ToString()); |
| if (signature == Signature::NoSignature()) { |
| return result + sig_as_string; |
| } |
| result = PrettyReturnType(sig_as_string.c_str()) + " " + result + |
| PrettyArguments(sig_as_string.c_str()); |
| } |
| return result; |
| } |
| |
| std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) { |
| if (method_idx >= dex_file.NumMethodIds()) { |
| return StringPrintf("<<invalid-method-idx-%d>>", method_idx); |
| } |
| const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); |
| std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id))); |
| result += '.'; |
| result += dex_file.GetMethodName(method_id); |
| if (with_signature) { |
| const Signature signature = dex_file.GetMethodSignature(method_id); |
| std::string sig_as_string(signature.ToString()); |
| if (signature == Signature::NoSignature()) { |
| return result + sig_as_string; |
| } |
| result = PrettyReturnType(sig_as_string.c_str()) + " " + result + |
| PrettyArguments(sig_as_string.c_str()); |
| } |
| return result; |
| } |
| |
| std::string PrettyTypeOf(mirror::Object* obj) { |
| if (obj == nullptr) { |
| return "null"; |
| } |
| if (obj->GetClass() == nullptr) { |
| return "(raw)"; |
| } |
| std::string temp; |
| std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp))); |
| if (obj->IsClass()) { |
| result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">"; |
| } |
| return result; |
| } |
| |
| std::string PrettyClass(mirror::Class* c) { |
| if (c == nullptr) { |
| return "null"; |
| } |
| std::string result; |
| result += "java.lang.Class<"; |
| result += PrettyDescriptor(c); |
| result += ">"; |
| return result; |
| } |
| |
| std::string PrettyClassAndClassLoader(mirror::Class* c) { |
| if (c == nullptr) { |
| return "null"; |
| } |
| std::string result; |
| result += "java.lang.Class<"; |
| result += PrettyDescriptor(c); |
| result += ","; |
| result += PrettyTypeOf(c->GetClassLoader()); |
| // TODO: add an identifying hash value for the loader |
| result += ">"; |
| return result; |
| } |
| |
| std::string PrettyJavaAccessFlags(uint32_t access_flags) { |
| std::string result; |
| if ((access_flags & kAccPublic) != 0) { |
| result += "public "; |
| } |
| if ((access_flags & kAccProtected) != 0) { |
| result += "protected "; |
| } |
| if ((access_flags & kAccPrivate) != 0) { |
| result += "private "; |
| } |
| if ((access_flags & kAccFinal) != 0) { |
| result += "final "; |
| } |
| if ((access_flags & kAccStatic) != 0) { |
| result += "static "; |
| } |
| if ((access_flags & kAccTransient) != 0) { |
| result += "transient "; |
| } |
| if ((access_flags & kAccVolatile) != 0) { |
| result += "volatile "; |
| } |
| if ((access_flags & kAccSynchronized) != 0) { |
| result += "synchronized "; |
| } |
| return result; |
| } |
| |
| std::string PrettySize(int64_t byte_count) { |
| // The byte thresholds at which we display amounts. A byte count is displayed |
| // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1]. |
| static const int64_t kUnitThresholds[] = { |
| 0, // B up to... |
| 3*1024, // KB up to... |
| 2*1024*1024, // MB up to... |
| 1024*1024*1024 // GB from here. |
| }; |
| static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB }; |
| static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" }; |
| const char* negative_str = ""; |
| if (byte_count < 0) { |
| negative_str = "-"; |
| byte_count = -byte_count; |
| } |
| int i = arraysize(kUnitThresholds); |
| while (--i > 0) { |
| if (byte_count >= kUnitThresholds[i]) { |
| break; |
| } |
| } |
| return StringPrintf("%s%" PRId64 "%s", |
| negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]); |
| } |
| |
| std::string PrintableChar(uint16_t ch) { |
| std::string result; |
| result += '\''; |
| if (NeedsEscaping(ch)) { |
| StringAppendF(&result, "\\u%04x", ch); |
| } else { |
| result += ch; |
| } |
| result += '\''; |
| return result; |
| } |
| |
| std::string PrintableString(const char* utf) { |
| std::string result; |
| result += '"'; |
| const char* p = utf; |
| size_t char_count = CountModifiedUtf8Chars(p); |
| for (size_t i = 0; i < char_count; ++i) { |
| uint32_t ch = GetUtf16FromUtf8(&p); |
| if (ch == '\\') { |
| result += "\\\\"; |
| } else if (ch == '\n') { |
| result += "\\n"; |
| } else if (ch == '\r') { |
| result += "\\r"; |
| } else if (ch == '\t') { |
| result += "\\t"; |
| } else { |
| const uint16_t leading = GetLeadingUtf16Char(ch); |
| |
| if (NeedsEscaping(leading)) { |
| StringAppendF(&result, "\\u%04x", leading); |
| } else { |
| result += leading; |
| } |
| |
| const uint32_t trailing = GetTrailingUtf16Char(ch); |
| if (trailing != 0) { |
| // All high surrogates will need escaping. |
| StringAppendF(&result, "\\u%04x", trailing); |
| } |
| } |
| } |
| result += '"'; |
| return result; |
| } |
| |
| // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules. |
| std::string MangleForJni(const std::string& s) { |
| std::string result; |
| size_t char_count = CountModifiedUtf8Chars(s.c_str()); |
| const char* cp = &s[0]; |
| for (size_t i = 0; i < char_count; ++i) { |
| uint32_t ch = GetUtf16FromUtf8(&cp); |
| if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) { |
| result.push_back(ch); |
| } else if (ch == '.' || ch == '/') { |
| result += "_"; |
| } else if (ch == '_') { |
| result += "_1"; |
| } else if (ch == ';') { |
| result += "_2"; |
| } else if (ch == '[') { |
| result += "_3"; |
| } else { |
| const uint16_t leading = GetLeadingUtf16Char(ch); |
| const uint32_t trailing = GetTrailingUtf16Char(ch); |
| |
| StringAppendF(&result, "_0%04x", leading); |
| if (trailing != 0) { |
| StringAppendF(&result, "_0%04x", trailing); |
| } |
| } |
| } |
| return result; |
| } |
| |
| std::string DotToDescriptor(const char* class_name) { |
| std::string descriptor(class_name); |
| std::replace(descriptor.begin(), descriptor.end(), '.', '/'); |
| if (descriptor.length() > 0 && descriptor[0] != '[') { |
| descriptor = "L" + descriptor + ";"; |
| } |
| return descriptor; |
| } |
| |
| std::string DescriptorToDot(const char* descriptor) { |
| size_t length = strlen(descriptor); |
| if (length > 1) { |
| if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { |
| // Descriptors have the leading 'L' and trailing ';' stripped. |
| std::string result(descriptor + 1, length - 2); |
| std::replace(result.begin(), result.end(), '/', '.'); |
| return result; |
| } else { |
| // For arrays the 'L' and ';' remain intact. |
| std::string result(descriptor); |
| std::replace(result.begin(), result.end(), '/', '.'); |
| return result; |
| } |
| } |
| // Do nothing for non-class/array descriptors. |
| return descriptor; |
| } |
| |
| std::string DescriptorToName(const char* descriptor) { |
| size_t length = strlen(descriptor); |
| if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { |
| std::string result(descriptor + 1, length - 2); |
| return result; |
| } |
| return descriptor; |
| } |
| |
| std::string JniShortName(ArtMethod* m) { |
| std::string class_name(m->GetDeclaringClassDescriptor()); |
| // Remove the leading 'L' and trailing ';'... |
| CHECK_EQ(class_name[0], 'L') << class_name; |
| CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name; |
| class_name.erase(0, 1); |
| class_name.erase(class_name.size() - 1, 1); |
| |
| std::string method_name(m->GetName()); |
| |
| std::string short_name; |
| short_name += "Java_"; |
| short_name += MangleForJni(class_name); |
| short_name += "_"; |
| short_name += MangleForJni(method_name); |
| return short_name; |
| } |
| |
| std::string JniLongName(ArtMethod* m) { |
| std::string long_name; |
| long_name += JniShortName(m); |
| long_name += "__"; |
| |
| std::string signature(m->GetSignature().ToString()); |
| signature.erase(0, 1); |
| signature.erase(signature.begin() + signature.find(')'), signature.end()); |
| |
| long_name += MangleForJni(signature); |
| |
| return long_name; |
| } |
| |
| // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii. |
| uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = { |
| 0x00000000, // 00..1f low control characters; nothing valid |
| 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-' |
| 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_' |
| 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z' |
| }; |
| |
| // Helper for IsValidPartOfMemberNameUtf8(); do not call directly. |
| bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) { |
| /* |
| * It's a multibyte encoded character. Decode it and analyze. We |
| * accept anything that isn't (a) an improperly encoded low value, |
| * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high |
| * control character, or (e) a high space, layout, or special |
| * character (U+00a0, U+2000..U+200f, U+2028..U+202f, |
| * U+fff0..U+ffff). This is all specified in the dex format |
| * document. |
| */ |
| |
| const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr); |
| const uint16_t leading = GetLeadingUtf16Char(pair); |
| |
| // We have a surrogate pair resulting from a valid 4 byte UTF sequence. |
| // No further checks are necessary because 4 byte sequences span code |
| // points [U+10000, U+1FFFFF], which are valid codepoints in a dex |
| // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of |
| // the surrogate halves are valid and well formed in this instance. |
| if (GetTrailingUtf16Char(pair) != 0) { |
| return true; |
| } |
| |
| |
| // We've encountered a one, two or three byte UTF-8 sequence. The |
| // three byte UTF-8 sequence could be one half of a surrogate pair. |
| switch (leading >> 8) { |
| case 0x00: |
| // It's only valid if it's above the ISO-8859-1 high space (0xa0). |
| return (leading > 0x00a0); |
| case 0xd8: |
| case 0xd9: |
| case 0xda: |
| case 0xdb: |
| { |
| // We found a three byte sequence encoding one half of a surrogate. |
| // Look for the other half. |
| const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr); |
| const uint16_t trailing = GetLeadingUtf16Char(pair2); |
| |
| return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff); |
| } |
| case 0xdc: |
| case 0xdd: |
| case 0xde: |
| case 0xdf: |
| // It's a trailing surrogate, which is not valid at this point. |
| return false; |
| case 0x20: |
| case 0xff: |
| // It's in the range that has spaces, controls, and specials. |
| switch (leading & 0xfff8) { |
| case 0x2000: |
| case 0x2008: |
| case 0x2028: |
| case 0xfff0: |
| case 0xfff8: |
| return false; |
| } |
| return true; |
| default: |
| return true; |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| /* Return whether the pointed-at modified-UTF-8 encoded character is |
| * valid as part of a member name, updating the pointer to point past |
| * the consumed character. This will consume two encoded UTF-16 code |
| * points if the character is encoded as a surrogate pair. Also, if |
| * this function returns false, then the given pointer may only have |
| * been partially advanced. |
| */ |
| static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) { |
| uint8_t c = (uint8_t) **pUtf8Ptr; |
| if (LIKELY(c <= 0x7f)) { |
| // It's low-ascii, so check the table. |
| uint32_t wordIdx = c >> 5; |
| uint32_t bitIdx = c & 0x1f; |
| (*pUtf8Ptr)++; |
| return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0; |
| } |
| |
| // It's a multibyte encoded character. Call a non-inline function |
| // for the heavy lifting. |
| return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr); |
| } |
| |
| bool IsValidMemberName(const char* s) { |
| bool angle_name = false; |
| |
| switch (*s) { |
| case '\0': |
| // The empty string is not a valid name. |
| return false; |
| case '<': |
| angle_name = true; |
| s++; |
| break; |
| } |
| |
| while (true) { |
| switch (*s) { |
| case '\0': |
| return !angle_name; |
| case '>': |
| return angle_name && s[1] == '\0'; |
| } |
| |
| if (!IsValidPartOfMemberNameUtf8(&s)) { |
| return false; |
| } |
| } |
| } |
| |
| enum ClassNameType { kName, kDescriptor }; |
| template<ClassNameType kType, char kSeparator> |
| static bool IsValidClassName(const char* s) { |
| int arrayCount = 0; |
| while (*s == '[') { |
| arrayCount++; |
| s++; |
| } |
| |
| if (arrayCount > 255) { |
| // Arrays may have no more than 255 dimensions. |
| return false; |
| } |
| |
| ClassNameType type = kType; |
| if (type != kDescriptor && arrayCount != 0) { |
| /* |
| * If we're looking at an array of some sort, then it doesn't |
| * matter if what is being asked for is a class name; the |
| * format looks the same as a type descriptor in that case, so |
| * treat it as such. |
| */ |
| type = kDescriptor; |
| } |
| |
| if (type == kDescriptor) { |
| /* |
| * We are looking for a descriptor. Either validate it as a |
| * single-character primitive type, or continue on to check the |
| * embedded class name (bracketed by "L" and ";"). |
| */ |
| switch (*(s++)) { |
| case 'B': |
| case 'C': |
| case 'D': |
| case 'F': |
| case 'I': |
| case 'J': |
| case 'S': |
| case 'Z': |
| // These are all single-character descriptors for primitive types. |
| return (*s == '\0'); |
| case 'V': |
| // Non-array void is valid, but you can't have an array of void. |
| return (arrayCount == 0) && (*s == '\0'); |
| case 'L': |
| // Class name: Break out and continue below. |
| break; |
| default: |
| // Oddball descriptor character. |
| return false; |
| } |
| } |
| |
| /* |
| * We just consumed the 'L' that introduces a class name as part |
| * of a type descriptor, or we are looking for an unadorned class |
| * name. |
| */ |
| |
| bool sepOrFirst = true; // first character or just encountered a separator. |
| for (;;) { |
| uint8_t c = (uint8_t) *s; |
| switch (c) { |
| case '\0': |
| /* |
| * Premature end for a type descriptor, but valid for |
| * a class name as long as we haven't encountered an |
| * empty component (including the degenerate case of |
| * the empty string ""). |
| */ |
| return (type == kName) && !sepOrFirst; |
| case ';': |
| /* |
| * Invalid character for a class name, but the |
| * legitimate end of a type descriptor. In the latter |
| * case, make sure that this is the end of the string |
| * and that it doesn't end with an empty component |
| * (including the degenerate case of "L;"). |
| */ |
| return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0'); |
| case '/': |
| case '.': |
| if (c != kSeparator) { |
| // The wrong separator character. |
| return false; |
| } |
| if (sepOrFirst) { |
| // Separator at start or two separators in a row. |
| return false; |
| } |
| sepOrFirst = true; |
| s++; |
| break; |
| default: |
| if (!IsValidPartOfMemberNameUtf8(&s)) { |
| return false; |
| } |
| sepOrFirst = false; |
| break; |
| } |
| } |
| } |
| |
| bool IsValidBinaryClassName(const char* s) { |
| return IsValidClassName<kName, '.'>(s); |
| } |
| |
| bool IsValidJniClassName(const char* s) { |
| return IsValidClassName<kName, '/'>(s); |
| } |
| |
| bool IsValidDescriptor(const char* s) { |
| return IsValidClassName<kDescriptor, '/'>(s); |
| } |
| |
| void Split(const std::string& s, char separator, std::vector<std::string>* result) { |
| const char* p = s.data(); |
| const char* end = p + s.size(); |
| while (p != end) { |
| if (*p == separator) { |
| ++p; |
| } else { |
| const char* start = p; |
| while (++p != end && *p != separator) { |
| // Skip to the next occurrence of the separator. |
| } |
| result->push_back(std::string(start, p - start)); |
| } |
| } |
| } |
| |
| std::string Trim(const std::string& s) { |
| std::string result; |
| unsigned int start_index = 0; |
| unsigned int end_index = s.size() - 1; |
| |
| // Skip initial whitespace. |
| while (start_index < s.size()) { |
| if (!isspace(s[start_index])) { |
| break; |
| } |
| start_index++; |
| } |
| |
| // Skip terminating whitespace. |
| while (end_index >= start_index) { |
| if (!isspace(s[end_index])) { |
| break; |
| } |
| end_index--; |
| } |
| |
| // All spaces, no beef. |
| if (end_index < start_index) { |
| return ""; |
| } |
| // Start_index is the first non-space, end_index is the last one. |
| return s.substr(start_index, end_index - start_index + 1); |
| } |
| |
| template <typename StringT> |
| std::string Join(const std::vector<StringT>& strings, char separator) { |
| if (strings.empty()) { |
| return ""; |
| } |
| |
| std::string result(strings[0]); |
| for (size_t i = 1; i < strings.size(); ++i) { |
| result += separator; |
| result += strings[i]; |
| } |
| return result; |
| } |
| |
| // Explicit instantiations. |
| template std::string Join<std::string>(const std::vector<std::string>& strings, char separator); |
| template std::string Join<const char*>(const std::vector<const char*>& strings, char separator); |
| |
| bool StartsWith(const std::string& s, const char* prefix) { |
| return s.compare(0, strlen(prefix), prefix) == 0; |
| } |
| |
| bool EndsWith(const std::string& s, const char* suffix) { |
| size_t suffix_length = strlen(suffix); |
| size_t string_length = s.size(); |
| if (suffix_length > string_length) { |
| return false; |
| } |
| size_t offset = string_length - suffix_length; |
| return s.compare(offset, suffix_length, suffix) == 0; |
| } |
| |
| void SetThreadName(const char* thread_name) { |
| int hasAt = 0; |
| int hasDot = 0; |
| const char* s = thread_name; |
| while (*s) { |
| if (*s == '.') { |
| hasDot = 1; |
| } else if (*s == '@') { |
| hasAt = 1; |
| } |
| s++; |
| } |
| int len = s - thread_name; |
| if (len < 15 || hasAt || !hasDot) { |
| s = thread_name; |
| } else { |
| s = thread_name + len - 15; |
| } |
| #if defined(__linux__) |
| // pthread_setname_np fails rather than truncating long strings. |
| char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel. |
| strncpy(buf, s, sizeof(buf)-1); |
| buf[sizeof(buf)-1] = '\0'; |
| errno = pthread_setname_np(pthread_self(), buf); |
| if (errno != 0) { |
| PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'"; |
| } |
| #else // __APPLE__ |
| pthread_setname_np(thread_name); |
| #endif |
| } |
| |
| void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) { |
| *utime = *stime = *task_cpu = 0; |
| std::string stats; |
| if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) { |
| return; |
| } |
| // Skip the command, which may contain spaces. |
| stats = stats.substr(stats.find(')') + 2); |
| // Extract the three fields we care about. |
| std::vector<std::string> fields; |
| Split(stats, ' ', &fields); |
| *state = fields[0][0]; |
| *utime = strtoull(fields[11].c_str(), nullptr, 10); |
| *stime = strtoull(fields[12].c_str(), nullptr, 10); |
| *task_cpu = strtoull(fields[36].c_str(), nullptr, 10); |
| } |
| |
| std::string GetSchedulerGroupName(pid_t tid) { |
| // /proc/<pid>/cgroup looks like this: |
| // 2:devices:/ |
| // 1:cpuacct,cpu:/ |
| // We want the third field from the line whose second field contains the "cpu" token. |
| std::string cgroup_file; |
| if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) { |
| return ""; |
| } |
| std::vector<std::string> cgroup_lines; |
| Split(cgroup_file, '\n', &cgroup_lines); |
| for (size_t i = 0; i < cgroup_lines.size(); ++i) { |
| std::vector<std::string> cgroup_fields; |
| Split(cgroup_lines[i], ':', &cgroup_fields); |
| std::vector<std::string> cgroups; |
| Split(cgroup_fields[1], ',', &cgroups); |
| for (size_t j = 0; j < cgroups.size(); ++j) { |
| if (cgroups[j] == "cpu") { |
| return cgroup_fields[2].substr(1); // Skip the leading slash. |
| } |
| } |
| } |
| return ""; |
| } |
| |
| const char* GetAndroidRoot() { |
| const char* android_root = getenv("ANDROID_ROOT"); |
| if (android_root == nullptr) { |
| if (OS::DirectoryExists("/system")) { |
| android_root = "/system"; |
| } else { |
| LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist"; |
| return ""; |
| } |
| } |
| if (!OS::DirectoryExists(android_root)) { |
| LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root; |
| return ""; |
| } |
| return android_root; |
| } |
| |
| const char* GetAndroidData() { |
| std::string error_msg; |
| const char* dir = GetAndroidDataSafe(&error_msg); |
| if (dir != nullptr) { |
| return dir; |
| } else { |
| LOG(FATAL) << error_msg; |
| return ""; |
| } |
| } |
| |
| const char* GetAndroidDataSafe(std::string* error_msg) { |
| const char* android_data = getenv("ANDROID_DATA"); |
| if (android_data == nullptr) { |
| if (OS::DirectoryExists("/data")) { |
| android_data = "/data"; |
| } else { |
| *error_msg = "ANDROID_DATA not set and /data does not exist"; |
| return nullptr; |
| } |
| } |
| if (!OS::DirectoryExists(android_data)) { |
| *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data); |
| return nullptr; |
| } |
| return android_data; |
| } |
| |
| void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache, |
| bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) { |
| CHECK(subdir != nullptr); |
| std::string error_msg; |
| const char* android_data = GetAndroidDataSafe(&error_msg); |
| if (android_data == nullptr) { |
| *have_android_data = false; |
| *dalvik_cache_exists = false; |
| *is_global_cache = false; |
| return; |
| } else { |
| *have_android_data = true; |
| } |
| const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data)); |
| *dalvik_cache = dalvik_cache_root + subdir; |
| *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str()); |
| *is_global_cache = strcmp(android_data, "/data") == 0; |
| if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) { |
| // Don't create the system's /data/dalvik-cache/... because it needs special permissions. |
| *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) && |
| (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST)); |
| } |
| } |
| |
| std::string GetDalvikCache(const char* subdir) { |
| CHECK(subdir != nullptr); |
| const char* android_data = GetAndroidData(); |
| const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data)); |
| const std::string dalvik_cache = dalvik_cache_root + subdir; |
| if (!OS::DirectoryExists(dalvik_cache.c_str())) { |
| // TODO: Check callers. Traditional behavior is to not abort. |
| return ""; |
| } |
| return dalvik_cache; |
| } |
| |
| bool GetDalvikCacheFilename(const char* location, const char* cache_location, |
| std::string* filename, std::string* error_msg) { |
| if (location[0] != '/') { |
| *error_msg = StringPrintf("Expected path in location to be absolute: %s", location); |
| return false; |
| } |
| std::string cache_file(&location[1]); // skip leading slash |
| if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) { |
| cache_file += "/"; |
| cache_file += DexFile::kClassesDex; |
| } |
| std::replace(cache_file.begin(), cache_file.end(), '/', '@'); |
| *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str()); |
| return true; |
| } |
| |
| static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) { |
| // in = /foo/bar/baz |
| // out = /foo/bar/<isa>/baz |
| size_t pos = filename->rfind('/'); |
| CHECK_NE(pos, std::string::npos) << *filename << " " << isa; |
| filename->insert(pos, "/", 1); |
| filename->insert(pos + 1, GetInstructionSetString(isa)); |
| } |
| |
| std::string GetSystemImageFilename(const char* location, const InstructionSet isa) { |
| // location = /system/framework/boot.art |
| // filename = /system/framework/<isa>/boot.art |
| std::string filename(location); |
| InsertIsaDirectory(isa, &filename); |
| return filename; |
| } |
| |
| int ExecAndReturnCode(std::vector<std::string>& arg_vector, std::string* error_msg) { |
| const std::string command_line(Join(arg_vector, ' ')); |
| CHECK_GE(arg_vector.size(), 1U) << command_line; |
| |
| // Convert the args to char pointers. |
| const char* program = arg_vector[0].c_str(); |
| std::vector<char*> args; |
| for (size_t i = 0; i < arg_vector.size(); ++i) { |
| const std::string& arg = arg_vector[i]; |
| char* arg_str = const_cast<char*>(arg.c_str()); |
| CHECK(arg_str != nullptr) << i; |
| args.push_back(arg_str); |
| } |
| args.push_back(nullptr); |
| |
| // fork and exec |
| pid_t pid = fork(); |
| if (pid == 0) { |
| // no allocation allowed between fork and exec |
| |
| // change process groups, so we don't get reaped by ProcessManager |
| setpgid(0, 0); |
| |
| execv(program, &args[0]); |
| PLOG(ERROR) << "Failed to execv(" << command_line << ")"; |
| // _exit to avoid atexit handlers in child. |
| _exit(1); |
| } else { |
| if (pid == -1) { |
| *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s", |
| command_line.c_str(), strerror(errno)); |
| return -1; |
| } |
| |
| // wait for subprocess to finish |
| int status = -1; |
| pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); |
| if (got_pid != pid) { |
| *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: " |
| "wanted %d, got %d: %s", |
| command_line.c_str(), pid, got_pid, strerror(errno)); |
| return -1; |
| } |
| if (WIFEXITED(status)) { |
| return WEXITSTATUS(status); |
| } |
| return -1; |
| } |
| } |
| |
| bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) { |
| int status = ExecAndReturnCode(arg_vector, error_msg); |
| if (status != 0) { |
| const std::string command_line(Join(arg_vector, ' ')); |
| *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status", |
| command_line.c_str()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool FileExists(const std::string& filename) { |
| struct stat buffer; |
| return stat(filename.c_str(), &buffer) == 0; |
| } |
| |
| bool FileExistsAndNotEmpty(const std::string& filename) { |
| struct stat buffer; |
| if (stat(filename.c_str(), &buffer) != 0) { |
| return false; |
| } |
| return buffer.st_size > 0; |
| } |
| |
| std::string PrettyDescriptor(Primitive::Type type) { |
| return PrettyDescriptor(Primitive::Descriptor(type)); |
| } |
| |
| static void DumpMethodCFGImpl(const DexFile* dex_file, |
| uint32_t dex_method_idx, |
| const DexFile::CodeItem* code_item, |
| std::ostream& os) { |
| os << "digraph {\n"; |
| os << " # /* " << PrettyMethod(dex_method_idx, *dex_file, true) << " */\n"; |
| |
| std::set<uint32_t> dex_pc_is_branch_target; |
| { |
| // Go and populate. |
| const Instruction* inst = Instruction::At(code_item->insns_); |
| for (uint32_t dex_pc = 0; |
| dex_pc < code_item->insns_size_in_code_units_; |
| dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) { |
| if (inst->IsBranch()) { |
| dex_pc_is_branch_target.insert(dex_pc + inst->GetTargetOffset()); |
| } else if (inst->IsSwitch()) { |
| const uint16_t* insns = code_item->insns_ + dex_pc; |
| int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16); |
| const uint16_t* switch_insns = insns + switch_offset; |
| uint32_t switch_count = switch_insns[1]; |
| int32_t targets_offset; |
| if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { |
| /* 0=sig, 1=count, 2/3=firstKey */ |
| targets_offset = 4; |
| } else { |
| /* 0=sig, 1=count, 2..count*2 = keys */ |
| targets_offset = 2 + 2 * switch_count; |
| } |
| for (uint32_t targ = 0; targ < switch_count; targ++) { |
| int32_t offset = |
| static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) | |
| static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16); |
| dex_pc_is_branch_target.insert(dex_pc + offset); |
| } |
| } |
| } |
| } |
| |
| // Create nodes for "basic blocks." |
| std::map<uint32_t, uint32_t> dex_pc_to_node_id; // This only has entries for block starts. |
| std::map<uint32_t, uint32_t> dex_pc_to_incl_id; // This has entries for all dex pcs. |
| |
| { |
| const Instruction* inst = Instruction::At(code_item->insns_); |
| bool first_in_block = true; |
| bool force_new_block = false; |
| for (uint32_t dex_pc = 0; |
| dex_pc < code_item->insns_size_in_code_units_; |
| dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) { |
| if (dex_pc == 0 || |
| (dex_pc_is_branch_target.find(dex_pc) != dex_pc_is_branch_target.end()) || |
| force_new_block) { |
| uint32_t id = dex_pc_to_node_id.size(); |
| if (id > 0) { |
| // End last node. |
| os << "}\"];\n"; |
| } |
| // Start next node. |
| os << " node" << id << " [shape=record,label=\"{"; |
| dex_pc_to_node_id.insert(std::make_pair(dex_pc, id)); |
| first_in_block = true; |
| force_new_block = false; |
| } |
| |
| // Register instruction. |
| dex_pc_to_incl_id.insert(std::make_pair(dex_pc, dex_pc_to_node_id.size() - 1)); |
| |
| // Print instruction. |
| if (!first_in_block) { |
| os << " | "; |
| } else { |
| first_in_block = false; |
| } |
| |
| // Dump the instruction. Need to escape '"', '<', '>', '{' and '}'. |
| os << "<" << "p" << dex_pc << ">"; |
| os << " 0x" << std::hex << dex_pc << std::dec << ": "; |
| std::string inst_str = inst->DumpString(dex_file); |
| size_t cur_start = 0; // It's OK to start at zero, instruction dumps don't start with chars |
| // we need to escape. |
| while (cur_start != std::string::npos) { |
| size_t next_escape = inst_str.find_first_of("\"{}<>", cur_start + 1); |
| if (next_escape == std::string::npos) { |
| os << inst_str.substr(cur_start, inst_str.size() - cur_start); |
| break; |
| } else { |
| os << inst_str.substr(cur_start, next_escape - cur_start); |
| // Escape all necessary characters. |
| while (next_escape < inst_str.size()) { |
| char c = inst_str.at(next_escape); |
| if (c == '"' || c == '{' || c == '}' || c == '<' || c == '>') { |
| os << '\\' << c; |
| } else { |
| break; |
| } |
| next_escape++; |
| } |
| if (next_escape >= inst_str.size()) { |
| next_escape = std::string::npos; |
| } |
| cur_start = next_escape; |
| } |
| } |
| |
| // Force a new block for some fall-throughs and some instructions that terminate the "local" |
| // control flow. |
| force_new_block = inst->IsSwitch() || inst->IsBasicBlockEnd(); |
| } |
| // Close last node. |
| if (dex_pc_to_node_id.size() > 0) { |
| os << "}\"];\n"; |
| } |
| } |
| |
| // Create edges between them. |
| { |
| std::ostringstream regular_edges; |
| std::ostringstream taken_edges; |
| std::ostringstream exception_edges; |
| |
| // Common set of exception edges. |
| std::set<uint32_t> exception_targets; |
| |
| // These blocks (given by the first dex pc) need exception per dex-pc handling in a second |
| // pass. In the first pass we try and see whether we can use a common set of edges. |
| std::set<uint32_t> blocks_with_detailed_exceptions; |
| |
| { |
| uint32_t last_node_id = std::numeric_limits<uint32_t>::max(); |
| uint32_t old_dex_pc = 0; |
| uint32_t block_start_dex_pc = std::numeric_limits<uint32_t>::max(); |
| const Instruction* inst = Instruction::At(code_item->insns_); |
| for (uint32_t dex_pc = 0; |
| dex_pc < code_item->insns_size_in_code_units_; |
| old_dex_pc = dex_pc, dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) { |
| { |
| auto it = dex_pc_to_node_id.find(dex_pc); |
| if (it != dex_pc_to_node_id.end()) { |
| if (!exception_targets.empty()) { |
| // It seems the last block had common exception handlers. Add the exception edges now. |
| uint32_t node_id = dex_pc_to_node_id.find(block_start_dex_pc)->second; |
| for (uint32_t handler_pc : exception_targets) { |
| auto node_id_it = dex_pc_to_incl_id.find(handler_pc); |
| if (node_id_it != dex_pc_to_incl_id.end()) { |
| exception_edges << " node" << node_id |
| << " -> node" << node_id_it->second << ":p" << handler_pc |
| << ";\n"; |
| } |
| } |
| exception_targets.clear(); |
| } |
| |
| block_start_dex_pc = dex_pc; |
| |
| // Seems to be a fall-through, connect to last_node_id. May be spurious edges for things |
| // like switch data. |
| uint32_t old_last = last_node_id; |
| last_node_id = it->second; |
| if (old_last != std::numeric_limits<uint32_t>::max()) { |
| regular_edges << " node" << old_last << ":p" << old_dex_pc |
| << " -> node" << last_node_id << ":p" << dex_pc |
| << ";\n"; |
| } |
| } |
| |
| // Look at the exceptions of the first entry. |
| CatchHandlerIterator catch_it(*code_item, dex_pc); |
| for (; catch_it.HasNext(); catch_it.Next()) { |
| exception_targets.insert(catch_it.GetHandlerAddress()); |
| } |
| } |
| |
| // Handle instruction. |
| |
| // Branch: something with at most two targets. |
| if (inst->IsBranch()) { |
| const int32_t offset = inst->GetTargetOffset(); |
| const bool conditional = !inst->IsUnconditional(); |
| |
| auto target_it = dex_pc_to_node_id.find(dex_pc + offset); |
| if (target_it != dex_pc_to_node_id.end()) { |
| taken_edges << " node" << last_node_id << ":p" << dex_pc |
| << " -> node" << target_it->second << ":p" << (dex_pc + offset) |
| << ";\n"; |
| } |
| if (!conditional) { |
| // No fall-through. |
| last_node_id = std::numeric_limits<uint32_t>::max(); |
| } |
| } else if (inst->IsSwitch()) { |
| // TODO: Iterate through all switch targets. |
| const uint16_t* insns = code_item->insns_ + dex_pc; |
| /* make sure the start of the switch is in range */ |
| int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16); |
| /* offset to switch table is a relative branch-style offset */ |
| const uint16_t* switch_insns = insns + switch_offset; |
| uint32_t switch_count = switch_insns[1]; |
| int32_t targets_offset; |
| if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { |
| /* 0=sig, 1=count, 2/3=firstKey */ |
| targets_offset = 4; |
| } else { |
| /* 0=sig, 1=count, 2..count*2 = keys */ |
| targets_offset = 2 + 2 * switch_count; |
| } |
| /* make sure the end of the switch is in range */ |
| /* verify each switch target */ |
| for (uint32_t targ = 0; targ < switch_count; targ++) { |
| int32_t offset = |
| static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) | |
| static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16); |
| int32_t abs_offset = dex_pc + offset; |
| auto target_it = dex_pc_to_node_id.find(abs_offset); |
| if (target_it != dex_pc_to_node_id.end()) { |
| // TODO: value label. |
| taken_edges << " node" << last_node_id << ":p" << dex_pc |
| << " -> node" << target_it->second << ":p" << (abs_offset) |
| << ";\n"; |
| } |
| } |
| } |
| |
| // Exception edges. If this is not the first instruction in the block |
| if (block_start_dex_pc != dex_pc) { |
| std::set<uint32_t> current_handler_pcs; |
| CatchHandlerIterator catch_it(*code_item, dex_pc); |
| for (; catch_it.HasNext(); catch_it.Next()) { |
| current_handler_pcs.insert(catch_it.GetHandlerAddress()); |
| } |
| if (current_handler_pcs != exception_targets) { |
| exception_targets.clear(); // Clear so we don't do something at the end. |
| blocks_with_detailed_exceptions.insert(block_start_dex_pc); |
| } |
| } |
| |
| if (inst->IsReturn() || |
| (inst->Opcode() == Instruction::THROW) || |
| (inst->IsBranch() && inst->IsUnconditional())) { |
| // No fall-through. |
| last_node_id = std::numeric_limits<uint32_t>::max(); |
| } |
| } |
| // Finish up the last block, if it had common exceptions. |
| if (!exception_targets.empty()) { |
| // It seems the last block had common exception handlers. Add the exception edges now. |
| uint32_t node_id = dex_pc_to_node_id.find(block_start_dex_pc)->second; |
| for (uint32_t handler_pc : exception_targets) { |
| auto node_id_it = dex_pc_to_incl_id.find(handler_pc); |
| if (node_id_it != dex_pc_to_incl_id.end()) { |
| exception_edges << " node" << node_id |
| << " -> node" << node_id_it->second << ":p" << handler_pc |
| << ";\n"; |
| } |
| } |
| exception_targets.clear(); |
| } |
| } |
| |
| // Second pass for detailed exception blocks. |
| // TODO |
| // Exception edges. If this is not the first instruction in the block |
| for (uint32_t dex_pc : blocks_with_detailed_exceptions) { |
| const Instruction* inst = Instruction::At(&code_item->insns_[dex_pc]); |
| uint32_t this_node_id = dex_pc_to_incl_id.find(dex_pc)->second; |
| while (true) { |
| CatchHandlerIterator catch_it(*code_item, dex_pc); |
| if (catch_it.HasNext()) { |
| std::set<uint32_t> handled_targets; |
| for (; catch_it.HasNext(); catch_it.Next()) { |
| uint32_t handler_pc = catch_it.GetHandlerAddress(); |
| auto it = handled_targets.find(handler_pc); |
| if (it == handled_targets.end()) { |
| auto node_id_it = dex_pc_to_incl_id.find(handler_pc); |
| if (node_id_it != dex_pc_to_incl_id.end()) { |
| exception_edges << " node" << this_node_id << ":p" << dex_pc |
| << " -> node" << node_id_it->second << ":p" << handler_pc |
| << ";\n"; |
| } |
| |
| // Mark as done. |
| handled_targets.insert(handler_pc); |
| } |
| } |
| } |
| if (inst->IsBasicBlockEnd()) { |
| break; |
| } |
| |
| // Loop update. Have a break-out if the next instruction is a branch target and thus in |
| // another block. |
| dex_pc += inst->SizeInCodeUnits(); |
| if (dex_pc >= code_item->insns_size_in_code_units_) { |
| break; |
| } |
| if (dex_pc_to_node_id.find(dex_pc) != dex_pc_to_node_id.end()) { |
| break; |
| } |
| inst = inst->Next(); |
| } |
| } |
| |
| // Write out the sub-graphs to make edges styled. |
| os << "\n"; |
| os << " subgraph regular_edges {\n"; |
| os << " edge [color=\"#000000\",weight=.3,len=3];\n\n"; |
| os << " " << regular_edges.str() << "\n"; |
| os << " }\n\n"; |
| |
| os << " subgraph taken_edges {\n"; |
| os << " edge [color=\"#00FF00\",weight=.3,len=3];\n\n"; |
| os << " " << taken_edges.str() << "\n"; |
| os << " }\n\n"; |
| |
| os << " subgraph exception_edges {\n"; |
| os << " edge [color=\"#FF0000\",weight=.3,len=3];\n\n"; |
| os << " " << exception_edges.str() << "\n"; |
| os << " }\n\n"; |
| } |
| |
| os << "}\n"; |
| } |
| |
| void DumpMethodCFG(ArtMethod* method, std::ostream& os) { |
| const DexFile* dex_file = method->GetDexFile(); |
| const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset()); |
| |
| DumpMethodCFGImpl(dex_file, method->GetDexMethodIndex(), code_item, os); |
| } |
| |
| void DumpMethodCFG(const DexFile* dex_file, uint32_t dex_method_idx, std::ostream& os) { |
| // This is painful, we need to find the code item. That means finding the class, and then |
| // iterating the table. |
| if (dex_method_idx >= dex_file->NumMethodIds()) { |
| os << "Could not find method-idx."; |
| return; |
| } |
| const DexFile::MethodId& method_id = dex_file->GetMethodId(dex_method_idx); |
| |
| const DexFile::ClassDef* class_def = dex_file->FindClassDef(method_id.class_idx_); |
| if (class_def == nullptr) { |
| os << "Could not find class-def."; |
| return; |
| } |
| |
| const uint8_t* class_data = dex_file->GetClassData(*class_def); |
| if (class_data == nullptr) { |
| os << "No class data."; |
| return; |
| } |
| |
| ClassDataItemIterator it(*dex_file, class_data); |
| // Skip fields |
| while (it.HasNextStaticField() || it.HasNextInstanceField()) { |
| it.Next(); |
| } |
| |
| // Find method, and dump it. |
| while (it.HasNextDirectMethod() || it.HasNextVirtualMethod()) { |
| uint32_t method_idx = it.GetMemberIndex(); |
| if (method_idx == dex_method_idx) { |
| DumpMethodCFGImpl(dex_file, dex_method_idx, it.GetMethodCodeItem(), os); |
| return; |
| } |
| it.Next(); |
| } |
| |
| // Otherwise complain. |
| os << "Something went wrong, didn't find the method in the class data."; |
| } |
| |
| static void ParseStringAfterChar(const std::string& s, |
| char c, |
| std::string* parsed_value, |
| UsageFn Usage) { |
| std::string::size_type colon = s.find(c); |
| if (colon == std::string::npos) { |
| Usage("Missing char %c in option %s\n", c, s.c_str()); |
| } |
| // Add one to remove the char we were trimming until. |
| *parsed_value = s.substr(colon + 1); |
| } |
| |
| void ParseDouble(const std::string& option, |
| char after_char, |
| double min, |
| double max, |
| double* parsed_value, |
| UsageFn Usage) { |
| std::string substring; |
| ParseStringAfterChar(option, after_char, &substring, Usage); |
| bool sane_val = true; |
| double value; |
| if ((false)) { |
| // TODO: this doesn't seem to work on the emulator. b/15114595 |
| std::stringstream iss(substring); |
| iss >> value; |
| // Ensure that we have a value, there was no cruft after it and it satisfies a sensible range. |
| sane_val = iss.eof() && (value >= min) && (value <= max); |
| } else { |
| char* end = nullptr; |
| value = strtod(substring.c_str(), &end); |
| sane_val = *end == '\0' && value >= min && value <= max; |
| } |
| if (!sane_val) { |
| Usage("Invalid double value %s for option %s\n", substring.c_str(), option.c_str()); |
| } |
| *parsed_value = value; |
| } |
| |
| int64_t GetFileSizeBytes(const std::string& filename) { |
| struct stat stat_buf; |
| int rc = stat(filename.c_str(), &stat_buf); |
| return rc == 0 ? stat_buf.st_size : -1; |
| } |
| |
| void SleepForever() { |
| while (true) { |
| usleep(1000000); |
| } |
| } |
| |
| } // namespace art |