blob: 57c60ba9f68339182042160aac073d77a65834c3 [file] [log] [blame]
// Copyright (C) 2008 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "heap_bitmap.h"
#include <sys/mman.h>
#include "UniquePtr.h"
#include "logging.h"
#include "utils.h"
namespace art {
HeapBitmap* HeapBitmap::Create(const char* name, byte* heap_begin, size_t heap_capacity) {
CHECK(heap_begin != NULL);
size_t bitmap_size = HB_OFFSET_TO_INDEX(heap_capacity) * kWordSize;
UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(name, NULL, bitmap_size, PROT_READ | PROT_WRITE));
if (mem_map.get() == NULL) {
LOG(ERROR) << "Failed to allocate bitmap " << name;
return NULL;
}
word* bitmap_begin = reinterpret_cast<word*>(mem_map->Begin());
return new HeapBitmap(name, mem_map.release(), bitmap_begin, bitmap_size, heap_begin);
}
// Clean up any resources associated with the bitmap.
HeapBitmap::~HeapBitmap() {}
// Fill the bitmap with zeroes. Returns the bitmap's memory to the
// system as a side-effect.
void HeapBitmap::Clear() {
if (bitmap_begin_ != NULL) {
// This returns the memory to the system. Successive page faults
// will return zeroed memory.
int result = madvise(bitmap_begin_, bitmap_size_, MADV_DONTNEED);
if (result == -1) {
PLOG(WARNING) << "madvise failed";
}
heap_end_ = heap_begin_ - 1;
}
}
// Return true iff <obj> is within the range of pointers that this bitmap could potentially cover,
// even if a bit has not been set for it.
bool HeapBitmap::HasAddress(const void* obj) const {
if (obj != NULL) {
const uintptr_t offset = (uintptr_t)obj - heap_begin_;
const size_t index = HB_OFFSET_TO_INDEX(offset);
return index < bitmap_size_ / kWordSize;
}
return false;
}
void HeapBitmap::VisitRange(uintptr_t visit_begin, uintptr_t visit_end, Callback* visitor, void* arg) const {
size_t start = HB_OFFSET_TO_INDEX(visit_begin - heap_begin_);
size_t end = HB_OFFSET_TO_INDEX(visit_end - heap_begin_ - 1);
for (size_t i = start; i <= end; i++) {
word w = bitmap_begin_[i];
if (w != 0) {
word high_bit = 1 << (kBitsPerWord - 1);
uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_;
while (w != 0) {
const int shift = CLZ(w);
Object* obj = reinterpret_cast<Object*>(ptr_base + shift * kAlignment);
(*visitor)(obj, arg);
w &= ~(high_bit >> shift);
}
}
}
}
// Visits set bits in address order. The callback is not permitted to
// change the bitmap bits or max during the traversal.
void HeapBitmap::Walk(HeapBitmap::Callback* callback, void* arg) {
CHECK(bitmap_begin_ != NULL);
CHECK(callback != NULL);
uintptr_t end = HB_OFFSET_TO_INDEX(heap_end_ - heap_begin_);
for (uintptr_t i = 0; i <= end; ++i) {
word w = bitmap_begin_[i];
if (UNLIKELY(w != 0)) {
word high_bit = 1 << (kBitsPerWord - 1);
uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_;
while (w != 0) {
const int shift = CLZ(w);
Object* obj = reinterpret_cast<Object*>(ptr_base + shift * kAlignment);
(*callback)(obj, arg);
w &= ~(high_bit >> shift);
}
}
}
}
// Similar to Walk but the callback routine is permitted to change the bitmap bits and end during
// traversal. Used by the the root marking scan exclusively.
//
// The callback is invoked with a finger argument. The finger is a pointer to an address not yet
// visited by the traversal. If the callback sets a bit for an address at or above the finger, this
// address will be visited by the traversal. If the callback sets a bit for an address below the
// finger, this address will not be visited (typiscally such an address would be placed on the
// marking stack).
void HeapBitmap::ScanWalk(uintptr_t scan_begin, uintptr_t scan_end, ScanCallback* callback, void* arg) {
CHECK(bitmap_begin_ != NULL);
CHECK(callback != NULL);
CHECK_LE(scan_begin, scan_end);
CHECK_GE(scan_begin, heap_begin_);
size_t start = HB_OFFSET_TO_INDEX(scan_begin - heap_begin_);
if (scan_end < heap_end_) {
// The end of the space we're looking at is before the current maximum bitmap PC, scan to that
// and don't recompute end on each iteration
size_t end = HB_OFFSET_TO_INDEX(scan_end - heap_begin_ - 1);
for (size_t i = start; i <= end; i++) {
word w = bitmap_begin_[i];
if (UNLIKELY(w != 0)) {
word high_bit = 1 << (kBitsPerWord - 1);
uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_;
void* finger = reinterpret_cast<void*>(HB_INDEX_TO_OFFSET(i + 1) + heap_begin_);
while (w != 0) {
const int shift = CLZ(w);
Object* obj = reinterpret_cast<Object*>(ptr_base + shift * kAlignment);
(*callback)(obj, finger, arg);
w &= ~(high_bit >> shift);
}
}
}
} else {
size_t end = HB_OFFSET_TO_INDEX(heap_end_ - heap_begin_);
for (size_t i = start; i <= end; i++) {
word w = bitmap_begin_[i];
if (UNLIKELY(w != 0)) {
word high_bit = 1 << (kBitsPerWord - 1);
uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_;
void* finger = reinterpret_cast<void*>(HB_INDEX_TO_OFFSET(i + 1) + heap_begin_);
while (w != 0) {
const int shift = CLZ(w);
Object* obj = reinterpret_cast<Object*>(ptr_base + shift * kAlignment);
(*callback)(obj, finger, arg);
w &= ~(high_bit >> shift);
}
}
// update 'end' in case callback modified bitmap
end = HB_OFFSET_TO_INDEX(heap_end_ - heap_begin_);
}
}
}
// Walk through the bitmaps in increasing address order, and find the
// object pointers that correspond to garbage objects. Call
// <callback> zero or more times with lists of these object pointers.
//
// The callback is not permitted to increase the max of either bitmap.
void HeapBitmap::SweepWalk(const HeapBitmap& live_bitmap,
const HeapBitmap& mark_bitmap,
uintptr_t sweep_begin, uintptr_t sweep_end,
HeapBitmap::SweepCallback* callback, void* arg) {
CHECK(live_bitmap.bitmap_begin_ != NULL);
CHECK(mark_bitmap.bitmap_begin_ != NULL);
CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_);
CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_);
CHECK(callback != NULL);
CHECK_LE(sweep_begin, sweep_end);
CHECK_GE(sweep_begin, live_bitmap.heap_begin_);
sweep_end = std::min(sweep_end - 1, live_bitmap.heap_end_);
if (live_bitmap.heap_end_ < live_bitmap.heap_begin_) {
// Easy case; both are obviously empty.
// TODO: this should never happen
return;
}
// TODO: rewrite the callbacks to accept a std::vector<Object*> rather than a Object**?
std::vector<Object*> pointer_buf(4 * kBitsPerWord);
Object** pb = &pointer_buf[0];
size_t start = HB_OFFSET_TO_INDEX(sweep_begin - live_bitmap.heap_begin_);
size_t end = HB_OFFSET_TO_INDEX(sweep_end - live_bitmap.heap_begin_);
word* live = live_bitmap.bitmap_begin_;
word* mark = mark_bitmap.bitmap_begin_;
for (size_t i = start; i <= end; i++) {
word garbage = live[i] & ~mark[i];
if (UNLIKELY(garbage != 0)) {
word high_bit = 1 << (kBitsPerWord - 1);
uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + live_bitmap.heap_begin_;
while (garbage != 0) {
int shift = CLZ(garbage);
garbage &= ~(high_bit >> shift);
*pb++ = reinterpret_cast<Object*>(ptr_base + shift * kAlignment);
}
// Make sure that there are always enough slots available for an
// entire word of one bits.
if (pb >= &pointer_buf[pointer_buf.size() - kBitsPerWord]) {
(*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg);
pb = &pointer_buf[0];
}
}
}
if (pb > &pointer_buf[0]) {
(*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg);
}
}
} // namespace art