blob: 8565c386d75110e0bd4a3bf2277120d15c8b9e35 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "object.h"
#include <string.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <utility>
#include "base/logging.h"
#include "class_linker.h"
#include "class_loader.h"
#include "dex_cache.h"
#include "dex_file.h"
#include "globals.h"
#include "heap.h"
#include "intern_table.h"
#include "interpreter/interpreter.h"
#include "monitor.h"
#include "object_utils.h"
#include "runtime.h"
#include "runtime_support.h"
#include "sirt_ref.h"
#include "stack.h"
#include "utils.h"
#include "well_known_classes.h"
namespace art {
BooleanArray* Object::AsBooleanArray() {
DCHECK(GetClass()->IsArrayClass());
DCHECK(GetClass()->GetComponentType()->IsPrimitiveBoolean());
return down_cast<BooleanArray*>(this);
}
ByteArray* Object::AsByteArray() {
DCHECK(GetClass()->IsArrayClass());
DCHECK(GetClass()->GetComponentType()->IsPrimitiveByte());
return down_cast<ByteArray*>(this);
}
CharArray* Object::AsCharArray() {
DCHECK(GetClass()->IsArrayClass());
DCHECK(GetClass()->GetComponentType()->IsPrimitiveChar());
return down_cast<CharArray*>(this);
}
ShortArray* Object::AsShortArray() {
DCHECK(GetClass()->IsArrayClass());
DCHECK(GetClass()->GetComponentType()->IsPrimitiveShort());
return down_cast<ShortArray*>(this);
}
IntArray* Object::AsIntArray() {
DCHECK(GetClass()->IsArrayClass());
DCHECK(GetClass()->GetComponentType()->IsPrimitiveInt() ||
GetClass()->GetComponentType()->IsPrimitiveFloat());
return down_cast<IntArray*>(this);
}
LongArray* Object::AsLongArray() {
DCHECK(GetClass()->IsArrayClass());
DCHECK(GetClass()->GetComponentType()->IsPrimitiveLong() ||
GetClass()->GetComponentType()->IsPrimitiveDouble());
return down_cast<LongArray*>(this);
}
String* Object::AsString() {
DCHECK(GetClass()->IsStringClass());
return down_cast<String*>(this);
}
Throwable* Object::AsThrowable() {
DCHECK(GetClass()->IsThrowableClass());
return down_cast<Throwable*>(this);
}
Object* Object::Clone(Thread* self) {
Class* c = GetClass();
DCHECK(!c->IsClassClass());
// Object::SizeOf gets the right size even if we're an array.
// Using c->AllocObject() here would be wrong.
size_t num_bytes = SizeOf();
Heap* heap = Runtime::Current()->GetHeap();
SirtRef<Object> copy(self, heap->AllocObject(self, c, num_bytes));
if (copy.get() == NULL) {
return NULL;
}
// Copy instance data. We assume memcpy copies by words.
// TODO: expose and use move32.
byte* src_bytes = reinterpret_cast<byte*>(this);
byte* dst_bytes = reinterpret_cast<byte*>(copy.get());
size_t offset = sizeof(Object);
memcpy(dst_bytes + offset, src_bytes + offset, num_bytes - offset);
// Perform write barriers on copied object references.
if (c->IsArrayClass()) {
if (!c->GetComponentType()->IsPrimitive()) {
const ObjectArray<Object>* array = copy->AsObjectArray<Object>();
heap->WriteBarrierArray(copy.get(), 0, array->GetLength());
}
} else {
for (const Class* klass = c; klass != NULL; klass = klass->GetSuperClass()) {
size_t num_reference_fields = klass->NumReferenceInstanceFields();
for (size_t i = 0; i < num_reference_fields; ++i) {
Field* field = klass->GetInstanceField(i);
MemberOffset field_offset = field->GetOffset();
const Object* ref = copy->GetFieldObject<const Object*>(field_offset, false);
heap->WriteBarrierField(copy.get(), field_offset, ref);
}
}
}
if (c->IsFinalizable()) {
heap->AddFinalizerReference(Thread::Current(), copy.get());
}
return copy.get();
}
uint32_t Object::GetThinLockId() {
return Monitor::GetThinLockId(monitor_);
}
void Object::MonitorEnter(Thread* thread) {
Monitor::MonitorEnter(thread, this);
}
bool Object::MonitorExit(Thread* thread) {
return Monitor::MonitorExit(thread, this);
}
void Object::Notify() {
Monitor::Notify(Thread::Current(), this);
}
void Object::NotifyAll() {
Monitor::NotifyAll(Thread::Current(), this);
}
void Object::Wait(int64_t ms, int32_t ns) {
Monitor::Wait(Thread::Current(), this, ms, ns, true);
}
#if VERIFY_OBJECT_ENABLED
void Object::CheckFieldAssignment(MemberOffset field_offset, const Object* new_value) {
const Class* c = GetClass();
if (Runtime::Current()->GetClassLinker() == NULL ||
!Runtime::Current()->GetHeap()->IsObjectValidationEnabled() ||
!c->IsResolved()) {
return;
}
for (const Class* cur = c; cur != NULL; cur = cur->GetSuperClass()) {
ObjectArray<Field>* fields = cur->GetIFields();
if (fields != NULL) {
size_t num_ref_ifields = cur->NumReferenceInstanceFields();
for (size_t i = 0; i < num_ref_ifields; ++i) {
Field* field = fields->Get(i);
if (field->GetOffset().Int32Value() == field_offset.Int32Value()) {
FieldHelper fh(field);
CHECK(fh.GetType()->IsAssignableFrom(new_value->GetClass()));
return;
}
}
}
}
if (c->IsArrayClass()) {
// Bounds and assign-ability done in the array setter.
return;
}
if (IsClass()) {
ObjectArray<Field>* fields = AsClass()->GetSFields();
if (fields != NULL) {
size_t num_ref_sfields = AsClass()->NumReferenceStaticFields();
for (size_t i = 0; i < num_ref_sfields; ++i) {
Field* field = fields->Get(i);
if (field->GetOffset().Int32Value() == field_offset.Int32Value()) {
FieldHelper fh(field);
CHECK(fh.GetType()->IsAssignableFrom(new_value->GetClass()));
return;
}
}
}
}
LOG(FATAL) << "Failed to find field for assignment to " << reinterpret_cast<void*>(this)
<< " of type " << PrettyDescriptor(c) << " at offset " << field_offset;
}
#endif
// TODO: get global references for these
Class* Field::java_lang_reflect_Field_ = NULL;
void Field::SetClass(Class* java_lang_reflect_Field) {
CHECK(java_lang_reflect_Field_ == NULL);
CHECK(java_lang_reflect_Field != NULL);
java_lang_reflect_Field_ = java_lang_reflect_Field;
}
void Field::ResetClass() {
CHECK(java_lang_reflect_Field_ != NULL);
java_lang_reflect_Field_ = NULL;
}
void Field::SetOffset(MemberOffset num_bytes) {
DCHECK(GetDeclaringClass()->IsLoaded() || GetDeclaringClass()->IsErroneous());
#if 0 // TODO enable later in boot and under !NDEBUG
FieldHelper fh(this);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
if (type == Primitive::kPrimDouble || type == Primitive::kPrimLong) {
DCHECK_ALIGNED(num_bytes.Uint32Value(), 8);
}
#endif
SetField32(OFFSET_OF_OBJECT_MEMBER(Field, offset_), num_bytes.Uint32Value(), false);
}
uint32_t Field::Get32(const Object* object) const {
DCHECK(object != NULL) << PrettyField(this);
DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted());
return object->GetField32(GetOffset(), IsVolatile());
}
void Field::Set32(Object* object, uint32_t new_value) const {
DCHECK(object != NULL) << PrettyField(this);
DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted());
object->SetField32(GetOffset(), new_value, IsVolatile());
}
uint64_t Field::Get64(const Object* object) const {
DCHECK(object != NULL) << PrettyField(this);
DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted());
return object->GetField64(GetOffset(), IsVolatile());
}
void Field::Set64(Object* object, uint64_t new_value) const {
DCHECK(object != NULL) << PrettyField(this);
DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted());
object->SetField64(GetOffset(), new_value, IsVolatile());
}
Object* Field::GetObj(const Object* object) const {
DCHECK(object != NULL) << PrettyField(this);
DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted());
return object->GetFieldObject<Object*>(GetOffset(), IsVolatile());
}
void Field::SetObj(Object* object, const Object* new_value) const {
DCHECK(object != NULL) << PrettyField(this);
DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted());
object->SetFieldObject(GetOffset(), new_value, IsVolatile());
}
bool Field::GetBoolean(const Object* object) const {
DCHECK_EQ(Primitive::kPrimBoolean, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
return Get32(object);
}
void Field::SetBoolean(Object* object, bool z) const {
DCHECK_EQ(Primitive::kPrimBoolean, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
Set32(object, z);
}
int8_t Field::GetByte(const Object* object) const {
DCHECK_EQ(Primitive::kPrimByte, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
return Get32(object);
}
void Field::SetByte(Object* object, int8_t b) const {
DCHECK_EQ(Primitive::kPrimByte, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
Set32(object, b);
}
uint16_t Field::GetChar(const Object* object) const {
DCHECK_EQ(Primitive::kPrimChar, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
return Get32(object);
}
void Field::SetChar(Object* object, uint16_t c) const {
DCHECK_EQ(Primitive::kPrimChar, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
Set32(object, c);
}
int16_t Field::GetShort(const Object* object) const {
DCHECK_EQ(Primitive::kPrimShort, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
return Get32(object);
}
void Field::SetShort(Object* object, int16_t s) const {
DCHECK_EQ(Primitive::kPrimShort, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
Set32(object, s);
}
int32_t Field::GetInt(const Object* object) const {
#ifndef NDEBUG
Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType();
CHECK(type == Primitive::kPrimInt || type == Primitive::kPrimFloat) << PrettyField(this);
#endif
return Get32(object);
}
void Field::SetInt(Object* object, int32_t i) const {
#ifndef NDEBUG
Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType();
CHECK(type == Primitive::kPrimInt || type == Primitive::kPrimFloat) << PrettyField(this);
#endif
Set32(object, i);
}
int64_t Field::GetLong(const Object* object) const {
#ifndef NDEBUG
Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType();
CHECK(type == Primitive::kPrimLong || type == Primitive::kPrimDouble) << PrettyField(this);
#endif
return Get64(object);
}
void Field::SetLong(Object* object, int64_t j) const {
#ifndef NDEBUG
Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType();
CHECK(type == Primitive::kPrimLong || type == Primitive::kPrimDouble) << PrettyField(this);
#endif
Set64(object, j);
}
union Bits {
jdouble d;
jfloat f;
jint i;
jlong j;
};
float Field::GetFloat(const Object* object) const {
DCHECK_EQ(Primitive::kPrimFloat, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
Bits bits;
bits.i = Get32(object);
return bits.f;
}
void Field::SetFloat(Object* object, float f) const {
DCHECK_EQ(Primitive::kPrimFloat, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
Bits bits;
bits.f = f;
Set32(object, bits.i);
}
double Field::GetDouble(const Object* object) const {
DCHECK_EQ(Primitive::kPrimDouble, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
Bits bits;
bits.j = Get64(object);
return bits.d;
}
void Field::SetDouble(Object* object, double d) const {
DCHECK_EQ(Primitive::kPrimDouble, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
Bits bits;
bits.d = d;
Set64(object, bits.j);
}
Object* Field::GetObject(const Object* object) const {
DCHECK_EQ(Primitive::kPrimNot, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
return GetObj(object);
}
void Field::SetObject(Object* object, const Object* l) const {
DCHECK_EQ(Primitive::kPrimNot, FieldHelper(this).GetTypeAsPrimitiveType())
<< PrettyField(this);
SetObj(object, l);
}
// TODO: get global references for these
Class* AbstractMethod::java_lang_reflect_Constructor_ = NULL;
Class* AbstractMethod::java_lang_reflect_Method_ = NULL;
InvokeType AbstractMethod::GetInvokeType() const {
// TODO: kSuper?
if (GetDeclaringClass()->IsInterface()) {
return kInterface;
} else if (IsStatic()) {
return kStatic;
} else if (IsDirect()) {
return kDirect;
} else {
return kVirtual;
}
}
void AbstractMethod::SetClasses(Class* java_lang_reflect_Constructor, Class* java_lang_reflect_Method) {
CHECK(java_lang_reflect_Constructor_ == NULL);
CHECK(java_lang_reflect_Constructor != NULL);
java_lang_reflect_Constructor_ = java_lang_reflect_Constructor;
CHECK(java_lang_reflect_Method_ == NULL);
CHECK(java_lang_reflect_Method != NULL);
java_lang_reflect_Method_ = java_lang_reflect_Method;
}
void AbstractMethod::ResetClasses() {
CHECK(java_lang_reflect_Constructor_ != NULL);
java_lang_reflect_Constructor_ = NULL;
CHECK(java_lang_reflect_Method_ != NULL);
java_lang_reflect_Method_ = NULL;
}
ObjectArray<String>* AbstractMethod::GetDexCacheStrings() const {
return GetFieldObject<ObjectArray<String>*>(
OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_strings_), false);
}
void AbstractMethod::SetDexCacheStrings(ObjectArray<String>* new_dex_cache_strings) {
SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_strings_),
new_dex_cache_strings, false);
}
ObjectArray<AbstractMethod>* AbstractMethod::GetDexCacheResolvedMethods() const {
return GetFieldObject<ObjectArray<AbstractMethod>*>(
OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_methods_), false);
}
void AbstractMethod::SetDexCacheResolvedMethods(ObjectArray<AbstractMethod>* new_dex_cache_methods) {
SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_methods_),
new_dex_cache_methods, false);
}
ObjectArray<Class>* AbstractMethod::GetDexCacheResolvedTypes() const {
return GetFieldObject<ObjectArray<Class>*>(
OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_types_), false);
}
void AbstractMethod::SetDexCacheResolvedTypes(ObjectArray<Class>* new_dex_cache_classes) {
SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_types_),
new_dex_cache_classes, false);
}
ObjectArray<StaticStorageBase>* AbstractMethod::GetDexCacheInitializedStaticStorage() const {
return GetFieldObject<ObjectArray<StaticStorageBase>*>(
OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_initialized_static_storage_),
false);
}
void AbstractMethod::SetDexCacheInitializedStaticStorage(ObjectArray<StaticStorageBase>* new_value) {
SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_initialized_static_storage_),
new_value, false);
}
size_t AbstractMethod::NumArgRegisters(const StringPiece& shorty) {
CHECK_LE(1, shorty.length());
uint32_t num_registers = 0;
for (int i = 1; i < shorty.length(); ++i) {
char ch = shorty[i];
if (ch == 'D' || ch == 'J') {
num_registers += 2;
} else {
num_registers += 1;
}
}
return num_registers;
}
bool AbstractMethod::IsProxyMethod() const {
return GetDeclaringClass()->IsProxyClass();
}
AbstractMethod* AbstractMethod::FindOverriddenMethod() const {
if (IsStatic()) {
return NULL;
}
Class* declaring_class = GetDeclaringClass();
Class* super_class = declaring_class->GetSuperClass();
uint16_t method_index = GetMethodIndex();
ObjectArray<AbstractMethod>* super_class_vtable = super_class->GetVTable();
AbstractMethod* result = NULL;
// Did this method override a super class method? If so load the result from the super class'
// vtable
if (super_class_vtable != NULL && method_index < super_class_vtable->GetLength()) {
result = super_class_vtable->Get(method_index);
} else {
// Method didn't override superclass method so search interfaces
if (IsProxyMethod()) {
result = GetDexCacheResolvedMethods()->Get(GetDexMethodIndex());
CHECK_EQ(result,
Runtime::Current()->GetClassLinker()->FindMethodForProxy(GetDeclaringClass(), this));
} else {
MethodHelper mh(this);
MethodHelper interface_mh;
IfTable* iftable = GetDeclaringClass()->GetIfTable();
for (size_t i = 0; i < iftable->Count() && result == NULL; i++) {
Class* interface = iftable->GetInterface(i);
for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) {
AbstractMethod* interface_method = interface->GetVirtualMethod(j);
interface_mh.ChangeMethod(interface_method);
if (mh.HasSameNameAndSignature(&interface_mh)) {
result = interface_method;
break;
}
}
}
}
}
#ifndef NDEBUG
MethodHelper result_mh(result);
DCHECK(result == NULL || MethodHelper(this).HasSameNameAndSignature(&result_mh));
#endif
return result;
}
static const void* GetOatCode(const AbstractMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Runtime* runtime = Runtime::Current();
const void* code = m->GetCode();
// Peel off any method tracing trampoline.
if (runtime->IsMethodTracingActive() && runtime->GetInstrumentation()->GetSavedCodeFromMap(m) != NULL) {
code = runtime->GetInstrumentation()->GetSavedCodeFromMap(m);
}
// Peel off any resolution stub.
if (code == runtime->GetResolutionStubArray(Runtime::kStaticMethod)->GetData()) {
code = runtime->GetClassLinker()->GetOatCodeFor(m);
}
return code;
}
uintptr_t AbstractMethod::NativePcOffset(const uintptr_t pc) const {
return pc - reinterpret_cast<uintptr_t>(GetOatCode(this));
}
// Find the lowest-address native safepoint pc for a given dex pc
uintptr_t AbstractMethod::ToFirstNativeSafepointPc(const uint32_t dex_pc) const {
#if !defined(ART_USE_LLVM_COMPILER)
const uint32_t* mapping_table = GetPcToDexMappingTable();
if (mapping_table == NULL) {
DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this);
return DexFile::kDexNoIndex; // Special no mapping case
}
size_t mapping_table_length = GetPcToDexMappingTableLength();
for (size_t i = 0; i < mapping_table_length; i += 2) {
if (mapping_table[i + 1] == dex_pc) {
return mapping_table[i] + reinterpret_cast<uintptr_t>(GetOatCode(this));
}
}
LOG(FATAL) << "Failed to find native offset for dex pc 0x" << std::hex << dex_pc
<< " in " << PrettyMethod(this);
return 0;
#else
// Compiler LLVM doesn't use the machine pc, we just use dex pc instead.
return static_cast<uint32_t>(dex_pc);
#endif
}
uint32_t AbstractMethod::ToDexPc(const uintptr_t pc) const {
#if !defined(ART_USE_LLVM_COMPILER)
const uint32_t* mapping_table = GetPcToDexMappingTable();
if (mapping_table == NULL) {
DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this);
return DexFile::kDexNoIndex; // Special no mapping case
}
size_t mapping_table_length = GetPcToDexMappingTableLength();
uint32_t sought_offset = pc - reinterpret_cast<uintptr_t>(GetOatCode(this));
for (size_t i = 0; i < mapping_table_length; i += 2) {
if (mapping_table[i] == sought_offset) {
return mapping_table[i + 1];
}
}
LOG(FATAL) << "Failed to find Dex offset for PC offset 0x" << std::hex << sought_offset
<< " in " << PrettyMethod(this);
return DexFile::kDexNoIndex;
#else
// Compiler LLVM doesn't use the machine pc, we just use dex pc instead.
return static_cast<uint32_t>(pc);
#endif
}
uintptr_t AbstractMethod::ToNativePc(const uint32_t dex_pc) const {
const uint32_t* mapping_table = GetDexToPcMappingTable();
if (mapping_table == NULL) {
DCHECK_EQ(dex_pc, 0U);
return 0; // Special no mapping/pc == 0 case
}
size_t mapping_table_length = GetDexToPcMappingTableLength();
for (size_t i = 0; i < mapping_table_length; i += 2) {
uint32_t map_offset = mapping_table[i];
uint32_t map_dex_offset = mapping_table[i + 1];
if (map_dex_offset == dex_pc) {
return reinterpret_cast<uintptr_t>(GetOatCode(this)) + map_offset;
}
}
LOG(FATAL) << "Looking up Dex PC not contained in method, 0x" << std::hex << dex_pc
<< " in " << PrettyMethod(this);
return 0;
}
uint32_t AbstractMethod::FindCatchBlock(Class* exception_type, uint32_t dex_pc) const {
MethodHelper mh(this);
const DexFile::CodeItem* code_item = mh.GetCodeItem();
// Iterate over the catch handlers associated with dex_pc
for (CatchHandlerIterator it(*code_item, dex_pc); it.HasNext(); it.Next()) {
uint16_t iter_type_idx = it.GetHandlerTypeIndex();
// Catch all case
if (iter_type_idx == DexFile::kDexNoIndex16) {
return it.GetHandlerAddress();
}
// Does this catch exception type apply?
Class* iter_exception_type = mh.GetDexCacheResolvedType(iter_type_idx);
if (iter_exception_type == NULL) {
// The verifier should take care of resolving all exception classes early
LOG(WARNING) << "Unresolved exception class when finding catch block: "
<< mh.GetTypeDescriptorFromTypeIdx(iter_type_idx);
} else if (iter_exception_type->IsAssignableFrom(exception_type)) {
return it.GetHandlerAddress();
}
}
// Handler not found
return DexFile::kDexNoIndex;
}
void AbstractMethod::Invoke(Thread* self, Object* receiver, JValue* args, JValue* result) {
if (kIsDebugBuild) {
self->AssertThreadSuspensionIsAllowable();
CHECK_EQ(kRunnable, self->GetState());
}
// Push a transition back into managed code onto the linked list in thread.
ManagedStack fragment;
self->PushManagedStackFragment(&fragment);
// Call the invoke stub associated with the method.
// Pass everything as arguments.
AbstractMethod::InvokeStub* stub = GetInvokeStub();
if (UNLIKELY(!Runtime::Current()->IsStarted())){
LOG(INFO) << "Not invoking " << PrettyMethod(this) << " for a runtime that isn't started";
if (result != NULL) {
result->SetJ(0);
}
} else {
bool interpret = self->ReadFlag(kEnterInterpreter) && !IsNative() && !IsProxyMethod();
const bool kLogInvocationStartAndReturn = false;
if (!interpret && GetCode() != NULL && stub != NULL) {
if (kLogInvocationStartAndReturn) {
LOG(INFO) << StringPrintf("Invoking '%s' code=%p stub=%p",
PrettyMethod(this).c_str(), GetCode(), stub);
}
(*stub)(this, receiver, self, args, result);
if (kLogInvocationStartAndReturn) {
LOG(INFO) << StringPrintf("Returned '%s' code=%p stub=%p",
PrettyMethod(this).c_str(), GetCode(), stub);
}
} else {
const bool kInterpretMethodsWithNoCode = false;
if (interpret || kInterpretMethodsWithNoCode) {
if (kLogInvocationStartAndReturn) {
LOG(INFO) << "Interpreting " << PrettyMethod(this) << "'";
}
art::interpreter::EnterInterpreterFromInvoke(self, this, receiver, args, result);
if (kLogInvocationStartAndReturn) {
LOG(INFO) << "Returned '" << PrettyMethod(this) << "'";
}
} else {
LOG(INFO) << "Not invoking '" << PrettyMethod(this)
<< "' code=" << reinterpret_cast<const void*>(GetCode())
<< " stub=" << reinterpret_cast<void*>(stub);
if (result != NULL) {
result->SetJ(0);
}
}
}
}
// Pop transition.
self->PopManagedStackFragment(fragment);
}
bool AbstractMethod::IsRegistered() const {
void* native_method = GetFieldPtr<void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), false);
CHECK(native_method != NULL);
void* jni_stub = Runtime::Current()->GetJniDlsymLookupStub()->GetData();
return native_method != jni_stub;
}
void AbstractMethod::RegisterNative(Thread* self, const void* native_method) {
DCHECK(Thread::Current() == self);
CHECK(IsNative()) << PrettyMethod(this);
CHECK(native_method != NULL) << PrettyMethod(this);
#if defined(ART_USE_LLVM_COMPILER)
SetFieldPtr<const void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_),
native_method, false);
#else
if (!self->GetJniEnv()->vm->work_around_app_jni_bugs) {
SetFieldPtr<const void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_),
native_method, false);
} else {
// We've been asked to associate this method with the given native method but are working
// around JNI bugs, that include not giving Object** SIRT references to native methods. Direct
// the native method to runtime support and store the target somewhere runtime support will
// find it.
#if defined(__arm__)
SetFieldPtr<const void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_),
reinterpret_cast<const void*>(art_work_around_app_jni_bugs), false);
#else
UNIMPLEMENTED(FATAL);
#endif
SetFieldPtr<const uint8_t*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_gc_map_),
reinterpret_cast<const uint8_t*>(native_method), false);
}
#endif
}
void AbstractMethod::UnregisterNative(Thread* self) {
CHECK(IsNative()) << PrettyMethod(this);
// restore stub to lookup native pointer via dlsym
RegisterNative(self, Runtime::Current()->GetJniDlsymLookupStub()->GetData());
}
Class* Class::java_lang_Class_ = NULL;
void Class::SetClassClass(Class* java_lang_Class) {
CHECK(java_lang_Class_ == NULL) << java_lang_Class_ << " " << java_lang_Class;
CHECK(java_lang_Class != NULL);
java_lang_Class_ = java_lang_Class;
}
void Class::ResetClass() {
CHECK(java_lang_Class_ != NULL);
java_lang_Class_ = NULL;
}
void Class::SetStatus(Status new_status) {
CHECK(new_status > GetStatus() || new_status == kStatusError || !Runtime::Current()->IsStarted())
<< PrettyClass(this) << " " << GetStatus() << " -> " << new_status;
CHECK(sizeof(Status) == sizeof(uint32_t)) << PrettyClass(this);
if (new_status > kStatusResolved) {
CHECK_EQ(GetThinLockId(), Thread::Current()->GetThinLockId()) << PrettyClass(this);
}
if (new_status == kStatusError) {
CHECK_NE(GetStatus(), kStatusError) << PrettyClass(this);
// stash current exception
Thread* self = Thread::Current();
SirtRef<Throwable> exception(self, self->GetException());
CHECK(exception.get() != NULL);
// clear exception to call FindSystemClass
self->ClearException();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Class* eiie_class = class_linker->FindSystemClass("Ljava/lang/ExceptionInInitializerError;");
CHECK(!self->IsExceptionPending());
// only verification errors, not initialization problems, should set a verify error.
// this is to ensure that ThrowEarlierClassFailure will throw NoClassDefFoundError in that case.
Class* exception_class = exception->GetClass();
if (!eiie_class->IsAssignableFrom(exception_class)) {
SetVerifyErrorClass(exception_class);
}
// restore exception
self->SetException(exception.get());
}
return SetField32(OFFSET_OF_OBJECT_MEMBER(Class, status_), new_status, false);
}
DexCache* Class::GetDexCache() const {
return GetFieldObject<DexCache*>(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), false);
}
void Class::SetDexCache(DexCache* new_dex_cache) {
SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache, false);
}
Object* Class::AllocObject(Thread* self) {
DCHECK(!IsArrayClass()) << PrettyClass(this);
DCHECK(IsInstantiable()) << PrettyClass(this);
// TODO: decide whether we want this check. It currently fails during bootstrap.
// DCHECK(!Runtime::Current()->IsStarted() || IsInitializing()) << PrettyClass(this);
DCHECK_GE(this->object_size_, sizeof(Object));
return Runtime::Current()->GetHeap()->AllocObject(self, this, this->object_size_);
}
void Class::SetClassSize(size_t new_class_size) {
DCHECK_GE(new_class_size, GetClassSize()) << " class=" << PrettyTypeOf(this);
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), new_class_size, false);
}
// Return the class' name. The exact format is bizarre, but it's the specified behavior for
// Class.getName: keywords for primitive types, regular "[I" form for primitive arrays (so "int"
// but "[I"), and arrays of reference types written between "L" and ";" but with dots rather than
// slashes (so "java.lang.String" but "[Ljava.lang.String;"). Madness.
String* Class::ComputeName() {
String* name = GetName();
if (name != NULL) {
return name;
}
std::string descriptor(ClassHelper(this).GetDescriptor());
if ((descriptor[0] != 'L') && (descriptor[0] != '[')) {
// The descriptor indicates that this is the class for
// a primitive type; special-case the return value.
const char* c_name = NULL;
switch (descriptor[0]) {
case 'Z': c_name = "boolean"; break;
case 'B': c_name = "byte"; break;
case 'C': c_name = "char"; break;
case 'S': c_name = "short"; break;
case 'I': c_name = "int"; break;
case 'J': c_name = "long"; break;
case 'F': c_name = "float"; break;
case 'D': c_name = "double"; break;
case 'V': c_name = "void"; break;
default:
LOG(FATAL) << "Unknown primitive type: " << PrintableChar(descriptor[0]);
}
name = String::AllocFromModifiedUtf8(Thread::Current(), c_name);
} else {
// Convert the UTF-8 name to a java.lang.String. The name must use '.' to separate package
// components.
if (descriptor.size() > 2 && descriptor[0] == 'L' && descriptor[descriptor.size() - 1] == ';') {
descriptor.erase(0, 1);
descriptor.erase(descriptor.size() - 1);
}
std::replace(descriptor.begin(), descriptor.end(), '/', '.');
name = String::AllocFromModifiedUtf8(Thread::Current(), descriptor.c_str());
}
SetName(name);
return name;
}
void Class::DumpClass(std::ostream& os, int flags) const {
if ((flags & kDumpClassFullDetail) == 0) {
os << PrettyClass(this);
if ((flags & kDumpClassClassLoader) != 0) {
os << ' ' << GetClassLoader();
}
if ((flags & kDumpClassInitialized) != 0) {
os << ' ' << GetStatus();
}
os << "\n";
return;
}
Class* super = GetSuperClass();
ClassHelper kh(this);
os << "----- " << (IsInterface() ? "interface" : "class") << " "
<< "'" << kh.GetDescriptor() << "' cl=" << GetClassLoader() << " -----\n",
os << " objectSize=" << SizeOf() << " "
<< "(" << (super != NULL ? super->SizeOf() : -1) << " from super)\n",
os << StringPrintf(" access=0x%04x.%04x\n",
GetAccessFlags() >> 16, GetAccessFlags() & kAccJavaFlagsMask);
if (super != NULL) {
os << " super='" << PrettyClass(super) << "' (cl=" << super->GetClassLoader() << ")\n";
}
if (IsArrayClass()) {
os << " componentType=" << PrettyClass(GetComponentType()) << "\n";
}
if (kh.NumDirectInterfaces() > 0) {
os << " interfaces (" << kh.NumDirectInterfaces() << "):\n";
for (size_t i = 0; i < kh.NumDirectInterfaces(); ++i) {
Class* interface = kh.GetDirectInterface(i);
const ClassLoader* cl = interface->GetClassLoader();
os << StringPrintf(" %2zd: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl);
}
}
os << " vtable (" << NumVirtualMethods() << " entries, "
<< (super != NULL ? super->NumVirtualMethods() : 0) << " in super):\n";
for (size_t i = 0; i < NumVirtualMethods(); ++i) {
os << StringPrintf(" %2zd: %s\n", i, PrettyMethod(GetVirtualMethodDuringLinking(i)).c_str());
}
os << " direct methods (" << NumDirectMethods() << " entries):\n";
for (size_t i = 0; i < NumDirectMethods(); ++i) {
os << StringPrintf(" %2zd: %s\n", i, PrettyMethod(GetDirectMethod(i)).c_str());
}
if (NumStaticFields() > 0) {
os << " static fields (" << NumStaticFields() << " entries):\n";
if (IsResolved() || IsErroneous()) {
for (size_t i = 0; i < NumStaticFields(); ++i) {
os << StringPrintf(" %2zd: %s\n", i, PrettyField(GetStaticField(i)).c_str());
}
} else {
os << " <not yet available>";
}
}
if (NumInstanceFields() > 0) {
os << " instance fields (" << NumInstanceFields() << " entries):\n";
if (IsResolved() || IsErroneous()) {
for (size_t i = 0; i < NumInstanceFields(); ++i) {
os << StringPrintf(" %2zd: %s\n", i, PrettyField(GetInstanceField(i)).c_str());
}
} else {
os << " <not yet available>";
}
}
}
void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) {
if (new_reference_offsets != CLASS_WALK_SUPER) {
// Sanity check that the number of bits set in the reference offset bitmap
// agrees with the number of references
size_t count = 0;
for (Class* c = this; c != NULL; c = c->GetSuperClass()) {
count += c->NumReferenceInstanceFieldsDuringLinking();
}
CHECK_EQ((size_t)__builtin_popcount(new_reference_offsets), count);
}
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_),
new_reference_offsets, false);
}
void Class::SetReferenceStaticOffsets(uint32_t new_reference_offsets) {
if (new_reference_offsets != CLASS_WALK_SUPER) {
// Sanity check that the number of bits set in the reference offset bitmap
// agrees with the number of references
CHECK_EQ((size_t)__builtin_popcount(new_reference_offsets),
NumReferenceStaticFieldsDuringLinking());
}
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_static_offsets_),
new_reference_offsets, false);
}
bool Class::Implements(const Class* klass) const {
DCHECK(klass != NULL);
DCHECK(klass->IsInterface()) << PrettyClass(this);
// All interfaces implemented directly and by our superclass, and
// recursively all super-interfaces of those interfaces, are listed
// in iftable_, so we can just do a linear scan through that.
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; i++) {
if (iftable->GetInterface(i) == klass) {
return true;
}
}
return false;
}
// Determine whether "this" is assignable from "src", where both of these
// are array classes.
//
// Consider an array class, e.g. Y[][], where Y is a subclass of X.
// Y[][] = Y[][] --> true (identity)
// X[][] = Y[][] --> true (element superclass)
// Y = Y[][] --> false
// Y[] = Y[][] --> false
// Object = Y[][] --> true (everything is an object)
// Object[] = Y[][] --> true
// Object[][] = Y[][] --> true
// Object[][][] = Y[][] --> false (too many []s)
// Serializable = Y[][] --> true (all arrays are Serializable)
// Serializable[] = Y[][] --> true
// Serializable[][] = Y[][] --> false (unless Y is Serializable)
//
// Don't forget about primitive types.
// Object[] = int[] --> false
//
bool Class::IsArrayAssignableFromArray(const Class* src) const {
DCHECK(IsArrayClass()) << PrettyClass(this);
DCHECK(src->IsArrayClass()) << PrettyClass(src);
return GetComponentType()->IsAssignableFrom(src->GetComponentType());
}
bool Class::IsAssignableFromArray(const Class* src) const {
DCHECK(!IsInterface()) << PrettyClass(this); // handled first in IsAssignableFrom
DCHECK(src->IsArrayClass()) << PrettyClass(src);
if (!IsArrayClass()) {
// If "this" is not also an array, it must be Object.
// src's super should be java_lang_Object, since it is an array.
Class* java_lang_Object = src->GetSuperClass();
DCHECK(java_lang_Object != NULL) << PrettyClass(src);
DCHECK(java_lang_Object->GetSuperClass() == NULL) << PrettyClass(src);
return this == java_lang_Object;
}
return IsArrayAssignableFromArray(src);
}
bool Class::IsSubClass(const Class* klass) const {
DCHECK(!IsInterface()) << PrettyClass(this);
DCHECK(!IsArrayClass()) << PrettyClass(this);
const Class* current = this;
do {
if (current == klass) {
return true;
}
current = current->GetSuperClass();
} while (current != NULL);
return false;
}
bool Class::IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2) {
size_t i = 0;
while (descriptor1[i] != '\0' && descriptor1[i] == descriptor2[i]) {
++i;
}
if (descriptor1.find('/', i) != StringPiece::npos ||
descriptor2.find('/', i) != StringPiece::npos) {
return false;
} else {
return true;
}
}
bool Class::IsInSamePackage(const Class* that) const {
const Class* klass1 = this;
const Class* klass2 = that;
if (klass1 == klass2) {
return true;
}
// Class loaders must match.
if (klass1->GetClassLoader() != klass2->GetClassLoader()) {
return false;
}
// Arrays are in the same package when their element classes are.
while (klass1->IsArrayClass()) {
klass1 = klass1->GetComponentType();
}
while (klass2->IsArrayClass()) {
klass2 = klass2->GetComponentType();
}
// Compare the package part of the descriptor string.
ClassHelper kh(klass1);
std::string descriptor1(kh.GetDescriptor());
kh.ChangeClass(klass2);
std::string descriptor2(kh.GetDescriptor());
return IsInSamePackage(descriptor1, descriptor2);
}
bool Class::IsClassClass() const {
Class* java_lang_Class = GetClass()->GetClass();
return this == java_lang_Class;
}
bool Class::IsStringClass() const {
return this == String::GetJavaLangString();
}
bool Class::IsThrowableClass() const {
return WellKnownClasses::ToClass(WellKnownClasses::java_lang_Throwable)->IsAssignableFrom(this);
}
bool Class::IsFieldClass() const {
Class* java_lang_Class = GetClass();
Class* java_lang_reflect_Field = java_lang_Class->GetInstanceField(0)->GetClass();
return this == java_lang_reflect_Field;
}
bool Class::IsMethodClass() const {
return (this == AbstractMethod::GetMethodClass()) ||
(this == AbstractMethod::GetConstructorClass());
}
ClassLoader* Class::GetClassLoader() const {
return GetFieldObject<ClassLoader*>(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), false);
}
void Class::SetClassLoader(ClassLoader* new_class_loader) {
SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), new_class_loader, false);
}
AbstractMethod* Class::FindVirtualMethodForInterface(AbstractMethod* method) {
Class* declaring_class = method->GetDeclaringClass();
DCHECK(declaring_class != NULL) << PrettyClass(this);
DCHECK(declaring_class->IsInterface()) << PrettyMethod(method);
// TODO cache to improve lookup speed
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; i++) {
if (iftable->GetInterface(i) == declaring_class) {
return iftable->GetMethodArray(i)->Get(method->GetMethodIndex());
}
}
return NULL;
}
AbstractMethod* Class::FindInterfaceMethod(const StringPiece& name, const StringPiece& signature) const {
// Check the current class before checking the interfaces.
AbstractMethod* method = FindDeclaredVirtualMethod(name, signature);
if (method != NULL) {
return method;
}
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; i++) {
method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(name, signature);
if (method != NULL) {
return method;
}
}
return NULL;
}
AbstractMethod* Class::FindInterfaceMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const {
// Check the current class before checking the interfaces.
AbstractMethod* method = FindDeclaredVirtualMethod(dex_cache, dex_method_idx);
if (method != NULL) {
return method;
}
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; i++) {
method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(dex_cache, dex_method_idx);
if (method != NULL) {
return method;
}
}
return NULL;
}
AbstractMethod* Class::FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature) const {
MethodHelper mh;
for (size_t i = 0; i < NumDirectMethods(); ++i) {
AbstractMethod* method = GetDirectMethod(i);
mh.ChangeMethod(method);
if (name == mh.GetName() && signature == mh.GetSignature()) {
return method;
}
}
return NULL;
}
AbstractMethod* Class::FindDeclaredDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const {
if (GetDexCache() == dex_cache) {
for (size_t i = 0; i < NumDirectMethods(); ++i) {
AbstractMethod* method = GetDirectMethod(i);
if (method->GetDexMethodIndex() == dex_method_idx) {
return method;
}
}
}
return NULL;
}
AbstractMethod* Class::FindDirectMethod(const StringPiece& name, const StringPiece& signature) const {
for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) {
AbstractMethod* method = klass->FindDeclaredDirectMethod(name, signature);
if (method != NULL) {
return method;
}
}
return NULL;
}
AbstractMethod* Class::FindDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const {
for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) {
AbstractMethod* method = klass->FindDeclaredDirectMethod(dex_cache, dex_method_idx);
if (method != NULL) {
return method;
}
}
return NULL;
}
AbstractMethod* Class::FindDeclaredVirtualMethod(const StringPiece& name,
const StringPiece& signature) const {
MethodHelper mh;
for (size_t i = 0; i < NumVirtualMethods(); ++i) {
AbstractMethod* method = GetVirtualMethod(i);
mh.ChangeMethod(method);
if (name == mh.GetName() && signature == mh.GetSignature()) {
return method;
}
}
return NULL;
}
AbstractMethod* Class::FindDeclaredVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const {
if (GetDexCache() == dex_cache) {
for (size_t i = 0; i < NumVirtualMethods(); ++i) {
AbstractMethod* method = GetVirtualMethod(i);
if (method->GetDexMethodIndex() == dex_method_idx) {
return method;
}
}
}
return NULL;
}
AbstractMethod* Class::FindVirtualMethod(const StringPiece& name, const StringPiece& signature) const {
for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) {
AbstractMethod* method = klass->FindDeclaredVirtualMethod(name, signature);
if (method != NULL) {
return method;
}
}
return NULL;
}
AbstractMethod* Class::FindVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const {
for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) {
AbstractMethod* method = klass->FindDeclaredVirtualMethod(dex_cache, dex_method_idx);
if (method != NULL) {
return method;
}
}
return NULL;
}
Field* Class::FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type) {
// Is the field in this class?
// Interfaces are not relevant because they can't contain instance fields.
FieldHelper fh;
for (size_t i = 0; i < NumInstanceFields(); ++i) {
Field* f = GetInstanceField(i);
fh.ChangeField(f);
if (name == fh.GetName() && type == fh.GetTypeDescriptor()) {
return f;
}
}
return NULL;
}
Field* Class::FindDeclaredInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) {
if (GetDexCache() == dex_cache) {
for (size_t i = 0; i < NumInstanceFields(); ++i) {
Field* f = GetInstanceField(i);
if (f->GetDexFieldIndex() == dex_field_idx) {
return f;
}
}
}
return NULL;
}
Field* Class::FindInstanceField(const StringPiece& name, const StringPiece& type) {
// Is the field in this class, or any of its superclasses?
// Interfaces are not relevant because they can't contain instance fields.
for (Class* c = this; c != NULL; c = c->GetSuperClass()) {
Field* f = c->FindDeclaredInstanceField(name, type);
if (f != NULL) {
return f;
}
}
return NULL;
}
Field* Class::FindInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) {
// Is the field in this class, or any of its superclasses?
// Interfaces are not relevant because they can't contain instance fields.
for (Class* c = this; c != NULL; c = c->GetSuperClass()) {
Field* f = c->FindDeclaredInstanceField(dex_cache, dex_field_idx);
if (f != NULL) {
return f;
}
}
return NULL;
}
Field* Class::FindDeclaredStaticField(const StringPiece& name, const StringPiece& type) {
DCHECK(type != NULL);
FieldHelper fh;
for (size_t i = 0; i < NumStaticFields(); ++i) {
Field* f = GetStaticField(i);
fh.ChangeField(f);
if (name == fh.GetName() && type == fh.GetTypeDescriptor()) {
return f;
}
}
return NULL;
}
Field* Class::FindDeclaredStaticField(const DexCache* dex_cache, uint32_t dex_field_idx) {
if (dex_cache == GetDexCache()) {
for (size_t i = 0; i < NumStaticFields(); ++i) {
Field* f = GetStaticField(i);
if (f->GetDexFieldIndex() == dex_field_idx) {
return f;
}
}
}
return NULL;
}
Field* Class::FindStaticField(const StringPiece& name, const StringPiece& type) {
// Is the field in this class (or its interfaces), or any of its
// superclasses (or their interfaces)?
ClassHelper kh;
for (Class* k = this; k != NULL; k = k->GetSuperClass()) {
// Is the field in this class?
Field* f = k->FindDeclaredStaticField(name, type);
if (f != NULL) {
return f;
}
// Is this field in any of this class' interfaces?
kh.ChangeClass(k);
for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) {
Class* interface = kh.GetDirectInterface(i);
f = interface->FindStaticField(name, type);
if (f != NULL) {
return f;
}
}
}
return NULL;
}
Field* Class::FindStaticField(const DexCache* dex_cache, uint32_t dex_field_idx) {
ClassHelper kh;
for (Class* k = this; k != NULL; k = k->GetSuperClass()) {
// Is the field in this class?
Field* f = k->FindDeclaredStaticField(dex_cache, dex_field_idx);
if (f != NULL) {
return f;
}
// Is this field in any of this class' interfaces?
kh.ChangeClass(k);
for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) {
Class* interface = kh.GetDirectInterface(i);
f = interface->FindStaticField(dex_cache, dex_field_idx);
if (f != NULL) {
return f;
}
}
}
return NULL;
}
Field* Class::FindField(const StringPiece& name, const StringPiece& type) {
// Find a field using the JLS field resolution order
ClassHelper kh;
for (Class* k = this; k != NULL; k = k->GetSuperClass()) {
// Is the field in this class?
Field* f = k->FindDeclaredInstanceField(name, type);
if (f != NULL) {
return f;
}
f = k->FindDeclaredStaticField(name, type);
if (f != NULL) {
return f;
}
// Is this field in any of this class' interfaces?
kh.ChangeClass(k);
for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) {
Class* interface = kh.GetDirectInterface(i);
f = interface->FindStaticField(name, type);
if (f != NULL) {
return f;
}
}
}
return NULL;
}
Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count,
size_t component_size) {
DCHECK(array_class != NULL);
DCHECK_GE(component_count, 0);
DCHECK(array_class->IsArrayClass());
size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4);
size_t data_size = component_count * component_size;
size_t size = header_size + data_size;
// Check for overflow and throw OutOfMemoryError if this was an unreasonable request.
size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size);
if (data_size >> component_shift != size_t(component_count) || size < data_size) {
self->ThrowNewExceptionF("Ljava/lang/OutOfMemoryError;",
"%s of length %d would overflow",
PrettyDescriptor(array_class).c_str(), component_count);
return NULL;
}
Heap* heap = Runtime::Current()->GetHeap();
Array* array = down_cast<Array*>(heap->AllocObject(self, array_class, size));
if (array != NULL) {
DCHECK(array->IsArrayInstance());
array->SetLength(component_count);
}
return array;
}
Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count) {
DCHECK(array_class->IsArrayClass());
return Alloc(self, array_class, component_count, array_class->GetComponentSize());
}
// Create a multi-dimensional array of Objects or primitive types.
//
// We have to generate the names for X[], X[][], X[][][], and so on. The
// easiest way to deal with that is to create the full name once and then
// subtract pieces off. Besides, we want to start with the outermost
// piece and work our way in.
// Recursively create an array with multiple dimensions. Elements may be
// Objects or primitive types.
static Array* RecursiveCreateMultiArray(Thread* self, Class* array_class, int current_dimension,
IntArray* dimensions)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
int32_t array_length = dimensions->Get(current_dimension);
SirtRef<Array> new_array(self, Array::Alloc(self, array_class, array_length));
if (UNLIKELY(new_array.get() == NULL)) {
CHECK(self->IsExceptionPending());
return NULL;
}
if ((current_dimension + 1) < dimensions->GetLength()) {
// Create a new sub-array in every element of the array.
for (int32_t i = 0; i < array_length; i++) {
Array* sub_array = RecursiveCreateMultiArray(self, array_class->GetComponentType(),
current_dimension + 1, dimensions);
if (UNLIKELY(sub_array == NULL)) {
CHECK(self->IsExceptionPending());
return NULL;
}
new_array->AsObjectArray<Array>()->Set(i, sub_array);
}
}
return new_array.get();
}
Array* Array::CreateMultiArray(Thread* self, Class* element_class, IntArray* dimensions) {
// Verify dimensions.
//
// The caller is responsible for verifying that "dimArray" is non-null
// and has a length > 0 and <= 255.
int num_dimensions = dimensions->GetLength();
DCHECK_GT(num_dimensions, 0);
DCHECK_LE(num_dimensions, 255);
for (int i = 0; i < num_dimensions; i++) {
int dimension = dimensions->Get(i);
if (UNLIKELY(dimension < 0)) {
self->ThrowNewExceptionF("Ljava/lang/NegativeArraySizeException;",
"Dimension %d: %d", i, dimension);
return NULL;
}
}
// Generate the full name of the array class.
std::string descriptor(num_dimensions, '[');
descriptor += ClassHelper(element_class).GetDescriptor();
// Find/generate the array class.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Class* array_class = class_linker->FindClass(descriptor.c_str(), element_class->GetClassLoader());
if (UNLIKELY(array_class == NULL)) {
CHECK(self->IsExceptionPending());
return NULL;
}
// create the array
Array* new_array = RecursiveCreateMultiArray(self, array_class, 0, dimensions);
if (UNLIKELY(new_array == NULL)) {
CHECK(self->IsExceptionPending());
return NULL;
}
return new_array;
}
bool Array::ThrowArrayIndexOutOfBoundsException(int32_t index) const {
Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayIndexOutOfBoundsException;",
"length=%i; index=%i", length_, index);
return false;
}
bool Array::ThrowArrayStoreException(Object* object) const {
Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;",
"%s cannot be stored in an array of type %s",
PrettyTypeOf(object).c_str(), PrettyTypeOf(this).c_str());
return false;
}
template<typename T>
PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
DCHECK(array_class_ != NULL);
Array* raw_array = Array::Alloc(self, array_class_, length, sizeof(T));
return down_cast<PrimitiveArray<T>*>(raw_array);
}
template <typename T> Class* PrimitiveArray<T>::array_class_ = NULL;
// Explicitly instantiate all the primitive array types.
template class PrimitiveArray<uint8_t>; // BooleanArray
template class PrimitiveArray<int8_t>; // ByteArray
template class PrimitiveArray<uint16_t>; // CharArray
template class PrimitiveArray<double>; // DoubleArray
template class PrimitiveArray<float>; // FloatArray
template class PrimitiveArray<int32_t>; // IntArray
template class PrimitiveArray<int64_t>; // LongArray
template class PrimitiveArray<int16_t>; // ShortArray
// Explicitly instantiate Class[][]
template class ObjectArray<ObjectArray<Class> >;
// TODO: get global references for these
Class* String::java_lang_String_ = NULL;
void String::SetClass(Class* java_lang_String) {
CHECK(java_lang_String_ == NULL);
CHECK(java_lang_String != NULL);
java_lang_String_ = java_lang_String;
}
void String::ResetClass() {
CHECK(java_lang_String_ != NULL);
java_lang_String_ = NULL;
}
String* String::Intern() {
return Runtime::Current()->GetInternTable()->InternWeak(this);
}
int32_t String::GetHashCode() {
int32_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, hash_code_), false);
if (result == 0) {
ComputeHashCode();
}
result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, hash_code_), false);
DCHECK(result != 0 || ComputeUtf16Hash(GetCharArray(), GetOffset(), GetLength()) == 0)
<< ToModifiedUtf8() << " " << result;
return result;
}
int32_t String::GetLength() const {
int32_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, count_), false);
DCHECK(result >= 0 && result <= GetCharArray()->GetLength());
return result;
}
uint16_t String::CharAt(int32_t index) const {
// TODO: do we need this? Equals is the only caller, and could
// bounds check itself.
if (index < 0 || index >= count_) {
Thread* self = Thread::Current();
self->ThrowNewExceptionF("Ljava/lang/StringIndexOutOfBoundsException;",
"length=%i; index=%i", count_, index);
return 0;
}
return GetCharArray()->Get(index + GetOffset());
}
String* String::AllocFromUtf16(Thread* self,
int32_t utf16_length,
const uint16_t* utf16_data_in,
int32_t hash_code) {
CHECK(utf16_data_in != NULL || utf16_length == 0);
String* string = Alloc(self, GetJavaLangString(), utf16_length);
if (string == NULL) {
return NULL;
}
// TODO: use 16-bit wide memset variant
CharArray* array = const_cast<CharArray*>(string->GetCharArray());
if (array == NULL) {
return NULL;
}
for (int i = 0; i < utf16_length; i++) {
array->Set(i, utf16_data_in[i]);
}
if (hash_code != 0) {
string->SetHashCode(hash_code);
} else {
string->ComputeHashCode();
}
return string;
}
String* String::AllocFromModifiedUtf8(Thread* self, const char* utf) {
if (utf == NULL) {
return NULL;
}
size_t char_count = CountModifiedUtf8Chars(utf);
return AllocFromModifiedUtf8(self, char_count, utf);
}
String* String::AllocFromModifiedUtf8(Thread* self, int32_t utf16_length,
const char* utf8_data_in) {
String* string = Alloc(self, GetJavaLangString(), utf16_length);
if (string == NULL) {
return NULL;
}
uint16_t* utf16_data_out =
const_cast<uint16_t*>(string->GetCharArray()->GetData());
ConvertModifiedUtf8ToUtf16(utf16_data_out, utf8_data_in);
string->ComputeHashCode();
return string;
}
String* String::Alloc(Thread* self, Class* java_lang_String, int32_t utf16_length) {
SirtRef<CharArray> array(self, CharArray::Alloc(self, utf16_length));
if (array.get() == NULL) {
return NULL;
}
return Alloc(self, java_lang_String, array.get());
}
String* String::Alloc(Thread* self, Class* java_lang_String, CharArray* array) {
// Hold reference in case AllocObject causes GC.
SirtRef<CharArray> array_ref(self, array);
String* string = down_cast<String*>(java_lang_String->AllocObject(self));
if (string == NULL) {
return NULL;
}
string->SetArray(array);
string->SetCount(array->GetLength());
return string;
}
bool String::Equals(const String* that) const {
if (this == that) {
// Quick reference equality test
return true;
} else if (that == NULL) {
// Null isn't an instanceof anything
return false;
} else if (this->GetLength() != that->GetLength()) {
// Quick length inequality test
return false;
} else {
// Note: don't short circuit on hash code as we're presumably here as the
// hash code was already equal
for (int32_t i = 0; i < that->GetLength(); ++i) {
if (this->CharAt(i) != that->CharAt(i)) {
return false;
}
}
return true;
}
}
bool String::Equals(const uint16_t* that_chars, int32_t that_offset, int32_t that_length) const {
if (this->GetLength() != that_length) {
return false;
} else {
for (int32_t i = 0; i < that_length; ++i) {
if (this->CharAt(i) != that_chars[that_offset + i]) {
return false;
}
}
return true;
}
}
bool String::Equals(const char* modified_utf8) const {
for (int32_t i = 0; i < GetLength(); ++i) {
uint16_t ch = GetUtf16FromUtf8(&modified_utf8);
if (ch == '\0' || ch != CharAt(i)) {
return false;
}
}
return *modified_utf8 == '\0';
}
bool String::Equals(const StringPiece& modified_utf8) const {
if (modified_utf8.size() != GetLength()) {
return false;
}
const char* p = modified_utf8.data();
for (int32_t i = 0; i < GetLength(); ++i) {
uint16_t ch = GetUtf16FromUtf8(&p);
if (ch != CharAt(i)) {
return false;
}
}
return true;
}
// Create a modified UTF-8 encoded std::string from a java/lang/String object.
std::string String::ToModifiedUtf8() const {
const uint16_t* chars = GetCharArray()->GetData() + GetOffset();
size_t byte_count = GetUtfLength();
std::string result(byte_count, static_cast<char>(0));
ConvertUtf16ToModifiedUtf8(&result[0], chars, GetLength());
return result;
}
#ifdef HAVE__MEMCMP16
// "count" is in 16-bit units.
extern "C" uint32_t __memcmp16(const uint16_t* s0, const uint16_t* s1, size_t count);
#define MemCmp16 __memcmp16
#else
static uint32_t MemCmp16(const uint16_t* s0, const uint16_t* s1, size_t count) {
for (size_t i = 0; i < count; i++) {
if (s0[i] != s1[i]) {
return static_cast<int32_t>(s0[i]) - static_cast<int32_t>(s1[i]);
}
}
return 0;
}
#endif
int32_t String::CompareTo(String* rhs) const {
// Quick test for comparison of a string with itself.
const String* lhs = this;
if (lhs == rhs) {
return 0;
}
// TODO: is this still true?
// The annoying part here is that 0x00e9 - 0xffff != 0x00ea,
// because the interpreter converts the characters to 32-bit integers
// *without* sign extension before it subtracts them (which makes some
// sense since "char" is unsigned). So what we get is the result of
// 0x000000e9 - 0x0000ffff, which is 0xffff00ea.
int lhsCount = lhs->GetLength();
int rhsCount = rhs->GetLength();
int countDiff = lhsCount - rhsCount;
int minCount = (countDiff < 0) ? lhsCount : rhsCount;
const uint16_t* lhsChars = lhs->GetCharArray()->GetData() + lhs->GetOffset();
const uint16_t* rhsChars = rhs->GetCharArray()->GetData() + rhs->GetOffset();
int otherRes = MemCmp16(lhsChars, rhsChars, minCount);
if (otherRes != 0) {
return otherRes;
}
return countDiff;
}
void Throwable::SetCause(Throwable* cause) {
CHECK(cause != NULL);
CHECK(cause != this);
CHECK(GetFieldObject<Throwable*>(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), false) == NULL);
SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), cause, false);
}
bool Throwable::IsCheckedException() const {
if (InstanceOf(WellKnownClasses::ToClass(WellKnownClasses::java_lang_Error))) {
return false;
}
return !InstanceOf(WellKnownClasses::ToClass(WellKnownClasses::java_lang_RuntimeException));
}
std::string Throwable::Dump() const {
std::string result(PrettyTypeOf(this));
result += ": ";
String* msg = GetDetailMessage();
if (msg != NULL) {
result += msg->ToModifiedUtf8();
}
result += "\n";
Object* stack_state = GetStackState();
// check stack state isn't missing or corrupt
if (stack_state != NULL && stack_state->IsObjectArray()) {
// Decode the internal stack trace into the depth and method trace
ObjectArray<Object>* method_trace = down_cast<ObjectArray<Object>*>(stack_state);
int32_t depth = method_trace->GetLength() - 1;
IntArray* pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
MethodHelper mh;
for (int32_t i = 0; i < depth; ++i) {
AbstractMethod* method = down_cast<AbstractMethod*>(method_trace->Get(i));
mh.ChangeMethod(method);
uint32_t dex_pc = pc_trace->Get(i);
int32_t line_number = mh.GetLineNumFromDexPC(dex_pc);
const char* source_file = mh.GetDeclaringClassSourceFile();
result += StringPrintf(" at %s (%s:%d)\n", PrettyMethod(method, true).c_str(),
source_file, line_number);
}
}
Throwable* cause = GetFieldObject<Throwable*>(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), false);
if (cause != NULL && cause != this) { // Constructor makes cause == this by default.
result += "Caused by: ";
result += cause->Dump();
}
return result;
}
Class* Throwable::java_lang_Throwable_ = NULL;
void Throwable::SetClass(Class* java_lang_Throwable) {
CHECK(java_lang_Throwable_ == NULL);
CHECK(java_lang_Throwable != NULL);
java_lang_Throwable_ = java_lang_Throwable;
}
void Throwable::ResetClass() {
CHECK(java_lang_Throwable_ != NULL);
java_lang_Throwable_ = NULL;
}
Class* StackTraceElement::java_lang_StackTraceElement_ = NULL;
void StackTraceElement::SetClass(Class* java_lang_StackTraceElement) {
CHECK(java_lang_StackTraceElement_ == NULL);
CHECK(java_lang_StackTraceElement != NULL);
java_lang_StackTraceElement_ = java_lang_StackTraceElement;
}
void StackTraceElement::ResetClass() {
CHECK(java_lang_StackTraceElement_ != NULL);
java_lang_StackTraceElement_ = NULL;
}
StackTraceElement* StackTraceElement::Alloc(Thread* self,
String* declaring_class,
String* method_name,
String* file_name,
int32_t line_number) {
StackTraceElement* trace =
down_cast<StackTraceElement*>(GetStackTraceElement()->AllocObject(self));
trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, declaring_class_),
const_cast<String*>(declaring_class), false);
trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, method_name_),
const_cast<String*>(method_name), false);
trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, file_name_),
const_cast<String*>(file_name), false);
trace->SetField32(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, line_number_),
line_number, false);
return trace;
}
} // namespace art