| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "object.h" |
| |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <iostream> |
| #include <string> |
| #include <utility> |
| |
| #include "base/logging.h" |
| #include "class_linker.h" |
| #include "class_loader.h" |
| #include "dex_cache.h" |
| #include "dex_file.h" |
| #include "globals.h" |
| #include "heap.h" |
| #include "intern_table.h" |
| #include "interpreter/interpreter.h" |
| #include "monitor.h" |
| #include "object_utils.h" |
| #include "runtime.h" |
| #include "runtime_support.h" |
| #include "sirt_ref.h" |
| #include "stack.h" |
| #include "utils.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| BooleanArray* Object::AsBooleanArray() { |
| DCHECK(GetClass()->IsArrayClass()); |
| DCHECK(GetClass()->GetComponentType()->IsPrimitiveBoolean()); |
| return down_cast<BooleanArray*>(this); |
| } |
| |
| ByteArray* Object::AsByteArray() { |
| DCHECK(GetClass()->IsArrayClass()); |
| DCHECK(GetClass()->GetComponentType()->IsPrimitiveByte()); |
| return down_cast<ByteArray*>(this); |
| } |
| |
| CharArray* Object::AsCharArray() { |
| DCHECK(GetClass()->IsArrayClass()); |
| DCHECK(GetClass()->GetComponentType()->IsPrimitiveChar()); |
| return down_cast<CharArray*>(this); |
| } |
| |
| ShortArray* Object::AsShortArray() { |
| DCHECK(GetClass()->IsArrayClass()); |
| DCHECK(GetClass()->GetComponentType()->IsPrimitiveShort()); |
| return down_cast<ShortArray*>(this); |
| } |
| |
| IntArray* Object::AsIntArray() { |
| DCHECK(GetClass()->IsArrayClass()); |
| DCHECK(GetClass()->GetComponentType()->IsPrimitiveInt() || |
| GetClass()->GetComponentType()->IsPrimitiveFloat()); |
| return down_cast<IntArray*>(this); |
| } |
| |
| LongArray* Object::AsLongArray() { |
| DCHECK(GetClass()->IsArrayClass()); |
| DCHECK(GetClass()->GetComponentType()->IsPrimitiveLong() || |
| GetClass()->GetComponentType()->IsPrimitiveDouble()); |
| return down_cast<LongArray*>(this); |
| } |
| |
| String* Object::AsString() { |
| DCHECK(GetClass()->IsStringClass()); |
| return down_cast<String*>(this); |
| } |
| |
| Throwable* Object::AsThrowable() { |
| DCHECK(GetClass()->IsThrowableClass()); |
| return down_cast<Throwable*>(this); |
| } |
| |
| Object* Object::Clone(Thread* self) { |
| Class* c = GetClass(); |
| DCHECK(!c->IsClassClass()); |
| |
| // Object::SizeOf gets the right size even if we're an array. |
| // Using c->AllocObject() here would be wrong. |
| size_t num_bytes = SizeOf(); |
| Heap* heap = Runtime::Current()->GetHeap(); |
| SirtRef<Object> copy(self, heap->AllocObject(self, c, num_bytes)); |
| if (copy.get() == NULL) { |
| return NULL; |
| } |
| |
| // Copy instance data. We assume memcpy copies by words. |
| // TODO: expose and use move32. |
| byte* src_bytes = reinterpret_cast<byte*>(this); |
| byte* dst_bytes = reinterpret_cast<byte*>(copy.get()); |
| size_t offset = sizeof(Object); |
| memcpy(dst_bytes + offset, src_bytes + offset, num_bytes - offset); |
| |
| // Perform write barriers on copied object references. |
| if (c->IsArrayClass()) { |
| if (!c->GetComponentType()->IsPrimitive()) { |
| const ObjectArray<Object>* array = copy->AsObjectArray<Object>(); |
| heap->WriteBarrierArray(copy.get(), 0, array->GetLength()); |
| } |
| } else { |
| for (const Class* klass = c; klass != NULL; klass = klass->GetSuperClass()) { |
| size_t num_reference_fields = klass->NumReferenceInstanceFields(); |
| for (size_t i = 0; i < num_reference_fields; ++i) { |
| Field* field = klass->GetInstanceField(i); |
| MemberOffset field_offset = field->GetOffset(); |
| const Object* ref = copy->GetFieldObject<const Object*>(field_offset, false); |
| heap->WriteBarrierField(copy.get(), field_offset, ref); |
| } |
| } |
| } |
| |
| if (c->IsFinalizable()) { |
| heap->AddFinalizerReference(Thread::Current(), copy.get()); |
| } |
| |
| return copy.get(); |
| } |
| |
| uint32_t Object::GetThinLockId() { |
| return Monitor::GetThinLockId(monitor_); |
| } |
| |
| void Object::MonitorEnter(Thread* thread) { |
| Monitor::MonitorEnter(thread, this); |
| } |
| |
| bool Object::MonitorExit(Thread* thread) { |
| return Monitor::MonitorExit(thread, this); |
| } |
| |
| void Object::Notify() { |
| Monitor::Notify(Thread::Current(), this); |
| } |
| |
| void Object::NotifyAll() { |
| Monitor::NotifyAll(Thread::Current(), this); |
| } |
| |
| void Object::Wait(int64_t ms, int32_t ns) { |
| Monitor::Wait(Thread::Current(), this, ms, ns, true); |
| } |
| |
| #if VERIFY_OBJECT_ENABLED |
| void Object::CheckFieldAssignment(MemberOffset field_offset, const Object* new_value) { |
| const Class* c = GetClass(); |
| if (Runtime::Current()->GetClassLinker() == NULL || |
| !Runtime::Current()->GetHeap()->IsObjectValidationEnabled() || |
| !c->IsResolved()) { |
| return; |
| } |
| for (const Class* cur = c; cur != NULL; cur = cur->GetSuperClass()) { |
| ObjectArray<Field>* fields = cur->GetIFields(); |
| if (fields != NULL) { |
| size_t num_ref_ifields = cur->NumReferenceInstanceFields(); |
| for (size_t i = 0; i < num_ref_ifields; ++i) { |
| Field* field = fields->Get(i); |
| if (field->GetOffset().Int32Value() == field_offset.Int32Value()) { |
| FieldHelper fh(field); |
| CHECK(fh.GetType()->IsAssignableFrom(new_value->GetClass())); |
| return; |
| } |
| } |
| } |
| } |
| if (c->IsArrayClass()) { |
| // Bounds and assign-ability done in the array setter. |
| return; |
| } |
| if (IsClass()) { |
| ObjectArray<Field>* fields = AsClass()->GetSFields(); |
| if (fields != NULL) { |
| size_t num_ref_sfields = AsClass()->NumReferenceStaticFields(); |
| for (size_t i = 0; i < num_ref_sfields; ++i) { |
| Field* field = fields->Get(i); |
| if (field->GetOffset().Int32Value() == field_offset.Int32Value()) { |
| FieldHelper fh(field); |
| CHECK(fh.GetType()->IsAssignableFrom(new_value->GetClass())); |
| return; |
| } |
| } |
| } |
| } |
| LOG(FATAL) << "Failed to find field for assignment to " << reinterpret_cast<void*>(this) |
| << " of type " << PrettyDescriptor(c) << " at offset " << field_offset; |
| } |
| #endif |
| |
| // TODO: get global references for these |
| Class* Field::java_lang_reflect_Field_ = NULL; |
| |
| void Field::SetClass(Class* java_lang_reflect_Field) { |
| CHECK(java_lang_reflect_Field_ == NULL); |
| CHECK(java_lang_reflect_Field != NULL); |
| java_lang_reflect_Field_ = java_lang_reflect_Field; |
| } |
| |
| void Field::ResetClass() { |
| CHECK(java_lang_reflect_Field_ != NULL); |
| java_lang_reflect_Field_ = NULL; |
| } |
| |
| void Field::SetOffset(MemberOffset num_bytes) { |
| DCHECK(GetDeclaringClass()->IsLoaded() || GetDeclaringClass()->IsErroneous()); |
| #if 0 // TODO enable later in boot and under !NDEBUG |
| FieldHelper fh(this); |
| Primitive::Type type = fh.GetTypeAsPrimitiveType(); |
| if (type == Primitive::kPrimDouble || type == Primitive::kPrimLong) { |
| DCHECK_ALIGNED(num_bytes.Uint32Value(), 8); |
| } |
| #endif |
| SetField32(OFFSET_OF_OBJECT_MEMBER(Field, offset_), num_bytes.Uint32Value(), false); |
| } |
| |
| uint32_t Field::Get32(const Object* object) const { |
| DCHECK(object != NULL) << PrettyField(this); |
| DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); |
| return object->GetField32(GetOffset(), IsVolatile()); |
| } |
| |
| void Field::Set32(Object* object, uint32_t new_value) const { |
| DCHECK(object != NULL) << PrettyField(this); |
| DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); |
| object->SetField32(GetOffset(), new_value, IsVolatile()); |
| } |
| |
| uint64_t Field::Get64(const Object* object) const { |
| DCHECK(object != NULL) << PrettyField(this); |
| DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); |
| return object->GetField64(GetOffset(), IsVolatile()); |
| } |
| |
| void Field::Set64(Object* object, uint64_t new_value) const { |
| DCHECK(object != NULL) << PrettyField(this); |
| DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); |
| object->SetField64(GetOffset(), new_value, IsVolatile()); |
| } |
| |
| Object* Field::GetObj(const Object* object) const { |
| DCHECK(object != NULL) << PrettyField(this); |
| DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); |
| return object->GetFieldObject<Object*>(GetOffset(), IsVolatile()); |
| } |
| |
| void Field::SetObj(Object* object, const Object* new_value) const { |
| DCHECK(object != NULL) << PrettyField(this); |
| DCHECK(!IsStatic() || (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); |
| object->SetFieldObject(GetOffset(), new_value, IsVolatile()); |
| } |
| |
| bool Field::GetBoolean(const Object* object) const { |
| DCHECK_EQ(Primitive::kPrimBoolean, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| return Get32(object); |
| } |
| |
| void Field::SetBoolean(Object* object, bool z) const { |
| DCHECK_EQ(Primitive::kPrimBoolean, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| Set32(object, z); |
| } |
| |
| int8_t Field::GetByte(const Object* object) const { |
| DCHECK_EQ(Primitive::kPrimByte, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| return Get32(object); |
| } |
| |
| void Field::SetByte(Object* object, int8_t b) const { |
| DCHECK_EQ(Primitive::kPrimByte, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| Set32(object, b); |
| } |
| |
| uint16_t Field::GetChar(const Object* object) const { |
| DCHECK_EQ(Primitive::kPrimChar, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| return Get32(object); |
| } |
| |
| void Field::SetChar(Object* object, uint16_t c) const { |
| DCHECK_EQ(Primitive::kPrimChar, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| Set32(object, c); |
| } |
| |
| int16_t Field::GetShort(const Object* object) const { |
| DCHECK_EQ(Primitive::kPrimShort, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| return Get32(object); |
| } |
| |
| void Field::SetShort(Object* object, int16_t s) const { |
| DCHECK_EQ(Primitive::kPrimShort, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| Set32(object, s); |
| } |
| |
| int32_t Field::GetInt(const Object* object) const { |
| #ifndef NDEBUG |
| Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType(); |
| CHECK(type == Primitive::kPrimInt || type == Primitive::kPrimFloat) << PrettyField(this); |
| #endif |
| return Get32(object); |
| } |
| |
| void Field::SetInt(Object* object, int32_t i) const { |
| #ifndef NDEBUG |
| Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType(); |
| CHECK(type == Primitive::kPrimInt || type == Primitive::kPrimFloat) << PrettyField(this); |
| #endif |
| Set32(object, i); |
| } |
| |
| int64_t Field::GetLong(const Object* object) const { |
| #ifndef NDEBUG |
| Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType(); |
| CHECK(type == Primitive::kPrimLong || type == Primitive::kPrimDouble) << PrettyField(this); |
| #endif |
| return Get64(object); |
| } |
| |
| void Field::SetLong(Object* object, int64_t j) const { |
| #ifndef NDEBUG |
| Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType(); |
| CHECK(type == Primitive::kPrimLong || type == Primitive::kPrimDouble) << PrettyField(this); |
| #endif |
| Set64(object, j); |
| } |
| |
| union Bits { |
| jdouble d; |
| jfloat f; |
| jint i; |
| jlong j; |
| }; |
| |
| float Field::GetFloat(const Object* object) const { |
| DCHECK_EQ(Primitive::kPrimFloat, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| Bits bits; |
| bits.i = Get32(object); |
| return bits.f; |
| } |
| |
| void Field::SetFloat(Object* object, float f) const { |
| DCHECK_EQ(Primitive::kPrimFloat, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| Bits bits; |
| bits.f = f; |
| Set32(object, bits.i); |
| } |
| |
| double Field::GetDouble(const Object* object) const { |
| DCHECK_EQ(Primitive::kPrimDouble, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| Bits bits; |
| bits.j = Get64(object); |
| return bits.d; |
| } |
| |
| void Field::SetDouble(Object* object, double d) const { |
| DCHECK_EQ(Primitive::kPrimDouble, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| Bits bits; |
| bits.d = d; |
| Set64(object, bits.j); |
| } |
| |
| Object* Field::GetObject(const Object* object) const { |
| DCHECK_EQ(Primitive::kPrimNot, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| return GetObj(object); |
| } |
| |
| void Field::SetObject(Object* object, const Object* l) const { |
| DCHECK_EQ(Primitive::kPrimNot, FieldHelper(this).GetTypeAsPrimitiveType()) |
| << PrettyField(this); |
| SetObj(object, l); |
| } |
| |
| // TODO: get global references for these |
| Class* AbstractMethod::java_lang_reflect_Constructor_ = NULL; |
| Class* AbstractMethod::java_lang_reflect_Method_ = NULL; |
| |
| InvokeType AbstractMethod::GetInvokeType() const { |
| // TODO: kSuper? |
| if (GetDeclaringClass()->IsInterface()) { |
| return kInterface; |
| } else if (IsStatic()) { |
| return kStatic; |
| } else if (IsDirect()) { |
| return kDirect; |
| } else { |
| return kVirtual; |
| } |
| } |
| |
| void AbstractMethod::SetClasses(Class* java_lang_reflect_Constructor, Class* java_lang_reflect_Method) { |
| CHECK(java_lang_reflect_Constructor_ == NULL); |
| CHECK(java_lang_reflect_Constructor != NULL); |
| java_lang_reflect_Constructor_ = java_lang_reflect_Constructor; |
| |
| CHECK(java_lang_reflect_Method_ == NULL); |
| CHECK(java_lang_reflect_Method != NULL); |
| java_lang_reflect_Method_ = java_lang_reflect_Method; |
| } |
| |
| void AbstractMethod::ResetClasses() { |
| CHECK(java_lang_reflect_Constructor_ != NULL); |
| java_lang_reflect_Constructor_ = NULL; |
| |
| CHECK(java_lang_reflect_Method_ != NULL); |
| java_lang_reflect_Method_ = NULL; |
| } |
| |
| ObjectArray<String>* AbstractMethod::GetDexCacheStrings() const { |
| return GetFieldObject<ObjectArray<String>*>( |
| OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_strings_), false); |
| } |
| |
| void AbstractMethod::SetDexCacheStrings(ObjectArray<String>* new_dex_cache_strings) { |
| SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_strings_), |
| new_dex_cache_strings, false); |
| } |
| |
| ObjectArray<AbstractMethod>* AbstractMethod::GetDexCacheResolvedMethods() const { |
| return GetFieldObject<ObjectArray<AbstractMethod>*>( |
| OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_methods_), false); |
| } |
| |
| void AbstractMethod::SetDexCacheResolvedMethods(ObjectArray<AbstractMethod>* new_dex_cache_methods) { |
| SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_methods_), |
| new_dex_cache_methods, false); |
| } |
| |
| ObjectArray<Class>* AbstractMethod::GetDexCacheResolvedTypes() const { |
| return GetFieldObject<ObjectArray<Class>*>( |
| OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_types_), false); |
| } |
| |
| void AbstractMethod::SetDexCacheResolvedTypes(ObjectArray<Class>* new_dex_cache_classes) { |
| SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_types_), |
| new_dex_cache_classes, false); |
| } |
| |
| ObjectArray<StaticStorageBase>* AbstractMethod::GetDexCacheInitializedStaticStorage() const { |
| return GetFieldObject<ObjectArray<StaticStorageBase>*>( |
| OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_initialized_static_storage_), |
| false); |
| } |
| |
| void AbstractMethod::SetDexCacheInitializedStaticStorage(ObjectArray<StaticStorageBase>* new_value) { |
| SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_initialized_static_storage_), |
| new_value, false); |
| } |
| |
| size_t AbstractMethod::NumArgRegisters(const StringPiece& shorty) { |
| CHECK_LE(1, shorty.length()); |
| uint32_t num_registers = 0; |
| for (int i = 1; i < shorty.length(); ++i) { |
| char ch = shorty[i]; |
| if (ch == 'D' || ch == 'J') { |
| num_registers += 2; |
| } else { |
| num_registers += 1; |
| } |
| } |
| return num_registers; |
| } |
| |
| bool AbstractMethod::IsProxyMethod() const { |
| return GetDeclaringClass()->IsProxyClass(); |
| } |
| |
| AbstractMethod* AbstractMethod::FindOverriddenMethod() const { |
| if (IsStatic()) { |
| return NULL; |
| } |
| Class* declaring_class = GetDeclaringClass(); |
| Class* super_class = declaring_class->GetSuperClass(); |
| uint16_t method_index = GetMethodIndex(); |
| ObjectArray<AbstractMethod>* super_class_vtable = super_class->GetVTable(); |
| AbstractMethod* result = NULL; |
| // Did this method override a super class method? If so load the result from the super class' |
| // vtable |
| if (super_class_vtable != NULL && method_index < super_class_vtable->GetLength()) { |
| result = super_class_vtable->Get(method_index); |
| } else { |
| // Method didn't override superclass method so search interfaces |
| if (IsProxyMethod()) { |
| result = GetDexCacheResolvedMethods()->Get(GetDexMethodIndex()); |
| CHECK_EQ(result, |
| Runtime::Current()->GetClassLinker()->FindMethodForProxy(GetDeclaringClass(), this)); |
| } else { |
| MethodHelper mh(this); |
| MethodHelper interface_mh; |
| IfTable* iftable = GetDeclaringClass()->GetIfTable(); |
| for (size_t i = 0; i < iftable->Count() && result == NULL; i++) { |
| Class* interface = iftable->GetInterface(i); |
| for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) { |
| AbstractMethod* interface_method = interface->GetVirtualMethod(j); |
| interface_mh.ChangeMethod(interface_method); |
| if (mh.HasSameNameAndSignature(&interface_mh)) { |
| result = interface_method; |
| break; |
| } |
| } |
| } |
| } |
| } |
| #ifndef NDEBUG |
| MethodHelper result_mh(result); |
| DCHECK(result == NULL || MethodHelper(this).HasSameNameAndSignature(&result_mh)); |
| #endif |
| return result; |
| } |
| |
| static const void* GetOatCode(const AbstractMethod* m) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| Runtime* runtime = Runtime::Current(); |
| const void* code = m->GetCode(); |
| // Peel off any method tracing trampoline. |
| if (runtime->IsMethodTracingActive() && runtime->GetInstrumentation()->GetSavedCodeFromMap(m) != NULL) { |
| code = runtime->GetInstrumentation()->GetSavedCodeFromMap(m); |
| } |
| // Peel off any resolution stub. |
| if (code == runtime->GetResolutionStubArray(Runtime::kStaticMethod)->GetData()) { |
| code = runtime->GetClassLinker()->GetOatCodeFor(m); |
| } |
| return code; |
| } |
| |
| uintptr_t AbstractMethod::NativePcOffset(const uintptr_t pc) const { |
| return pc - reinterpret_cast<uintptr_t>(GetOatCode(this)); |
| } |
| |
| // Find the lowest-address native safepoint pc for a given dex pc |
| uintptr_t AbstractMethod::ToFirstNativeSafepointPc(const uint32_t dex_pc) const { |
| #if !defined(ART_USE_LLVM_COMPILER) |
| const uint32_t* mapping_table = GetPcToDexMappingTable(); |
| if (mapping_table == NULL) { |
| DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this); |
| return DexFile::kDexNoIndex; // Special no mapping case |
| } |
| size_t mapping_table_length = GetPcToDexMappingTableLength(); |
| for (size_t i = 0; i < mapping_table_length; i += 2) { |
| if (mapping_table[i + 1] == dex_pc) { |
| return mapping_table[i] + reinterpret_cast<uintptr_t>(GetOatCode(this)); |
| } |
| } |
| LOG(FATAL) << "Failed to find native offset for dex pc 0x" << std::hex << dex_pc |
| << " in " << PrettyMethod(this); |
| return 0; |
| #else |
| // Compiler LLVM doesn't use the machine pc, we just use dex pc instead. |
| return static_cast<uint32_t>(dex_pc); |
| #endif |
| } |
| |
| uint32_t AbstractMethod::ToDexPc(const uintptr_t pc) const { |
| #if !defined(ART_USE_LLVM_COMPILER) |
| const uint32_t* mapping_table = GetPcToDexMappingTable(); |
| if (mapping_table == NULL) { |
| DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this); |
| return DexFile::kDexNoIndex; // Special no mapping case |
| } |
| size_t mapping_table_length = GetPcToDexMappingTableLength(); |
| uint32_t sought_offset = pc - reinterpret_cast<uintptr_t>(GetOatCode(this)); |
| for (size_t i = 0; i < mapping_table_length; i += 2) { |
| if (mapping_table[i] == sought_offset) { |
| return mapping_table[i + 1]; |
| } |
| } |
| LOG(FATAL) << "Failed to find Dex offset for PC offset 0x" << std::hex << sought_offset |
| << " in " << PrettyMethod(this); |
| return DexFile::kDexNoIndex; |
| #else |
| // Compiler LLVM doesn't use the machine pc, we just use dex pc instead. |
| return static_cast<uint32_t>(pc); |
| #endif |
| } |
| |
| uintptr_t AbstractMethod::ToNativePc(const uint32_t dex_pc) const { |
| const uint32_t* mapping_table = GetDexToPcMappingTable(); |
| if (mapping_table == NULL) { |
| DCHECK_EQ(dex_pc, 0U); |
| return 0; // Special no mapping/pc == 0 case |
| } |
| size_t mapping_table_length = GetDexToPcMappingTableLength(); |
| for (size_t i = 0; i < mapping_table_length; i += 2) { |
| uint32_t map_offset = mapping_table[i]; |
| uint32_t map_dex_offset = mapping_table[i + 1]; |
| if (map_dex_offset == dex_pc) { |
| return reinterpret_cast<uintptr_t>(GetOatCode(this)) + map_offset; |
| } |
| } |
| LOG(FATAL) << "Looking up Dex PC not contained in method, 0x" << std::hex << dex_pc |
| << " in " << PrettyMethod(this); |
| return 0; |
| } |
| |
| uint32_t AbstractMethod::FindCatchBlock(Class* exception_type, uint32_t dex_pc) const { |
| MethodHelper mh(this); |
| const DexFile::CodeItem* code_item = mh.GetCodeItem(); |
| // Iterate over the catch handlers associated with dex_pc |
| for (CatchHandlerIterator it(*code_item, dex_pc); it.HasNext(); it.Next()) { |
| uint16_t iter_type_idx = it.GetHandlerTypeIndex(); |
| // Catch all case |
| if (iter_type_idx == DexFile::kDexNoIndex16) { |
| return it.GetHandlerAddress(); |
| } |
| // Does this catch exception type apply? |
| Class* iter_exception_type = mh.GetDexCacheResolvedType(iter_type_idx); |
| if (iter_exception_type == NULL) { |
| // The verifier should take care of resolving all exception classes early |
| LOG(WARNING) << "Unresolved exception class when finding catch block: " |
| << mh.GetTypeDescriptorFromTypeIdx(iter_type_idx); |
| } else if (iter_exception_type->IsAssignableFrom(exception_type)) { |
| return it.GetHandlerAddress(); |
| } |
| } |
| // Handler not found |
| return DexFile::kDexNoIndex; |
| } |
| |
| void AbstractMethod::Invoke(Thread* self, Object* receiver, JValue* args, JValue* result) { |
| if (kIsDebugBuild) { |
| self->AssertThreadSuspensionIsAllowable(); |
| CHECK_EQ(kRunnable, self->GetState()); |
| } |
| |
| // Push a transition back into managed code onto the linked list in thread. |
| ManagedStack fragment; |
| self->PushManagedStackFragment(&fragment); |
| |
| // Call the invoke stub associated with the method. |
| // Pass everything as arguments. |
| AbstractMethod::InvokeStub* stub = GetInvokeStub(); |
| |
| if (UNLIKELY(!Runtime::Current()->IsStarted())){ |
| LOG(INFO) << "Not invoking " << PrettyMethod(this) << " for a runtime that isn't started"; |
| if (result != NULL) { |
| result->SetJ(0); |
| } |
| } else { |
| bool interpret = self->ReadFlag(kEnterInterpreter) && !IsNative() && !IsProxyMethod(); |
| const bool kLogInvocationStartAndReturn = false; |
| if (!interpret && GetCode() != NULL && stub != NULL) { |
| if (kLogInvocationStartAndReturn) { |
| LOG(INFO) << StringPrintf("Invoking '%s' code=%p stub=%p", |
| PrettyMethod(this).c_str(), GetCode(), stub); |
| } |
| (*stub)(this, receiver, self, args, result); |
| if (kLogInvocationStartAndReturn) { |
| LOG(INFO) << StringPrintf("Returned '%s' code=%p stub=%p", |
| PrettyMethod(this).c_str(), GetCode(), stub); |
| } |
| } else { |
| const bool kInterpretMethodsWithNoCode = false; |
| if (interpret || kInterpretMethodsWithNoCode) { |
| if (kLogInvocationStartAndReturn) { |
| LOG(INFO) << "Interpreting " << PrettyMethod(this) << "'"; |
| } |
| art::interpreter::EnterInterpreterFromInvoke(self, this, receiver, args, result); |
| if (kLogInvocationStartAndReturn) { |
| LOG(INFO) << "Returned '" << PrettyMethod(this) << "'"; |
| } |
| } else { |
| LOG(INFO) << "Not invoking '" << PrettyMethod(this) |
| << "' code=" << reinterpret_cast<const void*>(GetCode()) |
| << " stub=" << reinterpret_cast<void*>(stub); |
| if (result != NULL) { |
| result->SetJ(0); |
| } |
| } |
| } |
| } |
| |
| // Pop transition. |
| self->PopManagedStackFragment(fragment); |
| } |
| |
| bool AbstractMethod::IsRegistered() const { |
| void* native_method = GetFieldPtr<void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), false); |
| CHECK(native_method != NULL); |
| void* jni_stub = Runtime::Current()->GetJniDlsymLookupStub()->GetData(); |
| return native_method != jni_stub; |
| } |
| |
| void AbstractMethod::RegisterNative(Thread* self, const void* native_method) { |
| DCHECK(Thread::Current() == self); |
| CHECK(IsNative()) << PrettyMethod(this); |
| CHECK(native_method != NULL) << PrettyMethod(this); |
| #if defined(ART_USE_LLVM_COMPILER) |
| SetFieldPtr<const void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), |
| native_method, false); |
| #else |
| if (!self->GetJniEnv()->vm->work_around_app_jni_bugs) { |
| SetFieldPtr<const void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), |
| native_method, false); |
| } else { |
| // We've been asked to associate this method with the given native method but are working |
| // around JNI bugs, that include not giving Object** SIRT references to native methods. Direct |
| // the native method to runtime support and store the target somewhere runtime support will |
| // find it. |
| #if defined(__arm__) |
| SetFieldPtr<const void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), |
| reinterpret_cast<const void*>(art_work_around_app_jni_bugs), false); |
| #else |
| UNIMPLEMENTED(FATAL); |
| #endif |
| SetFieldPtr<const uint8_t*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_gc_map_), |
| reinterpret_cast<const uint8_t*>(native_method), false); |
| } |
| #endif |
| } |
| |
| void AbstractMethod::UnregisterNative(Thread* self) { |
| CHECK(IsNative()) << PrettyMethod(this); |
| // restore stub to lookup native pointer via dlsym |
| RegisterNative(self, Runtime::Current()->GetJniDlsymLookupStub()->GetData()); |
| } |
| |
| Class* Class::java_lang_Class_ = NULL; |
| |
| void Class::SetClassClass(Class* java_lang_Class) { |
| CHECK(java_lang_Class_ == NULL) << java_lang_Class_ << " " << java_lang_Class; |
| CHECK(java_lang_Class != NULL); |
| java_lang_Class_ = java_lang_Class; |
| } |
| |
| void Class::ResetClass() { |
| CHECK(java_lang_Class_ != NULL); |
| java_lang_Class_ = NULL; |
| } |
| |
| void Class::SetStatus(Status new_status) { |
| CHECK(new_status > GetStatus() || new_status == kStatusError || !Runtime::Current()->IsStarted()) |
| << PrettyClass(this) << " " << GetStatus() << " -> " << new_status; |
| CHECK(sizeof(Status) == sizeof(uint32_t)) << PrettyClass(this); |
| if (new_status > kStatusResolved) { |
| CHECK_EQ(GetThinLockId(), Thread::Current()->GetThinLockId()) << PrettyClass(this); |
| } |
| if (new_status == kStatusError) { |
| CHECK_NE(GetStatus(), kStatusError) << PrettyClass(this); |
| |
| // stash current exception |
| Thread* self = Thread::Current(); |
| SirtRef<Throwable> exception(self, self->GetException()); |
| CHECK(exception.get() != NULL); |
| |
| // clear exception to call FindSystemClass |
| self->ClearException(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Class* eiie_class = class_linker->FindSystemClass("Ljava/lang/ExceptionInInitializerError;"); |
| CHECK(!self->IsExceptionPending()); |
| |
| // only verification errors, not initialization problems, should set a verify error. |
| // this is to ensure that ThrowEarlierClassFailure will throw NoClassDefFoundError in that case. |
| Class* exception_class = exception->GetClass(); |
| if (!eiie_class->IsAssignableFrom(exception_class)) { |
| SetVerifyErrorClass(exception_class); |
| } |
| |
| // restore exception |
| self->SetException(exception.get()); |
| } |
| return SetField32(OFFSET_OF_OBJECT_MEMBER(Class, status_), new_status, false); |
| } |
| |
| DexCache* Class::GetDexCache() const { |
| return GetFieldObject<DexCache*>(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), false); |
| } |
| |
| void Class::SetDexCache(DexCache* new_dex_cache) { |
| SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache, false); |
| } |
| |
| Object* Class::AllocObject(Thread* self) { |
| DCHECK(!IsArrayClass()) << PrettyClass(this); |
| DCHECK(IsInstantiable()) << PrettyClass(this); |
| // TODO: decide whether we want this check. It currently fails during bootstrap. |
| // DCHECK(!Runtime::Current()->IsStarted() || IsInitializing()) << PrettyClass(this); |
| DCHECK_GE(this->object_size_, sizeof(Object)); |
| return Runtime::Current()->GetHeap()->AllocObject(self, this, this->object_size_); |
| } |
| |
| void Class::SetClassSize(size_t new_class_size) { |
| DCHECK_GE(new_class_size, GetClassSize()) << " class=" << PrettyTypeOf(this); |
| SetField32(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), new_class_size, false); |
| } |
| |
| // Return the class' name. The exact format is bizarre, but it's the specified behavior for |
| // Class.getName: keywords for primitive types, regular "[I" form for primitive arrays (so "int" |
| // but "[I"), and arrays of reference types written between "L" and ";" but with dots rather than |
| // slashes (so "java.lang.String" but "[Ljava.lang.String;"). Madness. |
| String* Class::ComputeName() { |
| String* name = GetName(); |
| if (name != NULL) { |
| return name; |
| } |
| std::string descriptor(ClassHelper(this).GetDescriptor()); |
| if ((descriptor[0] != 'L') && (descriptor[0] != '[')) { |
| // The descriptor indicates that this is the class for |
| // a primitive type; special-case the return value. |
| const char* c_name = NULL; |
| switch (descriptor[0]) { |
| case 'Z': c_name = "boolean"; break; |
| case 'B': c_name = "byte"; break; |
| case 'C': c_name = "char"; break; |
| case 'S': c_name = "short"; break; |
| case 'I': c_name = "int"; break; |
| case 'J': c_name = "long"; break; |
| case 'F': c_name = "float"; break; |
| case 'D': c_name = "double"; break; |
| case 'V': c_name = "void"; break; |
| default: |
| LOG(FATAL) << "Unknown primitive type: " << PrintableChar(descriptor[0]); |
| } |
| name = String::AllocFromModifiedUtf8(Thread::Current(), c_name); |
| } else { |
| // Convert the UTF-8 name to a java.lang.String. The name must use '.' to separate package |
| // components. |
| if (descriptor.size() > 2 && descriptor[0] == 'L' && descriptor[descriptor.size() - 1] == ';') { |
| descriptor.erase(0, 1); |
| descriptor.erase(descriptor.size() - 1); |
| } |
| std::replace(descriptor.begin(), descriptor.end(), '/', '.'); |
| name = String::AllocFromModifiedUtf8(Thread::Current(), descriptor.c_str()); |
| } |
| SetName(name); |
| return name; |
| } |
| |
| void Class::DumpClass(std::ostream& os, int flags) const { |
| if ((flags & kDumpClassFullDetail) == 0) { |
| os << PrettyClass(this); |
| if ((flags & kDumpClassClassLoader) != 0) { |
| os << ' ' << GetClassLoader(); |
| } |
| if ((flags & kDumpClassInitialized) != 0) { |
| os << ' ' << GetStatus(); |
| } |
| os << "\n"; |
| return; |
| } |
| |
| Class* super = GetSuperClass(); |
| ClassHelper kh(this); |
| os << "----- " << (IsInterface() ? "interface" : "class") << " " |
| << "'" << kh.GetDescriptor() << "' cl=" << GetClassLoader() << " -----\n", |
| os << " objectSize=" << SizeOf() << " " |
| << "(" << (super != NULL ? super->SizeOf() : -1) << " from super)\n", |
| os << StringPrintf(" access=0x%04x.%04x\n", |
| GetAccessFlags() >> 16, GetAccessFlags() & kAccJavaFlagsMask); |
| if (super != NULL) { |
| os << " super='" << PrettyClass(super) << "' (cl=" << super->GetClassLoader() << ")\n"; |
| } |
| if (IsArrayClass()) { |
| os << " componentType=" << PrettyClass(GetComponentType()) << "\n"; |
| } |
| if (kh.NumDirectInterfaces() > 0) { |
| os << " interfaces (" << kh.NumDirectInterfaces() << "):\n"; |
| for (size_t i = 0; i < kh.NumDirectInterfaces(); ++i) { |
| Class* interface = kh.GetDirectInterface(i); |
| const ClassLoader* cl = interface->GetClassLoader(); |
| os << StringPrintf(" %2zd: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl); |
| } |
| } |
| os << " vtable (" << NumVirtualMethods() << " entries, " |
| << (super != NULL ? super->NumVirtualMethods() : 0) << " in super):\n"; |
| for (size_t i = 0; i < NumVirtualMethods(); ++i) { |
| os << StringPrintf(" %2zd: %s\n", i, PrettyMethod(GetVirtualMethodDuringLinking(i)).c_str()); |
| } |
| os << " direct methods (" << NumDirectMethods() << " entries):\n"; |
| for (size_t i = 0; i < NumDirectMethods(); ++i) { |
| os << StringPrintf(" %2zd: %s\n", i, PrettyMethod(GetDirectMethod(i)).c_str()); |
| } |
| if (NumStaticFields() > 0) { |
| os << " static fields (" << NumStaticFields() << " entries):\n"; |
| if (IsResolved() || IsErroneous()) { |
| for (size_t i = 0; i < NumStaticFields(); ++i) { |
| os << StringPrintf(" %2zd: %s\n", i, PrettyField(GetStaticField(i)).c_str()); |
| } |
| } else { |
| os << " <not yet available>"; |
| } |
| } |
| if (NumInstanceFields() > 0) { |
| os << " instance fields (" << NumInstanceFields() << " entries):\n"; |
| if (IsResolved() || IsErroneous()) { |
| for (size_t i = 0; i < NumInstanceFields(); ++i) { |
| os << StringPrintf(" %2zd: %s\n", i, PrettyField(GetInstanceField(i)).c_str()); |
| } |
| } else { |
| os << " <not yet available>"; |
| } |
| } |
| } |
| |
| void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) { |
| if (new_reference_offsets != CLASS_WALK_SUPER) { |
| // Sanity check that the number of bits set in the reference offset bitmap |
| // agrees with the number of references |
| size_t count = 0; |
| for (Class* c = this; c != NULL; c = c->GetSuperClass()) { |
| count += c->NumReferenceInstanceFieldsDuringLinking(); |
| } |
| CHECK_EQ((size_t)__builtin_popcount(new_reference_offsets), count); |
| } |
| SetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_), |
| new_reference_offsets, false); |
| } |
| |
| void Class::SetReferenceStaticOffsets(uint32_t new_reference_offsets) { |
| if (new_reference_offsets != CLASS_WALK_SUPER) { |
| // Sanity check that the number of bits set in the reference offset bitmap |
| // agrees with the number of references |
| CHECK_EQ((size_t)__builtin_popcount(new_reference_offsets), |
| NumReferenceStaticFieldsDuringLinking()); |
| } |
| SetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_static_offsets_), |
| new_reference_offsets, false); |
| } |
| |
| bool Class::Implements(const Class* klass) const { |
| DCHECK(klass != NULL); |
| DCHECK(klass->IsInterface()) << PrettyClass(this); |
| // All interfaces implemented directly and by our superclass, and |
| // recursively all super-interfaces of those interfaces, are listed |
| // in iftable_, so we can just do a linear scan through that. |
| int32_t iftable_count = GetIfTableCount(); |
| IfTable* iftable = GetIfTable(); |
| for (int32_t i = 0; i < iftable_count; i++) { |
| if (iftable->GetInterface(i) == klass) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Determine whether "this" is assignable from "src", where both of these |
| // are array classes. |
| // |
| // Consider an array class, e.g. Y[][], where Y is a subclass of X. |
| // Y[][] = Y[][] --> true (identity) |
| // X[][] = Y[][] --> true (element superclass) |
| // Y = Y[][] --> false |
| // Y[] = Y[][] --> false |
| // Object = Y[][] --> true (everything is an object) |
| // Object[] = Y[][] --> true |
| // Object[][] = Y[][] --> true |
| // Object[][][] = Y[][] --> false (too many []s) |
| // Serializable = Y[][] --> true (all arrays are Serializable) |
| // Serializable[] = Y[][] --> true |
| // Serializable[][] = Y[][] --> false (unless Y is Serializable) |
| // |
| // Don't forget about primitive types. |
| // Object[] = int[] --> false |
| // |
| bool Class::IsArrayAssignableFromArray(const Class* src) const { |
| DCHECK(IsArrayClass()) << PrettyClass(this); |
| DCHECK(src->IsArrayClass()) << PrettyClass(src); |
| return GetComponentType()->IsAssignableFrom(src->GetComponentType()); |
| } |
| |
| bool Class::IsAssignableFromArray(const Class* src) const { |
| DCHECK(!IsInterface()) << PrettyClass(this); // handled first in IsAssignableFrom |
| DCHECK(src->IsArrayClass()) << PrettyClass(src); |
| if (!IsArrayClass()) { |
| // If "this" is not also an array, it must be Object. |
| // src's super should be java_lang_Object, since it is an array. |
| Class* java_lang_Object = src->GetSuperClass(); |
| DCHECK(java_lang_Object != NULL) << PrettyClass(src); |
| DCHECK(java_lang_Object->GetSuperClass() == NULL) << PrettyClass(src); |
| return this == java_lang_Object; |
| } |
| return IsArrayAssignableFromArray(src); |
| } |
| |
| bool Class::IsSubClass(const Class* klass) const { |
| DCHECK(!IsInterface()) << PrettyClass(this); |
| DCHECK(!IsArrayClass()) << PrettyClass(this); |
| const Class* current = this; |
| do { |
| if (current == klass) { |
| return true; |
| } |
| current = current->GetSuperClass(); |
| } while (current != NULL); |
| return false; |
| } |
| |
| bool Class::IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2) { |
| size_t i = 0; |
| while (descriptor1[i] != '\0' && descriptor1[i] == descriptor2[i]) { |
| ++i; |
| } |
| if (descriptor1.find('/', i) != StringPiece::npos || |
| descriptor2.find('/', i) != StringPiece::npos) { |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| bool Class::IsInSamePackage(const Class* that) const { |
| const Class* klass1 = this; |
| const Class* klass2 = that; |
| if (klass1 == klass2) { |
| return true; |
| } |
| // Class loaders must match. |
| if (klass1->GetClassLoader() != klass2->GetClassLoader()) { |
| return false; |
| } |
| // Arrays are in the same package when their element classes are. |
| while (klass1->IsArrayClass()) { |
| klass1 = klass1->GetComponentType(); |
| } |
| while (klass2->IsArrayClass()) { |
| klass2 = klass2->GetComponentType(); |
| } |
| // Compare the package part of the descriptor string. |
| ClassHelper kh(klass1); |
| std::string descriptor1(kh.GetDescriptor()); |
| kh.ChangeClass(klass2); |
| std::string descriptor2(kh.GetDescriptor()); |
| return IsInSamePackage(descriptor1, descriptor2); |
| } |
| |
| bool Class::IsClassClass() const { |
| Class* java_lang_Class = GetClass()->GetClass(); |
| return this == java_lang_Class; |
| } |
| |
| bool Class::IsStringClass() const { |
| return this == String::GetJavaLangString(); |
| } |
| |
| bool Class::IsThrowableClass() const { |
| return WellKnownClasses::ToClass(WellKnownClasses::java_lang_Throwable)->IsAssignableFrom(this); |
| } |
| |
| bool Class::IsFieldClass() const { |
| Class* java_lang_Class = GetClass(); |
| Class* java_lang_reflect_Field = java_lang_Class->GetInstanceField(0)->GetClass(); |
| return this == java_lang_reflect_Field; |
| |
| } |
| |
| bool Class::IsMethodClass() const { |
| return (this == AbstractMethod::GetMethodClass()) || |
| (this == AbstractMethod::GetConstructorClass()); |
| |
| } |
| |
| ClassLoader* Class::GetClassLoader() const { |
| return GetFieldObject<ClassLoader*>(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), false); |
| } |
| |
| void Class::SetClassLoader(ClassLoader* new_class_loader) { |
| SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), new_class_loader, false); |
| } |
| |
| AbstractMethod* Class::FindVirtualMethodForInterface(AbstractMethod* method) { |
| Class* declaring_class = method->GetDeclaringClass(); |
| DCHECK(declaring_class != NULL) << PrettyClass(this); |
| DCHECK(declaring_class->IsInterface()) << PrettyMethod(method); |
| // TODO cache to improve lookup speed |
| int32_t iftable_count = GetIfTableCount(); |
| IfTable* iftable = GetIfTable(); |
| for (int32_t i = 0; i < iftable_count; i++) { |
| if (iftable->GetInterface(i) == declaring_class) { |
| return iftable->GetMethodArray(i)->Get(method->GetMethodIndex()); |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindInterfaceMethod(const StringPiece& name, const StringPiece& signature) const { |
| // Check the current class before checking the interfaces. |
| AbstractMethod* method = FindDeclaredVirtualMethod(name, signature); |
| if (method != NULL) { |
| return method; |
| } |
| |
| int32_t iftable_count = GetIfTableCount(); |
| IfTable* iftable = GetIfTable(); |
| for (int32_t i = 0; i < iftable_count; i++) { |
| method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(name, signature); |
| if (method != NULL) { |
| return method; |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindInterfaceMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { |
| // Check the current class before checking the interfaces. |
| AbstractMethod* method = FindDeclaredVirtualMethod(dex_cache, dex_method_idx); |
| if (method != NULL) { |
| return method; |
| } |
| |
| int32_t iftable_count = GetIfTableCount(); |
| IfTable* iftable = GetIfTable(); |
| for (int32_t i = 0; i < iftable_count; i++) { |
| method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(dex_cache, dex_method_idx); |
| if (method != NULL) { |
| return method; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| AbstractMethod* Class::FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature) const { |
| MethodHelper mh; |
| for (size_t i = 0; i < NumDirectMethods(); ++i) { |
| AbstractMethod* method = GetDirectMethod(i); |
| mh.ChangeMethod(method); |
| if (name == mh.GetName() && signature == mh.GetSignature()) { |
| return method; |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindDeclaredDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { |
| if (GetDexCache() == dex_cache) { |
| for (size_t i = 0; i < NumDirectMethods(); ++i) { |
| AbstractMethod* method = GetDirectMethod(i); |
| if (method->GetDexMethodIndex() == dex_method_idx) { |
| return method; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindDirectMethod(const StringPiece& name, const StringPiece& signature) const { |
| for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { |
| AbstractMethod* method = klass->FindDeclaredDirectMethod(name, signature); |
| if (method != NULL) { |
| return method; |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { |
| for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { |
| AbstractMethod* method = klass->FindDeclaredDirectMethod(dex_cache, dex_method_idx); |
| if (method != NULL) { |
| return method; |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindDeclaredVirtualMethod(const StringPiece& name, |
| const StringPiece& signature) const { |
| MethodHelper mh; |
| for (size_t i = 0; i < NumVirtualMethods(); ++i) { |
| AbstractMethod* method = GetVirtualMethod(i); |
| mh.ChangeMethod(method); |
| if (name == mh.GetName() && signature == mh.GetSignature()) { |
| return method; |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindDeclaredVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { |
| if (GetDexCache() == dex_cache) { |
| for (size_t i = 0; i < NumVirtualMethods(); ++i) { |
| AbstractMethod* method = GetVirtualMethod(i); |
| if (method->GetDexMethodIndex() == dex_method_idx) { |
| return method; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindVirtualMethod(const StringPiece& name, const StringPiece& signature) const { |
| for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { |
| AbstractMethod* method = klass->FindDeclaredVirtualMethod(name, signature); |
| if (method != NULL) { |
| return method; |
| } |
| } |
| return NULL; |
| } |
| |
| AbstractMethod* Class::FindVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { |
| for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { |
| AbstractMethod* method = klass->FindDeclaredVirtualMethod(dex_cache, dex_method_idx); |
| if (method != NULL) { |
| return method; |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type) { |
| // Is the field in this class? |
| // Interfaces are not relevant because they can't contain instance fields. |
| FieldHelper fh; |
| for (size_t i = 0; i < NumInstanceFields(); ++i) { |
| Field* f = GetInstanceField(i); |
| fh.ChangeField(f); |
| if (name == fh.GetName() && type == fh.GetTypeDescriptor()) { |
| return f; |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindDeclaredInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) { |
| if (GetDexCache() == dex_cache) { |
| for (size_t i = 0; i < NumInstanceFields(); ++i) { |
| Field* f = GetInstanceField(i); |
| if (f->GetDexFieldIndex() == dex_field_idx) { |
| return f; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindInstanceField(const StringPiece& name, const StringPiece& type) { |
| // Is the field in this class, or any of its superclasses? |
| // Interfaces are not relevant because they can't contain instance fields. |
| for (Class* c = this; c != NULL; c = c->GetSuperClass()) { |
| Field* f = c->FindDeclaredInstanceField(name, type); |
| if (f != NULL) { |
| return f; |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) { |
| // Is the field in this class, or any of its superclasses? |
| // Interfaces are not relevant because they can't contain instance fields. |
| for (Class* c = this; c != NULL; c = c->GetSuperClass()) { |
| Field* f = c->FindDeclaredInstanceField(dex_cache, dex_field_idx); |
| if (f != NULL) { |
| return f; |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindDeclaredStaticField(const StringPiece& name, const StringPiece& type) { |
| DCHECK(type != NULL); |
| FieldHelper fh; |
| for (size_t i = 0; i < NumStaticFields(); ++i) { |
| Field* f = GetStaticField(i); |
| fh.ChangeField(f); |
| if (name == fh.GetName() && type == fh.GetTypeDescriptor()) { |
| return f; |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindDeclaredStaticField(const DexCache* dex_cache, uint32_t dex_field_idx) { |
| if (dex_cache == GetDexCache()) { |
| for (size_t i = 0; i < NumStaticFields(); ++i) { |
| Field* f = GetStaticField(i); |
| if (f->GetDexFieldIndex() == dex_field_idx) { |
| return f; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindStaticField(const StringPiece& name, const StringPiece& type) { |
| // Is the field in this class (or its interfaces), or any of its |
| // superclasses (or their interfaces)? |
| ClassHelper kh; |
| for (Class* k = this; k != NULL; k = k->GetSuperClass()) { |
| // Is the field in this class? |
| Field* f = k->FindDeclaredStaticField(name, type); |
| if (f != NULL) { |
| return f; |
| } |
| // Is this field in any of this class' interfaces? |
| kh.ChangeClass(k); |
| for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) { |
| Class* interface = kh.GetDirectInterface(i); |
| f = interface->FindStaticField(name, type); |
| if (f != NULL) { |
| return f; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindStaticField(const DexCache* dex_cache, uint32_t dex_field_idx) { |
| ClassHelper kh; |
| for (Class* k = this; k != NULL; k = k->GetSuperClass()) { |
| // Is the field in this class? |
| Field* f = k->FindDeclaredStaticField(dex_cache, dex_field_idx); |
| if (f != NULL) { |
| return f; |
| } |
| // Is this field in any of this class' interfaces? |
| kh.ChangeClass(k); |
| for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) { |
| Class* interface = kh.GetDirectInterface(i); |
| f = interface->FindStaticField(dex_cache, dex_field_idx); |
| if (f != NULL) { |
| return f; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| Field* Class::FindField(const StringPiece& name, const StringPiece& type) { |
| // Find a field using the JLS field resolution order |
| ClassHelper kh; |
| for (Class* k = this; k != NULL; k = k->GetSuperClass()) { |
| // Is the field in this class? |
| Field* f = k->FindDeclaredInstanceField(name, type); |
| if (f != NULL) { |
| return f; |
| } |
| f = k->FindDeclaredStaticField(name, type); |
| if (f != NULL) { |
| return f; |
| } |
| // Is this field in any of this class' interfaces? |
| kh.ChangeClass(k); |
| for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) { |
| Class* interface = kh.GetDirectInterface(i); |
| f = interface->FindStaticField(name, type); |
| if (f != NULL) { |
| return f; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count, |
| size_t component_size) { |
| DCHECK(array_class != NULL); |
| DCHECK_GE(component_count, 0); |
| DCHECK(array_class->IsArrayClass()); |
| |
| size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4); |
| size_t data_size = component_count * component_size; |
| size_t size = header_size + data_size; |
| |
| // Check for overflow and throw OutOfMemoryError if this was an unreasonable request. |
| size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size); |
| if (data_size >> component_shift != size_t(component_count) || size < data_size) { |
| self->ThrowNewExceptionF("Ljava/lang/OutOfMemoryError;", |
| "%s of length %d would overflow", |
| PrettyDescriptor(array_class).c_str(), component_count); |
| return NULL; |
| } |
| |
| Heap* heap = Runtime::Current()->GetHeap(); |
| Array* array = down_cast<Array*>(heap->AllocObject(self, array_class, size)); |
| if (array != NULL) { |
| DCHECK(array->IsArrayInstance()); |
| array->SetLength(component_count); |
| } |
| return array; |
| } |
| |
| Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count) { |
| DCHECK(array_class->IsArrayClass()); |
| return Alloc(self, array_class, component_count, array_class->GetComponentSize()); |
| } |
| |
| // Create a multi-dimensional array of Objects or primitive types. |
| // |
| // We have to generate the names for X[], X[][], X[][][], and so on. The |
| // easiest way to deal with that is to create the full name once and then |
| // subtract pieces off. Besides, we want to start with the outermost |
| // piece and work our way in. |
| // Recursively create an array with multiple dimensions. Elements may be |
| // Objects or primitive types. |
| static Array* RecursiveCreateMultiArray(Thread* self, Class* array_class, int current_dimension, |
| IntArray* dimensions) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| int32_t array_length = dimensions->Get(current_dimension); |
| SirtRef<Array> new_array(self, Array::Alloc(self, array_class, array_length)); |
| if (UNLIKELY(new_array.get() == NULL)) { |
| CHECK(self->IsExceptionPending()); |
| return NULL; |
| } |
| if ((current_dimension + 1) < dimensions->GetLength()) { |
| // Create a new sub-array in every element of the array. |
| for (int32_t i = 0; i < array_length; i++) { |
| Array* sub_array = RecursiveCreateMultiArray(self, array_class->GetComponentType(), |
| current_dimension + 1, dimensions); |
| if (UNLIKELY(sub_array == NULL)) { |
| CHECK(self->IsExceptionPending()); |
| return NULL; |
| } |
| new_array->AsObjectArray<Array>()->Set(i, sub_array); |
| } |
| } |
| return new_array.get(); |
| } |
| |
| Array* Array::CreateMultiArray(Thread* self, Class* element_class, IntArray* dimensions) { |
| // Verify dimensions. |
| // |
| // The caller is responsible for verifying that "dimArray" is non-null |
| // and has a length > 0 and <= 255. |
| int num_dimensions = dimensions->GetLength(); |
| DCHECK_GT(num_dimensions, 0); |
| DCHECK_LE(num_dimensions, 255); |
| |
| for (int i = 0; i < num_dimensions; i++) { |
| int dimension = dimensions->Get(i); |
| if (UNLIKELY(dimension < 0)) { |
| self->ThrowNewExceptionF("Ljava/lang/NegativeArraySizeException;", |
| "Dimension %d: %d", i, dimension); |
| return NULL; |
| } |
| } |
| |
| // Generate the full name of the array class. |
| std::string descriptor(num_dimensions, '['); |
| descriptor += ClassHelper(element_class).GetDescriptor(); |
| |
| // Find/generate the array class. |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Class* array_class = class_linker->FindClass(descriptor.c_str(), element_class->GetClassLoader()); |
| if (UNLIKELY(array_class == NULL)) { |
| CHECK(self->IsExceptionPending()); |
| return NULL; |
| } |
| // create the array |
| Array* new_array = RecursiveCreateMultiArray(self, array_class, 0, dimensions); |
| if (UNLIKELY(new_array == NULL)) { |
| CHECK(self->IsExceptionPending()); |
| return NULL; |
| } |
| return new_array; |
| } |
| |
| bool Array::ThrowArrayIndexOutOfBoundsException(int32_t index) const { |
| Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayIndexOutOfBoundsException;", |
| "length=%i; index=%i", length_, index); |
| return false; |
| } |
| |
| bool Array::ThrowArrayStoreException(Object* object) const { |
| Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;", |
| "%s cannot be stored in an array of type %s", |
| PrettyTypeOf(object).c_str(), PrettyTypeOf(this).c_str()); |
| return false; |
| } |
| |
| template<typename T> |
| PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) { |
| DCHECK(array_class_ != NULL); |
| Array* raw_array = Array::Alloc(self, array_class_, length, sizeof(T)); |
| return down_cast<PrimitiveArray<T>*>(raw_array); |
| } |
| |
| template <typename T> Class* PrimitiveArray<T>::array_class_ = NULL; |
| |
| // Explicitly instantiate all the primitive array types. |
| template class PrimitiveArray<uint8_t>; // BooleanArray |
| template class PrimitiveArray<int8_t>; // ByteArray |
| template class PrimitiveArray<uint16_t>; // CharArray |
| template class PrimitiveArray<double>; // DoubleArray |
| template class PrimitiveArray<float>; // FloatArray |
| template class PrimitiveArray<int32_t>; // IntArray |
| template class PrimitiveArray<int64_t>; // LongArray |
| template class PrimitiveArray<int16_t>; // ShortArray |
| |
| // Explicitly instantiate Class[][] |
| template class ObjectArray<ObjectArray<Class> >; |
| |
| // TODO: get global references for these |
| Class* String::java_lang_String_ = NULL; |
| |
| void String::SetClass(Class* java_lang_String) { |
| CHECK(java_lang_String_ == NULL); |
| CHECK(java_lang_String != NULL); |
| java_lang_String_ = java_lang_String; |
| } |
| |
| void String::ResetClass() { |
| CHECK(java_lang_String_ != NULL); |
| java_lang_String_ = NULL; |
| } |
| |
| String* String::Intern() { |
| return Runtime::Current()->GetInternTable()->InternWeak(this); |
| } |
| |
| int32_t String::GetHashCode() { |
| int32_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, hash_code_), false); |
| if (result == 0) { |
| ComputeHashCode(); |
| } |
| result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, hash_code_), false); |
| DCHECK(result != 0 || ComputeUtf16Hash(GetCharArray(), GetOffset(), GetLength()) == 0) |
| << ToModifiedUtf8() << " " << result; |
| return result; |
| } |
| |
| int32_t String::GetLength() const { |
| int32_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, count_), false); |
| DCHECK(result >= 0 && result <= GetCharArray()->GetLength()); |
| return result; |
| } |
| |
| uint16_t String::CharAt(int32_t index) const { |
| // TODO: do we need this? Equals is the only caller, and could |
| // bounds check itself. |
| if (index < 0 || index >= count_) { |
| Thread* self = Thread::Current(); |
| self->ThrowNewExceptionF("Ljava/lang/StringIndexOutOfBoundsException;", |
| "length=%i; index=%i", count_, index); |
| return 0; |
| } |
| return GetCharArray()->Get(index + GetOffset()); |
| } |
| |
| String* String::AllocFromUtf16(Thread* self, |
| int32_t utf16_length, |
| const uint16_t* utf16_data_in, |
| int32_t hash_code) { |
| CHECK(utf16_data_in != NULL || utf16_length == 0); |
| String* string = Alloc(self, GetJavaLangString(), utf16_length); |
| if (string == NULL) { |
| return NULL; |
| } |
| // TODO: use 16-bit wide memset variant |
| CharArray* array = const_cast<CharArray*>(string->GetCharArray()); |
| if (array == NULL) { |
| return NULL; |
| } |
| for (int i = 0; i < utf16_length; i++) { |
| array->Set(i, utf16_data_in[i]); |
| } |
| if (hash_code != 0) { |
| string->SetHashCode(hash_code); |
| } else { |
| string->ComputeHashCode(); |
| } |
| return string; |
| } |
| |
| String* String::AllocFromModifiedUtf8(Thread* self, const char* utf) { |
| if (utf == NULL) { |
| return NULL; |
| } |
| size_t char_count = CountModifiedUtf8Chars(utf); |
| return AllocFromModifiedUtf8(self, char_count, utf); |
| } |
| |
| String* String::AllocFromModifiedUtf8(Thread* self, int32_t utf16_length, |
| const char* utf8_data_in) { |
| String* string = Alloc(self, GetJavaLangString(), utf16_length); |
| if (string == NULL) { |
| return NULL; |
| } |
| uint16_t* utf16_data_out = |
| const_cast<uint16_t*>(string->GetCharArray()->GetData()); |
| ConvertModifiedUtf8ToUtf16(utf16_data_out, utf8_data_in); |
| string->ComputeHashCode(); |
| return string; |
| } |
| |
| String* String::Alloc(Thread* self, Class* java_lang_String, int32_t utf16_length) { |
| SirtRef<CharArray> array(self, CharArray::Alloc(self, utf16_length)); |
| if (array.get() == NULL) { |
| return NULL; |
| } |
| return Alloc(self, java_lang_String, array.get()); |
| } |
| |
| String* String::Alloc(Thread* self, Class* java_lang_String, CharArray* array) { |
| // Hold reference in case AllocObject causes GC. |
| SirtRef<CharArray> array_ref(self, array); |
| String* string = down_cast<String*>(java_lang_String->AllocObject(self)); |
| if (string == NULL) { |
| return NULL; |
| } |
| string->SetArray(array); |
| string->SetCount(array->GetLength()); |
| return string; |
| } |
| |
| bool String::Equals(const String* that) const { |
| if (this == that) { |
| // Quick reference equality test |
| return true; |
| } else if (that == NULL) { |
| // Null isn't an instanceof anything |
| return false; |
| } else if (this->GetLength() != that->GetLength()) { |
| // Quick length inequality test |
| return false; |
| } else { |
| // Note: don't short circuit on hash code as we're presumably here as the |
| // hash code was already equal |
| for (int32_t i = 0; i < that->GetLength(); ++i) { |
| if (this->CharAt(i) != that->CharAt(i)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| } |
| |
| bool String::Equals(const uint16_t* that_chars, int32_t that_offset, int32_t that_length) const { |
| if (this->GetLength() != that_length) { |
| return false; |
| } else { |
| for (int32_t i = 0; i < that_length; ++i) { |
| if (this->CharAt(i) != that_chars[that_offset + i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| } |
| |
| bool String::Equals(const char* modified_utf8) const { |
| for (int32_t i = 0; i < GetLength(); ++i) { |
| uint16_t ch = GetUtf16FromUtf8(&modified_utf8); |
| if (ch == '\0' || ch != CharAt(i)) { |
| return false; |
| } |
| } |
| return *modified_utf8 == '\0'; |
| } |
| |
| bool String::Equals(const StringPiece& modified_utf8) const { |
| if (modified_utf8.size() != GetLength()) { |
| return false; |
| } |
| const char* p = modified_utf8.data(); |
| for (int32_t i = 0; i < GetLength(); ++i) { |
| uint16_t ch = GetUtf16FromUtf8(&p); |
| if (ch != CharAt(i)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Create a modified UTF-8 encoded std::string from a java/lang/String object. |
| std::string String::ToModifiedUtf8() const { |
| const uint16_t* chars = GetCharArray()->GetData() + GetOffset(); |
| size_t byte_count = GetUtfLength(); |
| std::string result(byte_count, static_cast<char>(0)); |
| ConvertUtf16ToModifiedUtf8(&result[0], chars, GetLength()); |
| return result; |
| } |
| |
| #ifdef HAVE__MEMCMP16 |
| // "count" is in 16-bit units. |
| extern "C" uint32_t __memcmp16(const uint16_t* s0, const uint16_t* s1, size_t count); |
| #define MemCmp16 __memcmp16 |
| #else |
| static uint32_t MemCmp16(const uint16_t* s0, const uint16_t* s1, size_t count) { |
| for (size_t i = 0; i < count; i++) { |
| if (s0[i] != s1[i]) { |
| return static_cast<int32_t>(s0[i]) - static_cast<int32_t>(s1[i]); |
| } |
| } |
| return 0; |
| } |
| #endif |
| |
| int32_t String::CompareTo(String* rhs) const { |
| // Quick test for comparison of a string with itself. |
| const String* lhs = this; |
| if (lhs == rhs) { |
| return 0; |
| } |
| // TODO: is this still true? |
| // The annoying part here is that 0x00e9 - 0xffff != 0x00ea, |
| // because the interpreter converts the characters to 32-bit integers |
| // *without* sign extension before it subtracts them (which makes some |
| // sense since "char" is unsigned). So what we get is the result of |
| // 0x000000e9 - 0x0000ffff, which is 0xffff00ea. |
| int lhsCount = lhs->GetLength(); |
| int rhsCount = rhs->GetLength(); |
| int countDiff = lhsCount - rhsCount; |
| int minCount = (countDiff < 0) ? lhsCount : rhsCount; |
| const uint16_t* lhsChars = lhs->GetCharArray()->GetData() + lhs->GetOffset(); |
| const uint16_t* rhsChars = rhs->GetCharArray()->GetData() + rhs->GetOffset(); |
| int otherRes = MemCmp16(lhsChars, rhsChars, minCount); |
| if (otherRes != 0) { |
| return otherRes; |
| } |
| return countDiff; |
| } |
| |
| void Throwable::SetCause(Throwable* cause) { |
| CHECK(cause != NULL); |
| CHECK(cause != this); |
| CHECK(GetFieldObject<Throwable*>(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), false) == NULL); |
| SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), cause, false); |
| } |
| |
| bool Throwable::IsCheckedException() const { |
| if (InstanceOf(WellKnownClasses::ToClass(WellKnownClasses::java_lang_Error))) { |
| return false; |
| } |
| return !InstanceOf(WellKnownClasses::ToClass(WellKnownClasses::java_lang_RuntimeException)); |
| } |
| |
| std::string Throwable::Dump() const { |
| std::string result(PrettyTypeOf(this)); |
| result += ": "; |
| String* msg = GetDetailMessage(); |
| if (msg != NULL) { |
| result += msg->ToModifiedUtf8(); |
| } |
| result += "\n"; |
| Object* stack_state = GetStackState(); |
| // check stack state isn't missing or corrupt |
| if (stack_state != NULL && stack_state->IsObjectArray()) { |
| // Decode the internal stack trace into the depth and method trace |
| ObjectArray<Object>* method_trace = down_cast<ObjectArray<Object>*>(stack_state); |
| int32_t depth = method_trace->GetLength() - 1; |
| IntArray* pc_trace = down_cast<IntArray*>(method_trace->Get(depth)); |
| MethodHelper mh; |
| for (int32_t i = 0; i < depth; ++i) { |
| AbstractMethod* method = down_cast<AbstractMethod*>(method_trace->Get(i)); |
| mh.ChangeMethod(method); |
| uint32_t dex_pc = pc_trace->Get(i); |
| int32_t line_number = mh.GetLineNumFromDexPC(dex_pc); |
| const char* source_file = mh.GetDeclaringClassSourceFile(); |
| result += StringPrintf(" at %s (%s:%d)\n", PrettyMethod(method, true).c_str(), |
| source_file, line_number); |
| } |
| } |
| Throwable* cause = GetFieldObject<Throwable*>(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), false); |
| if (cause != NULL && cause != this) { // Constructor makes cause == this by default. |
| result += "Caused by: "; |
| result += cause->Dump(); |
| } |
| return result; |
| } |
| |
| |
| Class* Throwable::java_lang_Throwable_ = NULL; |
| |
| void Throwable::SetClass(Class* java_lang_Throwable) { |
| CHECK(java_lang_Throwable_ == NULL); |
| CHECK(java_lang_Throwable != NULL); |
| java_lang_Throwable_ = java_lang_Throwable; |
| } |
| |
| void Throwable::ResetClass() { |
| CHECK(java_lang_Throwable_ != NULL); |
| java_lang_Throwable_ = NULL; |
| } |
| |
| Class* StackTraceElement::java_lang_StackTraceElement_ = NULL; |
| |
| void StackTraceElement::SetClass(Class* java_lang_StackTraceElement) { |
| CHECK(java_lang_StackTraceElement_ == NULL); |
| CHECK(java_lang_StackTraceElement != NULL); |
| java_lang_StackTraceElement_ = java_lang_StackTraceElement; |
| } |
| |
| void StackTraceElement::ResetClass() { |
| CHECK(java_lang_StackTraceElement_ != NULL); |
| java_lang_StackTraceElement_ = NULL; |
| } |
| |
| StackTraceElement* StackTraceElement::Alloc(Thread* self, |
| String* declaring_class, |
| String* method_name, |
| String* file_name, |
| int32_t line_number) { |
| StackTraceElement* trace = |
| down_cast<StackTraceElement*>(GetStackTraceElement()->AllocObject(self)); |
| trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, declaring_class_), |
| const_cast<String*>(declaring_class), false); |
| trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, method_name_), |
| const_cast<String*>(method_name), false); |
| trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, file_name_), |
| const_cast<String*>(file_name), false); |
| trace->SetField32(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, line_number_), |
| line_number, false); |
| return trace; |
| } |
| |
| } // namespace art |