blob: 59203945bb0264b98f4cee62d2bd503d2f933a17 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_mips64.h"
#include "arch/mips64/instruction_set_features_mips64.h"
#include "art_method.h"
#include "code_generator_mips64.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "heap_poisoning.h"
#include "intrinsics.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "utils/mips64/assembler_mips64.h"
#include "utils/mips64/constants_mips64.h"
namespace art {
namespace mips64 {
IntrinsicLocationsBuilderMIPS64::IntrinsicLocationsBuilderMIPS64(CodeGeneratorMIPS64* codegen)
: codegen_(codegen), allocator_(codegen->GetGraph()->GetAllocator()) {
}
Mips64Assembler* IntrinsicCodeGeneratorMIPS64::GetAssembler() {
return reinterpret_cast<Mips64Assembler*>(codegen_->GetAssembler());
}
ArenaAllocator* IntrinsicCodeGeneratorMIPS64::GetAllocator() {
return codegen_->GetGraph()->GetAllocator();
}
inline bool IntrinsicCodeGeneratorMIPS64::HasMsa() const {
return codegen_->GetInstructionSetFeatures().HasMsa();
}
#define __ codegen->GetAssembler()->
static void MoveFromReturnRegister(Location trg,
DataType::Type type,
CodeGeneratorMIPS64* codegen) {
if (!trg.IsValid()) {
DCHECK_EQ(type, DataType::Type::kVoid);
return;
}
DCHECK_NE(type, DataType::Type::kVoid);
if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
GpuRegister trg_reg = trg.AsRegister<GpuRegister>();
if (trg_reg != V0) {
__ Move(V0, trg_reg);
}
} else {
FpuRegister trg_reg = trg.AsFpuRegister<FpuRegister>();
if (trg_reg != F0) {
if (type == DataType::Type::kFloat32) {
__ MovS(F0, trg_reg);
} else {
__ MovD(F0, trg_reg);
}
}
}
}
static void MoveArguments(HInvoke* invoke, CodeGeneratorMIPS64* codegen) {
InvokeDexCallingConventionVisitorMIPS64 calling_convention_visitor;
IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
}
// Slow-path for fallback (calling the managed code to handle the
// intrinsic) in an intrinsified call. This will copy the arguments
// into the positions for a regular call.
//
// Note: The actual parameters are required to be in the locations
// given by the invoke's location summary. If an intrinsic
// modifies those locations before a slowpath call, they must be
// restored!
class IntrinsicSlowPathMIPS64 : public SlowPathCodeMIPS64 {
public:
explicit IntrinsicSlowPathMIPS64(HInvoke* invoke)
: SlowPathCodeMIPS64(invoke), invoke_(invoke) { }
void EmitNativeCode(CodeGenerator* codegen_in) override {
CodeGeneratorMIPS64* codegen = down_cast<CodeGeneratorMIPS64*>(codegen_in);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, invoke_->GetLocations());
MoveArguments(invoke_, codegen);
if (invoke_->IsInvokeStaticOrDirect()) {
codegen->GenerateStaticOrDirectCall(
invoke_->AsInvokeStaticOrDirect(), Location::RegisterLocation(A0), this);
} else {
codegen->GenerateVirtualCall(
invoke_->AsInvokeVirtual(), Location::RegisterLocation(A0), this);
}
// Copy the result back to the expected output.
Location out = invoke_->GetLocations()->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
MoveFromReturnRegister(out, invoke_->GetType(), codegen);
}
RestoreLiveRegisters(codegen, invoke_->GetLocations());
__ Bc(GetExitLabel());
}
const char* GetDescription() const override { return "IntrinsicSlowPathMIPS64"; }
private:
// The instruction where this slow path is happening.
HInvoke* const invoke_;
DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathMIPS64);
};
#undef __
bool IntrinsicLocationsBuilderMIPS64::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
return res != nullptr && res->Intrinsified();
}
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) {
FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
if (is64bit) {
__ Dmfc1(out, in);
} else {
__ Mfc1(out, in);
}
}
// long java.lang.Double.doubleToRawLongBits(double)
void IntrinsicLocationsBuilderMIPS64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
// int java.lang.Float.floatToRawIntBits(float)
void IntrinsicLocationsBuilderMIPS64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) {
GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>();
FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>();
if (is64bit) {
__ Dmtc1(in, out);
} else {
__ Mtc1(in, out);
}
}
// double java.lang.Double.longBitsToDouble(long)
void IntrinsicLocationsBuilderMIPS64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
// float java.lang.Float.intBitsToFloat(int)
void IntrinsicLocationsBuilderMIPS64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
static void GenReverseBytes(LocationSummary* locations,
DataType::Type type,
Mips64Assembler* assembler) {
GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
switch (type) {
case DataType::Type::kInt16:
__ Dsbh(out, in);
__ Seh(out, out);
break;
case DataType::Type::kInt32:
__ Rotr(out, in, 16);
__ Wsbh(out, out);
break;
case DataType::Type::kInt64:
__ Dsbh(out, in);
__ Dshd(out, out);
break;
default:
LOG(FATAL) << "Unexpected size for reverse-bytes: " << type;
UNREACHABLE();
}
}
// int java.lang.Integer.reverseBytes(int)
void IntrinsicLocationsBuilderMIPS64::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitIntegerReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
// long java.lang.Long.reverseBytes(long)
void IntrinsicLocationsBuilderMIPS64::VisitLongReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitLongReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
// short java.lang.Short.reverseBytes(short)
void IntrinsicLocationsBuilderMIPS64::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitShortReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
static void GenNumberOfLeadingZeroes(LocationSummary* locations,
bool is64bit,
Mips64Assembler* assembler) {
GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
if (is64bit) {
__ Dclz(out, in);
} else {
__ Clz(out, in);
}
}
// int java.lang.Integer.numberOfLeadingZeros(int i)
void IntrinsicLocationsBuilderMIPS64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
// int java.lang.Long.numberOfLeadingZeros(long i)
void IntrinsicLocationsBuilderMIPS64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
static void GenNumberOfTrailingZeroes(LocationSummary* locations,
bool is64bit,
Mips64Assembler* assembler) {
Location in = locations->InAt(0);
Location out = locations->Out();
if (is64bit) {
__ Dsbh(out.AsRegister<GpuRegister>(), in.AsRegister<GpuRegister>());
__ Dshd(out.AsRegister<GpuRegister>(), out.AsRegister<GpuRegister>());
__ Dbitswap(out.AsRegister<GpuRegister>(), out.AsRegister<GpuRegister>());
__ Dclz(out.AsRegister<GpuRegister>(), out.AsRegister<GpuRegister>());
} else {
__ Rotr(out.AsRegister<GpuRegister>(), in.AsRegister<GpuRegister>(), 16);
__ Wsbh(out.AsRegister<GpuRegister>(), out.AsRegister<GpuRegister>());
__ Bitswap(out.AsRegister<GpuRegister>(), out.AsRegister<GpuRegister>());
__ Clz(out.AsRegister<GpuRegister>(), out.AsRegister<GpuRegister>());
}
}
// int java.lang.Integer.numberOfTrailingZeros(int i)
void IntrinsicLocationsBuilderMIPS64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
// int java.lang.Long.numberOfTrailingZeros(long i)
void IntrinsicLocationsBuilderMIPS64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
static void GenReverse(LocationSummary* locations,
DataType::Type type,
Mips64Assembler* assembler) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
if (type == DataType::Type::kInt32) {
__ Rotr(out, in, 16);
__ Wsbh(out, out);
__ Bitswap(out, out);
} else {
__ Dsbh(out, in);
__ Dshd(out, out);
__ Dbitswap(out, out);
}
}
// int java.lang.Integer.reverse(int)
void IntrinsicLocationsBuilderMIPS64::VisitIntegerReverse(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitIntegerReverse(HInvoke* invoke) {
GenReverse(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
// long java.lang.Long.reverse(long)
void IntrinsicLocationsBuilderMIPS64::VisitLongReverse(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitLongReverse(HInvoke* invoke) {
GenReverse(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
}
static void GenBitCount(LocationSummary* locations,
const DataType::Type type,
const bool hasMsa,
Mips64Assembler* assembler) {
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>();
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
//
// A generalization of the best bit counting method to integers of
// bit-widths up to 128 (parameterized by type T) is this:
//
// v = v - ((v >> 1) & (T)~(T)0/3); // temp
// v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp
// v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp
// c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; // count
//
// For comparison, for 32-bit quantities, this algorithm can be executed
// using 20 MIPS instructions (the calls to LoadConst32() generate two
// machine instructions each for the values being used in this algorithm).
// A(n unrolled) loop-based algorithm requires 25 instructions.
//
// For a 64-bit operand this can be performed in 24 instructions compared
// to a(n unrolled) loop based algorithm which requires 38 instructions.
//
// There are algorithms which are faster in the cases where very few
// bits are set but the algorithm here attempts to minimize the total
// number of instructions executed even when a large number of bits
// are set.
if (hasMsa) {
if (type == DataType::Type::kInt32) {
__ Mtc1(in, FTMP);
__ PcntW(static_cast<VectorRegister>(FTMP), static_cast<VectorRegister>(FTMP));
__ Mfc1(out, FTMP);
} else {
__ Dmtc1(in, FTMP);
__ PcntD(static_cast<VectorRegister>(FTMP), static_cast<VectorRegister>(FTMP));
__ Dmfc1(out, FTMP);
}
} else {
if (type == DataType::Type::kInt32) {
__ Srl(TMP, in, 1);
__ LoadConst32(AT, 0x55555555);
__ And(TMP, TMP, AT);
__ Subu(TMP, in, TMP);
__ LoadConst32(AT, 0x33333333);
__ And(out, TMP, AT);
__ Srl(TMP, TMP, 2);
__ And(TMP, TMP, AT);
__ Addu(TMP, out, TMP);
__ Srl(out, TMP, 4);
__ Addu(out, out, TMP);
__ LoadConst32(AT, 0x0F0F0F0F);
__ And(out, out, AT);
__ LoadConst32(TMP, 0x01010101);
__ MulR6(out, out, TMP);
__ Srl(out, out, 24);
} else {
__ Dsrl(TMP, in, 1);
__ LoadConst64(AT, 0x5555555555555555L);
__ And(TMP, TMP, AT);
__ Dsubu(TMP, in, TMP);
__ LoadConst64(AT, 0x3333333333333333L);
__ And(out, TMP, AT);
__ Dsrl(TMP, TMP, 2);
__ And(TMP, TMP, AT);
__ Daddu(TMP, out, TMP);
__ Dsrl(out, TMP, 4);
__ Daddu(out, out, TMP);
__ LoadConst64(AT, 0x0F0F0F0F0F0F0F0FL);
__ And(out, out, AT);
__ LoadConst64(TMP, 0x0101010101010101L);
__ Dmul(out, out, TMP);
__ Dsrl32(out, out, 24);
}
}
}
// int java.lang.Integer.bitCount(int)
void IntrinsicLocationsBuilderMIPS64::VisitIntegerBitCount(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitIntegerBitCount(HInvoke* invoke) {
GenBitCount(invoke->GetLocations(), DataType::Type::kInt32, HasMsa(), GetAssembler());
}
// int java.lang.Long.bitCount(long)
void IntrinsicLocationsBuilderMIPS64::VisitLongBitCount(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitLongBitCount(HInvoke* invoke) {
GenBitCount(invoke->GetLocations(), DataType::Type::kInt64, HasMsa(), GetAssembler());
}
// double java.lang.Math.sqrt(double)
void IntrinsicLocationsBuilderMIPS64::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Mips64Assembler* assembler = GetAssembler();
FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>();
FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>();
__ SqrtD(out, in);
}
static void CreateFPToFP(ArenaAllocator* allocator,
HInvoke* invoke,
Location::OutputOverlap overlaps = Location::kOutputOverlap) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), overlaps);
}
// double java.lang.Math.rint(double)
void IntrinsicLocationsBuilderMIPS64::VisitMathRint(HInvoke* invoke) {
CreateFPToFP(allocator_, invoke, Location::kNoOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathRint(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Mips64Assembler* assembler = GetAssembler();
FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>();
FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>();
__ RintD(out, in);
}
// double java.lang.Math.floor(double)
void IntrinsicLocationsBuilderMIPS64::VisitMathFloor(HInvoke* invoke) {
CreateFPToFP(allocator_, invoke);
}
const constexpr uint16_t kFPLeaveUnchanged = kPositiveZero |
kPositiveInfinity |
kNegativeZero |
kNegativeInfinity |
kQuietNaN |
kSignalingNaN;
enum FloatRoundingMode {
kFloor,
kCeil,
};
static void GenRoundingMode(LocationSummary* locations,
FloatRoundingMode mode,
Mips64Assembler* assembler) {
FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>();
FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>();
DCHECK_NE(in, out);
Mips64Label done;
// double floor/ceil(double in) {
// if in.isNaN || in.isInfinite || in.isZero {
// return in;
// }
__ ClassD(out, in);
__ Dmfc1(AT, out);
__ Andi(AT, AT, kFPLeaveUnchanged); // +0.0 | +Inf | -0.0 | -Inf | qNaN | sNaN
__ MovD(out, in);
__ Bnezc(AT, &done);
// Long outLong = floor/ceil(in);
// if (outLong == Long.MAX_VALUE) || (outLong == Long.MIN_VALUE) {
// // floor()/ceil() has almost certainly returned a value
// // which can't be successfully represented as a signed
// // 64-bit number. Java expects that the input value will
// // be returned in these cases.
// // There is also a small probability that floor(in)/ceil(in)
// // correctly truncates/rounds up the input value to
// // Long.MAX_VALUE or Long.MIN_VALUE. In these cases, this
// // exception handling code still does the correct thing.
// return in;
// }
if (mode == kFloor) {
__ FloorLD(out, in);
} else if (mode == kCeil) {
__ CeilLD(out, in);
}
__ Dmfc1(AT, out);
__ MovD(out, in);
__ Daddiu(TMP, AT, 1);
__ Dati(TMP, 0x8000); // TMP = AT + 0x8000 0000 0000 0001
// or AT - 0x7FFF FFFF FFFF FFFF.
// IOW, TMP = 1 if AT = Long.MIN_VALUE
// or TMP = 0 if AT = Long.MAX_VALUE.
__ Dsrl(TMP, TMP, 1); // TMP = 0 if AT = Long.MIN_VALUE
// or AT = Long.MAX_VALUE.
__ Beqzc(TMP, &done);
// double out = outLong;
// return out;
__ Dmtc1(AT, out);
__ Cvtdl(out, out);
__ Bind(&done);
// }
}
void IntrinsicCodeGeneratorMIPS64::VisitMathFloor(HInvoke* invoke) {
GenRoundingMode(invoke->GetLocations(), kFloor, GetAssembler());
}
// double java.lang.Math.ceil(double)
void IntrinsicLocationsBuilderMIPS64::VisitMathCeil(HInvoke* invoke) {
CreateFPToFP(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathCeil(HInvoke* invoke) {
GenRoundingMode(invoke->GetLocations(), kCeil, GetAssembler());
}
static void GenRound(LocationSummary* locations, Mips64Assembler* assembler, DataType::Type type) {
FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>();
FpuRegister half = locations->GetTemp(0).AsFpuRegister<FpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
DCHECK(type == DataType::Type::kFloat32 || type == DataType::Type::kFloat64);
Mips64Label done;
// out = floor(in);
//
// if (out != MAX_VALUE && out != MIN_VALUE) {
// TMP = ((in - out) >= 0.5) ? 1 : 0;
// return out += TMP;
// }
// return out;
// out = floor(in);
if (type == DataType::Type::kFloat64) {
__ FloorLD(FTMP, in);
__ Dmfc1(out, FTMP);
} else {
__ FloorWS(FTMP, in);
__ Mfc1(out, FTMP);
}
// if (out != MAX_VALUE && out != MIN_VALUE)
if (type == DataType::Type::kFloat64) {
__ Daddiu(TMP, out, 1);
__ Dati(TMP, 0x8000); // TMP = out + 0x8000 0000 0000 0001
// or out - 0x7FFF FFFF FFFF FFFF.
// IOW, TMP = 1 if out = Long.MIN_VALUE
// or TMP = 0 if out = Long.MAX_VALUE.
__ Dsrl(TMP, TMP, 1); // TMP = 0 if out = Long.MIN_VALUE
// or out = Long.MAX_VALUE.
__ Beqzc(TMP, &done);
} else {
__ Addiu(TMP, out, 1);
__ Aui(TMP, TMP, 0x8000); // TMP = out + 0x8000 0001
// or out - 0x7FFF FFFF.
// IOW, TMP = 1 if out = Int.MIN_VALUE
// or TMP = 0 if out = Int.MAX_VALUE.
__ Srl(TMP, TMP, 1); // TMP = 0 if out = Int.MIN_VALUE
// or out = Int.MAX_VALUE.
__ Beqzc(TMP, &done);
}
// TMP = (0.5 <= (in - out)) ? -1 : 0;
if (type == DataType::Type::kFloat64) {
__ Cvtdl(FTMP, FTMP); // Convert output of floor.l.d back to "double".
__ LoadConst64(AT, bit_cast<int64_t, double>(0.5));
__ SubD(FTMP, in, FTMP);
__ Dmtc1(AT, half);
__ CmpLeD(FTMP, half, FTMP);
__ Dmfc1(TMP, FTMP);
} else {
__ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float".
__ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
__ SubS(FTMP, in, FTMP);
__ Mtc1(AT, half);
__ CmpLeS(FTMP, half, FTMP);
__ Mfc1(TMP, FTMP);
}
// Return out -= TMP.
if (type == DataType::Type::kFloat64) {
__ Dsubu(out, out, TMP);
} else {
__ Subu(out, out, TMP);
}
__ Bind(&done);
}
// int java.lang.Math.round(float)
void IntrinsicLocationsBuilderMIPS64::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS64::VisitMathRoundFloat(HInvoke* invoke) {
GenRound(invoke->GetLocations(), GetAssembler(), DataType::Type::kFloat32);
}
// long java.lang.Math.round(double)
void IntrinsicLocationsBuilderMIPS64::VisitMathRoundDouble(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS64::VisitMathRoundDouble(HInvoke* invoke) {
GenRound(invoke->GetLocations(), GetAssembler(), DataType::Type::kFloat64);
}
// byte libcore.io.Memory.peekByte(long address)
void IntrinsicLocationsBuilderMIPS64::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMemoryPeekByte(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = invoke->GetLocations()->Out().AsRegister<GpuRegister>();
__ Lb(out, adr, 0);
}
// short libcore.io.Memory.peekShort(long address)
void IntrinsicLocationsBuilderMIPS64::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMemoryPeekShortNative(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = invoke->GetLocations()->Out().AsRegister<GpuRegister>();
__ Lh(out, adr, 0);
}
// int libcore.io.Memory.peekInt(long address)
void IntrinsicLocationsBuilderMIPS64::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMemoryPeekIntNative(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = invoke->GetLocations()->Out().AsRegister<GpuRegister>();
__ Lw(out, adr, 0);
}
// long libcore.io.Memory.peekLong(long address)
void IntrinsicLocationsBuilderMIPS64::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMemoryPeekLongNative(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = invoke->GetLocations()->Out().AsRegister<GpuRegister>();
__ Ld(out, adr, 0);
}
static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
// void libcore.io.Memory.pokeByte(long address, byte value)
void IntrinsicLocationsBuilderMIPS64::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMemoryPokeByte(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister<GpuRegister>();
GpuRegister val = invoke->GetLocations()->InAt(1).AsRegister<GpuRegister>();
__ Sb(val, adr, 0);
}
// void libcore.io.Memory.pokeShort(long address, short value)
void IntrinsicLocationsBuilderMIPS64::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMemoryPokeShortNative(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister<GpuRegister>();
GpuRegister val = invoke->GetLocations()->InAt(1).AsRegister<GpuRegister>();
__ Sh(val, adr, 0);
}
// void libcore.io.Memory.pokeInt(long address, int value)
void IntrinsicLocationsBuilderMIPS64::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMemoryPokeIntNative(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister<GpuRegister>();
GpuRegister val = invoke->GetLocations()->InAt(1).AsRegister<GpuRegister>();
__ Sw(val, adr, 00);
}
// void libcore.io.Memory.pokeLong(long address, long value)
void IntrinsicLocationsBuilderMIPS64::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMemoryPokeLongNative(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister<GpuRegister>();
GpuRegister val = invoke->GetLocations()->InAt(1).AsRegister<GpuRegister>();
__ Sd(val, adr, 0);
}
// Thread java.lang.Thread.currentThread()
void IntrinsicLocationsBuilderMIPS64::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS64::VisitThreadCurrentThread(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister out = invoke->GetLocations()->Out().AsRegister<GpuRegister>();
__ LoadFromOffset(kLoadUnsignedWord,
out,
TR,
Thread::PeerOffset<kMips64PointerSize>().Int32Value());
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator,
HInvoke* invoke,
DataType::Type type) {
bool can_call = kEmitCompilerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(),
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// We need a temporary register for the read barrier marking slow
// path in InstructionCodeGeneratorMIPS64::GenerateReferenceLoadWithBakerReadBarrier.
locations->AddTemp(Location::RequiresRegister());
}
}
// Note that the caller must supply a properly aligned memory address.
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
static void GenUnsafeGet(HInvoke* invoke,
DataType::Type type,
bool is_volatile,
CodeGeneratorMIPS64* codegen) {
LocationSummary* locations = invoke->GetLocations();
DCHECK((type == DataType::Type::kInt32) ||
(type == DataType::Type::kInt64) ||
(type == DataType::Type::kReference)) << type;
Mips64Assembler* assembler = codegen->GetAssembler();
// Target register.
Location trg_loc = locations->Out();
GpuRegister trg = trg_loc.AsRegister<GpuRegister>();
// Object pointer.
Location base_loc = locations->InAt(1);
GpuRegister base = base_loc.AsRegister<GpuRegister>();
// Long offset.
Location offset_loc = locations->InAt(2);
GpuRegister offset = offset_loc.AsRegister<GpuRegister>();
if (!(kEmitCompilerReadBarrier && kUseBakerReadBarrier && (type == DataType::Type::kReference))) {
__ Daddu(TMP, base, offset);
}
switch (type) {
case DataType::Type::kInt64:
__ Ld(trg, TMP, 0);
if (is_volatile) {
__ Sync(0);
}
break;
case DataType::Type::kInt32:
__ Lw(trg, TMP, 0);
if (is_volatile) {
__ Sync(0);
}
break;
case DataType::Type::kReference:
if (kEmitCompilerReadBarrier) {
if (kUseBakerReadBarrier) {
Location temp = locations->GetTemp(0);
codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke,
trg_loc,
base,
/* offset= */ 0U,
/* index= */ offset_loc,
TIMES_1,
temp,
/* needs_null_check= */ false);
if (is_volatile) {
__ Sync(0);
}
} else {
__ Lwu(trg, TMP, 0);
if (is_volatile) {
__ Sync(0);
}
codegen->GenerateReadBarrierSlow(invoke,
trg_loc,
trg_loc,
base_loc,
/* offset= */ 0U,
/* index= */ offset_loc);
}
} else {
__ Lwu(trg, TMP, 0);
if (is_volatile) {
__ Sync(0);
}
__ MaybeUnpoisonHeapReference(trg);
}
break;
default:
LOG(FATAL) << "Unsupported op size " << type;
UNREACHABLE();
}
}
// int sun.misc.Unsafe.getInt(Object o, long offset)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
}
// int sun.misc.Unsafe.getIntVolatile(Object o, long offset)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
}
// long sun.misc.Unsafe.getLong(Object o, long offset)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
}
// long sun.misc.Unsafe.getLongVolatile(Object o, long offset)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
}
// Object sun.misc.Unsafe.getObject(Object o, long offset)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_);
}
// Object sun.misc.Unsafe.getObjectVolatile(Object o, long offset)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_);
}
static void CreateIntIntIntIntToVoid(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
}
// Note that the caller must supply a properly aligned memory address.
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
static void GenUnsafePut(LocationSummary* locations,
DataType::Type type,
bool is_volatile,
bool is_ordered,
CodeGeneratorMIPS64* codegen) {
DCHECK((type == DataType::Type::kInt32) ||
(type == DataType::Type::kInt64) ||
(type == DataType::Type::kReference));
Mips64Assembler* assembler = codegen->GetAssembler();
// Object pointer.
GpuRegister base = locations->InAt(1).AsRegister<GpuRegister>();
// Long offset.
GpuRegister offset = locations->InAt(2).AsRegister<GpuRegister>();
GpuRegister value = locations->InAt(3).AsRegister<GpuRegister>();
__ Daddu(TMP, base, offset);
if (is_volatile || is_ordered) {
__ Sync(0);
}
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kReference:
if (kPoisonHeapReferences && type == DataType::Type::kReference) {
__ PoisonHeapReference(AT, value);
__ Sw(AT, TMP, 0);
} else {
__ Sw(value, TMP, 0);
}
break;
case DataType::Type::kInt64:
__ Sd(value, TMP, 0);
break;
default:
LOG(FATAL) << "Unsupported op size " << type;
UNREACHABLE();
}
if (is_volatile) {
__ Sync(0);
}
if (type == DataType::Type::kReference) {
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(base, value, value_can_be_null);
}
}
// void sun.misc.Unsafe.putInt(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt32,
/* is_volatile= */ false,
/* is_ordered= */ false,
codegen_);
}
// void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt32,
/* is_volatile= */ false,
/* is_ordered= */ true,
codegen_);
}
// void sun.misc.Unsafe.putIntVolatile(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt32,
/* is_volatile= */ true,
/* is_ordered= */ false,
codegen_);
}
// void sun.misc.Unsafe.putObject(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kReference,
/* is_volatile= */ false,
/* is_ordered= */ false,
codegen_);
}
// void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kReference,
/* is_volatile= */ false,
/* is_ordered= */ true,
codegen_);
}
// void sun.misc.Unsafe.putObjectVolatile(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kReference,
/* is_volatile= */ true,
/* is_ordered= */ false,
codegen_);
}
// void sun.misc.Unsafe.putLong(Object o, long offset, long x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt64,
/* is_volatile= */ false,
/* is_ordered= */ false,
codegen_);
}
// void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt64,
/* is_volatile= */ false,
/* is_ordered= */ true,
codegen_);
}
// void sun.misc.Unsafe.putLongVolatile(Object o, long offset, long x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt64,
/* is_volatile= */ true,
/* is_ordered= */ false,
codegen_);
}
static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) {
bool can_call = kEmitCompilerReadBarrier &&
kUseBakerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
// Temporary register used in CAS by (Baker) read barrier.
if (can_call) {
locations->AddTemp(Location::RequiresRegister());
}
}
// Note that the caller must supply a properly aligned memory address.
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorMIPS64* codegen) {
Mips64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
GpuRegister base = locations->InAt(1).AsRegister<GpuRegister>();
Location offset_loc = locations->InAt(2);
GpuRegister offset = offset_loc.AsRegister<GpuRegister>();
GpuRegister expected = locations->InAt(3).AsRegister<GpuRegister>();
GpuRegister value = locations->InAt(4).AsRegister<GpuRegister>();
Location out_loc = locations->Out();
GpuRegister out = out_loc.AsRegister<GpuRegister>();
DCHECK_NE(base, out);
DCHECK_NE(offset, out);
DCHECK_NE(expected, out);
if (type == DataType::Type::kReference) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
// Mark card for object assuming new value is stored. Worst case we will mark an unchanged
// object and scan the receiver at the next GC for nothing.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(base, value, value_can_be_null);
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
Location temp = locations->GetTemp(0);
// Need to make sure the reference stored in the field is a to-space
// one before attempting the CAS or the CAS could fail incorrectly.
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke,
out_loc, // Unused, used only as a "temporary" within the read barrier.
base,
/* offset= */ 0u,
/* index= */ offset_loc,
ScaleFactor::TIMES_1,
temp,
/* needs_null_check= */ false,
/* always_update_field= */ true);
}
}
Mips64Label loop_head, exit_loop;
__ Daddu(TMP, base, offset);
if (kPoisonHeapReferences && type == DataType::Type::kReference) {
__ PoisonHeapReference(expected);
// Do not poison `value`, if it is the same register as
// `expected`, which has just been poisoned.
if (value != expected) {
__ PoisonHeapReference(value);
}
}
// do {
// tmp_value = [tmp_ptr] - expected;
// } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value));
// result = tmp_value != 0;
__ Sync(0);
__ Bind(&loop_head);
if (type == DataType::Type::kInt64) {
__ Lld(out, TMP);
} else {
// Note: We will need a read barrier here, when read barrier
// support is added to the MIPS64 back end.
__ Ll(out, TMP);
if (type == DataType::Type::kReference) {
// The LL instruction sign-extends the 32-bit value, but
// 32-bit references must be zero-extended. Zero-extend `out`.
__ Dext(out, out, 0, 32);
}
}
__ Dsubu(out, out, expected); // If we didn't get the 'expected'
__ Sltiu(out, out, 1); // value, set 'out' to false, and
__ Beqzc(out, &exit_loop); // return.
__ Move(out, value); // Use 'out' for the 'store conditional' instruction.
// If we use 'value' directly, we would lose 'value'
// in the case that the store fails. Whether the
// store succeeds, or fails, it will load the
// correct Boolean value into the 'out' register.
if (type == DataType::Type::kInt64) {
__ Scd(out, TMP);
} else {
__ Sc(out, TMP);
}
__ Beqzc(out, &loop_head); // If we couldn't do the read-modify-write
// cycle atomically then retry.
__ Bind(&exit_loop);
__ Sync(0);
if (kPoisonHeapReferences && type == DataType::Type::kReference) {
__ UnpoisonHeapReference(expected);
// Do not unpoison `value`, if it is the same register as
// `expected`, which has just been unpoisoned.
if (value != expected) {
__ UnpoisonHeapReference(value);
}
}
}
// boolean sun.misc.Unsafe.compareAndSwapInt(Object o, long offset, int expected, int x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeCASInt(HInvoke* invoke) {
GenCas(invoke, DataType::Type::kInt32, codegen_);
}
// boolean sun.misc.Unsafe.compareAndSwapLong(Object o, long offset, long expected, long x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeCASLong(HInvoke* invoke) {
CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeCASLong(HInvoke* invoke) {
GenCas(invoke, DataType::Type::kInt64, codegen_);
}
// boolean sun.misc.Unsafe.compareAndSwapObject(Object o, long offset, Object expected, Object x)
void IntrinsicLocationsBuilderMIPS64::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
GenCas(invoke, DataType::Type::kReference, codegen_);
}
// int java.lang.String.compareTo(String anotherString)
void IntrinsicLocationsBuilderMIPS64::VisitStringCompareTo(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<GpuRegister>()));
}
void IntrinsicCodeGeneratorMIPS64::VisitStringCompareTo(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
GpuRegister argument = locations->InAt(1).AsRegister<GpuRegister>();
SlowPathCodeMIPS64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqzc(argument, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
__ Bind(slow_path->GetExitLabel());
}
// boolean java.lang.String.equals(Object anObject)
void IntrinsicLocationsBuilderMIPS64::VisitStringEquals(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
// Temporary registers to store lengths of strings and for calculations.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS64::VisitStringEquals(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
GpuRegister str = locations->InAt(0).AsRegister<GpuRegister>();
GpuRegister arg = locations->InAt(1).AsRegister<GpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
GpuRegister temp1 = locations->GetTemp(0).AsRegister<GpuRegister>();
GpuRegister temp2 = locations->GetTemp(1).AsRegister<GpuRegister>();
GpuRegister temp3 = locations->GetTemp(2).AsRegister<GpuRegister>();
Mips64Label loop;
Mips64Label end;
Mips64Label return_true;
Mips64Label return_false;
// Get offsets of count, value, and class fields within a string object.
const int32_t count_offset = mirror::String::CountOffset().Int32Value();
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
const int32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// If the register containing the pointer to "this", and the register
// containing the pointer to "anObject" are the same register then
// "this", and "anObject" are the same object and we can
// short-circuit the logic to a true result.
if (str == arg) {
__ LoadConst64(out, 1);
return;
}
StringEqualsOptimizations optimizations(invoke);
if (!optimizations.GetArgumentNotNull()) {
// Check if input is null, return false if it is.
__ Beqzc(arg, &return_false);
}
// Reference equality check, return true if same reference.
__ Beqc(str, arg, &return_true);
if (!optimizations.GetArgumentIsString()) {
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
//
// As the String class is expected to be non-movable, we can read the class
// field from String.equals' arguments without read barriers.
AssertNonMovableStringClass();
// /* HeapReference<Class> */ temp1 = str->klass_
__ Lw(temp1, str, class_offset);
// /* HeapReference<Class> */ temp2 = arg->klass_
__ Lw(temp2, arg, class_offset);
// Also, because we use the previously loaded class references only in the
// following comparison, we don't need to unpoison them.
__ Bnec(temp1, temp2, &return_false);
}
// Load `count` fields of this and argument strings.
__ Lw(temp1, str, count_offset);
__ Lw(temp2, arg, count_offset);
// Check if `count` fields are equal, return false if they're not.
// Also compares the compression style, if differs return false.
__ Bnec(temp1, temp2, &return_false);
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ Beqzc(temp1, &return_true);
// Don't overwrite input registers
__ Move(TMP, str);
__ Move(temp3, arg);
// Assertions that must hold in order to compare strings 8 bytes at a time.
DCHECK_ALIGNED(value_offset, 8);
static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded");
if (mirror::kUseStringCompression) {
// For string compression, calculate the number of bytes to compare (not chars).
__ Dext(temp2, temp1, 0, 1); // Extract compression flag.
__ Srl(temp1, temp1, 1); // Extract length.
__ Sllv(temp1, temp1, temp2); // Double the byte count if uncompressed.
}
// Loop to compare strings 8 bytes at a time starting at the beginning of the string.
// Ok to do this because strings are zero-padded to kObjectAlignment.
__ Bind(&loop);
__ Ld(out, TMP, value_offset);
__ Ld(temp2, temp3, value_offset);
__ Bnec(out, temp2, &return_false);
__ Daddiu(TMP, TMP, 8);
__ Daddiu(temp3, temp3, 8);
// With string compression, we have compared 8 bytes, otherwise 4 chars.
__ Addiu(temp1, temp1, mirror::kUseStringCompression ? -8 : -4);
__ Bgtzc(temp1, &loop);
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ LoadConst64(out, 1);
__ Bc(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ LoadConst64(out, 0);
__ Bind(&end);
}
static void GenerateStringIndexOf(HInvoke* invoke,
Mips64Assembler* assembler,
CodeGeneratorMIPS64* codegen,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
GpuRegister tmp_reg = start_at_zero ? locations->GetTemp(0).AsRegister<GpuRegister>() : TMP;
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCodeMIPS64* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (!IsUint<16>(code_point->AsIntConstant()->GetValue())) {
// Always needs the slow-path. We could directly dispatch to it,
// but this case should be rare, so for simplicity just put the
// full slow-path down and branch unconditionally.
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke);
codegen->AddSlowPath(slow_path);
__ Bc(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != DataType::Type::kUint16) {
GpuRegister char_reg = locations->InAt(1).AsRegister<GpuRegister>();
__ LoadConst32(tmp_reg, std::numeric_limits<uint16_t>::max());
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke);
codegen->AddSlowPath(slow_path);
__ Bltuc(tmp_reg, char_reg, slow_path->GetEntryLabel()); // UTF-16 required
}
if (start_at_zero) {
DCHECK_EQ(tmp_reg, A2);
// Start-index = 0.
__ Clear(tmp_reg);
}
codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
// int java.lang.String.indexOf(int ch)
void IntrinsicLocationsBuilderMIPS64::VisitStringIndexOf(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime
// calling convention. So it's best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<GpuRegister>()));
// Need a temp for slow-path codepoint compare, and need to send start-index=0.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
}
void IntrinsicCodeGeneratorMIPS64::VisitStringIndexOf(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true);
}
// int java.lang.String.indexOf(int ch, int fromIndex)
void IntrinsicLocationsBuilderMIPS64::VisitStringIndexOfAfter(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime
// calling convention. So it's best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<GpuRegister>()));
}
void IntrinsicCodeGeneratorMIPS64::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false);
}
// java.lang.StringFactory.newStringFromBytes(byte[] data, int high, int offset, int byteCount)
void IntrinsicLocationsBuilderMIPS64::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<GpuRegister>()));
}
void IntrinsicCodeGeneratorMIPS64::VisitStringNewStringFromBytes(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
GpuRegister byte_array = locations->InAt(0).AsRegister<GpuRegister>();
SlowPathCodeMIPS64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqzc(byte_array, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
__ Bind(slow_path->GetExitLabel());
}
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
void IntrinsicLocationsBuilderMIPS64::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<GpuRegister>()));
}
void IntrinsicCodeGeneratorMIPS64::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
}
// java.lang.StringFactory.newStringFromString(String toCopy)
void IntrinsicLocationsBuilderMIPS64::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<GpuRegister>()));
}
void IntrinsicCodeGeneratorMIPS64::VisitStringNewStringFromString(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
GpuRegister string_to_copy = locations->InAt(0).AsRegister<GpuRegister>();
SlowPathCodeMIPS64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqzc(string_to_copy, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
__ Bind(slow_path->GetExitLabel());
}
static void GenIsInfinite(LocationSummary* locations,
bool is64bit,
Mips64Assembler* assembler) {
FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
if (is64bit) {
__ ClassD(FTMP, in);
} else {
__ ClassS(FTMP, in);
}
__ Mfc1(out, FTMP);
__ Andi(out, out, kPositiveInfinity | kNegativeInfinity);
__ Sltu(out, ZERO, out);
}
// boolean java.lang.Float.isInfinite(float)
void IntrinsicLocationsBuilderMIPS64::VisitFloatIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitFloatIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
// boolean java.lang.Double.isInfinite(double)
void IntrinsicLocationsBuilderMIPS64::VisitDoubleIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitDoubleIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
// void java.lang.String.getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
void IntrinsicLocationsBuilderMIPS64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16);
GpuRegister srcObj = locations->InAt(0).AsRegister<GpuRegister>();
GpuRegister srcBegin = locations->InAt(1).AsRegister<GpuRegister>();
GpuRegister srcEnd = locations->InAt(2).AsRegister<GpuRegister>();
GpuRegister dstObj = locations->InAt(3).AsRegister<GpuRegister>();
GpuRegister dstBegin = locations->InAt(4).AsRegister<GpuRegister>();
GpuRegister dstPtr = locations->GetTemp(0).AsRegister<GpuRegister>();
GpuRegister srcPtr = locations->GetTemp(1).AsRegister<GpuRegister>();
GpuRegister numChrs = locations->GetTemp(2).AsRegister<GpuRegister>();
Mips64Label done;
Mips64Label loop;
// Location of data in char array buffer.
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
// Get offset of value field within a string object.
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
__ Beqc(srcEnd, srcBegin, &done); // No characters to move.
// Calculate number of characters to be copied.
__ Dsubu(numChrs, srcEnd, srcBegin);
// Calculate destination address.
__ Daddiu(dstPtr, dstObj, data_offset);
__ Dlsa(dstPtr, dstBegin, dstPtr, char_shift);
if (mirror::kUseStringCompression) {
Mips64Label uncompressed_copy, compressed_loop;
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
// Load count field and extract compression flag.
__ LoadFromOffset(kLoadWord, TMP, srcObj, count_offset);
__ Dext(TMP, TMP, 0, 1);
// If string is uncompressed, use uncompressed path.
__ Bnezc(TMP, &uncompressed_copy);
// Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
__ Daddu(srcPtr, srcObj, srcBegin);
__ Bind(&compressed_loop);
__ LoadFromOffset(kLoadUnsignedByte, TMP, srcPtr, value_offset);
__ StoreToOffset(kStoreHalfword, TMP, dstPtr, 0);
__ Daddiu(numChrs, numChrs, -1);
__ Daddiu(srcPtr, srcPtr, 1);
__ Daddiu(dstPtr, dstPtr, 2);
__ Bnezc(numChrs, &compressed_loop);
__ Bc(&done);
__ Bind(&uncompressed_copy);
}
// Calculate source address.
__ Daddiu(srcPtr, srcObj, value_offset);
__ Dlsa(srcPtr, srcBegin, srcPtr, char_shift);
__ Bind(&loop);
__ Lh(AT, srcPtr, 0);
__ Daddiu(numChrs, numChrs, -1);
__ Daddiu(srcPtr, srcPtr, char_size);
__ Sh(AT, dstPtr, 0);
__ Daddiu(dstPtr, dstPtr, char_size);
__ Bnezc(numChrs, &loop);
__ Bind(&done);
}
// static void java.lang.System.arraycopy(Object src, int srcPos,
// Object dest, int destPos,
// int length)
void IntrinsicLocationsBuilderMIPS64::VisitSystemArrayCopyChar(HInvoke* invoke) {
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
// As long as we are checking, we might as well check to see if the src and dest
// positions are >= 0.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
// We will have to fail anyways.
return;
}
// And since we are already checking, check the length too.
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0) {
// Just call as normal.
return;
}
}
// Okay, it is safe to generate inline code.
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
// arraycopy(Object src, int srcPos, Object dest, int destPos, int length).
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
// Utility routine to verify that "length(input) - pos >= length"
static void EnoughItems(Mips64Assembler* assembler,
GpuRegister length_input_minus_pos,
Location length,
SlowPathCodeMIPS64* slow_path) {
if (length.IsConstant()) {
int32_t length_constant = length.GetConstant()->AsIntConstant()->GetValue();
if (IsInt<16>(length_constant)) {
__ Slti(TMP, length_input_minus_pos, length_constant);
__ Bnezc(TMP, slow_path->GetEntryLabel());
} else {
__ LoadConst32(TMP, length_constant);
__ Bltc(length_input_minus_pos, TMP, slow_path->GetEntryLabel());
}
} else {
__ Bltc(length_input_minus_pos, length.AsRegister<GpuRegister>(), slow_path->GetEntryLabel());
}
}
static void CheckPosition(Mips64Assembler* assembler,
Location pos,
GpuRegister input,
Location length,
SlowPathCodeMIPS64* slow_path,
bool length_is_input_length = false) {
// Where is the length in the Array?
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
// Calculate length(input) - pos.
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
if (pos_const == 0) {
if (!length_is_input_length) {
// Check that length(input) >= length.
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
EnoughItems(assembler, AT, length, slow_path);
}
} else {
// Check that (length(input) - pos) >= zero.
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
DCHECK_GT(pos_const, 0);
__ Addiu32(AT, AT, -pos_const);
__ Bltzc(AT, slow_path->GetEntryLabel());
// Verify that (length(input) - pos) >= length.
EnoughItems(assembler, AT, length, slow_path);
}
} else if (length_is_input_length) {
// The only way the copy can succeed is if pos is zero.
GpuRegister pos_reg = pos.AsRegister<GpuRegister>();
__ Bnezc(pos_reg, slow_path->GetEntryLabel());
} else {
// Verify that pos >= 0.
GpuRegister pos_reg = pos.AsRegister<GpuRegister>();
__ Bltzc(pos_reg, slow_path->GetEntryLabel());
// Check that (length(input) - pos) >= zero.
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
__ Subu(AT, AT, pos_reg);
__ Bltzc(AT, slow_path->GetEntryLabel());
// Verify that (length(input) - pos) >= length.
EnoughItems(assembler, AT, length, slow_path);
}
}
void IntrinsicCodeGeneratorMIPS64::VisitSystemArrayCopyChar(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
GpuRegister src = locations->InAt(0).AsRegister<GpuRegister>();
Location src_pos = locations->InAt(1);
GpuRegister dest = locations->InAt(2).AsRegister<GpuRegister>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
Mips64Label loop;
GpuRegister dest_base = locations->GetTemp(0).AsRegister<GpuRegister>();
GpuRegister src_base = locations->GetTemp(1).AsRegister<GpuRegister>();
GpuRegister count = locations->GetTemp(2).AsRegister<GpuRegister>();
SlowPathCodeMIPS64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke);
codegen_->AddSlowPath(slow_path);
// Bail out if the source and destination are the same (to handle overlap).
__ Beqc(src, dest, slow_path->GetEntryLabel());
// Bail out if the source is null.
__ Beqzc(src, slow_path->GetEntryLabel());
// Bail out if the destination is null.
__ Beqzc(dest, slow_path->GetEntryLabel());
// Load length into register for count.
if (length.IsConstant()) {
__ LoadConst32(count, length.GetConstant()->AsIntConstant()->GetValue());
} else {
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
__ Bltzc(length.AsRegister<GpuRegister>(), slow_path->GetEntryLabel());
__ Move(count, length.AsRegister<GpuRegister>());
}
// Validity checks: source.
CheckPosition(assembler, src_pos, src, Location::RegisterLocation(count), slow_path);
// Validity checks: dest.
CheckPosition(assembler, dest_pos, dest, Location::RegisterLocation(count), slow_path);
// If count is zero, we're done.
__ Beqzc(count, slow_path->GetExitLabel());
// Okay, everything checks out. Finally time to do the copy.
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16);
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
// Calculate source and destination addresses.
if (src_pos.IsConstant()) {
int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ Daddiu64(src_base, src, data_offset + char_size * src_pos_const, TMP);
} else {
__ Daddiu64(src_base, src, data_offset, TMP);
__ Dlsa(src_base, src_pos.AsRegister<GpuRegister>(), src_base, char_shift);
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ Daddiu64(dest_base, dest, data_offset + char_size * dest_pos_const, TMP);
} else {
__ Daddiu64(dest_base, dest, data_offset, TMP);
__ Dlsa(dest_base, dest_pos.AsRegister<GpuRegister>(), dest_base, char_shift);
}
__ Bind(&loop);
__ Lh(TMP, src_base, 0);
__ Daddiu(src_base, src_base, char_size);
__ Daddiu(count, count, -1);
__ Sh(TMP, dest_base, 0);
__ Daddiu(dest_base, dest_base, char_size);
__ Bnezc(count, &loop);
__ Bind(slow_path->GetExitLabel());
}
static void GenHighestOneBit(LocationSummary* locations,
DataType::Type type,
Mips64Assembler* assembler) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type;
GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
if (type == DataType::Type::kInt64) {
__ Dclz(TMP, in);
__ LoadConst64(AT, INT64_C(0x8000000000000000));
__ Dsrlv(AT, AT, TMP);
} else {
__ Clz(TMP, in);
__ LoadConst32(AT, 0x80000000);
__ Srlv(AT, AT, TMP);
}
// For either value of "type", when "in" is zero, "out" should also
// be zero. Without this extra "and" operation, when "in" is zero,
// "out" would be either Integer.MIN_VALUE, or Long.MIN_VALUE because
// the MIPS logical shift operations "dsrlv", and "srlv" don't use
// the shift amount (TMP) directly; they use either (TMP % 64) or
// (TMP % 32), respectively.
__ And(out, AT, in);
}
// int java.lang.Integer.highestOneBit(int)
void IntrinsicLocationsBuilderMIPS64::VisitIntegerHighestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitIntegerHighestOneBit(HInvoke* invoke) {
GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
// long java.lang.Long.highestOneBit(long)
void IntrinsicLocationsBuilderMIPS64::VisitLongHighestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitLongHighestOneBit(HInvoke* invoke) {
GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
static void GenLowestOneBit(LocationSummary* locations,
DataType::Type type,
Mips64Assembler* assembler) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type;
GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>();
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
if (type == DataType::Type::kInt64) {
__ Dsubu(TMP, ZERO, in);
} else {
__ Subu(TMP, ZERO, in);
}
__ And(out, TMP, in);
}
// int java.lang.Integer.lowestOneBit(int)
void IntrinsicLocationsBuilderMIPS64::VisitIntegerLowestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitIntegerLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
// long java.lang.Long.lowestOneBit(long)
void IntrinsicLocationsBuilderMIPS64::VisitLongLowestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitLongLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64));
}
static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64));
}
static void GenFPToFPCall(HInvoke* invoke,
CodeGeneratorMIPS64* codegen,
QuickEntrypointEnum entry) {
LocationSummary* locations = invoke->GetLocations();
FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>();
DCHECK_EQ(in, F12);
FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>();
DCHECK_EQ(out, F0);
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
}
static void GenFPFPToFPCall(HInvoke* invoke,
CodeGeneratorMIPS64* codegen,
QuickEntrypointEnum entry) {
LocationSummary* locations = invoke->GetLocations();
FpuRegister in0 = locations->InAt(0).AsFpuRegister<FpuRegister>();
DCHECK_EQ(in0, F12);
FpuRegister in1 = locations->InAt(1).AsFpuRegister<FpuRegister>();
DCHECK_EQ(in1, F13);
FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>();
DCHECK_EQ(out, F0);
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
}
// static double java.lang.Math.cos(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathCos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathCos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCos);
}
// static double java.lang.Math.sin(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathSin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathSin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSin);
}
// static double java.lang.Math.acos(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathAcos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathAcos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAcos);
}
// static double java.lang.Math.asin(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathAsin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathAsin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAsin);
}
// static double java.lang.Math.atan(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathAtan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathAtan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan);
}
// static double java.lang.Math.atan2(double y, double x)
void IntrinsicLocationsBuilderMIPS64::VisitMathAtan2(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathAtan2(HInvoke* invoke) {
GenFPFPToFPCall(invoke, codegen_, kQuickAtan2);
}
// static double java.lang.Math.pow(double y, double x)
void IntrinsicLocationsBuilderMIPS64::VisitMathPow(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathPow(HInvoke* invoke) {
GenFPFPToFPCall(invoke, codegen_, kQuickPow);
}
// static double java.lang.Math.cbrt(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathCbrt(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathCbrt(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
}
// static double java.lang.Math.cosh(double x)
void IntrinsicLocationsBuilderMIPS64::VisitMathCosh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathCosh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCosh);
}
// static double java.lang.Math.exp(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathExp(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathExp(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExp);
}
// static double java.lang.Math.expm1(double x)
void IntrinsicLocationsBuilderMIPS64::VisitMathExpm1(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathExpm1(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
}
// static double java.lang.Math.hypot(double x, double y)
void IntrinsicLocationsBuilderMIPS64::VisitMathHypot(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathHypot(HInvoke* invoke) {
GenFPFPToFPCall(invoke, codegen_, kQuickHypot);
}
// static double java.lang.Math.log(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathLog(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathLog(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog);
}
// static double java.lang.Math.log10(double x)
void IntrinsicLocationsBuilderMIPS64::VisitMathLog10(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathLog10(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog10);
}
// static double java.lang.Math.nextAfter(double start, double direction)
void IntrinsicLocationsBuilderMIPS64::VisitMathNextAfter(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathNextAfter(HInvoke* invoke) {
GenFPFPToFPCall(invoke, codegen_, kQuickNextAfter);
}
// static double java.lang.Math.sinh(double x)
void IntrinsicLocationsBuilderMIPS64::VisitMathSinh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathSinh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSinh);
}
// static double java.lang.Math.tan(double a)
void IntrinsicLocationsBuilderMIPS64::VisitMathTan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathTan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTan);
}
// static double java.lang.Math.tanh(double x)
void IntrinsicLocationsBuilderMIPS64::VisitMathTanh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS64::VisitMathTanh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTanh);
}
// long java.lang.Integer.valueOf(long)
void IntrinsicLocationsBuilderMIPS64::VisitIntegerValueOf(HInvoke* invoke) {
InvokeRuntimeCallingConvention calling_convention;
IntrinsicVisitor::ComputeIntegerValueOfLocations(
invoke,
codegen_,
calling_convention.GetReturnLocation(DataType::Type::kReference),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void IntrinsicCodeGeneratorMIPS64::VisitIntegerValueOf(HInvoke* invoke) {
IntrinsicVisitor::IntegerValueOfInfo info =
IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions());
LocationSummary* locations = invoke->GetLocations();
Mips64Assembler* assembler = GetAssembler();
InstructionCodeGeneratorMIPS64* icodegen =
down_cast<InstructionCodeGeneratorMIPS64*>(codegen_->GetInstructionVisitor());
GpuRegister out = locations->Out().AsRegister<GpuRegister>();
if (invoke->InputAt(0)->IsConstant()) {
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
if (static_cast<uint32_t>(value - info.low) < info.length) {
// Just embed the j.l.Integer in the code.
DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference);
codegen_->LoadBootImageAddress(out, info.value_boot_image_reference);
} else {
DCHECK(locations->CanCall());
// Allocate and initialize a new j.l.Integer.
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
// JIT object table.
codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
info.integer_boot_image_offset);
__ StoreConstToOffset(kStoreWord, value, out, info.value_offset, TMP);
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
// one.
icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
} else {
DCHECK(locations->CanCall());
GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>();
Mips64Label allocate, done;
__ Addiu32(out, in, -info.low);
// As unsigned quantities is out < info.length ?
__ LoadConst32(AT, info.length);
// Branch if out >= info.length . This means that "in" is outside of the valid range.
__ Bgeuc(out, AT, &allocate);
// If the value is within the bounds, load the j.l.Integer directly from the array.
codegen_->LoadBootImageAddress(TMP, info.array_data_boot_image_reference);
__ Dlsa(out, out, TMP, TIMES_4);
__ Lwu(out, out, 0);
__ MaybeUnpoisonHeapReference(out);
__ Bc(&done);
__ Bind(&allocate);
// Otherwise allocate and initialize a new j.l.Integer.
codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
info.integer_boot_image_offset);
__ StoreToOffset(kStoreWord, in, out, info.value_offset);
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
// one.
icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
__ Bind(&done);
}
}
// static boolean java.lang.Thread.interrupted()
void IntrinsicLocationsBuilderMIPS64::VisitThreadInterrupted(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS64::VisitThreadInterrupted(HInvoke* invoke) {
Mips64Assembler* assembler = GetAssembler();
GpuRegister out = invoke->GetLocations()->Out().AsRegister<GpuRegister>();
int32_t offset = Thread::InterruptedOffset<kMips64PointerSize>().Int32Value();
__ LoadFromOffset(kLoadWord, out, TR, offset);
Mips64Label done;
__ Beqzc(out, &done);
__ Sync(0);
__ StoreToOffset(kStoreWord, ZERO, TR, offset);
__ Sync(0);
__ Bind(&done);
}
void IntrinsicLocationsBuilderMIPS64::VisitReachabilityFence(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
}
void IntrinsicCodeGeneratorMIPS64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
UNIMPLEMENTED_INTRINSIC(MIPS64, ReferenceGetReferent)
UNIMPLEMENTED_INTRINSIC(MIPS64, SystemArrayCopy)
UNIMPLEMENTED_INTRINSIC(MIPS64, CRC32Update)
UNIMPLEMENTED_INTRINSIC(MIPS64, CRC32UpdateBytes)
UNIMPLEMENTED_INTRINSIC(MIPS64, CRC32UpdateByteBuffer)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16ToFloat)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16ToHalf)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16Floor)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16Ceil)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16Rint)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16Greater)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16GreaterEquals)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16Less)
UNIMPLEMENTED_INTRINSIC(MIPS64, FP16LessEquals)
UNIMPLEMENTED_INTRINSIC(MIPS64, StringStringIndexOf);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringStringIndexOfAfter);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBufferAppend);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBufferLength);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBufferToString);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendObject);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendString);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendCharSequence);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendCharArray);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendBoolean);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendChar);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendInt);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendLong);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendFloat);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppendDouble);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderLength);
UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderToString);
// 1.8.
UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndAddInt)
UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndAddLong)
UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndSetInt)
UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndSetLong)
UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndSetObject)
UNREACHABLE_INTRINSICS(MIPS64)
#undef __
} // namespace mips64
} // namespace art