blob: d4790385d123cd5ea909a1bb0ed88957bfc02bc9 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image_space.h"
#include <dirent.h>
#include <sys/types.h>
#include <random>
#include "base/macros.h"
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "base/scoped_flock.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "mirror/art_method.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "oat_file.h"
#include "os.h"
#include "space-inl.h"
#include "utils.h"
namespace art {
namespace gc {
namespace space {
Atomic<uint32_t> ImageSpace::bitmap_index_(0);
ImageSpace::ImageSpace(const std::string& image_filename, const char* image_location,
MemMap* mem_map, accounting::ContinuousSpaceBitmap* live_bitmap)
: MemMapSpace(image_filename, mem_map, mem_map->Begin(), mem_map->End(), mem_map->End(),
kGcRetentionPolicyNeverCollect),
image_location_(image_location) {
DCHECK(live_bitmap != nullptr);
live_bitmap_.reset(live_bitmap);
}
static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
CHECK_ALIGNED(min_delta, kPageSize);
CHECK_ALIGNED(max_delta, kPageSize);
CHECK_LT(min_delta, max_delta);
std::default_random_engine generator;
generator.seed(NanoTime() * getpid());
std::uniform_int_distribution<int32_t> distribution(min_delta, max_delta);
int32_t r = distribution(generator);
if (r % 2 == 0) {
r = RoundUp(r, kPageSize);
} else {
r = RoundDown(r, kPageSize);
}
CHECK_LE(min_delta, r);
CHECK_GE(max_delta, r);
CHECK_ALIGNED(r, kPageSize);
return r;
}
// We are relocating or generating the core image. We should get rid of everything. It is all
// out-of-date. We also don't really care if this fails since it is just a convienence.
// Adapted from prune_dex_cache(const char* subdir) in frameworks/native/cmds/installd/commands.c
// Note this should only be used during first boot.
static void RealPruneDexCache(const std::string& cache_dir_path);
static void PruneDexCache(InstructionSet isa) {
CHECK_NE(isa, kNone);
// Prune the base /data/dalvik-cache
RealPruneDexCache(GetDalvikCacheOrDie(".", false));
// prune /data/dalvik-cache/<isa>
RealPruneDexCache(GetDalvikCacheOrDie(GetInstructionSetString(isa), false));
}
static void RealPruneDexCache(const std::string& cache_dir_path) {
if (!OS::DirectoryExists(cache_dir_path.c_str())) {
return;
}
DIR* cache_dir = opendir(cache_dir_path.c_str());
if (cache_dir == nullptr) {
PLOG(WARNING) << "Unable to open " << cache_dir_path << " to delete it's contents";
return;
}
for (struct dirent* de = readdir(cache_dir); de != nullptr; de = readdir(cache_dir)) {
const char* name = de->d_name;
if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0) {
continue;
}
// We only want to delete regular files.
if (de->d_type != DT_REG) {
if (de->d_type != DT_DIR) {
// We do expect some directories (namely the <isa> for pruning the base dalvik-cache).
LOG(WARNING) << "Unexpected file type of " << std::hex << de->d_type << " encountered.";
}
continue;
}
std::string cache_file(cache_dir_path);
cache_file += '/';
cache_file += name;
if (TEMP_FAILURE_RETRY(unlink(cache_file.c_str())) != 0) {
PLOG(ERROR) << "Unable to unlink " << cache_file;
continue;
}
}
CHECK_EQ(0, TEMP_FAILURE_RETRY(closedir(cache_dir))) << "Unable to close directory.";
}
static bool GenerateImage(const std::string& image_filename, InstructionSet image_isa,
std::string* error_msg) {
const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
std::vector<std::string> boot_class_path;
Split(boot_class_path_string, ':', &boot_class_path);
if (boot_class_path.empty()) {
*error_msg = "Failed to generate image because no boot class path specified";
return false;
}
// We should clean up so we are more likely to have room for the image.
if (Runtime::Current()->IsZygote()) {
LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
PruneDexCache(image_isa);
}
std::vector<std::string> arg_vector;
std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
arg_vector.push_back(dex2oat);
std::string image_option_string("--image=");
image_option_string += image_filename;
arg_vector.push_back(image_option_string);
for (size_t i = 0; i < boot_class_path.size(); i++) {
arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
}
std::string oat_file_option_string("--oat-file=");
oat_file_option_string += image_filename;
oat_file_option_string.erase(oat_file_option_string.size() - 3);
oat_file_option_string += "oat";
arg_vector.push_back(oat_file_option_string);
Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
CHECK_EQ(image_isa, kRuntimeISA)
<< "We should always be generating an image for the current isa.";
int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
ART_BASE_ADDRESS_MAX_DELTA);
LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
<< "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
if (!kIsTargetBuild) {
arg_vector.push_back("--host");
}
const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
for (size_t i = 0; i < compiler_options.size(); ++i) {
arg_vector.push_back(compiler_options[i].c_str());
}
std::string command_line(Join(arg_vector, ' '));
LOG(INFO) << "GenerateImage: " << command_line;
return Exec(arg_vector, error_msg);
}
bool ImageSpace::FindImageFilename(const char* image_location,
const InstructionSet image_isa,
std::string* system_filename,
bool* has_system,
std::string* cache_filename,
bool* dalvik_cache_exists,
bool* has_cache,
bool* is_global_cache) {
*has_system = false;
*has_cache = false;
// image_location = /system/framework/boot.art
// system_image_location = /system/framework/<image_isa>/boot.art
std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
if (OS::FileExists(system_image_filename.c_str())) {
*system_filename = system_image_filename;
*has_system = true;
}
bool have_android_data = false;
*dalvik_cache_exists = false;
std::string dalvik_cache;
GetDalvikCache(GetInstructionSetString(image_isa), true, &dalvik_cache,
&have_android_data, dalvik_cache_exists, is_global_cache);
if (have_android_data && *dalvik_cache_exists) {
// Always set output location even if it does not exist,
// so that the caller knows where to create the image.
//
// image_location = /system/framework/boot.art
// *image_filename = /data/dalvik-cache/<image_isa>/boot.art
std::string error_msg;
if (!GetDalvikCacheFilename(image_location, dalvik_cache.c_str(), cache_filename, &error_msg)) {
LOG(WARNING) << error_msg;
return *has_system;
}
*has_cache = OS::FileExists(cache_filename->c_str());
}
return *has_system || *has_cache;
}
static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
if (image_file.get() == nullptr) {
return false;
}
const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
if (!success || !image_header->IsValid()) {
return false;
}
return true;
}
// Relocate the image at image_location to dest_filename and relocate it by a random amount.
static bool RelocateImage(const char* image_location, const char* dest_filename,
InstructionSet isa, std::string* error_msg) {
// We should clean up so we are more likely to have room for the image.
if (Runtime::Current()->IsZygote()) {
LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
PruneDexCache(isa);
}
std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
std::string input_image_location_arg("--input-image-location=");
input_image_location_arg += image_location;
std::string output_image_filename_arg("--output-image-file=");
output_image_filename_arg += dest_filename;
std::string input_oat_location_arg("--input-oat-location=");
input_oat_location_arg += ImageHeader::GetOatLocationFromImageLocation(image_location);
std::string output_oat_filename_arg("--output-oat-file=");
output_oat_filename_arg += ImageHeader::GetOatLocationFromImageLocation(dest_filename);
std::string instruction_set_arg("--instruction-set=");
instruction_set_arg += GetInstructionSetString(isa);
std::string base_offset_arg("--base-offset-delta=");
StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
ART_BASE_ADDRESS_MAX_DELTA));
std::vector<std::string> argv;
argv.push_back(patchoat);
argv.push_back(input_image_location_arg);
argv.push_back(output_image_filename_arg);
argv.push_back(input_oat_location_arg);
argv.push_back(output_oat_filename_arg);
argv.push_back(instruction_set_arg);
argv.push_back(base_offset_arg);
std::string command_line(Join(argv, ' '));
LOG(INFO) << "RelocateImage: " << command_line;
return Exec(argv, error_msg);
}
static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
std::unique_ptr<ImageHeader> hdr(new ImageHeader);
if (!ReadSpecificImageHeader(filename, hdr.get())) {
*error_msg = StringPrintf("Unable to read image header for %s", filename);
return nullptr;
}
return hdr.release();
}
ImageHeader* ImageSpace::ReadImageHeaderOrDie(const char* image_location,
const InstructionSet image_isa) {
std::string error_msg;
ImageHeader* image_header = ReadImageHeader(image_location, image_isa, &error_msg);
if (image_header == nullptr) {
LOG(FATAL) << error_msg;
}
return image_header;
}
ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
const InstructionSet image_isa,
std::string* error_msg) {
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool dalvik_cache_exists = false;
bool is_global_cache = false;
if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
&cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
if (Runtime::Current()->ShouldRelocate()) {
if (has_system && has_cache) {
std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
*error_msg = StringPrintf("Unable to read image header for %s at %s",
image_location, system_filename.c_str());
return nullptr;
}
if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
*error_msg = StringPrintf("Unable to read image header for %s at %s",
image_location, cache_filename.c_str());
return nullptr;
}
if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
*error_msg = StringPrintf("Unable to find a relocated version of image file %s",
image_location);
return nullptr;
}
return cache_hdr.release();
} else if (!has_cache) {
*error_msg = StringPrintf("Unable to find a relocated version of image file %s",
image_location);
return nullptr;
} else if (!has_system && has_cache) {
// This can probably just use the cache one.
return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
}
} else {
// We don't want to relocate, Just pick the appropriate one if we have it and return.
if (has_system && has_cache) {
// We want the cache if the checksum matches, otherwise the system.
std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
error_msg));
std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
error_msg));
if (system.get() == nullptr ||
(cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
return cache.release();
} else {
return system.release();
}
} else if (has_system) {
return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
} else if (has_cache) {
return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
}
}
}
*error_msg = StringPrintf("Unable to find image file for %s", image_location);
return nullptr;
}
static bool ChecksumsMatch(const char* image_a, const char* image_b) {
ImageHeader hdr_a;
ImageHeader hdr_b;
return ReadSpecificImageHeader(image_a, &hdr_a) && ReadSpecificImageHeader(image_b, &hdr_b)
&& hdr_a.GetOatChecksum() == hdr_b.GetOatChecksum();
}
static bool ImageCreationAllowed(bool is_global_cache, std::string* error_msg) {
// Anyone can write into a "local" cache.
if (!is_global_cache) {
return true;
}
// Only the zygote is allowed to create the global boot image.
if (Runtime::Current()->IsZygote()) {
return true;
}
*error_msg = "Only the zygote can create the global boot image.";
return false;
}
ImageSpace* ImageSpace::Create(const char* image_location,
const InstructionSet image_isa,
std::string* error_msg) {
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool dalvik_cache_exists = false;
bool is_global_cache = true;
const bool found_image = FindImageFilename(image_location, image_isa, &system_filename,
&has_system, &cache_filename, &dalvik_cache_exists,
&has_cache, &is_global_cache);
ImageSpace* space;
bool relocate = Runtime::Current()->ShouldRelocate();
bool can_compile = Runtime::Current()->IsImageDex2OatEnabled();
if (found_image) {
const std::string* image_filename;
bool is_system = false;
bool relocated_version_used = false;
if (relocate) {
if (!dalvik_cache_exists) {
*error_msg = StringPrintf("Requiring relocation for image '%s' at '%s' but we do not have "
"any dalvik_cache to find/place it in.",
image_location, system_filename.c_str());
return nullptr;
}
if (has_system) {
if (has_cache && ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
// We already have a relocated version
image_filename = &cache_filename;
relocated_version_used = true;
} else {
// We cannot have a relocated version, Relocate the system one and use it.
std::string reason;
bool success;
// Check whether we are allowed to relocate.
if (!can_compile) {
reason = "Image dex2oat disabled by -Xnoimage-dex2oat.";
success = false;
} else if (!ImageCreationAllowed(is_global_cache, &reason)) {
// Whether we can write to the cache.
success = false;
} else {
// Try to relocate.
success = RelocateImage(image_location, cache_filename.c_str(), image_isa, &reason);
}
if (success) {
relocated_version_used = true;
image_filename = &cache_filename;
} else {
*error_msg = StringPrintf("Unable to relocate image '%s' from '%s' to '%s': %s",
image_location, system_filename.c_str(),
cache_filename.c_str(), reason.c_str());
return nullptr;
}
}
} else {
CHECK(has_cache);
// We can just use cache's since it should be fine. This might or might not be relocated.
image_filename = &cache_filename;
}
} else {
if (has_system && has_cache) {
// Check they have the same cksum. If they do use the cache. Otherwise system.
if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
image_filename = &cache_filename;
relocated_version_used = true;
} else {
image_filename = &system_filename;
is_system = true;
}
} else if (has_system) {
image_filename = &system_filename;
is_system = true;
} else {
CHECK(has_cache);
image_filename = &cache_filename;
}
}
{
// Note that we must not use the file descriptor associated with
// ScopedFlock::GetFile to Init the image file. We want the file
// descriptor (and the associated exclusive lock) to be released when
// we leave Create.
ScopedFlock image_lock;
image_lock.Init(image_filename->c_str(), error_msg);
VLOG(startup) << "Using image file " << image_filename->c_str() << " for image location "
<< image_location;
// If we are in /system we can assume the image is good. We can also
// assume this if we are using a relocated image (i.e. image checksum
// matches) since this is only different by the offset. We need this to
// make sure that host tests continue to work.
space = ImageSpace::Init(image_filename->c_str(), image_location,
!(is_system || relocated_version_used), error_msg);
}
if (space != nullptr) {
return space;
}
// If the /system file exists, it should be up-to-date, don't try to generate it. Same if it is
// a relocated copy from something in /system (i.e. checksum's match).
// Otherwise, log a warning and fall through to GenerateImage.
if (relocated_version_used) {
LOG(FATAL) << "Attempted to use relocated version of " << image_location << " "
<< "at " << cache_filename << " generated from " << system_filename << " "
<< "but image failed to load: " << error_msg;
return nullptr;
} else if (is_system) {
*error_msg = StringPrintf("Failed to load /system image '%s': %s",
image_filename->c_str(), error_msg->c_str());
return nullptr;
} else {
LOG(WARNING) << *error_msg;
}
}
if (!can_compile) {
*error_msg = "Not attempting to compile image because -Xnoimage-dex2oat";
return nullptr;
} else if (!dalvik_cache_exists) {
*error_msg = StringPrintf("No place to put generated image.");
return nullptr;
} else if (!ImageCreationAllowed(is_global_cache, error_msg)) {
return nullptr;
} else if (!GenerateImage(cache_filename, image_isa, error_msg)) {
*error_msg = StringPrintf("Failed to generate image '%s': %s",
cache_filename.c_str(), error_msg->c_str());
return nullptr;
} else {
// Note that we must not use the file descriptor associated with
// ScopedFlock::GetFile to Init the image file. We want the file
// descriptor (and the associated exclusive lock) to be released when
// we leave Create.
ScopedFlock image_lock;
image_lock.Init(cache_filename.c_str(), error_msg);
space = ImageSpace::Init(cache_filename.c_str(), image_location, true, error_msg);
if (space == nullptr) {
*error_msg = StringPrintf("Failed to load generated image '%s': %s",
cache_filename.c_str(), error_msg->c_str());
}
return space;
}
}
void ImageSpace::VerifyImageAllocations() {
uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
while (current < End()) {
DCHECK_ALIGNED(current, kObjectAlignment);
mirror::Object* obj = reinterpret_cast<mirror::Object*>(current);
CHECK(live_bitmap_->Test(obj));
CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
if (kUseBakerOrBrooksReadBarrier) {
obj->AssertReadBarrierPointer();
}
current += RoundUp(obj->SizeOf(), kObjectAlignment);
}
}
ImageSpace* ImageSpace::Init(const char* image_filename, const char* image_location,
bool validate_oat_file, std::string* error_msg) {
CHECK(image_filename != nullptr);
CHECK(image_location != nullptr);
uint64_t start_time = 0;
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
start_time = NanoTime();
LOG(INFO) << "ImageSpace::Init entering image_filename=" << image_filename;
}
std::unique_ptr<File> file(OS::OpenFileForReading(image_filename));
if (file.get() == NULL) {
*error_msg = StringPrintf("Failed to open '%s'", image_filename);
return nullptr;
}
ImageHeader image_header;
bool success = file->ReadFully(&image_header, sizeof(image_header));
if (!success || !image_header.IsValid()) {
*error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
return nullptr;
}
// Note: The image header is part of the image due to mmap page alignment required of offset.
std::unique_ptr<MemMap> map(MemMap::MapFileAtAddress(image_header.GetImageBegin(),
image_header.GetImageSize(),
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
file->Fd(),
0,
false,
image_filename,
error_msg));
if (map.get() == NULL) {
DCHECK(!error_msg->empty());
return nullptr;
}
CHECK_EQ(image_header.GetImageBegin(), map->Begin());
DCHECK_EQ(0, memcmp(&image_header, map->Begin(), sizeof(ImageHeader)));
std::unique_ptr<MemMap> image_map(
MemMap::MapFileAtAddress(nullptr, image_header.GetImageBitmapSize(),
PROT_READ, MAP_PRIVATE,
file->Fd(), image_header.GetBitmapOffset(),
false,
image_filename,
error_msg));
if (image_map.get() == nullptr) {
*error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
return nullptr;
}
uint32_t bitmap_index = bitmap_index_.FetchAndAddSequentiallyConsistent(1);
std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", image_filename,
bitmap_index));
std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap(
accounting::ContinuousSpaceBitmap::CreateFromMemMap(bitmap_name, image_map.release(),
reinterpret_cast<uint8_t*>(map->Begin()),
map->Size()));
if (bitmap.get() == nullptr) {
*error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
return nullptr;
}
std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename, image_location,
map.release(), bitmap.release()));
// VerifyImageAllocations() will be called later in Runtime::Init()
// as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
// and ArtField::java_lang_reflect_ArtField_, which are used from
// Object::SizeOf() which VerifyImageAllocations() calls, are not
// set yet at this point.
space->oat_file_.reset(space->OpenOatFile(image_filename, error_msg));
if (space->oat_file_.get() == nullptr) {
DCHECK(!error_msg->empty());
return nullptr;
}
if (validate_oat_file && !space->ValidateOatFile(error_msg)) {
DCHECK(!error_msg->empty());
return nullptr;
}
Runtime* runtime = Runtime::Current();
runtime->SetInstructionSet(space->oat_file_->GetOatHeader().GetInstructionSet());
mirror::Object* resolution_method = image_header.GetImageRoot(ImageHeader::kResolutionMethod);
runtime->SetResolutionMethod(down_cast<mirror::ArtMethod*>(resolution_method));
mirror::Object* imt_conflict_method = image_header.GetImageRoot(ImageHeader::kImtConflictMethod);
runtime->SetImtConflictMethod(down_cast<mirror::ArtMethod*>(imt_conflict_method));
mirror::Object* default_imt = image_header.GetImageRoot(ImageHeader::kDefaultImt);
runtime->SetDefaultImt(down_cast<mirror::ObjectArray<mirror::ArtMethod>*>(default_imt));
mirror::Object* callee_save_method = image_header.GetImageRoot(ImageHeader::kCalleeSaveMethod);
runtime->SetCalleeSaveMethod(down_cast<mirror::ArtMethod*>(callee_save_method),
Runtime::kSaveAll);
callee_save_method = image_header.GetImageRoot(ImageHeader::kRefsOnlySaveMethod);
runtime->SetCalleeSaveMethod(down_cast<mirror::ArtMethod*>(callee_save_method),
Runtime::kRefsOnly);
callee_save_method = image_header.GetImageRoot(ImageHeader::kRefsAndArgsSaveMethod);
runtime->SetCalleeSaveMethod(down_cast<mirror::ArtMethod*>(callee_save_method),
Runtime::kRefsAndArgs);
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "ImageSpace::Init exiting (" << PrettyDuration(NanoTime() - start_time)
<< ") " << *space.get();
}
return space.release();
}
OatFile* ImageSpace::OpenOatFile(const char* image_path, std::string* error_msg) const {
const ImageHeader& image_header = GetImageHeader();
std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
OatFile* oat_file = OatFile::Open(oat_filename, oat_filename, image_header.GetOatDataBegin(),
!Runtime::Current()->IsCompiler(), error_msg);
if (oat_file == NULL) {
*error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
oat_filename.c_str(), GetName(), error_msg->c_str());
return nullptr;
}
uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
uint32_t image_oat_checksum = image_header.GetOatChecksum();
if (oat_checksum != image_oat_checksum) {
*error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
" in image %s", oat_checksum, image_oat_checksum, GetName());
return nullptr;
}
int32_t image_patch_delta = image_header.GetPatchDelta();
int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
if (oat_patch_delta != image_patch_delta) {
// We should have already relocated by this point. Bail out.
*error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
"in image %s", oat_patch_delta, image_patch_delta, GetName());
return nullptr;
}
return oat_file;
}
bool ImageSpace::ValidateOatFile(std::string* error_msg) const {
CHECK(oat_file_.get() != NULL);
for (const OatFile::OatDexFile* oat_dex_file : oat_file_->GetOatDexFiles()) {
const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
uint32_t dex_file_location_checksum;
if (!DexFile::GetChecksum(dex_file_location.c_str(), &dex_file_location_checksum, error_msg)) {
*error_msg = StringPrintf("Failed to get checksum of dex file '%s' referenced by image %s: "
"%s", dex_file_location.c_str(), GetName(), error_msg->c_str());
return false;
}
if (dex_file_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) {
*error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file '%s' and "
"dex file '%s' (0x%x != 0x%x)",
oat_file_->GetLocation().c_str(), dex_file_location.c_str(),
oat_dex_file->GetDexFileLocationChecksum(),
dex_file_location_checksum);
return false;
}
}
return true;
}
const OatFile* ImageSpace::GetOatFile() const {
return oat_file_.get();
}
OatFile* ImageSpace::ReleaseOatFile() {
CHECK(oat_file_.get() != NULL);
return oat_file_.release();
}
void ImageSpace::Dump(std::ostream& os) const {
os << GetType()
<< " begin=" << reinterpret_cast<void*>(Begin())
<< ",end=" << reinterpret_cast<void*>(End())
<< ",size=" << PrettySize(Size())
<< ",name=\"" << GetName() << "\"]";
}
} // namespace space
} // namespace gc
} // namespace art