| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_ |
| #define ART_COMPILER_OPTIMIZING_SCHEDULER_H_ |
| |
| #include <fstream> |
| |
| #include "base/scoped_arena_allocator.h" |
| #include "base/scoped_arena_containers.h" |
| #include "base/time_utils.h" |
| #include "code_generator.h" |
| #include "driver/compiler_driver.h" |
| #include "load_store_analysis.h" |
| #include "nodes.h" |
| #include "optimization.h" |
| |
| namespace art { |
| |
| // General description of instruction scheduling. |
| // |
| // This pass tries to improve the quality of the generated code by reordering |
| // instructions in the graph to avoid execution delays caused by execution |
| // dependencies. |
| // Currently, scheduling is performed at the block level, so no `HInstruction` |
| // ever leaves its block in this pass. |
| // |
| // The scheduling process iterates through blocks in the graph. For blocks that |
| // we can and want to schedule: |
| // 1) Build a dependency graph for instructions. |
| // It includes data dependencies (inputs/uses), but also environment |
| // dependencies and side-effect dependencies. |
| // 2) Schedule the dependency graph. |
| // This is a topological sort of the dependency graph, using heuristics to |
| // decide what node to scheduler first when there are multiple candidates. |
| // |
| // A few factors impacting the quality of the scheduling are: |
| // - The heuristics used to decide what node to schedule in the topological sort |
| // when there are multiple valid candidates. There is a wide range of |
| // complexity possible here, going from a simple model only considering |
| // latencies, to a super detailed CPU pipeline model. |
| // - Fewer dependencies in the dependency graph give more freedom for the |
| // scheduling heuristics. For example de-aliasing can allow possibilities for |
| // reordering of memory accesses. |
| // - The level of abstraction of the IR. It is easier to evaluate scheduling for |
| // IRs that translate to a single assembly instruction than for IRs |
| // that generate multiple assembly instructions or generate different code |
| // depending on properties of the IR. |
| // - Scheduling is performed before register allocation, it is not aware of the |
| // impact of moving instructions on register allocation. |
| // |
| // |
| // The scheduling code uses the terms predecessors, successors, and dependencies. |
| // This can be confusing at times, so here are clarifications. |
| // These terms are used from the point of view of the program dependency graph. So |
| // the inputs of an instruction are part of its dependencies, and hence part its |
| // predecessors. So the uses of an instruction are (part of) its successors. |
| // (Side-effect dependencies can yield predecessors or successors that are not |
| // inputs or uses.) |
| // |
| // Here is a trivial example. For the Java code: |
| // |
| // int a = 1 + 2; |
| // |
| // we would have the instructions |
| // |
| // i1 HIntConstant 1 |
| // i2 HIntConstant 2 |
| // i3 HAdd [i1,i2] |
| // |
| // `i1` and `i2` are predecessors of `i3`. |
| // `i3` is a successor of `i1` and a successor of `i2`. |
| // In a scheduling graph for this code we would have three nodes `n1`, `n2`, |
| // and `n3` (respectively for instructions `i1`, `i1`, and `i3`). |
| // Conceptually the program dependency graph for this would contain two edges |
| // |
| // n1 -> n3 |
| // n2 -> n3 |
| // |
| // Since we schedule backwards (starting from the last instruction in each basic |
| // block), the implementation of nodes keeps a list of pointers their |
| // predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`. |
| // |
| // Node dependencies are also referred to from the program dependency graph |
| // point of view: we say that node `B` immediately depends on `A` if there is an |
| // edge from `A` to `B` in the program dependency graph. `A` is a predecessor of |
| // `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and |
| // `n2`. |
| // Since nodes in the scheduling graph keep a list of their predecessors, node |
| // `B` will have a pointer to its predecessor `A`. |
| // As we schedule backwards, `B` will be selected for scheduling before `A` is. |
| // |
| // So the scheduling for the example above could happen as follow |
| // |
| // |---------------------------+------------------------| |
| // | candidates for scheduling | instructions scheduled | |
| // | --------------------------+------------------------| |
| // |
| // The only node without successors is `n3`, so it is the only initial |
| // candidate. |
| // |
| // | n3 | (none) | |
| // |
| // We schedule `n3` as the last (and only) instruction. All its predecessors |
| // that do not have any unscheduled successors become candidate. That is, `n1` |
| // and `n2` become candidates. |
| // |
| // | n1, n2 | n3 | |
| // |
| // One of the candidates is selected. In practice this is where scheduling |
| // heuristics kick in, to decide which of the candidates should be selected. |
| // In this example, let it be `n1`. It is scheduled before previously scheduled |
| // nodes (in program order). There are no other nodes to add to the list of |
| // candidates. |
| // |
| // | n2 | n1 | |
| // | | n3 | |
| // |
| // The only candidate available for scheduling is `n2`. Schedule it before |
| // (in program order) the previously scheduled nodes. |
| // |
| // | (none) | n2 | |
| // | | n1 | |
| // | | n3 | |
| // |---------------------------+------------------------| |
| // |
| // So finally the instructions will be executed in the order `i2`, `i1`, and `i3`. |
| // In this trivial example, it does not matter which of `i1` and `i2` is |
| // scheduled first since they are constants. However the same process would |
| // apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`). |
| |
| // Set to true to have instruction scheduling dump scheduling graphs to the file |
| // `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`. |
| static constexpr bool kDumpDotSchedulingGraphs = false; |
| |
| // Typically used as a default instruction latency. |
| static constexpr uint32_t kGenericInstructionLatency = 1; |
| |
| class HScheduler; |
| |
| /** |
| * A node representing an `HInstruction` in the `SchedulingGraph`. |
| */ |
| class SchedulingNode : public DeletableArenaObject<kArenaAllocScheduler> { |
| public: |
| SchedulingNode(HInstruction* instr, ScopedArenaAllocator* allocator, bool is_scheduling_barrier) |
| : latency_(0), |
| internal_latency_(0), |
| critical_path_(0), |
| instruction_(instr), |
| is_scheduling_barrier_(is_scheduling_barrier), |
| data_predecessors_(allocator->Adapter(kArenaAllocScheduler)), |
| other_predecessors_(allocator->Adapter(kArenaAllocScheduler)), |
| num_unscheduled_successors_(0) { |
| data_predecessors_.reserve(kPreallocatedPredecessors); |
| } |
| |
| void AddDataPredecessor(SchedulingNode* predecessor) { |
| data_predecessors_.push_back(predecessor); |
| predecessor->num_unscheduled_successors_++; |
| } |
| |
| const ScopedArenaVector<SchedulingNode*>& GetDataPredecessors() const { |
| return data_predecessors_; |
| } |
| |
| void AddOtherPredecessor(SchedulingNode* predecessor) { |
| other_predecessors_.push_back(predecessor); |
| predecessor->num_unscheduled_successors_++; |
| } |
| |
| const ScopedArenaVector<SchedulingNode*>& GetOtherPredecessors() const { |
| return other_predecessors_; |
| } |
| |
| void DecrementNumberOfUnscheduledSuccessors() { |
| num_unscheduled_successors_--; |
| } |
| |
| void MaybeUpdateCriticalPath(uint32_t other_critical_path) { |
| critical_path_ = std::max(critical_path_, other_critical_path); |
| } |
| |
| bool HasUnscheduledSuccessors() const { |
| return num_unscheduled_successors_ != 0; |
| } |
| |
| HInstruction* GetInstruction() const { return instruction_; } |
| uint32_t GetLatency() const { return latency_; } |
| void SetLatency(uint32_t latency) { latency_ = latency; } |
| uint32_t GetInternalLatency() const { return internal_latency_; } |
| void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; } |
| uint32_t GetCriticalPath() const { return critical_path_; } |
| bool IsSchedulingBarrier() const { return is_scheduling_barrier_; } |
| |
| private: |
| // The latency of this node. It represents the latency between the moment the |
| // last instruction for this node has executed to the moment the result |
| // produced by this node is available to users. |
| uint32_t latency_; |
| // This represents the time spent *within* the generated code for this node. |
| // It should be zero for nodes that only generate a single instruction. |
| uint32_t internal_latency_; |
| |
| // The critical path from this instruction to the end of scheduling. It is |
| // used by the scheduling heuristics to measure the priority of this instruction. |
| // It is defined as |
| // critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses) |
| // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in |
| // `HScheduler::Schedule(SchedulingNode* scheduling_node)`). |
| uint32_t critical_path_; |
| |
| // The instruction that this node represents. |
| HInstruction* const instruction_; |
| |
| // If a node is scheduling barrier, other nodes cannot be scheduled before it. |
| const bool is_scheduling_barrier_; |
| |
| // The lists of predecessors. They cannot be scheduled before this node. Once |
| // this node is scheduled, we check whether any of its predecessors has become a |
| // valid candidate for scheduling. |
| // Predecessors in `data_predecessors_` are data dependencies. Those in |
| // `other_predecessors_` contain side-effect dependencies, environment |
| // dependencies, and scheduling barrier dependencies. |
| ScopedArenaVector<SchedulingNode*> data_predecessors_; |
| ScopedArenaVector<SchedulingNode*> other_predecessors_; |
| |
| // The number of unscheduled successors for this node. This number is |
| // decremented as successors are scheduled. When it reaches zero this node |
| // becomes a valid candidate to schedule. |
| uint32_t num_unscheduled_successors_; |
| |
| static constexpr size_t kPreallocatedPredecessors = 4; |
| }; |
| |
| /* |
| * Directed acyclic graph for scheduling. |
| */ |
| class SchedulingGraph : public ValueObject { |
| public: |
| SchedulingGraph(const HScheduler* scheduler, ScopedArenaAllocator* allocator) |
| : scheduler_(scheduler), |
| allocator_(allocator), |
| contains_scheduling_barrier_(false), |
| nodes_map_(allocator_->Adapter(kArenaAllocScheduler)), |
| heap_location_collector_(nullptr) {} |
| |
| SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) { |
| std::unique_ptr<SchedulingNode> node( |
| new (allocator_) SchedulingNode(instr, allocator_, is_scheduling_barrier)); |
| SchedulingNode* result = node.get(); |
| nodes_map_.insert(std::make_pair(instr, std::move(node))); |
| contains_scheduling_barrier_ |= is_scheduling_barrier; |
| AddDependencies(instr, is_scheduling_barrier); |
| return result; |
| } |
| |
| void Clear() { |
| nodes_map_.clear(); |
| contains_scheduling_barrier_ = false; |
| } |
| |
| void SetHeapLocationCollector(const HeapLocationCollector& heap_location_collector) { |
| heap_location_collector_ = &heap_location_collector; |
| } |
| |
| SchedulingNode* GetNode(const HInstruction* instr) const { |
| auto it = nodes_map_.find(instr); |
| if (it == nodes_map_.end()) { |
| return nullptr; |
| } else { |
| return it->second.get(); |
| } |
| } |
| |
| bool IsSchedulingBarrier(const HInstruction* instruction) const; |
| |
| bool HasImmediateDataDependency(const SchedulingNode* node, const SchedulingNode* other) const; |
| bool HasImmediateDataDependency(const HInstruction* node, const HInstruction* other) const; |
| bool HasImmediateOtherDependency(const SchedulingNode* node, const SchedulingNode* other) const; |
| bool HasImmediateOtherDependency(const HInstruction* node, const HInstruction* other) const; |
| |
| size_t Size() const { |
| return nodes_map_.size(); |
| } |
| |
| // Dump the scheduling graph, in dot file format, appending it to the file |
| // `scheduling_graphs.dot`. |
| void DumpAsDotGraph(const std::string& description, |
| const ScopedArenaVector<SchedulingNode*>& initial_candidates); |
| |
| protected: |
| void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency); |
| void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) { |
| AddDependency(node, dependency, /*is_data_dependency*/true); |
| } |
| void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) { |
| AddDependency(node, dependency, /*is_data_dependency*/false); |
| } |
| bool HasMemoryDependency(HInstruction* node, HInstruction* other) const; |
| bool HasExceptionDependency(const HInstruction* node, const HInstruction* other) const; |
| bool HasSideEffectDependency(HInstruction* node, HInstruction* other) const; |
| bool ArrayAccessMayAlias(HInstruction* node, HInstruction* other) const; |
| bool FieldAccessMayAlias(const HInstruction* node, const HInstruction* other) const; |
| size_t ArrayAccessHeapLocation(HInstruction* instruction) const; |
| size_t FieldAccessHeapLocation(HInstruction* obj, const FieldInfo* field) const; |
| |
| // Add dependencies nodes for the given `HInstruction`: inputs, environments, and side-effects. |
| void AddDependencies(HInstruction* instruction, bool is_scheduling_barrier = false); |
| |
| const HScheduler* const scheduler_; |
| |
| ScopedArenaAllocator* const allocator_; |
| |
| bool contains_scheduling_barrier_; |
| |
| ScopedArenaHashMap<const HInstruction*, std::unique_ptr<SchedulingNode>> nodes_map_; |
| |
| const HeapLocationCollector* heap_location_collector_; |
| }; |
| |
| /* |
| * The visitors derived from this base class are used by schedulers to evaluate |
| * the latencies of `HInstruction`s. |
| */ |
| class SchedulingLatencyVisitor : public HGraphDelegateVisitor { |
| public: |
| // This class and its sub-classes will never be used to drive a visit of an |
| // `HGraph` but only to visit `HInstructions` one at a time, so we do not need |
| // to pass a valid graph to `HGraphDelegateVisitor()`. |
| SchedulingLatencyVisitor() |
| : HGraphDelegateVisitor(nullptr), |
| last_visited_latency_(0), |
| last_visited_internal_latency_(0) {} |
| |
| void VisitInstruction(HInstruction* instruction) OVERRIDE { |
| LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". " |
| "Architecture-specific scheduling latency visitors must handle all instructions" |
| " (potentially by overriding the generic `VisitInstruction()`."; |
| UNREACHABLE(); |
| } |
| |
| void Visit(HInstruction* instruction) { |
| instruction->Accept(this); |
| } |
| |
| void CalculateLatency(SchedulingNode* node) { |
| // By default nodes have no internal latency. |
| last_visited_internal_latency_ = 0; |
| Visit(node->GetInstruction()); |
| } |
| |
| uint32_t GetLastVisitedLatency() const { return last_visited_latency_; } |
| uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; } |
| |
| protected: |
| // The latency of the most recent visited SchedulingNode. |
| // This is for reporting the latency value to the user of this visitor. |
| uint32_t last_visited_latency_; |
| // This represents the time spent *within* the generated code for the most recent visited |
| // SchedulingNode. This is for reporting the internal latency value to the user of this visitor. |
| uint32_t last_visited_internal_latency_; |
| }; |
| |
| class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> { |
| public: |
| virtual SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes, |
| const SchedulingGraph& graph) = 0; |
| virtual ~SchedulingNodeSelector() {} |
| protected: |
| static void DeleteNodeAtIndex(ScopedArenaVector<SchedulingNode*>* nodes, size_t index) { |
| (*nodes)[index] = nodes->back(); |
| nodes->pop_back(); |
| } |
| }; |
| |
| /* |
| * Select a `SchedulingNode` at random within the candidates. |
| */ |
| class RandomSchedulingNodeSelector : public SchedulingNodeSelector { |
| public: |
| RandomSchedulingNodeSelector() : seed_(0) { |
| seed_ = static_cast<uint32_t>(NanoTime()); |
| srand(seed_); |
| } |
| |
| SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes, |
| const SchedulingGraph& graph) OVERRIDE { |
| UNUSED(graph); |
| DCHECK(!nodes->empty()); |
| size_t select = rand_r(&seed_) % nodes->size(); |
| SchedulingNode* select_node = (*nodes)[select]; |
| DeleteNodeAtIndex(nodes, select); |
| return select_node; |
| } |
| |
| uint32_t seed_; |
| }; |
| |
| /* |
| * Select a `SchedulingNode` according to critical path information, |
| * with heuristics to favor certain instruction patterns like materialized condition. |
| */ |
| class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector { |
| public: |
| CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {} |
| |
| SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes, |
| const SchedulingGraph& graph) OVERRIDE; |
| |
| protected: |
| SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate, |
| SchedulingNode* check) const; |
| |
| SchedulingNode* SelectMaterializedCondition(ScopedArenaVector<SchedulingNode*>* nodes, |
| const SchedulingGraph& graph) const; |
| |
| private: |
| const SchedulingNode* prev_select_; |
| }; |
| |
| class HScheduler { |
| public: |
| HScheduler(ScopedArenaAllocator* allocator, |
| SchedulingLatencyVisitor* latency_visitor, |
| SchedulingNodeSelector* selector) |
| : allocator_(allocator), |
| latency_visitor_(latency_visitor), |
| selector_(selector), |
| only_optimize_loop_blocks_(true), |
| scheduling_graph_(this, allocator), |
| cursor_(nullptr), |
| candidates_(allocator_->Adapter(kArenaAllocScheduler)) {} |
| virtual ~HScheduler() {} |
| |
| void Schedule(HGraph* graph); |
| |
| void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; } |
| |
| // Instructions can not be rescheduled across a scheduling barrier. |
| virtual bool IsSchedulingBarrier(const HInstruction* instruction) const; |
| |
| protected: |
| void Schedule(HBasicBlock* block); |
| void Schedule(SchedulingNode* scheduling_node); |
| void Schedule(HInstruction* instruction); |
| |
| // Any instruction returning `false` via this method will prevent its |
| // containing basic block from being scheduled. |
| // This method is used to restrict scheduling to instructions that we know are |
| // safe to handle. |
| // |
| // For newly introduced instructions by default HScheduler::IsSchedulable returns false. |
| // HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see |
| // scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also |
| // look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction. |
| virtual bool IsSchedulable(const HInstruction* instruction) const; |
| bool IsSchedulable(const HBasicBlock* block) const; |
| |
| void CalculateLatency(SchedulingNode* node) { |
| latency_visitor_->CalculateLatency(node); |
| node->SetLatency(latency_visitor_->GetLastVisitedLatency()); |
| node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency()); |
| } |
| |
| ScopedArenaAllocator* const allocator_; |
| SchedulingLatencyVisitor* const latency_visitor_; |
| SchedulingNodeSelector* const selector_; |
| bool only_optimize_loop_blocks_; |
| |
| // We instantiate the members below as part of this class to avoid |
| // instantiating them locally for every chunk scheduled. |
| SchedulingGraph scheduling_graph_; |
| // A pointer indicating where the next instruction to be scheduled will be inserted. |
| HInstruction* cursor_; |
| // The list of candidates for scheduling. A node becomes a candidate when all |
| // its predecessors have been scheduled. |
| ScopedArenaVector<SchedulingNode*> candidates_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HScheduler); |
| }; |
| |
| inline bool SchedulingGraph::IsSchedulingBarrier(const HInstruction* instruction) const { |
| return scheduler_->IsSchedulingBarrier(instruction); |
| } |
| |
| class HInstructionScheduling : public HOptimization { |
| public: |
| HInstructionScheduling(HGraph* graph, |
| InstructionSet instruction_set, |
| CodeGenerator* cg = nullptr, |
| const char* name = kInstructionSchedulingPassName) |
| : HOptimization(graph, name), |
| codegen_(cg), |
| instruction_set_(instruction_set) {} |
| |
| bool Run() OVERRIDE { |
| return Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false); |
| } |
| |
| bool Run(bool only_optimize_loop_blocks, bool schedule_randomly); |
| |
| static constexpr const char* kInstructionSchedulingPassName = "scheduler"; |
| |
| private: |
| CodeGenerator* const codegen_; |
| const InstructionSet instruction_set_; |
| DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling); |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_SCHEDULER_H_ |