blob: 350c838717999bdff93150d3f0a2ca2588a02690 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "verifier_deps.h"
#include "compiler_callbacks.h"
#include "leb128.h"
#include "mirror/class-inl.h"
#include "runtime.h"
namespace art {
namespace verifier {
VerifierDeps::VerifierDeps(const std::vector<const DexFile*>& dex_files) {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
for (const DexFile* dex_file : dex_files) {
DCHECK(GetDexFileDeps(*dex_file) == nullptr);
std::unique_ptr<DexFileDeps> deps(new DexFileDeps());
dex_deps_.emplace(dex_file, std::move(deps));
}
}
VerifierDeps::DexFileDeps* VerifierDeps::GetDexFileDeps(const DexFile& dex_file) {
auto it = dex_deps_.find(&dex_file);
return (it == dex_deps_.end()) ? nullptr : it->second.get();
}
template <typename T>
uint16_t VerifierDeps::GetAccessFlags(T* element) {
static_assert(kAccJavaFlagsMask == 0xFFFF, "Unexpected value of a constant");
if (element == nullptr) {
return VerifierDeps::kUnresolvedMarker;
} else {
uint16_t access_flags = Low16Bits(element->GetAccessFlags());
CHECK_NE(access_flags, VerifierDeps::kUnresolvedMarker);
return access_flags;
}
}
template <typename T>
uint32_t VerifierDeps::GetDeclaringClassStringId(const DexFile& dex_file, T* element) {
static_assert(kAccJavaFlagsMask == 0xFFFF, "Unexpected value of a constant");
if (element == nullptr) {
return VerifierDeps::kUnresolvedMarker;
} else {
std::string temp;
uint32_t string_id = GetIdFromString(
dex_file, element->GetDeclaringClass()->GetDescriptor(&temp));
return string_id;
}
}
uint32_t VerifierDeps::GetIdFromString(const DexFile& dex_file, const std::string& str) {
const DexFile::StringId* string_id = dex_file.FindStringId(str.c_str());
if (string_id != nullptr) {
// String is in the DEX file. Return its ID.
return dex_file.GetIndexForStringId(*string_id);
}
// String is not in the DEX file. Assign a new ID to it which is higher than
// the number of strings in the DEX file.
DexFileDeps* deps = GetDexFileDeps(dex_file);
DCHECK(deps != nullptr);
uint32_t num_ids_in_dex = dex_file.NumStringIds();
uint32_t num_extra_ids = deps->strings_.size();
for (size_t i = 0; i < num_extra_ids; ++i) {
if (deps->strings_[i] == str) {
return num_ids_in_dex + i;
}
}
deps->strings_.push_back(str);
uint32_t new_id = num_ids_in_dex + num_extra_ids;
CHECK_GE(new_id, num_ids_in_dex); // check for overflows
DCHECK_EQ(str, GetStringFromId(dex_file, new_id));
return new_id;
}
std::string VerifierDeps::GetStringFromId(const DexFile& dex_file, uint32_t string_id) {
uint32_t num_ids_in_dex = dex_file.NumStringIds();
if (string_id < num_ids_in_dex) {
return std::string(dex_file.StringDataByIdx(string_id));
} else {
DexFileDeps* deps = GetDexFileDeps(dex_file);
DCHECK(deps != nullptr);
string_id -= num_ids_in_dex;
CHECK_LT(string_id, deps->strings_.size());
return deps->strings_[string_id];
}
}
bool VerifierDeps::IsInClassPath(mirror::Class* klass) {
DCHECK(klass != nullptr);
mirror::DexCache* dex_cache = klass->GetDexCache();
if (dex_cache == nullptr) {
// This is a synthesized class, in this case always an array. They are not
// defined in the compiled DEX files and therefore are part of the classpath.
// We could avoid recording dependencies on arrays with component types in
// the compiled DEX files but we choose to record them anyway so as to
// record the access flags VM sets for array classes.
DCHECK(klass->IsArrayClass()) << PrettyDescriptor(klass);
return true;
}
const DexFile* dex_file = dex_cache->GetDexFile();
DCHECK(dex_file != nullptr);
// Test if the `dex_deps_` contains an entry for `dex_file`. If not, the dex
// file was not registered as being compiled and we assume `klass` is in the
// classpath.
return (GetDexFileDeps(*dex_file) == nullptr);
}
void VerifierDeps::AddClassResolution(const DexFile& dex_file,
uint16_t type_idx,
mirror::Class* klass) {
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a dex file which is not being compiled.
return;
}
if (klass != nullptr && !IsInClassPath(klass)) {
// Class resolved into one of the DEX files which are being compiled.
// This is not a classpath dependency.
return;
}
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
dex_deps->classes_.emplace(ClassResolution(type_idx, GetAccessFlags(klass)));
}
void VerifierDeps::AddFieldResolution(const DexFile& dex_file,
uint32_t field_idx,
ArtField* field) {
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a dex file which is not being compiled.
return;
}
if (field != nullptr && !IsInClassPath(field->GetDeclaringClass())) {
// Field resolved into one of the DEX files which are being compiled.
// This is not a classpath dependency.
return;
}
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
dex_deps->fields_.emplace(FieldResolution(
field_idx, GetAccessFlags(field), GetDeclaringClassStringId(dex_file, field)));
}
void VerifierDeps::AddMethodResolution(const DexFile& dex_file,
uint32_t method_idx,
MethodResolutionKind resolution_kind,
ArtMethod* method) {
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a dex file which is not being compiled.
return;
}
if (method != nullptr && !IsInClassPath(method->GetDeclaringClass())) {
// Method resolved into one of the DEX files which are being compiled.
// This is not a classpath dependency.
return;
}
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
MethodResolution method_tuple(method_idx,
GetAccessFlags(method),
GetDeclaringClassStringId(dex_file, method));
if (resolution_kind == kDirectMethodResolution) {
dex_deps->direct_methods_.emplace(method_tuple);
} else if (resolution_kind == kVirtualMethodResolution) {
dex_deps->virtual_methods_.emplace(method_tuple);
} else {
DCHECK_EQ(resolution_kind, kInterfaceMethodResolution);
dex_deps->interface_methods_.emplace(method_tuple);
}
}
void VerifierDeps::AddAssignability(const DexFile& dex_file,
mirror::Class* destination,
mirror::Class* source,
bool is_strict,
bool is_assignable) {
// Test that the method is only called on reference types.
// Note that concurrent verification of `destination` and `source` may have
// set their status to erroneous. However, the tests performed below rely
// merely on no issues with linking (valid access flags, superclass and
// implemented interfaces). If the class at any point reached the IsResolved
// status, the requirement holds. This is guaranteed by RegTypeCache::ResolveClass.
DCHECK(destination != nullptr && !destination->IsPrimitive());
DCHECK(source != nullptr && !source->IsPrimitive());
if (destination == source ||
destination->IsObjectClass() ||
(!is_strict && destination->IsInterface())) {
// Cases when `destination` is trivially assignable from `source`.
DCHECK(is_assignable);
return;
}
DCHECK_EQ(is_assignable, destination->IsAssignableFrom(source));
if (destination->IsArrayClass() && source->IsArrayClass()) {
// Both types are arrays. Break down to component types and add recursively.
// This helps filter out destinations from compiled DEX files (see below)
// and deduplicate entries with the same canonical component type.
mirror::Class* destination_component = destination->GetComponentType();
mirror::Class* source_component = source->GetComponentType();
// Only perform the optimization if both types are resolved which guarantees
// that they linked successfully, as required at the top of this method.
if (destination_component->IsResolved() && source_component->IsResolved()) {
AddAssignability(dex_file,
destination_component,
source_component,
/* is_strict */ true,
is_assignable);
return;
}
}
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a DEX file which is not being compiled.
return;
}
if (!IsInClassPath(destination) && !IsInClassPath(source)) {
// Both `destination` and `source` are defined in the compiled DEX files.
// No need to record a dependency.
return;
}
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
// Get string IDs for both descriptors and store in the appropriate set.
std::string temp1, temp2;
std::string destination_desc(destination->GetDescriptor(&temp1));
std::string source_desc(source->GetDescriptor(&temp2));
uint32_t destination_id = GetIdFromString(dex_file, destination_desc);
uint32_t source_id = GetIdFromString(dex_file, source_desc);
if (is_assignable) {
dex_deps->assignable_types_.emplace(TypeAssignability(destination_id, source_id));
} else {
dex_deps->unassignable_types_.emplace(TypeAssignability(destination_id, source_id));
}
}
static inline VerifierDeps* GetVerifierDepsSingleton() {
CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks();
if (callbacks == nullptr) {
return nullptr;
}
return callbacks->GetVerifierDeps();
}
void VerifierDeps::MaybeRecordClassResolution(const DexFile& dex_file,
uint16_t type_idx,
mirror::Class* klass) {
VerifierDeps* singleton = GetVerifierDepsSingleton();
if (singleton != nullptr) {
singleton->AddClassResolution(dex_file, type_idx, klass);
}
}
void VerifierDeps::MaybeRecordFieldResolution(const DexFile& dex_file,
uint32_t field_idx,
ArtField* field) {
VerifierDeps* singleton = GetVerifierDepsSingleton();
if (singleton != nullptr) {
singleton->AddFieldResolution(dex_file, field_idx, field);
}
}
void VerifierDeps::MaybeRecordMethodResolution(const DexFile& dex_file,
uint32_t method_idx,
MethodResolutionKind resolution_kind,
ArtMethod* method) {
VerifierDeps* singleton = GetVerifierDepsSingleton();
if (singleton != nullptr) {
singleton->AddMethodResolution(dex_file, method_idx, resolution_kind, method);
}
}
void VerifierDeps::MaybeRecordAssignability(const DexFile& dex_file,
mirror::Class* destination,
mirror::Class* source,
bool is_strict,
bool is_assignable) {
VerifierDeps* singleton = GetVerifierDepsSingleton();
if (singleton != nullptr) {
singleton->AddAssignability(dex_file, destination, source, is_strict, is_assignable);
}
}
static inline uint32_t DecodeUint32WithOverflowCheck(const uint8_t** in, const uint8_t* end) {
CHECK_LT(*in, end);
return DecodeUnsignedLeb128(in);
}
template<typename T1, typename T2>
static inline void EncodeTuple(std::vector<uint8_t>* out, const std::tuple<T1, T2>& t) {
EncodeUnsignedLeb128(out, std::get<0>(t));
EncodeUnsignedLeb128(out, std::get<1>(t));
}
template<typename T1, typename T2>
static inline void DecodeTuple(const uint8_t** in, const uint8_t* end, std::tuple<T1, T2>* t) {
T1 v1 = static_cast<T1>(DecodeUint32WithOverflowCheck(in, end));
T2 v2 = static_cast<T2>(DecodeUint32WithOverflowCheck(in, end));
*t = std::make_tuple(v1, v2);
}
template<typename T1, typename T2, typename T3>
static inline void EncodeTuple(std::vector<uint8_t>* out, const std::tuple<T1, T2, T3>& t) {
EncodeUnsignedLeb128(out, std::get<0>(t));
EncodeUnsignedLeb128(out, std::get<1>(t));
EncodeUnsignedLeb128(out, std::get<2>(t));
}
template<typename T1, typename T2, typename T3>
static inline void DecodeTuple(const uint8_t** in, const uint8_t* end, std::tuple<T1, T2, T3>* t) {
T1 v1 = static_cast<T1>(DecodeUint32WithOverflowCheck(in, end));
T2 v2 = static_cast<T2>(DecodeUint32WithOverflowCheck(in, end));
T3 v3 = static_cast<T2>(DecodeUint32WithOverflowCheck(in, end));
*t = std::make_tuple(v1, v2, v3);
}
template<typename T>
static inline void EncodeSet(std::vector<uint8_t>* out, const std::set<T>& set) {
EncodeUnsignedLeb128(out, set.size());
for (const T& entry : set) {
EncodeTuple(out, entry);
}
}
template<typename T>
static inline void DecodeSet(const uint8_t** in, const uint8_t* end, std::set<T>* set) {
DCHECK(set->empty());
size_t num_entries = DecodeUint32WithOverflowCheck(in, end);
for (size_t i = 0; i < num_entries; ++i) {
T tuple;
DecodeTuple(in, end, &tuple);
set->emplace(tuple);
}
}
static inline void EncodeStringVector(std::vector<uint8_t>* out,
const std::vector<std::string>& strings) {
EncodeUnsignedLeb128(out, strings.size());
for (const std::string& str : strings) {
const uint8_t* data = reinterpret_cast<const uint8_t*>(str.c_str());
size_t length = str.length() + 1;
out->insert(out->end(), data, data + length);
DCHECK_EQ(0u, out->back());
}
}
static inline void DecodeStringVector(const uint8_t** in,
const uint8_t* end,
std::vector<std::string>* strings) {
DCHECK(strings->empty());
size_t num_strings = DecodeUint32WithOverflowCheck(in, end);
strings->reserve(num_strings);
for (size_t i = 0; i < num_strings; ++i) {
CHECK_LT(*in, end);
const char* string_start = reinterpret_cast<const char*>(*in);
strings->emplace_back(std::string(string_start));
*in += strings->back().length() + 1;
}
}
void VerifierDeps::Encode(std::vector<uint8_t>* buffer) const {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
for (auto& entry : dex_deps_) {
EncodeStringVector(buffer, entry.second->strings_);
EncodeSet(buffer, entry.second->assignable_types_);
EncodeSet(buffer, entry.second->unassignable_types_);
EncodeSet(buffer, entry.second->classes_);
EncodeSet(buffer, entry.second->fields_);
EncodeSet(buffer, entry.second->direct_methods_);
EncodeSet(buffer, entry.second->virtual_methods_);
EncodeSet(buffer, entry.second->interface_methods_);
}
}
VerifierDeps::VerifierDeps(const std::vector<const DexFile*>& dex_files, ArrayRef<uint8_t> data)
: VerifierDeps(dex_files) {
const uint8_t* data_start = data.data();
const uint8_t* data_end = data_start + data.size();
for (auto& entry : dex_deps_) {
DecodeStringVector(&data_start, data_end, &entry.second->strings_);
DecodeSet(&data_start, data_end, &entry.second->assignable_types_);
DecodeSet(&data_start, data_end, &entry.second->unassignable_types_);
DecodeSet(&data_start, data_end, &entry.second->classes_);
DecodeSet(&data_start, data_end, &entry.second->fields_);
DecodeSet(&data_start, data_end, &entry.second->direct_methods_);
DecodeSet(&data_start, data_end, &entry.second->virtual_methods_);
DecodeSet(&data_start, data_end, &entry.second->interface_methods_);
}
CHECK_LE(data_start, data_end);
}
bool VerifierDeps::Equals(const VerifierDeps& rhs) const {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
if (dex_deps_.size() != rhs.dex_deps_.size()) {
return false;
}
auto lhs_it = dex_deps_.begin();
auto rhs_it = rhs.dex_deps_.begin();
for (; (lhs_it != dex_deps_.end()) && (rhs_it != rhs.dex_deps_.end()); lhs_it++, rhs_it++) {
const DexFile* lhs_dex_file = lhs_it->first;
const DexFile* rhs_dex_file = rhs_it->first;
if (lhs_dex_file != rhs_dex_file) {
return false;
}
DexFileDeps* lhs_deps = lhs_it->second.get();
DexFileDeps* rhs_deps = rhs_it->second.get();
if (!lhs_deps->Equals(*rhs_deps)) {
return false;
}
}
DCHECK((lhs_it == dex_deps_.end()) && (rhs_it == rhs.dex_deps_.end()));
return true;
}
bool VerifierDeps::DexFileDeps::Equals(const VerifierDeps::DexFileDeps& rhs) const {
return (strings_ == rhs.strings_) &&
(assignable_types_ == rhs.assignable_types_) &&
(unassignable_types_ == rhs.unassignable_types_) &&
(classes_ == rhs.classes_) &&
(fields_ == rhs.fields_) &&
(direct_methods_ == rhs.direct_methods_) &&
(virtual_methods_ == rhs.virtual_methods_) &&
(interface_methods_ == rhs.interface_methods_);
}
} // namespace verifier
} // namespace art