| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "linker/arm64/relative_patcher_arm64.h" |
| |
| #include "arch/arm64/instruction_set_features_arm64.h" |
| #include "art_method.h" |
| #include "compiled_method.h" |
| #include "driver/compiler_driver.h" |
| #include "linker/output_stream.h" |
| #include "oat.h" |
| #include "oat_quick_method_header.h" |
| #include "utils/arm64/assembler_arm64.h" |
| |
| namespace art { |
| namespace linker { |
| |
| namespace { |
| |
| inline bool IsAdrpPatch(const LinkerPatch& patch) { |
| LinkerPatch::Type type = patch.GetType(); |
| return |
| (type == LinkerPatch::Type::kStringRelative || type == LinkerPatch::Type::kDexCacheArray) && |
| patch.LiteralOffset() == patch.PcInsnOffset(); |
| } |
| |
| } // anonymous namespace |
| |
| Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider, |
| const Arm64InstructionSetFeatures* features) |
| : ArmBaseRelativePatcher(provider, kArm64, CompileThunkCode(), |
| kMaxPositiveDisplacement, kMaxNegativeDisplacement), |
| fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()), |
| reserved_adrp_thunks_(0u), |
| processed_adrp_thunks_(0u) { |
| if (fix_cortex_a53_843419_) { |
| adrp_thunk_locations_.reserve(16u); |
| current_method_thunks_.reserve(16u * kAdrpThunkSize); |
| } |
| } |
| |
| uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset, |
| const CompiledMethod* compiled_method, |
| MethodReference method_ref) { |
| if (!fix_cortex_a53_843419_) { |
| DCHECK(adrp_thunk_locations_.empty()); |
| return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u); |
| } |
| |
| // Add thunks for previous method if any. |
| if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) { |
| size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_; |
| offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks; |
| reserved_adrp_thunks_ = adrp_thunk_locations_.size(); |
| } |
| |
| // Count the number of ADRP insns as the upper bound on the number of thunks needed |
| // and use it to reserve space for other linker patches. |
| size_t num_adrp = 0u; |
| DCHECK(compiled_method != nullptr); |
| for (const LinkerPatch& patch : compiled_method->GetPatches()) { |
| if (IsAdrpPatch(patch)) { |
| ++num_adrp; |
| } |
| } |
| offset = ReserveSpaceInternal(offset, compiled_method, method_ref, kAdrpThunkSize * num_adrp); |
| if (num_adrp == 0u) { |
| return offset; |
| } |
| |
| // Now that we have the actual offset where the code will be placed, locate the ADRP insns |
| // that actually require the thunk. |
| uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader)); |
| ArrayRef<const uint8_t> code = compiled_method->GetQuickCode(); |
| uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size()); |
| DCHECK(compiled_method != nullptr); |
| for (const LinkerPatch& patch : compiled_method->GetPatches()) { |
| if (IsAdrpPatch(patch)) { |
| uint32_t patch_offset = quick_code_offset + patch.LiteralOffset(); |
| if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) { |
| adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset); |
| thunk_offset += kAdrpThunkSize; |
| } |
| } |
| } |
| return offset; |
| } |
| |
| uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) { |
| if (!fix_cortex_a53_843419_) { |
| DCHECK(adrp_thunk_locations_.empty()); |
| } else { |
| // Add thunks for the last method if any. |
| if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) { |
| size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_; |
| offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks; |
| reserved_adrp_thunks_ = adrp_thunk_locations_.size(); |
| } |
| } |
| return ArmBaseRelativePatcher::ReserveSpaceEnd(offset); |
| } |
| |
| uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) { |
| if (fix_cortex_a53_843419_) { |
| if (!current_method_thunks_.empty()) { |
| uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64); |
| if (kIsDebugBuild) { |
| CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize); |
| size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize; |
| CHECK_LE(num_thunks, processed_adrp_thunks_); |
| for (size_t i = 0u; i != num_thunks; ++i) { |
| const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i]; |
| CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize); |
| } |
| } |
| uint32_t aligned_code_delta = aligned_offset - offset; |
| if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) { |
| return 0u; |
| } |
| if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) { |
| return 0u; |
| } |
| offset = aligned_offset + current_method_thunks_.size(); |
| current_method_thunks_.clear(); |
| } |
| } |
| return ArmBaseRelativePatcher::WriteThunks(out, offset); |
| } |
| |
| void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code, |
| uint32_t literal_offset, |
| uint32_t patch_offset, uint32_t |
| target_offset) { |
| DCHECK_LE(literal_offset + 4u, code->size()); |
| DCHECK_EQ(literal_offset & 3u, 0u); |
| DCHECK_EQ(patch_offset & 3u, 0u); |
| DCHECK_EQ(target_offset & 3u, 0u); |
| uint32_t displacement = CalculateDisplacement(patch_offset, target_offset & ~1u); |
| DCHECK_EQ(displacement & 3u, 0u); |
| DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed. |
| uint32_t insn = (displacement & 0x0fffffffu) >> 2; |
| insn |= 0x94000000; // BL |
| |
| // Check that we're just overwriting an existing BL. |
| DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u); |
| // Write the new BL. |
| SetInsn(code, literal_offset, insn); |
| } |
| |
| void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code, |
| const LinkerPatch& patch, |
| uint32_t patch_offset, |
| uint32_t target_offset) { |
| DCHECK_EQ(patch_offset & 3u, 0u); |
| DCHECK_EQ(target_offset & 3u, 0u); |
| uint32_t literal_offset = patch.LiteralOffset(); |
| uint32_t insn = GetInsn(code, literal_offset); |
| uint32_t pc_insn_offset = patch.PcInsnOffset(); |
| uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu); |
| bool wide = (insn & 0x40000000) != 0; |
| uint32_t shift = wide ? 3u : 2u; |
| if (literal_offset == pc_insn_offset) { |
| // Check it's an ADRP with imm == 0 (unset). |
| DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u) |
| << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn; |
| if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() && |
| adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) { |
| DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code), |
| literal_offset, patch_offset)); |
| uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second; |
| uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu); |
| uint32_t adrp = PatchAdrp(insn, adrp_disp); |
| |
| uint32_t out_disp = thunk_offset - patch_offset; |
| DCHECK_EQ(out_disp & 3u, 0u); |
| DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed. |
| insn = (out_disp & 0x0fffffffu) >> shift; |
| insn |= 0x14000000; // B <thunk> |
| |
| uint32_t back_disp = -out_disp; |
| DCHECK_EQ(back_disp & 3u, 0u); |
| DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed. |
| uint32_t b_back = (back_disp & 0x0fffffffu) >> 2; |
| b_back |= 0x14000000; // B <back> |
| size_t thunks_code_offset = current_method_thunks_.size(); |
| current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize); |
| SetInsn(¤t_method_thunks_, thunks_code_offset, adrp); |
| SetInsn(¤t_method_thunks_, thunks_code_offset + 4u, b_back); |
| static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions"); |
| |
| processed_adrp_thunks_ += 1u; |
| } else { |
| insn = PatchAdrp(insn, disp); |
| } |
| // Write the new ADRP (or B to the erratum 843419 thunk). |
| SetInsn(code, literal_offset, insn); |
| } else { |
| if ((insn & 0xfffffc00) == 0x91000000) { |
| // ADD immediate, 64-bit with imm12 == 0 (unset). |
| if (!kEmitCompilerReadBarrier) { |
| DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative || |
| patch.GetType() == LinkerPatch::Type::kTypeRelative) << patch.GetType(); |
| } else { |
| // With the read barrier (non-baker) enabled, it could be kDexCacheArray in the |
| // HLoadString::LoadKind::kDexCachePcRelative case of VisitLoadString(). |
| DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative || |
| patch.GetType() == LinkerPatch::Type::kTypeRelative || |
| patch.GetType() == LinkerPatch::Type::kDexCacheArray) << patch.GetType(); |
| } |
| shift = 0u; // No shift for ADD. |
| } else { |
| // LDR 32-bit or 64-bit with imm12 == 0 (unset). |
| DCHECK(patch.GetType() == LinkerPatch::Type::kDexCacheArray) << patch.GetType(); |
| DCHECK_EQ(insn & 0xbffffc00, 0xb9400000) << std::hex << insn; |
| } |
| if (kIsDebugBuild) { |
| uint32_t adrp = GetInsn(code, pc_insn_offset); |
| if ((adrp & 0x9f000000u) != 0x90000000u) { |
| CHECK(fix_cortex_a53_843419_); |
| CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B <thunk> |
| CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize); |
| size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize; |
| CHECK_LE(num_thunks, processed_adrp_thunks_); |
| uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset; |
| for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) { |
| CHECK_NE(i, processed_adrp_thunks_); |
| if (adrp_thunk_locations_[i].first == b_offset) { |
| size_t idx = num_thunks - (processed_adrp_thunks_ - i); |
| adrp = GetInsn(¤t_method_thunks_, idx * kAdrpThunkSize); |
| break; |
| } |
| } |
| } |
| CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points |
| 0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register. |
| } |
| uint32_t imm12 = (disp & 0xfffu) >> shift; |
| insn = (insn & ~(0xfffu << 10)) | (imm12 << 10); |
| SetInsn(code, literal_offset, insn); |
| } |
| } |
| |
| std::vector<uint8_t> Arm64RelativePatcher::CompileThunkCode() { |
| // The thunk just uses the entry point in the ArtMethod. This works even for calls |
| // to the generic JNI and interpreter trampolines. |
| ArenaPool pool; |
| ArenaAllocator arena(&pool); |
| arm64::Arm64Assembler assembler(&arena); |
| Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kArm64PointerSize).Int32Value()); |
| assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0)); |
| // Ensure we emit the literal pool. |
| assembler.FinalizeCode(); |
| std::vector<uint8_t> thunk_code(assembler.CodeSize()); |
| MemoryRegion code(thunk_code.data(), thunk_code.size()); |
| assembler.FinalizeInstructions(code); |
| return thunk_code; |
| } |
| |
| uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) { |
| return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg. |
| // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30. |
| ((disp & 0x00003000u) << (29 - 12)) | |
| // The next 16 bits are encoded in bits 5-22. |
| ((disp & 0xffffc000u) >> (12 + 2 - 5)) | |
| // Since the target_offset is based on the beginning of the oat file and the |
| // image space precedes the oat file, the target_offset into image space will |
| // be negative yet passed as uint32_t. Therefore we limit the displacement |
| // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from |
| // the highest bit of the displacement. This is encoded in bit 23. |
| ((disp & 0x80000000u) >> (31 - 23)); |
| } |
| |
| bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code, |
| uint32_t literal_offset, |
| uint32_t patch_offset) { |
| DCHECK_EQ(patch_offset & 0x3u, 0u); |
| if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc |
| uint32_t adrp = GetInsn(code, literal_offset); |
| DCHECK_EQ(adrp & 0x9f000000, 0x90000000); |
| uint32_t next_offset = patch_offset + 4u; |
| uint32_t next_insn = GetInsn(code, literal_offset + 4u); |
| |
| // Below we avoid patching sequences where the adrp is followed by a load which can easily |
| // be proved to be aligned. |
| |
| // First check if the next insn is the LDR using the result of the ADRP. |
| // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg. |
| if ((next_insn & 0xffc00000) == 0xb9400000 && |
| (((next_insn >> 5) ^ adrp) & 0x1f) == 0) { |
| return false; |
| } |
| |
| // And since LinkerPatch::Type::kStringRelative is using the result of the ADRP |
| // for an ADD immediate, check for that as well. We generalize a bit to include |
| // ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination or stores |
| // the result to a different register. |
| if ((next_insn & 0x1f000000) == 0x11000000 && |
| ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) { |
| return false; |
| } |
| |
| // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing. |
| if ((next_insn & 0xff000000) == 0x18000000) { |
| return false; |
| } |
| |
| // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8. |
| if ((next_insn & 0xff000000) == 0x58000000) { |
| bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0; |
| return !is_aligned_load; |
| } |
| |
| // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is |
| // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size. |
| if ((next_insn & 0xbfc003e0) == 0xb94003e0) { |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) { |
| DCHECK_LE(offset + 4u, code->size()); |
| DCHECK_EQ(offset & 3u, 0u); |
| uint8_t* addr = &(*code)[offset]; |
| addr[0] = (value >> 0) & 0xff; |
| addr[1] = (value >> 8) & 0xff; |
| addr[2] = (value >> 16) & 0xff; |
| addr[3] = (value >> 24) & 0xff; |
| } |
| |
| uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) { |
| DCHECK_LE(offset + 4u, code.size()); |
| DCHECK_EQ(offset & 3u, 0u); |
| const uint8_t* addr = &code[offset]; |
| return |
| (static_cast<uint32_t>(addr[0]) << 0) + |
| (static_cast<uint32_t>(addr[1]) << 8) + |
| (static_cast<uint32_t>(addr[2]) << 16)+ |
| (static_cast<uint32_t>(addr[3]) << 24); |
| } |
| |
| template <typename Alloc> |
| uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) { |
| return GetInsn(ArrayRef<const uint8_t>(*code), offset); |
| } |
| |
| } // namespace linker |
| } // namespace art |