blob: ade7a1325e751d95b3e04ddc6dff698c4b51e073 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_x86_64.h"
#include "base/casts.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "memory_region.h"
#include "thread.h"
#include "utils/dwarf_cfi.h"
namespace art {
namespace x86_64 {
std::ostream& operator<<(std::ostream& os, const CpuRegister& reg) {
return os << reg.AsRegister();
}
std::ostream& operator<<(std::ostream& os, const XmmRegister& reg) {
return os << reg.AsFloatRegister();
}
std::ostream& operator<<(std::ostream& os, const X87Register& reg) {
return os << "ST" << static_cast<int>(reg);
}
void X86_64Assembler::call(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xFF);
EmitRegisterOperand(2, reg.LowBits());
}
void X86_64Assembler::call(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xFF);
EmitOperand(2, address);
}
void X86_64Assembler::call(Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xE8);
static const int kSize = 5;
EmitLabel(label, kSize);
}
void X86_64Assembler::pushq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0x50 + reg.LowBits());
}
void X86_64Assembler::pushq(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xFF);
EmitOperand(6, address);
}
void X86_64Assembler::pushq(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // pushq only supports 32b immediate.
if (imm.is_int8()) {
EmitUint8(0x6A);
EmitUint8(imm.value() & 0xFF);
} else {
EmitUint8(0x68);
EmitImmediate(imm);
}
}
void X86_64Assembler::popq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0x58 + reg.LowBits());
}
void X86_64Assembler::popq(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0x8F);
EmitOperand(0, address);
}
void X86_64Assembler::movq(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (imm.is_int32()) {
// 32 bit. Note: sign-extends.
EmitRex64(dst);
EmitUint8(0xC7);
EmitRegisterOperand(0, dst.LowBits());
EmitInt32(static_cast<int32_t>(imm.value()));
} else {
EmitRex64(dst);
EmitUint8(0xB8 + dst.LowBits());
EmitInt64(imm.value());
}
}
void X86_64Assembler::movl(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitUint8(0xB8 + dst.LowBits());
EmitImmediate(imm);
}
void X86_64Assembler::movq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// 0x89 is movq r/m64 <- r64, with op1 in r/m and op2 in reg: so reverse EmitRex64
EmitRex64(src, dst);
EmitUint8(0x89);
EmitRegisterOperand(src.LowBits(), dst.LowBits());
}
void X86_64Assembler::movl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x8B);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x8B);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movl(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x8B);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movq(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(src, dst);
EmitUint8(0x89);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movl(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(src, dst);
EmitUint8(0x89);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movl(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitUint8(0xC7);
EmitOperand(0, dst);
EmitImmediate(imm);
}
void X86_64Assembler::movzxb(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB6);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movzxb(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB6);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movsxb(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBE);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movsxb(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBE);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movb(CpuRegister /*dst*/, const Address& /*src*/) {
LOG(FATAL) << "Use movzxb or movsxb instead.";
}
void X86_64Assembler::movb(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(src, dst);
EmitUint8(0x88);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movb(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitUint8(0xC6);
EmitOperand(Register::RAX, dst);
CHECK(imm.is_int8());
EmitUint8(imm.value() & 0xFF);
}
void X86_64Assembler::movzxw(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB7);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movzxw(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB7);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movsxw(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBF);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movsxw(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBF);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movw(CpuRegister /*dst*/, const Address& /*src*/) {
LOG(FATAL) << "Use movzxw or movsxw instead.";
}
void X86_64Assembler::movw(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOptionalRex32(src, dst);
EmitUint8(0x89);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movw(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOptionalRex32(dst);
EmitUint8(0xC7);
EmitOperand(Register::RAX, dst);
CHECK(imm.is_int16());
EmitUint8(imm.value() & 0xFF);
EmitUint8(imm.value() >> 8);
}
void X86_64Assembler::leaq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x8D);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movss(const Address& dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitXmmRegisterOperand(src.LowBits(), dst);
}
void X86_64Assembler::movd(XmmRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x6E);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::movd(CpuRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x7E);
EmitOperand(src.LowBits(), Operand(dst));
}
void X86_64Assembler::addss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::addss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::subss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::subss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::mulss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::mulss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::divss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::divss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::flds(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(0, src);
}
void X86_64Assembler::fstps(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(3, dst);
}
void X86_64Assembler::movsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movsd(const Address& dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitXmmRegisterOperand(src.LowBits(), dst);
}
void X86_64Assembler::addsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::addsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::subsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::subsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::mulsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::mulsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::divsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::divsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtsi2ss(XmmRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::cvtsi2sd(XmmRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::cvtss2si(CpuRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x2D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtss2sd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtsd2si(CpuRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x2D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvttss2si(CpuRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x2C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvttsd2si(CpuRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x2C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtsd2ss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtdq2pd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xE6);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::comiss(XmmRegister a, XmmRegister b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitXmmRegisterOperand(a.LowBits(), b);
}
void X86_64Assembler::comisd(XmmRegister a, XmmRegister b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitXmmRegisterOperand(a.LowBits(), b);
}
void X86_64Assembler::sqrtsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x51);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::sqrtss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x51);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorpd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorps(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::andpd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x54);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::fldl(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(0, src);
}
void X86_64Assembler::fstpl(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(3, dst);
}
void X86_64Assembler::fnstcw(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(7, dst);
}
void X86_64Assembler::fldcw(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(5, src);
}
void X86_64Assembler::fistpl(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDF);
EmitOperand(7, dst);
}
void X86_64Assembler::fistps(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDB);
EmitOperand(3, dst);
}
void X86_64Assembler::fildl(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDF);
EmitOperand(5, src);
}
void X86_64Assembler::fincstp() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xF7);
}
void X86_64Assembler::ffree(const Immediate& index) {
CHECK_LT(index.value(), 7);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitUint8(0xC0 + index.value());
}
void X86_64Assembler::fsin() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xFE);
}
void X86_64Assembler::fcos() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xFF);
}
void X86_64Assembler::fptan() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xF2);
}
void X86_64Assembler::xchgl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x87);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::xchgq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x87);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::xchgl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x87);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpw(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0x66);
EmitComplex(7, address, imm);
}
void X86_64Assembler::cmpl(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitComplex(7, Operand(reg), imm);
}
void X86_64Assembler::cmpl(CpuRegister reg0, CpuRegister reg1) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg0, reg1);
EmitUint8(0x3B);
EmitOperand(reg0.LowBits(), Operand(reg1));
}
void X86_64Assembler::cmpl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x3B);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpq(CpuRegister reg0, CpuRegister reg1) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg0, reg1);
EmitUint8(0x3B);
EmitOperand(reg0.LowBits(), Operand(reg1));
}
void X86_64Assembler::cmpq(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // cmpq only supports 32b immediate.
EmitRex64(reg);
EmitComplex(7, Operand(reg), imm);
}
void X86_64Assembler::cmpq(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg);
EmitUint8(0x3B);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::addl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x03);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::addl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x03);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpl(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x39);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpl(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitComplex(7, address, imm);
}
void X86_64Assembler::testl(CpuRegister reg1, CpuRegister reg2) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg1, reg2);
EmitUint8(0x85);
EmitRegisterOperand(reg1.LowBits(), reg2.LowBits());
}
void X86_64Assembler::testl(CpuRegister reg, const Immediate& immediate) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// For registers that have a byte variant (RAX, RBX, RCX, and RDX)
// we only test the byte CpuRegister to keep the encoding short.
if (immediate.is_uint8() && reg.AsRegister() < 4) {
// Use zero-extended 8-bit immediate.
if (reg.AsRegister() == RAX) {
EmitUint8(0xA8);
} else {
EmitUint8(0xF6);
EmitUint8(0xC0 + reg.AsRegister());
}
EmitUint8(immediate.value() & 0xFF);
} else if (reg.AsRegister() == RAX) {
// Use short form if the destination is RAX.
EmitUint8(0xA9);
EmitImmediate(immediate);
} else {
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitOperand(0, Operand(reg));
EmitImmediate(immediate);
}
}
void X86_64Assembler::testq(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg);
EmitUint8(0x85);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::andl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x23);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::andl(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitComplex(4, Operand(dst), imm);
}
void X86_64Assembler::andq(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // andq only supports 32b immediate.
EmitRex64(reg);
EmitComplex(4, Operand(reg), imm);
}
void X86_64Assembler::orl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0B);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::orl(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitComplex(1, Operand(dst), imm);
}
void X86_64Assembler::xorl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x33);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::xorq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x33);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::xorq(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // xorq only supports 32b immediate.
EmitRex64(dst);
EmitComplex(6, Operand(dst), imm);
}
#if 0
void X86_64Assembler::rex(bool force, bool w, Register* r, Register* x, Register* b) {
// REX.WRXB
// W - 64-bit operand
// R - MODRM.reg
// X - SIB.index
// B - MODRM.rm/SIB.base
uint8_t rex = force ? 0x40 : 0;
if (w) {
rex |= 0x48; // REX.W000
}
if (r != nullptr && *r >= Register::R8 && *r < Register::kNumberOfCpuRegisters) {
rex |= 0x44; // REX.0R00
*r = static_cast<Register>(*r - 8);
}
if (x != nullptr && *x >= Register::R8 && *x < Register::kNumberOfCpuRegisters) {
rex |= 0x42; // REX.00X0
*x = static_cast<Register>(*x - 8);
}
if (b != nullptr && *b >= Register::R8 && *b < Register::kNumberOfCpuRegisters) {
rex |= 0x41; // REX.000B
*b = static_cast<Register>(*b - 8);
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::rex_reg_mem(bool force, bool w, Register* dst, const Address& mem) {
// REX.WRXB
// W - 64-bit operand
// R - MODRM.reg
// X - SIB.index
// B - MODRM.rm/SIB.base
uint8_t rex = mem->rex();
if (force) {
rex |= 0x40; // REX.0000
}
if (w) {
rex |= 0x48; // REX.W000
}
if (dst != nullptr && *dst >= Register::R8 && *dst < Register::kNumberOfCpuRegisters) {
rex |= 0x44; // REX.0R00
*dst = static_cast<Register>(*dst - 8);
}
if (rex != 0) {
EmitUint8(rex);
}
}
void rex_mem_reg(bool force, bool w, Address* mem, Register* src);
#endif
void X86_64Assembler::addl(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitComplex(0, Operand(reg), imm);
}
void X86_64Assembler::addq(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // addq only supports 32b immediate.
EmitRex64(reg);
EmitComplex(0, Operand(reg), imm);
}
void X86_64Assembler::addq(CpuRegister dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst);
EmitUint8(0x03);
EmitOperand(dst.LowBits(), address);
}
void X86_64Assembler::addq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// 0x01 is addq r/m64 <- r/m64 + r64, with op1 in r/m and op2 in reg: so reverse EmitRex64
EmitRex64(src, dst);
EmitUint8(0x01);
EmitRegisterOperand(src.LowBits(), dst.LowBits());
}
void X86_64Assembler::addl(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x01);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::addl(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitComplex(0, address, imm);
}
void X86_64Assembler::subl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x2B);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::subl(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitComplex(5, Operand(reg), imm);
}
void X86_64Assembler::subq(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // subq only supports 32b immediate.
EmitRex64(reg);
EmitComplex(5, Operand(reg), imm);
}
void X86_64Assembler::subq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x2B);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::subq(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg);
EmitUint8(0x2B);
EmitOperand(reg.LowBits() & 7, address);
}
void X86_64Assembler::subl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x2B);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cdq() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x99);
}
void X86_64Assembler::idivl(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitUint8(0xF8 | reg.LowBits());
}
void X86_64Assembler::imull(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::imull(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0x69);
EmitOperand(reg.LowBits(), Operand(reg));
EmitImmediate(imm);
}
void X86_64Assembler::imull(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::imull(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitOperand(5, Operand(reg));
}
void X86_64Assembler::imull(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xF7);
EmitOperand(5, address);
}
void X86_64Assembler::mull(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitOperand(4, Operand(reg));
}
void X86_64Assembler::mull(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xF7);
EmitOperand(4, address);
}
void X86_64Assembler::shll(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(false, 4, reg, imm);
}
void X86_64Assembler::shll(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(4, operand, shifter);
}
void X86_64Assembler::shrl(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(false, 5, reg, imm);
}
void X86_64Assembler::shrq(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(true, 5, reg, imm);
}
void X86_64Assembler::shrl(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(5, operand, shifter);
}
void X86_64Assembler::sarl(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(false, 7, reg, imm);
}
void X86_64Assembler::sarl(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(7, operand, shifter);
}
void X86_64Assembler::negl(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitOperand(3, Operand(reg));
}
void X86_64Assembler::notl(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitUint8(0xD0 | reg.LowBits());
}
void X86_64Assembler::enter(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC8);
CHECK(imm.is_uint16());
EmitUint8(imm.value() & 0xFF);
EmitUint8((imm.value() >> 8) & 0xFF);
EmitUint8(0x00);
}
void X86_64Assembler::leave() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC9);
}
void X86_64Assembler::ret() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC3);
}
void X86_64Assembler::ret(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC2);
CHECK(imm.is_uint16());
EmitUint8(imm.value() & 0xFF);
EmitUint8((imm.value() >> 8) & 0xFF);
}
void X86_64Assembler::nop() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x90);
}
void X86_64Assembler::int3() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xCC);
}
void X86_64Assembler::hlt() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF4);
}
void X86_64Assembler::j(Condition condition, Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
static const int kLongSize = 6;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
if (IsInt(8, offset - kShortSize)) {
EmitUint8(0x70 + condition);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0x0F);
EmitUint8(0x80 + condition);
EmitInt32(offset - kLongSize);
}
} else {
EmitUint8(0x0F);
EmitUint8(0x80 + condition);
EmitLabelLink(label);
}
}
void X86_64Assembler::jmp(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xFF);
EmitRegisterOperand(4, reg.LowBits());
}
void X86_64Assembler::jmp(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xFF);
EmitOperand(4, address);
}
void X86_64Assembler::jmp(Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
static const int kLongSize = 5;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
if (IsInt(8, offset - kShortSize)) {
EmitUint8(0xEB);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0xE9);
EmitInt32(offset - kLongSize);
}
} else {
EmitUint8(0xE9);
EmitLabelLink(label);
}
}
X86_64Assembler* X86_64Assembler::lock() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF0);
return this;
}
void X86_64Assembler::cmpxchgl(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xB1);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::mfence() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xAE);
EmitUint8(0xF0);
}
X86_64Assembler* X86_64Assembler::gs() {
// TODO: gs is a prefix and not an instruction
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x65);
return this;
}
void X86_64Assembler::AddImmediate(CpuRegister reg, const Immediate& imm) {
int value = imm.value();
if (value != 0) {
if (value > 0) {
addl(reg, imm);
} else {
subl(reg, Immediate(value));
}
}
}
void X86_64Assembler::setcc(Condition condition, CpuRegister dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// RSP, RBP, RDI, RSI need rex prefix (else the pattern encodes ah/bh/ch/dh).
if (dst.NeedsRex() || dst.AsRegister() > 3) {
EmitOptionalRex(true, false, false, false, dst.NeedsRex());
}
EmitUint8(0x0F);
EmitUint8(0x90 + condition);
EmitUint8(0xC0 + dst.LowBits());
}
void X86_64Assembler::LoadDoubleConstant(XmmRegister dst, double value) {
// TODO: Need to have a code constants table.
int64_t constant = bit_cast<int64_t, double>(value);
pushq(Immediate(High32Bits(constant)));
pushq(Immediate(Low32Bits(constant)));
movsd(dst, Address(CpuRegister(RSP), 0));
addq(CpuRegister(RSP), Immediate(2 * kWordSize));
}
void X86_64Assembler::FloatNegate(XmmRegister f) {
static const struct {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_negate_constant __attribute__((aligned(16))) =
{ 0x80000000, 0x00000000, 0x80000000, 0x00000000 };
xorps(f, Address::Absolute(reinterpret_cast<uword>(&float_negate_constant)));
}
void X86_64Assembler::DoubleNegate(XmmRegister d) {
static const struct {
uint64_t a;
uint64_t b;
} double_negate_constant __attribute__((aligned(16))) =
{0x8000000000000000LL, 0x8000000000000000LL};
xorpd(d, Address::Absolute(reinterpret_cast<uword>(&double_negate_constant)));
}
void X86_64Assembler::DoubleAbs(XmmRegister reg) {
static const struct {
uint64_t a;
uint64_t b;
} double_abs_constant __attribute__((aligned(16))) =
{0x7FFFFFFFFFFFFFFFLL, 0x7FFFFFFFFFFFFFFFLL};
andpd(reg, Address::Absolute(reinterpret_cast<uword>(&double_abs_constant)));
}
void X86_64Assembler::Align(int alignment, int offset) {
CHECK(IsPowerOfTwo(alignment));
// Emit nop instruction until the real position is aligned.
while (((offset + buffer_.GetPosition()) & (alignment-1)) != 0) {
nop();
}
}
void X86_64Assembler::Bind(Label* label) {
int bound = buffer_.Size();
CHECK(!label->IsBound()); // Labels can only be bound once.
while (label->IsLinked()) {
int position = label->LinkPosition();
int next = buffer_.Load<int32_t>(position);
buffer_.Store<int32_t>(position, bound - (position + 4));
label->position_ = next;
}
label->BindTo(bound);
}
void X86_64Assembler::EmitOperand(uint8_t reg_or_opcode, const Operand& operand) {
CHECK_GE(reg_or_opcode, 0);
CHECK_LT(reg_or_opcode, 8);
const int length = operand.length_;
CHECK_GT(length, 0);
// Emit the ModRM byte updated with the given reg value.
CHECK_EQ(operand.encoding_[0] & 0x38, 0);
EmitUint8(operand.encoding_[0] + (reg_or_opcode << 3));
// Emit the rest of the encoded operand.
for (int i = 1; i < length; i++) {
EmitUint8(operand.encoding_[i]);
}
}
void X86_64Assembler::EmitImmediate(const Immediate& imm) {
if (imm.is_int32()) {
EmitInt32(static_cast<int32_t>(imm.value()));
} else {
EmitInt64(imm.value());
}
}
void X86_64Assembler::EmitComplex(uint8_t reg_or_opcode,
const Operand& operand,
const Immediate& immediate) {
CHECK_GE(reg_or_opcode, 0);
CHECK_LT(reg_or_opcode, 8);
if (immediate.is_int8()) {
// Use sign-extended 8-bit immediate.
EmitUint8(0x83);
EmitOperand(reg_or_opcode, operand);
EmitUint8(immediate.value() & 0xFF);
} else if (operand.IsRegister(CpuRegister(RAX))) {
// Use short form if the destination is eax.
EmitUint8(0x05 + (reg_or_opcode << 3));
EmitImmediate(immediate);
} else {
EmitUint8(0x81);
EmitOperand(reg_or_opcode, operand);
EmitImmediate(immediate);
}
}
void X86_64Assembler::EmitLabel(Label* label, int instruction_size) {
if (label->IsBound()) {
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
EmitInt32(offset - instruction_size);
} else {
EmitLabelLink(label);
}
}
void X86_64Assembler::EmitLabelLink(Label* label) {
CHECK(!label->IsBound());
int position = buffer_.Size();
EmitInt32(label->position_);
label->LinkTo(position);
}
void X86_64Assembler::EmitGenericShift(bool wide,
int reg_or_opcode,
CpuRegister reg,
const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int8());
if (wide) {
EmitRex64(reg);
}
if (imm.value() == 1) {
EmitUint8(0xD1);
EmitOperand(reg_or_opcode, Operand(reg));
} else {
EmitUint8(0xC1);
EmitOperand(reg_or_opcode, Operand(reg));
EmitUint8(imm.value() & 0xFF);
}
}
void X86_64Assembler::EmitGenericShift(int reg_or_opcode,
CpuRegister operand,
CpuRegister shifter) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK_EQ(shifter.AsRegister(), RCX);
EmitUint8(0xD3);
EmitOperand(reg_or_opcode, Operand(operand));
}
void X86_64Assembler::EmitOptionalRex(bool force, bool w, bool r, bool x, bool b) {
// REX.WRXB
// W - 64-bit operand
// R - MODRM.reg
// X - SIB.index
// B - MODRM.rm/SIB.base
uint8_t rex = force ? 0x40 : 0;
if (w) {
rex |= 0x48; // REX.W000
}
if (r) {
rex |= 0x44; // REX.0R00
}
if (x) {
rex |= 0x42; // REX.00X0
}
if (b) {
rex |= 0x41; // REX.000B
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitOptionalRex32(CpuRegister reg) {
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, CpuRegister src) {
EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, XmmRegister src) {
EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, XmmRegister src) {
EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, CpuRegister src) {
EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(const Operand& operand) {
uint8_t rex = operand.rex();
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, const Operand& operand) {
uint8_t rex = operand.rex();
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, const Operand& operand) {
uint8_t rex = operand.rex();
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitRex64(CpuRegister reg) {
EmitOptionalRex(false, true, false, false, reg.NeedsRex());
}
void X86_64Assembler::EmitRex64(CpuRegister dst, CpuRegister src) {
EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitRex64(CpuRegister dst, const Operand& operand) {
uint8_t rex = 0x48 | operand.rex(); // REX.W000
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitOptionalByteRegNormalizingRex32(CpuRegister dst, CpuRegister src) {
EmitOptionalRex(true, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalByteRegNormalizingRex32(CpuRegister dst, const Operand& operand) {
uint8_t rex = 0x40 | operand.rex(); // REX.0000
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::InitializeFrameDescriptionEntry() {
WriteFDEHeader(&cfi_info_, true /* is_64bit */);
}
void X86_64Assembler::FinalizeFrameDescriptionEntry() {
WriteFDEAddressRange(&cfi_info_, buffer_.Size(), true /* is_64bit */);
PadCFI(&cfi_info_);
WriteCFILength(&cfi_info_, true /* is_64bit */);
}
constexpr size_t kFramePointerSize = 8;
void X86_64Assembler::BuildFrame(size_t frame_size, ManagedRegister method_reg,
const std::vector<ManagedRegister>& spill_regs,
const ManagedRegisterEntrySpills& entry_spills) {
cfi_cfa_offset_ = kFramePointerSize; // Only return address on stack
cfi_pc_ = buffer_.Size(); // Nothing emitted yet
DCHECK_EQ(cfi_pc_, 0U);
uint32_t reg_offset = 1;
CHECK_ALIGNED(frame_size, kStackAlignment);
int gpr_count = 0;
for (int i = spill_regs.size() - 1; i >= 0; --i) {
x86_64::X86_64ManagedRegister spill = spill_regs.at(i).AsX86_64();
if (spill.IsCpuRegister()) {
pushq(spill.AsCpuRegister());
gpr_count++;
// DW_CFA_advance_loc
DW_CFA_advance_loc(&cfi_info_, buffer_.Size() - cfi_pc_);
cfi_pc_ = buffer_.Size();
// DW_CFA_def_cfa_offset
cfi_cfa_offset_ += kFramePointerSize;
DW_CFA_def_cfa_offset(&cfi_info_, cfi_cfa_offset_);
// DW_CFA_offset reg offset
reg_offset++;
DW_CFA_offset(&cfi_info_, spill.DWARFRegId(), reg_offset);
}
}
// return address then method on stack
int64_t rest_of_frame = static_cast<int64_t>(frame_size)
- (gpr_count * kFramePointerSize)
- kFramePointerSize /*return address*/;
subq(CpuRegister(RSP), Immediate(rest_of_frame));
// DW_CFA_advance_loc
DW_CFA_advance_loc(&cfi_info_, buffer_.Size() - cfi_pc_);
cfi_pc_ = buffer_.Size();
// DW_CFA_def_cfa_offset
cfi_cfa_offset_ += rest_of_frame;
DW_CFA_def_cfa_offset(&cfi_info_, cfi_cfa_offset_);
// spill xmms
int64_t offset = rest_of_frame;
for (int i = spill_regs.size() - 1; i >= 0; --i) {
x86_64::X86_64ManagedRegister spill = spill_regs.at(i).AsX86_64();
if (spill.IsXmmRegister()) {
offset -= sizeof(double);
movsd(Address(CpuRegister(RSP), offset), spill.AsXmmRegister());
}
}
DCHECK_EQ(4U, sizeof(StackReference<mirror::ArtMethod>));
movl(Address(CpuRegister(RSP), 0), method_reg.AsX86_64().AsCpuRegister());
for (size_t i = 0; i < entry_spills.size(); ++i) {
ManagedRegisterSpill spill = entry_spills.at(i);
if (spill.AsX86_64().IsCpuRegister()) {
if (spill.getSize() == 8) {
movq(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()),
spill.AsX86_64().AsCpuRegister());
} else {
CHECK_EQ(spill.getSize(), 4);
movl(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()), spill.AsX86_64().AsCpuRegister());
}
} else {
if (spill.getSize() == 8) {
movsd(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()), spill.AsX86_64().AsXmmRegister());
} else {
CHECK_EQ(spill.getSize(), 4);
movss(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()), spill.AsX86_64().AsXmmRegister());
}
}
}
}
void X86_64Assembler::RemoveFrame(size_t frame_size,
const std::vector<ManagedRegister>& spill_regs) {
CHECK_ALIGNED(frame_size, kStackAlignment);
int gpr_count = 0;
// unspill xmms
int64_t offset = static_cast<int64_t>(frame_size) - (spill_regs.size() * kFramePointerSize) - 2 * kFramePointerSize;
for (size_t i = 0; i < spill_regs.size(); ++i) {
x86_64::X86_64ManagedRegister spill = spill_regs.at(i).AsX86_64();
if (spill.IsXmmRegister()) {
offset += sizeof(double);
movsd(spill.AsXmmRegister(), Address(CpuRegister(RSP), offset));
} else {
gpr_count++;
}
}
addq(CpuRegister(RSP), Immediate(static_cast<int64_t>(frame_size) - (gpr_count * kFramePointerSize) - kFramePointerSize));
for (size_t i = 0; i < spill_regs.size(); ++i) {
x86_64::X86_64ManagedRegister spill = spill_regs.at(i).AsX86_64();
if (spill.IsCpuRegister()) {
popq(spill.AsCpuRegister());
}
}
ret();
}
void X86_64Assembler::IncreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kStackAlignment);
addq(CpuRegister(RSP), Immediate(-static_cast<int64_t>(adjust)));
// DW_CFA_advance_loc
DW_CFA_advance_loc(&cfi_info_, buffer_.Size() - cfi_pc_);
cfi_pc_ = buffer_.Size();
// DW_CFA_def_cfa_offset
cfi_cfa_offset_ += adjust;
DW_CFA_def_cfa_offset(&cfi_info_, cfi_cfa_offset_);
}
void X86_64Assembler::DecreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kStackAlignment);
addq(CpuRegister(RSP), Immediate(adjust));
}
void X86_64Assembler::Store(FrameOffset offs, ManagedRegister msrc, size_t size) {
X86_64ManagedRegister src = msrc.AsX86_64();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCpuRegister()) {
if (size == 4) {
CHECK_EQ(4u, size);
movl(Address(CpuRegister(RSP), offs), src.AsCpuRegister());
} else {
CHECK_EQ(8u, size);
movq(Address(CpuRegister(RSP), offs), src.AsCpuRegister());
}
} else if (src.IsRegisterPair()) {
CHECK_EQ(0u, size);
movq(Address(CpuRegister(RSP), offs), src.AsRegisterPairLow());
movq(Address(CpuRegister(RSP), FrameOffset(offs.Int32Value()+4)),
src.AsRegisterPairHigh());
} else if (src.IsX87Register()) {
if (size == 4) {
fstps(Address(CpuRegister(RSP), offs));
} else {
fstpl(Address(CpuRegister(RSP), offs));
}
} else {
CHECK(src.IsXmmRegister());
if (size == 4) {
movss(Address(CpuRegister(RSP), offs), src.AsXmmRegister());
} else {
movsd(Address(CpuRegister(RSP), offs), src.AsXmmRegister());
}
}
}
void X86_64Assembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
X86_64ManagedRegister src = msrc.AsX86_64();
CHECK(src.IsCpuRegister());
movl(Address(CpuRegister(RSP), dest), src.AsCpuRegister());
}
void X86_64Assembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
X86_64ManagedRegister src = msrc.AsX86_64();
CHECK(src.IsCpuRegister());
movq(Address(CpuRegister(RSP), dest), src.AsCpuRegister());
}
void X86_64Assembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
ManagedRegister) {
movl(Address(CpuRegister(RSP), dest), Immediate(imm)); // TODO(64) movq?
}
void X86_64Assembler::StoreImmediateToThread64(ThreadOffset<8> dest, uint32_t imm,
ManagedRegister) {
gs()->movl(Address::Absolute(dest, true), Immediate(imm)); // TODO(64) movq?
}
void X86_64Assembler::StoreStackOffsetToThread64(ThreadOffset<8> thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), fr_offs));
gs()->movq(Address::Absolute(thr_offs, true), scratch.AsCpuRegister());
}
void X86_64Assembler::StoreStackPointerToThread64(ThreadOffset<8> thr_offs) {
gs()->movq(Address::Absolute(thr_offs, true), CpuRegister(RSP));
}
void X86_64Assembler::StoreSpanning(FrameOffset /*dst*/, ManagedRegister /*src*/,
FrameOffset /*in_off*/, ManagedRegister /*scratch*/) {
UNIMPLEMENTED(FATAL); // this case only currently exists for ARM
}
void X86_64Assembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
X86_64ManagedRegister dest = mdest.AsX86_64();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
if (size == 4) {
CHECK_EQ(4u, size);
movl(dest.AsCpuRegister(), Address(CpuRegister(RSP), src));
} else {
CHECK_EQ(8u, size);
movq(dest.AsCpuRegister(), Address(CpuRegister(RSP), src));
}
} else if (dest.IsRegisterPair()) {
CHECK_EQ(0u, size);
movq(dest.AsRegisterPairLow(), Address(CpuRegister(RSP), src));
movq(dest.AsRegisterPairHigh(), Address(CpuRegister(RSP), FrameOffset(src.Int32Value()+4)));
} else if (dest.IsX87Register()) {
if (size == 4) {
flds(Address(CpuRegister(RSP), src));
} else {
fldl(Address(CpuRegister(RSP), src));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
movss(dest.AsXmmRegister(), Address(CpuRegister(RSP), src));
} else {
movsd(dest.AsXmmRegister(), Address(CpuRegister(RSP), src));
}
}
}
void X86_64Assembler::LoadFromThread64(ManagedRegister mdest, ThreadOffset<8> src, size_t size) {
X86_64ManagedRegister dest = mdest.AsX86_64();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
CHECK_EQ(4u, size);
gs()->movl(dest.AsCpuRegister(), Address::Absolute(src, true));
} else if (dest.IsRegisterPair()) {
CHECK_EQ(8u, size);
gs()->movq(dest.AsRegisterPairLow(), Address::Absolute(src, true));
} else if (dest.IsX87Register()) {
if (size == 4) {
gs()->flds(Address::Absolute(src, true));
} else {
gs()->fldl(Address::Absolute(src, true));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
gs()->movss(dest.AsXmmRegister(), Address::Absolute(src, true));
} else {
gs()->movsd(dest.AsXmmRegister(), Address::Absolute(src, true));
}
}
}
void X86_64Assembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(dest.IsCpuRegister());
movq(dest.AsCpuRegister(), Address(CpuRegister(RSP), src));
}
void X86_64Assembler::LoadRef(ManagedRegister mdest, ManagedRegister base,
MemberOffset offs) {
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(dest.IsCpuRegister() && dest.IsCpuRegister());
movl(dest.AsCpuRegister(), Address(base.AsX86_64().AsCpuRegister(), offs));
if (kPoisonHeapReferences) {
negl(dest.AsCpuRegister());
}
}
void X86_64Assembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base,
Offset offs) {
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(dest.IsCpuRegister() && dest.IsCpuRegister());
movq(dest.AsCpuRegister(), Address(base.AsX86_64().AsCpuRegister(), offs));
}
void X86_64Assembler::LoadRawPtrFromThread64(ManagedRegister mdest, ThreadOffset<8> offs) {
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(dest.IsCpuRegister());
gs()->movq(dest.AsCpuRegister(), Address::Absolute(offs, true));
}
void X86_64Assembler::SignExtend(ManagedRegister mreg, size_t size) {
X86_64ManagedRegister reg = mreg.AsX86_64();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
movsxb(reg.AsCpuRegister(), reg.AsCpuRegister());
} else {
movsxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86_64Assembler::ZeroExtend(ManagedRegister mreg, size_t size) {
X86_64ManagedRegister reg = mreg.AsX86_64();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
movzxb(reg.AsCpuRegister(), reg.AsCpuRegister());
} else {
movzxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86_64Assembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
X86_64ManagedRegister dest = mdest.AsX86_64();
X86_64ManagedRegister src = msrc.AsX86_64();
if (!dest.Equals(src)) {
if (dest.IsCpuRegister() && src.IsCpuRegister()) {
movq(dest.AsCpuRegister(), src.AsCpuRegister());
} else if (src.IsX87Register() && dest.IsXmmRegister()) {
// Pass via stack and pop X87 register
subl(CpuRegister(RSP), Immediate(16));
if (size == 4) {
CHECK_EQ(src.AsX87Register(), ST0);
fstps(Address(CpuRegister(RSP), 0));
movss(dest.AsXmmRegister(), Address(CpuRegister(RSP), 0));
} else {
CHECK_EQ(src.AsX87Register(), ST0);
fstpl(Address(CpuRegister(RSP), 0));
movsd(dest.AsXmmRegister(), Address(CpuRegister(RSP), 0));
}
addq(CpuRegister(RSP), Immediate(16));
} else {
// TODO: x87, SSE
UNIMPLEMENTED(FATAL) << ": Move " << dest << ", " << src;
}
}
}
void X86_64Assembler::CopyRef(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
movl(scratch.AsCpuRegister(), Address(CpuRegister(RSP), src));
movl(Address(CpuRegister(RSP), dest), scratch.AsCpuRegister());
}
void X86_64Assembler::CopyRawPtrFromThread64(FrameOffset fr_offs,
ThreadOffset<8> thr_offs,
ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
gs()->movq(scratch.AsCpuRegister(), Address::Absolute(thr_offs, true));
Store(fr_offs, scratch, 8);
}
void X86_64Assembler::CopyRawPtrToThread64(ThreadOffset<8> thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
Load(scratch, fr_offs, 8);
gs()->movq(Address::Absolute(thr_offs, true), scratch.AsCpuRegister());
}
void X86_64Assembler::Copy(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch,
size_t size) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
if (scratch.IsCpuRegister() && size == 8) {
Load(scratch, src, 4);
Store(dest, scratch, 4);
Load(scratch, FrameOffset(src.Int32Value() + 4), 4);
Store(FrameOffset(dest.Int32Value() + 4), scratch, 4);
} else {
Load(scratch, src, size);
Store(dest, scratch, size);
}
}
void X86_64Assembler::Copy(FrameOffset /*dst*/, ManagedRegister /*src_base*/, Offset /*src_offset*/,
ManagedRegister /*scratch*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void X86_64Assembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
ManagedRegister scratch, size_t size) {
CHECK(scratch.IsNoRegister());
CHECK_EQ(size, 4u);
pushq(Address(CpuRegister(RSP), src));
popq(Address(dest_base.AsX86_64().AsCpuRegister(), dest_offset));
}
void X86_64Assembler::Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset,
ManagedRegister mscratch, size_t size) {
CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister();
CHECK_EQ(size, 4u);
movq(scratch, Address(CpuRegister(RSP), src_base));
movq(scratch, Address(scratch, src_offset));
movq(Address(CpuRegister(RSP), dest), scratch);
}
void X86_64Assembler::Copy(ManagedRegister dest, Offset dest_offset,
ManagedRegister src, Offset src_offset,
ManagedRegister scratch, size_t size) {
CHECK_EQ(size, 4u);
CHECK(scratch.IsNoRegister());
pushq(Address(src.AsX86_64().AsCpuRegister(), src_offset));
popq(Address(dest.AsX86_64().AsCpuRegister(), dest_offset));
}
void X86_64Assembler::Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
ManagedRegister mscratch, size_t size) {
CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister();
CHECK_EQ(size, 4u);
CHECK_EQ(dest.Int32Value(), src.Int32Value());
movq(scratch, Address(CpuRegister(RSP), src));
pushq(Address(scratch, src_offset));
popq(Address(scratch, dest_offset));
}
void X86_64Assembler::MemoryBarrier(ManagedRegister) {
#if ANDROID_SMP != 0
mfence();
#endif
}
void X86_64Assembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
FrameOffset handle_scope_offset,
ManagedRegister min_reg, bool null_allowed) {
X86_64ManagedRegister out_reg = mout_reg.AsX86_64();
X86_64ManagedRegister in_reg = min_reg.AsX86_64();
if (in_reg.IsNoRegister()) { // TODO(64): && null_allowed
// Use out_reg as indicator of NULL
in_reg = out_reg;
// TODO: movzwl
movl(in_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
}
CHECK(in_reg.IsCpuRegister());
CHECK(out_reg.IsCpuRegister());
VerifyObject(in_reg, null_allowed);
if (null_allowed) {
Label null_arg;
if (!out_reg.Equals(in_reg)) {
xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
j(kZero, &null_arg);
leaq(out_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
Bind(&null_arg);
} else {
leaq(out_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
}
}
void X86_64Assembler::CreateHandleScopeEntry(FrameOffset out_off,
FrameOffset handle_scope_offset,
ManagedRegister mscratch,
bool null_allowed) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
if (null_allowed) {
Label null_arg;
movl(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
testl(scratch.AsCpuRegister(), scratch.AsCpuRegister());
j(kZero, &null_arg);
leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
Bind(&null_arg);
} else {
leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
}
Store(out_off, scratch, 8);
}
// Given a handle scope entry, load the associated reference.
void X86_64Assembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
ManagedRegister min_reg) {
X86_64ManagedRegister out_reg = mout_reg.AsX86_64();
X86_64ManagedRegister in_reg = min_reg.AsX86_64();
CHECK(out_reg.IsCpuRegister());
CHECK(in_reg.IsCpuRegister());
Label null_arg;
if (!out_reg.Equals(in_reg)) {
xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
j(kZero, &null_arg);
movq(out_reg.AsCpuRegister(), Address(in_reg.AsCpuRegister(), 0));
Bind(&null_arg);
}
void X86_64Assembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86_64Assembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86_64Assembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister) {
X86_64ManagedRegister base = mbase.AsX86_64();
CHECK(base.IsCpuRegister());
call(Address(base.AsCpuRegister(), offset.Int32Value()));
// TODO: place reference map on call
}
void X86_64Assembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister();
movl(scratch, Address(CpuRegister(RSP), base));
call(Address(scratch, offset));
}
void X86_64Assembler::CallFromThread64(ThreadOffset<8> offset, ManagedRegister /*mscratch*/) {
gs()->call(Address::Absolute(offset, true));
}
void X86_64Assembler::GetCurrentThread(ManagedRegister tr) {
gs()->movq(tr.AsX86_64().AsCpuRegister(), Address::Absolute(Thread::SelfOffset<8>(), true));
}
void X86_64Assembler::GetCurrentThread(FrameOffset offset, ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
gs()->movq(scratch.AsCpuRegister(), Address::Absolute(Thread::SelfOffset<8>(), true));
movq(Address(CpuRegister(RSP), offset), scratch.AsCpuRegister());
}
// Slowpath entered when Thread::Current()->_exception is non-null
class X86_64ExceptionSlowPath FINAL : public SlowPath {
public:
explicit X86_64ExceptionSlowPath(size_t stack_adjust) : stack_adjust_(stack_adjust) {}
virtual void Emit(Assembler *sp_asm) OVERRIDE;
private:
const size_t stack_adjust_;
};
void X86_64Assembler::ExceptionPoll(ManagedRegister /*scratch*/, size_t stack_adjust) {
X86_64ExceptionSlowPath* slow = new X86_64ExceptionSlowPath(stack_adjust);
buffer_.EnqueueSlowPath(slow);
gs()->cmpl(Address::Absolute(Thread::ExceptionOffset<8>(), true), Immediate(0));
j(kNotEqual, slow->Entry());
}
void X86_64ExceptionSlowPath::Emit(Assembler *sasm) {
X86_64Assembler* sp_asm = down_cast<X86_64Assembler*>(sasm);
#define __ sp_asm->
__ Bind(&entry_);
// Note: the return value is dead
if (stack_adjust_ != 0) { // Fix up the frame.
__ DecreaseFrameSize(stack_adjust_);
}
// Pass exception as argument in RDI
__ gs()->movq(CpuRegister(RDI), Address::Absolute(Thread::ExceptionOffset<8>(), true));
__ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(8, pDeliverException), true));
// this call should never return
__ int3();
#undef __
}
} // namespace x86_64
} // namespace art