| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_DEX_MIR_GRAPH_H_ |
| #define ART_COMPILER_DEX_MIR_GRAPH_H_ |
| |
| #include <stdint.h> |
| |
| #include "dex_file.h" |
| #include "dex_instruction.h" |
| #include "compiler_ir.h" |
| #include "invoke_type.h" |
| #include "mir_field_info.h" |
| #include "mir_method_info.h" |
| #include "utils/arena_bit_vector.h" |
| #include "utils/growable_array.h" |
| #include "reg_storage.h" |
| |
| namespace art { |
| |
| enum InstructionAnalysisAttributePos { |
| kUninterestingOp = 0, |
| kArithmeticOp, |
| kFPOp, |
| kSingleOp, |
| kDoubleOp, |
| kIntOp, |
| kLongOp, |
| kBranchOp, |
| kInvokeOp, |
| kArrayOp, |
| kHeavyweightOp, |
| kSimpleConstOp, |
| kMoveOp, |
| kSwitch |
| }; |
| |
| #define AN_NONE (1 << kUninterestingOp) |
| #define AN_MATH (1 << kArithmeticOp) |
| #define AN_FP (1 << kFPOp) |
| #define AN_LONG (1 << kLongOp) |
| #define AN_INT (1 << kIntOp) |
| #define AN_SINGLE (1 << kSingleOp) |
| #define AN_DOUBLE (1 << kDoubleOp) |
| #define AN_FLOATMATH (1 << kFPOp) |
| #define AN_BRANCH (1 << kBranchOp) |
| #define AN_INVOKE (1 << kInvokeOp) |
| #define AN_ARRAYOP (1 << kArrayOp) |
| #define AN_HEAVYWEIGHT (1 << kHeavyweightOp) |
| #define AN_SIMPLECONST (1 << kSimpleConstOp) |
| #define AN_MOVE (1 << kMoveOp) |
| #define AN_SWITCH (1 << kSwitch) |
| #define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST) |
| |
| enum DataFlowAttributePos { |
| kUA = 0, |
| kUB, |
| kUC, |
| kAWide, |
| kBWide, |
| kCWide, |
| kDA, |
| kIsMove, |
| kSetsConst, |
| kFormat35c, |
| kFormat3rc, |
| kNullCheckSrc0, // Null check of uses[0]. |
| kNullCheckSrc1, // Null check of uses[1]. |
| kNullCheckSrc2, // Null check of uses[2]. |
| kNullCheckOut0, // Null check out outgoing arg0. |
| kDstNonNull, // May assume dst is non-null. |
| kRetNonNull, // May assume retval is non-null. |
| kNullTransferSrc0, // Object copy src[0] -> dst. |
| kNullTransferSrcN, // Phi null check state transfer. |
| kRangeCheckSrc1, // Range check of uses[1]. |
| kRangeCheckSrc2, // Range check of uses[2]. |
| kRangeCheckSrc3, // Range check of uses[3]. |
| kFPA, |
| kFPB, |
| kFPC, |
| kCoreA, |
| kCoreB, |
| kCoreC, |
| kRefA, |
| kRefB, |
| kRefC, |
| kUsesMethodStar, // Implicit use of Method*. |
| kUsesIField, // Accesses an instance field (IGET/IPUT). |
| kUsesSField, // Accesses a static field (SGET/SPUT). |
| kDoLVN, // Worth computing local value numbers. |
| }; |
| |
| #define DF_NOP UINT64_C(0) |
| #define DF_UA (UINT64_C(1) << kUA) |
| #define DF_UB (UINT64_C(1) << kUB) |
| #define DF_UC (UINT64_C(1) << kUC) |
| #define DF_A_WIDE (UINT64_C(1) << kAWide) |
| #define DF_B_WIDE (UINT64_C(1) << kBWide) |
| #define DF_C_WIDE (UINT64_C(1) << kCWide) |
| #define DF_DA (UINT64_C(1) << kDA) |
| #define DF_IS_MOVE (UINT64_C(1) << kIsMove) |
| #define DF_SETS_CONST (UINT64_C(1) << kSetsConst) |
| #define DF_FORMAT_35C (UINT64_C(1) << kFormat35c) |
| #define DF_FORMAT_3RC (UINT64_C(1) << kFormat3rc) |
| #define DF_NULL_CHK_0 (UINT64_C(1) << kNullCheckSrc0) |
| #define DF_NULL_CHK_1 (UINT64_C(1) << kNullCheckSrc1) |
| #define DF_NULL_CHK_2 (UINT64_C(1) << kNullCheckSrc2) |
| #define DF_NULL_CHK_OUT0 (UINT64_C(1) << kNullCheckOut0) |
| #define DF_NON_NULL_DST (UINT64_C(1) << kDstNonNull) |
| #define DF_NON_NULL_RET (UINT64_C(1) << kRetNonNull) |
| #define DF_NULL_TRANSFER_0 (UINT64_C(1) << kNullTransferSrc0) |
| #define DF_NULL_TRANSFER_N (UINT64_C(1) << kNullTransferSrcN) |
| #define DF_RANGE_CHK_1 (UINT64_C(1) << kRangeCheckSrc1) |
| #define DF_RANGE_CHK_2 (UINT64_C(1) << kRangeCheckSrc2) |
| #define DF_RANGE_CHK_3 (UINT64_C(1) << kRangeCheckSrc3) |
| #define DF_FP_A (UINT64_C(1) << kFPA) |
| #define DF_FP_B (UINT64_C(1) << kFPB) |
| #define DF_FP_C (UINT64_C(1) << kFPC) |
| #define DF_CORE_A (UINT64_C(1) << kCoreA) |
| #define DF_CORE_B (UINT64_C(1) << kCoreB) |
| #define DF_CORE_C (UINT64_C(1) << kCoreC) |
| #define DF_REF_A (UINT64_C(1) << kRefA) |
| #define DF_REF_B (UINT64_C(1) << kRefB) |
| #define DF_REF_C (UINT64_C(1) << kRefC) |
| #define DF_UMS (UINT64_C(1) << kUsesMethodStar) |
| #define DF_IFIELD (UINT64_C(1) << kUsesIField) |
| #define DF_SFIELD (UINT64_C(1) << kUsesSField) |
| #define DF_LVN (UINT64_C(1) << kDoLVN) |
| |
| #define DF_HAS_USES (DF_UA | DF_UB | DF_UC) |
| |
| #define DF_HAS_DEFS (DF_DA) |
| |
| #define DF_HAS_NULL_CHKS (DF_NULL_CHK_0 | \ |
| DF_NULL_CHK_1 | \ |
| DF_NULL_CHK_2 | \ |
| DF_NULL_CHK_OUT0) |
| |
| #define DF_HAS_RANGE_CHKS (DF_RANGE_CHK_1 | \ |
| DF_RANGE_CHK_2 | \ |
| DF_RANGE_CHK_3) |
| |
| #define DF_HAS_NR_CHKS (DF_HAS_NULL_CHKS | \ |
| DF_HAS_RANGE_CHKS) |
| |
| #define DF_A_IS_REG (DF_UA | DF_DA) |
| #define DF_B_IS_REG (DF_UB) |
| #define DF_C_IS_REG (DF_UC) |
| #define DF_IS_GETTER_OR_SETTER (DF_IS_GETTER | DF_IS_SETTER) |
| #define DF_USES_FP (DF_FP_A | DF_FP_B | DF_FP_C) |
| #define DF_NULL_TRANSFER (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N) |
| enum OatMethodAttributes { |
| kIsLeaf, // Method is leaf. |
| kHasLoop, // Method contains simple loop. |
| }; |
| |
| #define METHOD_IS_LEAF (1 << kIsLeaf) |
| #define METHOD_HAS_LOOP (1 << kHasLoop) |
| |
| // Minimum field size to contain Dalvik v_reg number. |
| #define VREG_NUM_WIDTH 16 |
| |
| #define INVALID_SREG (-1) |
| #define INVALID_VREG (0xFFFFU) |
| #define INVALID_OFFSET (0xDEADF00FU) |
| |
| #define MIR_IGNORE_NULL_CHECK (1 << kMIRIgnoreNullCheck) |
| #define MIR_NULL_CHECK_ONLY (1 << kMIRNullCheckOnly) |
| #define MIR_IGNORE_RANGE_CHECK (1 << kMIRIgnoreRangeCheck) |
| #define MIR_RANGE_CHECK_ONLY (1 << kMIRRangeCheckOnly) |
| #define MIR_IGNORE_CLINIT_CHECK (1 << kMIRIgnoreClInitCheck) |
| #define MIR_INLINED (1 << kMIRInlined) |
| #define MIR_INLINED_PRED (1 << kMIRInlinedPred) |
| #define MIR_CALLEE (1 << kMIRCallee) |
| #define MIR_IGNORE_SUSPEND_CHECK (1 << kMIRIgnoreSuspendCheck) |
| #define MIR_DUP (1 << kMIRDup) |
| |
| #define BLOCK_NAME_LEN 80 |
| |
| typedef uint16_t BasicBlockId; |
| static const BasicBlockId NullBasicBlockId = 0; |
| |
| /* |
| * In general, vreg/sreg describe Dalvik registers that originated with dx. However, |
| * it is useful to have compiler-generated temporary registers and have them treated |
| * in the same manner as dx-generated virtual registers. This struct records the SSA |
| * name of compiler-introduced temporaries. |
| */ |
| struct CompilerTemp { |
| int32_t v_reg; // Virtual register number for temporary. |
| int32_t s_reg_low; // SSA name for low Dalvik word. |
| }; |
| |
| enum CompilerTempType { |
| kCompilerTempVR, // A virtual register temporary. |
| kCompilerTempSpecialMethodPtr, // Temporary that keeps track of current method pointer. |
| }; |
| |
| // When debug option enabled, records effectiveness of null and range check elimination. |
| struct Checkstats { |
| int32_t null_checks; |
| int32_t null_checks_eliminated; |
| int32_t range_checks; |
| int32_t range_checks_eliminated; |
| }; |
| |
| // Dataflow attributes of a basic block. |
| struct BasicBlockDataFlow { |
| ArenaBitVector* use_v; |
| ArenaBitVector* def_v; |
| ArenaBitVector* live_in_v; |
| ArenaBitVector* phi_v; |
| int32_t* vreg_to_ssa_map_exit; |
| ArenaBitVector* ending_check_v; // For null check and class init check elimination. |
| }; |
| |
| /* |
| * Normalized use/def for a MIR operation using SSA names rather than vregs. Note that |
| * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit |
| * vregs. For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5). |
| * Following SSA renaming, this is the primary struct used by code generators to locate |
| * operand and result registers. This is a somewhat confusing and unhelpful convention that |
| * we may want to revisit in the future. |
| * |
| * TODO: |
| * 1. Add accessors for uses/defs and make data private |
| * 2. Change fp_use/fp_def to a bit array (could help memory usage) |
| * 3. Combine array storage into internal array and handled via accessors from 1. |
| */ |
| struct SSARepresentation { |
| int32_t* uses; |
| bool* fp_use; |
| int32_t* defs; |
| bool* fp_def; |
| int16_t num_uses_allocated; |
| int16_t num_defs_allocated; |
| int16_t num_uses; |
| int16_t num_defs; |
| |
| static uint32_t GetStartUseIndex(Instruction::Code opcode); |
| }; |
| |
| /* |
| * The Midlevel Intermediate Representation node, which may be largely considered a |
| * wrapper around a Dalvik byte code. |
| */ |
| struct MIR { |
| /* |
| * TODO: remove embedded DecodedInstruction to save space, keeping only opcode. Recover |
| * additional fields on as-needed basis. Question: how to support MIR Pseudo-ops; probably |
| * need to carry aux data pointer. |
| */ |
| struct DecodedInstruction { |
| uint32_t vA; |
| uint32_t vB; |
| uint64_t vB_wide; /* for k51l */ |
| uint32_t vC; |
| uint32_t arg[5]; /* vC/D/E/F/G in invoke or filled-new-array */ |
| Instruction::Code opcode; |
| |
| explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) { |
| } |
| |
| /* |
| * Given a decoded instruction representing a const bytecode, it updates |
| * the out arguments with proper values as dictated by the constant bytecode. |
| */ |
| bool GetConstant(int64_t* ptr_value, bool* wide) const; |
| |
| bool IsStore() const { |
| return ((Instruction::FlagsOf(opcode) & Instruction::kStore) == Instruction::kStore); |
| } |
| |
| bool IsLoad() const { |
| return ((Instruction::FlagsOf(opcode) & Instruction::kLoad) == Instruction::kLoad); |
| } |
| |
| bool IsConditionalBranch() const { |
| return (Instruction::FlagsOf(opcode) == (Instruction::kContinue | Instruction::kBranch)); |
| } |
| |
| /** |
| * @brief Is the register C component of the decoded instruction a constant? |
| */ |
| bool IsCFieldOrConstant() const { |
| return ((Instruction::FlagsOf(opcode) & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant); |
| } |
| |
| /** |
| * @brief Is the register C component of the decoded instruction a constant? |
| */ |
| bool IsBFieldOrConstant() const { |
| return ((Instruction::FlagsOf(opcode) & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant); |
| } |
| |
| bool IsCast() const { |
| return ((Instruction::FlagsOf(opcode) & Instruction::kCast) == Instruction::kCast); |
| } |
| |
| /** |
| * @brief Does the instruction clobber memory? |
| * @details Clobber means that the instruction changes the memory not in a punctual way. |
| * Therefore any supposition on memory aliasing or memory contents should be disregarded |
| * when crossing such an instruction. |
| */ |
| bool Clobbers() const { |
| return ((Instruction::FlagsOf(opcode) & Instruction::kClobber) == Instruction::kClobber); |
| } |
| |
| bool IsLinear() const { |
| return (Instruction::FlagsOf(opcode) & (Instruction::kAdd | Instruction::kSubtract)) != 0; |
| } |
| } dalvikInsn; |
| |
| NarrowDexOffset offset; // Offset of the instruction in code units. |
| uint16_t optimization_flags; |
| int16_t m_unit_index; // From which method was this MIR included |
| BasicBlockId bb; |
| MIR* next; |
| SSARepresentation* ssa_rep; |
| union { |
| // Incoming edges for phi node. |
| BasicBlockId* phi_incoming; |
| // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction. |
| MIR* throw_insn; |
| // Branch condition for fused cmp or select. |
| ConditionCode ccode; |
| // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on |
| // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K. |
| uint32_t ifield_lowering_info; |
| // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on |
| // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K. |
| uint32_t sfield_lowering_info; |
| // INVOKE data index, points to MIRGraph::method_lowering_infos_. |
| uint32_t method_lowering_info; |
| } meta; |
| |
| explicit MIR():offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId), |
| next(nullptr), ssa_rep(nullptr) { |
| memset(&meta, 0, sizeof(meta)); |
| } |
| |
| uint32_t GetStartUseIndex() const { |
| return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode); |
| } |
| |
| MIR* Copy(CompilationUnit *c_unit); |
| MIR* Copy(MIRGraph* mir_Graph); |
| |
| static void* operator new(size_t size, ArenaAllocator* arena) { |
| return arena->Alloc(sizeof(MIR), kArenaAllocMIR); |
| } |
| static void operator delete(void* p) {} // Nop. |
| }; |
| |
| struct SuccessorBlockInfo; |
| |
| struct BasicBlock { |
| BasicBlockId id; |
| BasicBlockId dfs_id; |
| NarrowDexOffset start_offset; // Offset in code units. |
| BasicBlockId fall_through; |
| BasicBlockId taken; |
| BasicBlockId i_dom; // Immediate dominator. |
| uint16_t nesting_depth; |
| BBType block_type:4; |
| BlockListType successor_block_list_type:4; |
| bool visited:1; |
| bool hidden:1; |
| bool catch_entry:1; |
| bool explicit_throw:1; |
| bool conditional_branch:1; |
| bool terminated_by_return:1; // Block ends with a Dalvik return opcode. |
| bool dominates_return:1; // Is a member of return extended basic block. |
| bool use_lvn:1; // Run local value numbering on this block. |
| MIR* first_mir_insn; |
| MIR* last_mir_insn; |
| BasicBlockDataFlow* data_flow_info; |
| ArenaBitVector* dominators; |
| ArenaBitVector* i_dominated; // Set nodes being immediately dominated. |
| ArenaBitVector* dom_frontier; // Dominance frontier. |
| GrowableArray<BasicBlockId>* predecessors; |
| GrowableArray<SuccessorBlockInfo*>* successor_blocks; |
| |
| void AppendMIR(MIR* mir); |
| void AppendMIRList(MIR* first_list_mir, MIR* last_list_mir); |
| void AppendMIRList(const std::vector<MIR*>& insns); |
| void PrependMIR(MIR* mir); |
| void PrependMIRList(MIR* first_list_mir, MIR* last_list_mir); |
| void PrependMIRList(const std::vector<MIR*>& to_add); |
| void InsertMIRAfter(MIR* current_mir, MIR* new_mir); |
| void InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir); |
| MIR* FindPreviousMIR(MIR* mir); |
| void InsertMIRBefore(MIR* insert_before, MIR* list); |
| void InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir); |
| bool RemoveMIR(MIR* mir); |
| bool RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir); |
| |
| BasicBlock* Copy(CompilationUnit* c_unit); |
| BasicBlock* Copy(MIRGraph* mir_graph); |
| |
| /** |
| * @brief Reset the optimization_flags field of each MIR. |
| */ |
| void ResetOptimizationFlags(uint16_t reset_flags); |
| |
| /** |
| * @brief Hide the BasicBlock. |
| * @details Set it to kDalvikByteCode, set hidden to true, remove all MIRs, |
| * remove itself from any predecessor edges, remove itself from any |
| * child's predecessor growable array. |
| */ |
| void Hide(CompilationUnit* c_unit); |
| |
| /** |
| * @brief Is ssa_reg the last SSA definition of that VR in the block? |
| */ |
| bool IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg); |
| |
| /** |
| * @brief Replace the edge going to old_bb to now go towards new_bb. |
| */ |
| bool ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb); |
| |
| /** |
| * @brief Update the predecessor growable array from old_pred to new_pred. |
| */ |
| void UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred); |
| |
| /** |
| * @brief Used to obtain the next MIR that follows unconditionally. |
| * @details The implementation does not guarantee that a MIR does not |
| * follow even if this method returns nullptr. |
| * @param mir_graph the MIRGraph. |
| * @param current The MIR for which to find an unconditional follower. |
| * @return Returns the following MIR if one can be found. |
| */ |
| MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current); |
| bool IsExceptionBlock() const; |
| |
| static void* operator new(size_t size, ArenaAllocator* arena) { |
| return arena->Alloc(sizeof(BasicBlock), kArenaAllocBB); |
| } |
| static void operator delete(void* p) {} // Nop. |
| }; |
| |
| /* |
| * The "blocks" field in "successor_block_list" points to an array of elements with the type |
| * "SuccessorBlockInfo". For catch blocks, key is type index for the exception. For switch |
| * blocks, key is the case value. |
| */ |
| struct SuccessorBlockInfo { |
| BasicBlockId block; |
| int key; |
| }; |
| |
| /** |
| * @class ChildBlockIterator |
| * @brief Enable an easy iteration of the children. |
| */ |
| class ChildBlockIterator { |
| public: |
| /** |
| * @brief Constructs a child iterator. |
| * @param bb The basic whose children we need to iterate through. |
| * @param mir_graph The MIRGraph used to get the basic block during iteration. |
| */ |
| ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph); |
| BasicBlock* Next(); |
| |
| private: |
| BasicBlock* basic_block_; |
| MIRGraph* mir_graph_; |
| bool visited_fallthrough_; |
| bool visited_taken_; |
| bool have_successors_; |
| GrowableArray<SuccessorBlockInfo*>::Iterator successor_iter_; |
| }; |
| |
| /* |
| * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes |
| * the type of an SSA name (and, can also be used by code generators to record where the |
| * value is located (i.e. - physical register, frame, spill, etc.). For each SSA name (SReg) |
| * there is a RegLocation. |
| * A note on SSA names: |
| * o SSA names for Dalvik vRegs v0..vN will be assigned 0..N. These represent the "vN_0" |
| * names. Negative SSA names represent special values not present in the Dalvik byte code. |
| * For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the |
| * the Method pointer. SSA names < -2 are reserved for future use. |
| * o The vN_0 names for non-argument Dalvik should in practice never be used (as they would |
| * represent the read of an undefined local variable). The first definition of the |
| * underlying Dalvik vReg will result in a vN_1 name. |
| * |
| * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation. With |
| * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout. |
| */ |
| struct RegLocation { |
| RegLocationType location:3; |
| unsigned wide:1; |
| unsigned defined:1; // Do we know the type? |
| unsigned is_const:1; // Constant, value in mir_graph->constant_values[]. |
| unsigned fp:1; // Floating point? |
| unsigned core:1; // Non-floating point? |
| unsigned ref:1; // Something GC cares about. |
| unsigned high_word:1; // High word of pair? |
| unsigned home:1; // Does this represent the home location? |
| RegStorage reg; // Encoded physical registers. |
| int16_t s_reg_low; // SSA name for low Dalvik word. |
| int16_t orig_sreg; // TODO: remove after Bitcode gen complete |
| // and consolidate usage w/ s_reg_low. |
| }; |
| |
| /* |
| * Collection of information describing an invoke, and the destination of |
| * the subsequent MOVE_RESULT (if applicable). Collected as a unit to enable |
| * more efficient invoke code generation. |
| */ |
| struct CallInfo { |
| int num_arg_words; // Note: word count, not arg count. |
| RegLocation* args; // One for each word of arguments. |
| RegLocation result; // Eventual target of MOVE_RESULT. |
| int opt_flags; |
| InvokeType type; |
| uint32_t dex_idx; |
| uint32_t index; // Method idx for invokes, type idx for FilledNewArray. |
| uintptr_t direct_code; |
| uintptr_t direct_method; |
| RegLocation target; // Target of following move_result. |
| bool skip_this; |
| bool is_range; |
| DexOffset offset; // Offset in code units. |
| MIR* mir; |
| }; |
| |
| |
| const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG, |
| INVALID_SREG}; |
| |
| class MIRGraph { |
| public: |
| MIRGraph(CompilationUnit* cu, ArenaAllocator* arena); |
| ~MIRGraph(); |
| |
| /* |
| * Examine the graph to determine whether it's worthwile to spend the time compiling |
| * this method. |
| */ |
| bool SkipCompilation(); |
| |
| /* |
| * Should we skip the compilation of this method based on its name? |
| */ |
| bool SkipCompilation(const std::string& methodname); |
| |
| /* |
| * Parse dex method and add MIR at current insert point. Returns id (which is |
| * actually the index of the method in the m_units_ array). |
| */ |
| void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags, |
| InvokeType invoke_type, uint16_t class_def_idx, |
| uint32_t method_idx, jobject class_loader, const DexFile& dex_file); |
| |
| /* Find existing block */ |
| BasicBlock* FindBlock(DexOffset code_offset) { |
| return FindBlock(code_offset, false, false, NULL); |
| } |
| |
| const uint16_t* GetCurrentInsns() const { |
| return current_code_item_->insns_; |
| } |
| |
| const uint16_t* GetInsns(int m_unit_index) const { |
| return m_units_[m_unit_index]->GetCodeItem()->insns_; |
| } |
| |
| int GetNumBlocks() const { |
| return num_blocks_; |
| } |
| |
| size_t GetNumDalvikInsns() const { |
| return cu_->code_item->insns_size_in_code_units_; |
| } |
| |
| ArenaBitVector* GetTryBlockAddr() const { |
| return try_block_addr_; |
| } |
| |
| BasicBlock* GetEntryBlock() const { |
| return entry_block_; |
| } |
| |
| BasicBlock* GetExitBlock() const { |
| return exit_block_; |
| } |
| |
| BasicBlock* GetBasicBlock(int block_id) const { |
| return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id); |
| } |
| |
| size_t GetBasicBlockListCount() const { |
| return block_list_.Size(); |
| } |
| |
| GrowableArray<BasicBlock*>* GetBlockList() { |
| return &block_list_; |
| } |
| |
| GrowableArray<BasicBlockId>* GetDfsOrder() { |
| return dfs_order_; |
| } |
| |
| GrowableArray<BasicBlockId>* GetDfsPostOrder() { |
| return dfs_post_order_; |
| } |
| |
| GrowableArray<BasicBlockId>* GetDomPostOrder() { |
| return dom_post_order_traversal_; |
| } |
| |
| int GetDefCount() const { |
| return def_count_; |
| } |
| |
| ArenaAllocator* GetArena() { |
| return arena_; |
| } |
| |
| void EnableOpcodeCounting() { |
| opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int), |
| kArenaAllocMisc)); |
| } |
| |
| void ShowOpcodeStats(); |
| |
| DexCompilationUnit* GetCurrentDexCompilationUnit() const { |
| return m_units_[current_method_]; |
| } |
| |
| /** |
| * @brief Dump a CFG into a dot file format. |
| * @param dir_prefix the directory the file will be created in. |
| * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks. |
| * @param suffix does the filename require a suffix or not (default = nullptr). |
| */ |
| void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr); |
| |
| bool HasFieldAccess() const { |
| return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u; |
| } |
| |
| bool HasStaticFieldAccess() const { |
| return (merged_df_flags_ & DF_SFIELD) != 0u; |
| } |
| |
| bool HasInvokes() const { |
| // NOTE: These formats include the rare filled-new-array/range. |
| return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u; |
| } |
| |
| void DoCacheFieldLoweringInfo(); |
| |
| const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const { |
| DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size()); |
| return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info]; |
| } |
| |
| const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const { |
| DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size()); |
| return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info]; |
| } |
| |
| void DoCacheMethodLoweringInfo(); |
| |
| const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) { |
| DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size()); |
| return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info]; |
| } |
| |
| void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput); |
| |
| void InitRegLocations(); |
| |
| void RemapRegLocations(); |
| |
| void DumpRegLocTable(RegLocation* table, int count); |
| |
| void BasicBlockOptimization(); |
| |
| GrowableArray<BasicBlockId>* GetTopologicalSortOrder() { |
| return topological_order_; |
| } |
| |
| bool IsConst(int32_t s_reg) const { |
| return is_constant_v_->IsBitSet(s_reg); |
| } |
| |
| bool IsConst(RegLocation loc) const { |
| return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg); |
| } |
| |
| int32_t ConstantValue(RegLocation loc) const { |
| DCHECK(IsConst(loc)); |
| return constant_values_[loc.orig_sreg]; |
| } |
| |
| int32_t ConstantValue(int32_t s_reg) const { |
| DCHECK(IsConst(s_reg)); |
| return constant_values_[s_reg]; |
| } |
| |
| int64_t ConstantValueWide(RegLocation loc) const { |
| DCHECK(IsConst(loc)); |
| return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) | |
| Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg])); |
| } |
| |
| bool IsConstantNullRef(RegLocation loc) const { |
| return loc.ref && loc.is_const && (ConstantValue(loc) == 0); |
| } |
| |
| int GetNumSSARegs() const { |
| return num_ssa_regs_; |
| } |
| |
| void SetNumSSARegs(int new_num) { |
| /* |
| * TODO: It's theoretically possible to exceed 32767, though any cases which did |
| * would be filtered out with current settings. When orig_sreg field is removed |
| * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK(). |
| */ |
| DCHECK_EQ(new_num, static_cast<int16_t>(new_num)); |
| num_ssa_regs_ = new_num; |
| } |
| |
| unsigned int GetNumReachableBlocks() const { |
| return num_reachable_blocks_; |
| } |
| |
| int GetUseCount(int vreg) const { |
| return use_counts_.Get(vreg); |
| } |
| |
| int GetRawUseCount(int vreg) const { |
| return raw_use_counts_.Get(vreg); |
| } |
| |
| int GetSSASubscript(int ssa_reg) const { |
| return ssa_subscripts_->Get(ssa_reg); |
| } |
| |
| RegLocation GetRawSrc(MIR* mir, int num) { |
| DCHECK(num < mir->ssa_rep->num_uses); |
| RegLocation res = reg_location_[mir->ssa_rep->uses[num]]; |
| return res; |
| } |
| |
| RegLocation GetRawDest(MIR* mir) { |
| DCHECK_GT(mir->ssa_rep->num_defs, 0); |
| RegLocation res = reg_location_[mir->ssa_rep->defs[0]]; |
| return res; |
| } |
| |
| RegLocation GetDest(MIR* mir) { |
| RegLocation res = GetRawDest(mir); |
| DCHECK(!res.wide); |
| return res; |
| } |
| |
| RegLocation GetSrc(MIR* mir, int num) { |
| RegLocation res = GetRawSrc(mir, num); |
| DCHECK(!res.wide); |
| return res; |
| } |
| |
| RegLocation GetDestWide(MIR* mir) { |
| RegLocation res = GetRawDest(mir); |
| DCHECK(res.wide); |
| return res; |
| } |
| |
| RegLocation GetSrcWide(MIR* mir, int low) { |
| RegLocation res = GetRawSrc(mir, low); |
| DCHECK(res.wide); |
| return res; |
| } |
| |
| RegLocation GetBadLoc() { |
| return bad_loc; |
| } |
| |
| int GetMethodSReg() const { |
| return method_sreg_; |
| } |
| |
| /** |
| * @brief Used to obtain the number of compiler temporaries being used. |
| * @return Returns the number of compiler temporaries. |
| */ |
| size_t GetNumUsedCompilerTemps() const { |
| size_t total_num_temps = compiler_temps_.Size(); |
| DCHECK_LE(num_non_special_compiler_temps_, total_num_temps); |
| return total_num_temps; |
| } |
| |
| /** |
| * @brief Used to obtain the number of non-special compiler temporaries being used. |
| * @return Returns the number of non-special compiler temporaries. |
| */ |
| size_t GetNumNonSpecialCompilerTemps() const { |
| return num_non_special_compiler_temps_; |
| } |
| |
| /** |
| * @brief Used to set the total number of available non-special compiler temporaries. |
| * @details Can fail setting the new max if there are more temps being used than the new_max. |
| * @param new_max The new maximum number of non-special compiler temporaries. |
| * @return Returns true if the max was set and false if failed to set. |
| */ |
| bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) { |
| if (new_max < GetNumNonSpecialCompilerTemps()) { |
| return false; |
| } else { |
| max_available_non_special_compiler_temps_ = new_max; |
| return true; |
| } |
| } |
| |
| /** |
| * @brief Provides the number of non-special compiler temps available. |
| * @details Even if this returns zero, special compiler temps are guaranteed to be available. |
| * @return Returns the number of available temps. |
| */ |
| size_t GetNumAvailableNonSpecialCompilerTemps(); |
| |
| /** |
| * @brief Used to obtain an existing compiler temporary. |
| * @param index The index of the temporary which must be strictly less than the |
| * number of temporaries. |
| * @return Returns the temporary that was asked for. |
| */ |
| CompilerTemp* GetCompilerTemp(size_t index) const { |
| return compiler_temps_.Get(index); |
| } |
| |
| /** |
| * @brief Used to obtain the maximum number of compiler temporaries that can be requested. |
| * @return Returns the maximum number of compiler temporaries, whether used or not. |
| */ |
| size_t GetMaxPossibleCompilerTemps() const { |
| return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_; |
| } |
| |
| /** |
| * @brief Used to obtain a new unique compiler temporary. |
| * @param ct_type Type of compiler temporary requested. |
| * @param wide Whether we should allocate a wide temporary. |
| * @return Returns the newly created compiler temporary. |
| */ |
| CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide); |
| |
| bool MethodIsLeaf() { |
| return attributes_ & METHOD_IS_LEAF; |
| } |
| |
| RegLocation GetRegLocation(int index) { |
| DCHECK((index >= 0) && (index < num_ssa_regs_)); |
| return reg_location_[index]; |
| } |
| |
| RegLocation GetMethodLoc() { |
| return reg_location_[method_sreg_]; |
| } |
| |
| bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) { |
| return ((target_bb_id != NullBasicBlockId) && |
| (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset)); |
| } |
| |
| bool IsBackwardsBranch(BasicBlock* branch_bb) { |
| return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through); |
| } |
| |
| void CountBranch(DexOffset target_offset) { |
| if (target_offset <= current_offset_) { |
| backward_branches_++; |
| } else { |
| forward_branches_++; |
| } |
| } |
| |
| int GetBranchCount() { |
| return backward_branches_ + forward_branches_; |
| } |
| |
| bool IsPseudoMirOp(Instruction::Code opcode) { |
| return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst); |
| } |
| |
| bool IsPseudoMirOp(int opcode) { |
| return opcode >= static_cast<int>(kMirOpFirst); |
| } |
| |
| // Is this vreg in the in set? |
| bool IsInVReg(int vreg) { |
| return (vreg >= cu_->num_regs); |
| } |
| |
| void DumpCheckStats(); |
| MIR* FindMoveResult(BasicBlock* bb, MIR* mir); |
| int SRegToVReg(int ssa_reg) const; |
| void VerifyDataflow(); |
| void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb); |
| void EliminateNullChecksAndInferTypesStart(); |
| bool EliminateNullChecksAndInferTypes(BasicBlock* bb); |
| void EliminateNullChecksAndInferTypesEnd(); |
| bool EliminateClassInitChecksGate(); |
| bool EliminateClassInitChecks(BasicBlock* bb); |
| void EliminateClassInitChecksEnd(); |
| /* |
| * Type inference handling helpers. Because Dalvik's bytecode is not fully typed, |
| * we have to do some work to figure out the sreg type. For some operations it is |
| * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we |
| * may never know the "real" type. |
| * |
| * We perform the type inference operation by using an iterative walk over |
| * the graph, propagating types "defined" by typed opcodes to uses and defs in |
| * non-typed opcodes (such as MOVE). The Setxx(index) helpers are used to set defined |
| * types on typed opcodes (such as ADD_INT). The Setxx(index, is_xx) form is used to |
| * propagate types through non-typed opcodes such as PHI and MOVE. The is_xx flag |
| * tells whether our guess of the type is based on a previously typed definition. |
| * If so, the defined type takes precedence. Note that it's possible to have the same sreg |
| * show multiple defined types because dx treats constants as untyped bit patterns. |
| * The return value of the Setxx() helpers says whether or not the Setxx() action changed |
| * the current guess, and is used to know when to terminate the iterative walk. |
| */ |
| bool SetFp(int index, bool is_fp); |
| bool SetFp(int index); |
| bool SetCore(int index, bool is_core); |
| bool SetCore(int index); |
| bool SetRef(int index, bool is_ref); |
| bool SetRef(int index); |
| bool SetWide(int index, bool is_wide); |
| bool SetWide(int index); |
| bool SetHigh(int index, bool is_high); |
| bool SetHigh(int index); |
| |
| char* GetDalvikDisassembly(const MIR* mir); |
| void ReplaceSpecialChars(std::string& str); |
| std::string GetSSAName(int ssa_reg); |
| std::string GetSSANameWithConst(int ssa_reg, bool singles_only); |
| void GetBlockName(BasicBlock* bb, char* name); |
| const char* GetShortyFromTargetIdx(int); |
| void DumpMIRGraph(); |
| CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range); |
| BasicBlock* NewMemBB(BBType block_type, int block_id); |
| MIR* NewMIR(); |
| MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir); |
| BasicBlock* NextDominatedBlock(BasicBlock* bb); |
| bool LayoutBlocks(BasicBlock* bb); |
| void ComputeTopologicalSortOrder(); |
| BasicBlock* CreateNewBB(BBType block_type); |
| |
| bool InlineCallsGate(); |
| void InlineCallsStart(); |
| void InlineCalls(BasicBlock* bb); |
| void InlineCallsEnd(); |
| |
| /** |
| * @brief Perform the initial preparation for the Method Uses. |
| */ |
| void InitializeMethodUses(); |
| |
| /** |
| * @brief Perform the initial preparation for the Constant Propagation. |
| */ |
| void InitializeConstantPropagation(); |
| |
| /** |
| * @brief Perform the initial preparation for the SSA Transformation. |
| */ |
| void SSATransformationStart(); |
| |
| /** |
| * @brief Insert a the operands for the Phi nodes. |
| * @param bb the considered BasicBlock. |
| * @return true |
| */ |
| bool InsertPhiNodeOperands(BasicBlock* bb); |
| |
| /** |
| * @brief Perform the cleanup after the SSA Transformation. |
| */ |
| void SSATransformationEnd(); |
| |
| /** |
| * @brief Perform constant propagation on a BasicBlock. |
| * @param bb the considered BasicBlock. |
| */ |
| void DoConstantPropagation(BasicBlock* bb); |
| |
| /** |
| * @brief Count the uses in the BasicBlock |
| * @param bb the BasicBlock |
| */ |
| void CountUses(struct BasicBlock* bb); |
| |
| static uint64_t GetDataFlowAttributes(Instruction::Code opcode); |
| static uint64_t GetDataFlowAttributes(MIR* mir); |
| |
| /** |
| * @brief Combine BasicBlocks |
| * @param the BasicBlock we are considering |
| */ |
| void CombineBlocks(BasicBlock* bb); |
| |
| void ClearAllVisitedFlags(); |
| |
| void AllocateSSAUseData(MIR *mir, int num_uses); |
| void AllocateSSADefData(MIR *mir, int num_defs); |
| void CalculateBasicBlockInformation(); |
| void InitializeBasicBlockData(); |
| void ComputeDFSOrders(); |
| void ComputeDefBlockMatrix(); |
| void ComputeDominators(); |
| void CompilerInitializeSSAConversion(); |
| void InsertPhiNodes(); |
| void DoDFSPreOrderSSARename(BasicBlock* block); |
| |
| /* |
| * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on |
| * we can verify that all catch entries have native PC entries. |
| */ |
| std::set<uint32_t> catches_; |
| |
| // TODO: make these private. |
| RegLocation* reg_location_; // Map SSA names to location. |
| SafeMap<unsigned int, unsigned int> block_id_map_; // Block collapse lookup cache. |
| |
| static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst]; |
| static const uint32_t analysis_attributes_[kMirOpLast]; |
| |
| void HandleSSADef(int* defs, int dalvik_reg, int reg_index); |
| bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed); |
| |
| protected: |
| int FindCommonParent(int block1, int block2); |
| void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1, |
| const ArenaBitVector* src2); |
| void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v, |
| ArenaBitVector* live_in_v, int dalvik_reg_id); |
| void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id); |
| bool DoSSAConversion(BasicBlock* bb); |
| bool InvokeUsesMethodStar(MIR* mir); |
| int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction); |
| bool ContentIsInsn(const uint16_t* code_ptr); |
| BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block, |
| BasicBlock** immed_pred_block_p); |
| BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create, |
| BasicBlock** immed_pred_block_p); |
| void ProcessTryCatchBlocks(); |
| BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, |
| int flags, const uint16_t* code_ptr, const uint16_t* code_end); |
| BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, |
| int flags); |
| BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, |
| int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr, |
| const uint16_t* code_end); |
| int AddNewSReg(int v_reg); |
| void HandleSSAUse(int* uses, int dalvik_reg, int reg_index); |
| void DataFlowSSAFormat35C(MIR* mir); |
| void DataFlowSSAFormat3RC(MIR* mir); |
| bool FindLocalLiveIn(BasicBlock* bb); |
| bool VerifyPredInfo(BasicBlock* bb); |
| BasicBlock* NeedsVisit(BasicBlock* bb); |
| BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb); |
| void MarkPreOrder(BasicBlock* bb); |
| void RecordDFSOrders(BasicBlock* bb); |
| void ComputeDomPostOrderTraversal(BasicBlock* bb); |
| void SetConstant(int32_t ssa_reg, int value); |
| void SetConstantWide(int ssa_reg, int64_t value); |
| int GetSSAUseCount(int s_reg); |
| bool BasicBlockOpt(BasicBlock* bb); |
| bool BuildExtendedBBList(struct BasicBlock* bb); |
| bool FillDefBlockMatrix(BasicBlock* bb); |
| void InitializeDominationInfo(BasicBlock* bb); |
| bool ComputeblockIDom(BasicBlock* bb); |
| bool ComputeBlockDominators(BasicBlock* bb); |
| bool SetDominators(BasicBlock* bb); |
| bool ComputeBlockLiveIns(BasicBlock* bb); |
| bool ComputeDominanceFrontier(BasicBlock* bb); |
| |
| void CountChecks(BasicBlock* bb); |
| void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats); |
| bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default); |
| |
| CompilationUnit* const cu_; |
| GrowableArray<int>* ssa_base_vregs_; |
| GrowableArray<int>* ssa_subscripts_; |
| // Map original Dalvik virtual reg i to the current SSA name. |
| int* vreg_to_ssa_map_; // length == method->registers_size |
| int* ssa_last_defs_; // length == method->registers_size |
| ArenaBitVector* is_constant_v_; // length == num_ssa_reg |
| int* constant_values_; // length == num_ssa_reg |
| // Use counts of ssa names. |
| GrowableArray<uint32_t> use_counts_; // Weighted by nesting depth |
| GrowableArray<uint32_t> raw_use_counts_; // Not weighted |
| unsigned int num_reachable_blocks_; |
| unsigned int max_num_reachable_blocks_; |
| GrowableArray<BasicBlockId>* dfs_order_; |
| GrowableArray<BasicBlockId>* dfs_post_order_; |
| GrowableArray<BasicBlockId>* dom_post_order_traversal_; |
| GrowableArray<BasicBlockId>* topological_order_; |
| int* i_dom_list_; |
| ArenaBitVector** def_block_matrix_; // num_dalvik_register x num_blocks. |
| std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_; |
| uint16_t* temp_insn_data_; |
| uint32_t temp_bit_vector_size_; |
| ArenaBitVector* temp_bit_vector_; |
| static const int kInvalidEntry = -1; |
| GrowableArray<BasicBlock*> block_list_; |
| ArenaBitVector* try_block_addr_; |
| BasicBlock* entry_block_; |
| BasicBlock* exit_block_; |
| int num_blocks_; |
| const DexFile::CodeItem* current_code_item_; |
| GrowableArray<uint16_t> dex_pc_to_block_map_; // FindBlock lookup cache. |
| std::vector<DexCompilationUnit*> m_units_; // List of methods included in this graph |
| typedef std::pair<int, int> MIRLocation; // Insert point, (m_unit_ index, offset) |
| std::vector<MIRLocation> method_stack_; // Include stack |
| int current_method_; |
| DexOffset current_offset_; // Offset in code units |
| int def_count_; // Used to estimate size of ssa name storage. |
| int* opcode_count_; // Dex opcode coverage stats. |
| int num_ssa_regs_; // Number of names following SSA transformation. |
| std::vector<BasicBlockId> extended_basic_blocks_; // Heads of block "traces". |
| int method_sreg_; |
| unsigned int attributes_; |
| Checkstats* checkstats_; |
| ArenaAllocator* arena_; |
| int backward_branches_; |
| int forward_branches_; |
| GrowableArray<CompilerTemp*> compiler_temps_; |
| size_t num_non_special_compiler_temps_; |
| size_t max_available_non_special_compiler_temps_; |
| size_t max_available_special_compiler_temps_; |
| bool punt_to_interpreter_; // Difficult or not worthwhile - just interpret. |
| uint64_t merged_df_flags_; |
| GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_; |
| GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_; |
| GrowableArray<MirMethodLoweringInfo> method_lowering_infos_; |
| static const uint64_t oat_data_flow_attributes_[kMirOpLast]; |
| |
| friend class ClassInitCheckEliminationTest; |
| friend class LocalValueNumberingTest; |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_DEX_MIR_GRAPH_H_ |