blob: 1405c40096f5be1cb6ef052a206f2df73570e623 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "profile_compilation_info.h"
#include "errno.h"
#include <limits.h>
#include <vector>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include "art_method-inl.h"
#include "base/mutex.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/unix_file/fd_file.h"
#include "jit/profiling_info.h"
#include "os.h"
#include "safe_map.h"
namespace art {
const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' };
const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '0', '2', '\0' };
static constexpr uint16_t kMaxDexFileKeyLength = PATH_MAX;
// Debug flag to ignore checksums when testing if a method or a class is present in the profile.
// Used to facilitate testing profile guided compilation across a large number of apps
// using the same test profile.
static constexpr bool kDebugIgnoreChecksum = false;
// Transform the actual dex location into relative paths.
// Note: this is OK because we don't store profiles of different apps into the same file.
// Apps with split apks don't cause trouble because each split has a different name and will not
// collide with other entries.
std::string ProfileCompilationInfo::GetProfileDexFileKey(const std::string& dex_location) {
DCHECK(!dex_location.empty());
size_t last_sep_index = dex_location.find_last_of('/');
if (last_sep_index == std::string::npos) {
return dex_location;
} else {
DCHECK(last_sep_index < dex_location.size());
return dex_location.substr(last_sep_index + 1);
}
}
bool ProfileCompilationInfo::AddMethodsAndClasses(
const std::vector<MethodReference>& methods,
const std::set<DexCacheResolvedClasses>& resolved_classes) {
for (const MethodReference& method : methods) {
if (!AddMethodIndex(GetProfileDexFileKey(method.dex_file->GetLocation()),
method.dex_file->GetLocationChecksum(),
method.dex_method_index)) {
return false;
}
}
for (const DexCacheResolvedClasses& dex_cache : resolved_classes) {
if (!AddResolvedClasses(dex_cache)) {
return false;
}
}
return true;
}
bool ProfileCompilationInfo::MergeAndSave(const std::string& filename,
uint64_t* bytes_written,
bool force) {
ScopedTrace trace(__PRETTY_FUNCTION__);
ScopedFlock flock;
std::string error;
if (!flock.Init(filename.c_str(), O_RDWR | O_NOFOLLOW | O_CLOEXEC, /* block */ false, &error)) {
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = flock.GetFile()->Fd();
// Load the file but keep a copy around to be able to infer if the content has changed.
ProfileCompilationInfo fileInfo;
ProfileLoadSatus status = fileInfo.LoadInternal(fd, &error);
if (status == kProfileLoadSuccess) {
// Merge the content of file into the current object.
if (MergeWith(fileInfo)) {
// If after the merge we have the same data as what is the file there's no point
// in actually doing the write. The file will be exactly the same as before.
if (Equals(fileInfo)) {
if (bytes_written != nullptr) {
*bytes_written = 0;
}
return true;
}
} else {
LOG(WARNING) << "Could not merge previous profile data from file " << filename;
if (!force) {
return false;
}
}
} else if (force &&
((status == kProfileLoadVersionMismatch) || (status == kProfileLoadBadData))) {
// Log a warning but don't return false. We will clear the profile anyway.
LOG(WARNING) << "Clearing bad or obsolete profile data from file "
<< filename << ": " << error;
} else {
LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
return false;
}
// We need to clear the data because we don't support appending to the profiles yet.
if (!flock.GetFile()->ClearContent()) {
PLOG(WARNING) << "Could not clear profile file: " << filename;
return false;
}
// This doesn't need locking because we are trying to lock the file for exclusive
// access and fail immediately if we can't.
bool result = Save(fd);
if (result) {
VLOG(profiler) << "Successfully saved profile info to " << filename
<< " Size: " << GetFileSizeBytes(filename);
if (bytes_written != nullptr) {
*bytes_written = GetFileSizeBytes(filename);
}
} else {
VLOG(profiler) << "Failed to save profile info to " << filename;
}
return result;
}
// Returns true if all the bytes were successfully written to the file descriptor.
static bool WriteBuffer(int fd, const uint8_t* buffer, size_t byte_count) {
while (byte_count > 0) {
int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count));
if (bytes_written == -1) {
return false;
}
byte_count -= bytes_written; // Reduce the number of remaining bytes.
buffer += bytes_written; // Move the buffer forward.
}
return true;
}
// Add the string bytes to the buffer.
static void AddStringToBuffer(std::vector<uint8_t>* buffer, const std::string& value) {
buffer->insert(buffer->end(), value.begin(), value.end());
}
// Insert each byte, from low to high into the buffer.
template <typename T>
static void AddUintToBuffer(std::vector<uint8_t>* buffer, T value) {
for (size_t i = 0; i < sizeof(T); i++) {
buffer->push_back((value >> (i * kBitsPerByte)) & 0xff);
}
}
static constexpr size_t kLineHeaderSize =
3 * sizeof(uint16_t) + // method_set.size + class_set.size + dex_location.size
sizeof(uint32_t); // checksum
/**
* Serialization format:
* magic,version,number_of_lines
* dex_location1,number_of_methods1,number_of_classes1,dex_location_checksum1, \
* method_id11,method_id12...,class_id1,class_id2...
* dex_location2,number_of_methods2,number_of_classes2,dex_location_checksum2, \
* method_id21,method_id22...,,class_id1,class_id2...
* .....
**/
bool ProfileCompilationInfo::Save(int fd) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
// Cache at most 5KB before writing.
static constexpr size_t kMaxSizeToKeepBeforeWriting = 5 * KB;
// Use a vector wrapper to avoid keeping track of offsets when we add elements.
std::vector<uint8_t> buffer;
WriteBuffer(fd, kProfileMagic, sizeof(kProfileMagic));
WriteBuffer(fd, kProfileVersion, sizeof(kProfileVersion));
AddUintToBuffer(&buffer, static_cast<uint16_t>(info_.size()));
for (const auto& it : info_) {
if (buffer.size() > kMaxSizeToKeepBeforeWriting) {
if (!WriteBuffer(fd, buffer.data(), buffer.size())) {
return false;
}
buffer.clear();
}
const std::string& dex_location = it.first;
const DexFileData& dex_data = it.second;
if (dex_data.method_set.empty() && dex_data.class_set.empty()) {
continue;
}
if (dex_location.size() >= kMaxDexFileKeyLength) {
LOG(WARNING) << "DexFileKey exceeds allocated limit";
return false;
}
// Make sure that the buffer has enough capacity to avoid repeated resizings
// while we add data.
size_t required_capacity = buffer.size() +
kLineHeaderSize +
dex_location.size() +
sizeof(uint16_t) * (dex_data.class_set.size() + dex_data.method_set.size());
buffer.reserve(required_capacity);
DCHECK_LE(dex_location.size(), std::numeric_limits<uint16_t>::max());
DCHECK_LE(dex_data.method_set.size(), std::numeric_limits<uint16_t>::max());
DCHECK_LE(dex_data.class_set.size(), std::numeric_limits<uint16_t>::max());
AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_location.size()));
AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.method_set.size()));
AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.class_set.size()));
AddUintToBuffer(&buffer, dex_data.checksum); // uint32_t
AddStringToBuffer(&buffer, dex_location);
for (auto method_it : dex_data.method_set) {
AddUintToBuffer(&buffer, method_it);
}
for (auto class_id : dex_data.class_set) {
AddUintToBuffer(&buffer, class_id.index_);
}
DCHECK_EQ(required_capacity, buffer.size())
<< "Failed to add the expected number of bytes in the buffer";
}
return WriteBuffer(fd, buffer.data(), buffer.size());
}
ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData(
const std::string& dex_location,
uint32_t checksum) {
auto info_it = info_.find(dex_location);
if (info_it == info_.end()) {
info_it = info_.Put(dex_location, DexFileData(checksum));
}
if (info_it->second.checksum != checksum) {
LOG(WARNING) << "Checksum mismatch for dex " << dex_location;
return nullptr;
}
return &info_it->second;
}
bool ProfileCompilationInfo::AddResolvedClasses(const DexCacheResolvedClasses& classes) {
const std::string dex_location = GetProfileDexFileKey(classes.GetDexLocation());
const uint32_t checksum = classes.GetLocationChecksum();
DexFileData* const data = GetOrAddDexFileData(dex_location, checksum);
if (data == nullptr) {
return false;
}
data->class_set.insert(classes.GetClasses().begin(), classes.GetClasses().end());
return true;
}
bool ProfileCompilationInfo::AddMethodIndex(const std::string& dex_location,
uint32_t checksum,
uint16_t method_idx) {
DexFileData* const data = GetOrAddDexFileData(dex_location, checksum);
if (data == nullptr) {
return false;
}
data->method_set.insert(method_idx);
return true;
}
bool ProfileCompilationInfo::AddClassIndex(const std::string& dex_location,
uint32_t checksum,
dex::TypeIndex type_idx) {
DexFileData* const data = GetOrAddDexFileData(dex_location, checksum);
if (data == nullptr) {
return false;
}
data->class_set.insert(type_idx);
return true;
}
bool ProfileCompilationInfo::ProcessLine(SafeBuffer& line_buffer,
uint16_t method_set_size,
uint16_t class_set_size,
uint32_t checksum,
const std::string& dex_location) {
for (uint16_t i = 0; i < method_set_size; i++) {
uint16_t method_idx = line_buffer.ReadUintAndAdvance<uint16_t>();
if (!AddMethodIndex(dex_location, checksum, method_idx)) {
return false;
}
}
for (uint16_t i = 0; i < class_set_size; i++) {
uint16_t type_idx = line_buffer.ReadUintAndAdvance<uint16_t>();
if (!AddClassIndex(dex_location, checksum, dex::TypeIndex(type_idx))) {
return false;
}
}
return true;
}
// Tests for EOF by trying to read 1 byte from the descriptor.
// Returns:
// 0 if the descriptor is at the EOF,
// -1 if there was an IO error
// 1 if the descriptor has more content to read
static int testEOF(int fd) {
uint8_t buffer[1];
return TEMP_FAILURE_RETRY(read(fd, buffer, 1));
}
// Reads an uint value previously written with AddUintToBuffer.
template <typename T>
T ProfileCompilationInfo::SafeBuffer::ReadUintAndAdvance() {
static_assert(std::is_unsigned<T>::value, "Type is not unsigned");
CHECK_LE(ptr_current_ + sizeof(T), ptr_end_);
T value = 0;
for (size_t i = 0; i < sizeof(T); i++) {
value += ptr_current_[i] << (i * kBitsPerByte);
}
ptr_current_ += sizeof(T);
return value;
}
bool ProfileCompilationInfo::SafeBuffer::CompareAndAdvance(const uint8_t* data, size_t data_size) {
if (ptr_current_ + data_size > ptr_end_) {
return false;
}
if (memcmp(ptr_current_, data, data_size) == 0) {
ptr_current_ += data_size;
return true;
}
return false;
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::SafeBuffer::FillFromFd(
int fd,
const std::string& source,
/*out*/std::string* error) {
size_t byte_count = ptr_end_ - ptr_current_;
uint8_t* buffer = ptr_current_;
while (byte_count > 0) {
int bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer, byte_count));
if (bytes_read == 0) {
*error += "Profile EOF reached prematurely for " + source;
return kProfileLoadBadData;
} else if (bytes_read < 0) {
*error += "Profile IO error for " + source + strerror(errno);
return kProfileLoadIOError;
}
byte_count -= bytes_read;
buffer += bytes_read;
}
return kProfileLoadSuccess;
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileHeader(
int fd,
/*out*/uint16_t* number_of_lines,
/*out*/std::string* error) {
// Read magic and version
const size_t kMagicVersionSize =
sizeof(kProfileMagic) +
sizeof(kProfileVersion) +
sizeof(uint16_t); // number of lines
SafeBuffer safe_buffer(kMagicVersionSize);
ProfileLoadSatus status = safe_buffer.FillFromFd(fd, "ReadProfileHeader", error);
if (status != kProfileLoadSuccess) {
return status;
}
if (!safe_buffer.CompareAndAdvance(kProfileMagic, sizeof(kProfileMagic))) {
*error = "Profile missing magic";
return kProfileLoadVersionMismatch;
}
if (!safe_buffer.CompareAndAdvance(kProfileVersion, sizeof(kProfileVersion))) {
*error = "Profile version mismatch";
return kProfileLoadVersionMismatch;
}
*number_of_lines = safe_buffer.ReadUintAndAdvance<uint16_t>();
return kProfileLoadSuccess;
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileLineHeader(
int fd,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error) {
SafeBuffer header_buffer(kLineHeaderSize);
ProfileLoadSatus status = header_buffer.FillFromFd(fd, "ReadProfileHeader", error);
if (status != kProfileLoadSuccess) {
return status;
}
uint16_t dex_location_size = header_buffer.ReadUintAndAdvance<uint16_t>();
line_header->method_set_size = header_buffer.ReadUintAndAdvance<uint16_t>();
line_header->class_set_size = header_buffer.ReadUintAndAdvance<uint16_t>();
line_header->checksum = header_buffer.ReadUintAndAdvance<uint32_t>();
if (dex_location_size == 0 || dex_location_size > kMaxDexFileKeyLength) {
*error = "DexFileKey has an invalid size: " +
std::to_string(static_cast<uint32_t>(dex_location_size));
return kProfileLoadBadData;
}
SafeBuffer location_buffer(dex_location_size);
status = location_buffer.FillFromFd(fd, "ReadProfileHeaderDexLocation", error);
if (status != kProfileLoadSuccess) {
return status;
}
line_header->dex_location.assign(
reinterpret_cast<char*>(location_buffer.Get()), dex_location_size);
return kProfileLoadSuccess;
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileLine(
int fd,
const ProfileLineHeader& line_header,
/*out*/std::string* error) {
// Make sure that we don't try to read everything in memory (in case the profile if full).
// Split readings in chunks of at most 10kb.
static constexpr uint16_t kMaxNumberOfEntriesToRead = 5120;
uint16_t methods_left_to_read = line_header.method_set_size;
uint16_t classes_left_to_read = line_header.class_set_size;
while ((methods_left_to_read > 0) || (classes_left_to_read > 0)) {
uint16_t methods_to_read = std::min(kMaxNumberOfEntriesToRead, methods_left_to_read);
uint16_t max_classes_to_read = kMaxNumberOfEntriesToRead - methods_to_read;
uint16_t classes_to_read = std::min(max_classes_to_read, classes_left_to_read);
size_t line_size = sizeof(uint16_t) * (methods_to_read + classes_to_read);
SafeBuffer line_buffer(line_size);
ProfileLoadSatus status = line_buffer.FillFromFd(fd, "ReadProfileLine", error);
if (status != kProfileLoadSuccess) {
return status;
}
if (!ProcessLine(line_buffer,
methods_to_read,
classes_to_read,
line_header.checksum,
line_header.dex_location)) {
*error = "Error when reading profile file line";
return kProfileLoadBadData;
}
methods_left_to_read -= methods_to_read;
classes_left_to_read -= classes_to_read;
}
return kProfileLoadSuccess;
}
bool ProfileCompilationInfo::Load(int fd) {
std::string error;
ProfileLoadSatus status = LoadInternal(fd, &error);
if (status == kProfileLoadSuccess) {
return true;
} else {
PLOG(WARNING) << "Error when reading profile " << error;
return false;
}
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::LoadInternal(
int fd, std::string* error) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
struct stat stat_buffer;
if (fstat(fd, &stat_buffer) != 0) {
return kProfileLoadIOError;
}
// We allow empty profile files.
// Profiles may be created by ActivityManager or installd before we manage to
// process them in the runtime or profman.
if (stat_buffer.st_size == 0) {
return kProfileLoadSuccess;
}
// Read profile header: magic + version + number_of_lines.
uint16_t number_of_lines;
ProfileLoadSatus status = ReadProfileHeader(fd, &number_of_lines, error);
if (status != kProfileLoadSuccess) {
return status;
}
while (number_of_lines > 0) {
ProfileLineHeader line_header;
// First, read the line header to get the amount of data we need to read.
status = ReadProfileLineHeader(fd, &line_header, error);
if (status != kProfileLoadSuccess) {
return status;
}
// Now read the actual profile line.
status = ReadProfileLine(fd, line_header, error);
if (status != kProfileLoadSuccess) {
return status;
}
number_of_lines--;
}
// Check that we read everything and that profiles don't contain junk data.
int result = testEOF(fd);
if (result == 0) {
return kProfileLoadSuccess;
} else if (result < 0) {
return kProfileLoadIOError;
} else {
*error = "Unexpected content in the profile file";
return kProfileLoadBadData;
}
}
bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other) {
// First verify that all checksums match. This will avoid adding garbage to
// the current profile info.
// Note that the number of elements should be very small, so this should not
// be a performance issue.
for (const auto& other_it : other.info_) {
auto info_it = info_.find(other_it.first);
if ((info_it != info_.end()) && (info_it->second.checksum != other_it.second.checksum)) {
LOG(WARNING) << "Checksum mismatch for dex " << other_it.first;
return false;
}
}
// All checksums match. Import the data.
for (const auto& other_it : other.info_) {
const std::string& other_dex_location = other_it.first;
const DexFileData& other_dex_data = other_it.second;
auto info_it = info_.find(other_dex_location);
if (info_it == info_.end()) {
info_it = info_.Put(other_dex_location, DexFileData(other_dex_data.checksum));
}
info_it->second.method_set.insert(other_dex_data.method_set.begin(),
other_dex_data.method_set.end());
info_it->second.class_set.insert(other_dex_data.class_set.begin(),
other_dex_data.class_set.end());
}
return true;
}
static bool ChecksumMatch(const DexFile& dex_file, uint32_t checksum) {
return kDebugIgnoreChecksum || dex_file.GetLocationChecksum() == checksum;
}
bool ProfileCompilationInfo::ContainsMethod(const MethodReference& method_ref) const {
auto info_it = info_.find(GetProfileDexFileKey(method_ref.dex_file->GetLocation()));
if (info_it != info_.end()) {
if (!ChecksumMatch(*method_ref.dex_file, info_it->second.checksum)) {
return false;
}
const std::set<uint16_t>& methods = info_it->second.method_set;
return methods.find(method_ref.dex_method_index) != methods.end();
}
return false;
}
bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file, dex::TypeIndex type_idx) const {
auto info_it = info_.find(GetProfileDexFileKey(dex_file.GetLocation()));
if (info_it != info_.end()) {
if (!ChecksumMatch(dex_file, info_it->second.checksum)) {
return false;
}
const std::set<dex::TypeIndex>& classes = info_it->second.class_set;
return classes.find(type_idx) != classes.end();
}
return false;
}
uint32_t ProfileCompilationInfo::GetNumberOfMethods() const {
uint32_t total = 0;
for (const auto& it : info_) {
total += it.second.method_set.size();
}
return total;
}
uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const {
uint32_t total = 0;
for (const auto& it : info_) {
total += it.second.class_set.size();
}
return total;
}
std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>* dex_files,
bool print_full_dex_location) const {
std::ostringstream os;
if (info_.empty()) {
return "ProfileInfo: empty";
}
os << "ProfileInfo:";
const std::string kFirstDexFileKeySubstitute = ":classes.dex";
for (const auto& it : info_) {
os << "\n";
const std::string& location = it.first;
const DexFileData& dex_data = it.second;
if (print_full_dex_location) {
os << location;
} else {
// Replace the (empty) multidex suffix of the first key with a substitute for easier reading.
std::string multidex_suffix = DexFile::GetMultiDexSuffix(location);
os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix);
}
const DexFile* dex_file = nullptr;
if (dex_files != nullptr) {
for (size_t i = 0; i < dex_files->size(); i++) {
if (location == (*dex_files)[i]->GetLocation()) {
dex_file = (*dex_files)[i];
}
}
}
os << "\n\tmethods: ";
for (const auto method_it : dex_data.method_set) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyMethod(method_it, true);
} else {
os << method_it << ",";
}
}
os << "\n\tclasses: ";
for (const auto class_it : dex_data.class_set) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyType(class_it);
} else {
os << class_it << ",";
}
}
}
return os.str();
}
bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) {
return info_.Equals(other.info_);
}
std::set<DexCacheResolvedClasses> ProfileCompilationInfo::GetResolvedClasses() const {
std::set<DexCacheResolvedClasses> ret;
for (auto&& pair : info_) {
const std::string& profile_key = pair.first;
const DexFileData& data = pair.second;
// TODO: Is it OK to use the same location for both base and dex location here?
DexCacheResolvedClasses classes(profile_key, profile_key, data.checksum);
classes.AddClasses(data.class_set.begin(), data.class_set.end());
ret.insert(classes);
}
return ret;
}
void ProfileCompilationInfo::ClearResolvedClasses() {
for (auto& pair : info_) {
pair.second.class_set.clear();
}
}
// Naive implementation to generate a random profile file suitable for testing.
bool ProfileCompilationInfo::GenerateTestProfile(int fd,
uint16_t number_of_dex_files,
uint16_t method_ratio,
uint16_t class_ratio) {
const std::string base_dex_location = "base.apk";
ProfileCompilationInfo info;
// The limits are defined by the dex specification.
uint16_t max_method = std::numeric_limits<uint16_t>::max();
uint16_t max_classes = std::numeric_limits<uint16_t>::max();
uint16_t number_of_methods = max_method * method_ratio / 100;
uint16_t number_of_classes = max_classes * class_ratio / 100;
srand(MicroTime());
// Make sure we generate more samples with a low index value.
// This makes it more likely to hit valid method/class indices in small apps.
const uint16_t kFavorFirstN = 10000;
const uint16_t kFavorSplit = 2;
for (uint16_t i = 0; i < number_of_dex_files; i++) {
std::string dex_location = DexFile::GetMultiDexLocation(i, base_dex_location.c_str());
std::string profile_key = GetProfileDexFileKey(dex_location);
for (uint16_t m = 0; m < number_of_methods; m++) {
uint16_t method_idx = rand() % max_method;
if (m < (number_of_methods / kFavorSplit)) {
method_idx %= kFavorFirstN;
}
info.AddMethodIndex(profile_key, 0, method_idx);
}
for (uint16_t c = 0; c < number_of_classes; c++) {
uint16_t type_idx = rand() % max_classes;
if (c < (number_of_classes / kFavorSplit)) {
type_idx %= kFavorFirstN;
}
info.AddClassIndex(profile_key, 0, dex::TypeIndex(type_idx));
}
}
return info.Save(fd);
}
} // namespace art