blob: 5e9cf767886763b22c856e2a3e5679acb91f0d31 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "elf_writer_debug.h"
#include <unordered_set>
#include "base/casts.h"
#include "compiled_method.h"
#include "driver/compiler_driver.h"
#include "dex_file-inl.h"
#include "dwarf/headers.h"
#include "dwarf/register.h"
#include "oat_writer.h"
namespace art {
namespace dwarf {
static void WriteEhFrameCIE(InstructionSet isa,
ExceptionHeaderValueApplication addr_type,
std::vector<uint8_t>* eh_frame) {
// Scratch registers should be marked as undefined. This tells the
// debugger that its value in the previous frame is not recoverable.
bool is64bit = Is64BitInstructionSet(isa);
switch (isa) {
case kArm:
case kThumb2: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP).
// core registers.
for (int reg = 0; reg < 13; reg++) {
if (reg < 4 || reg == 12) {
opcodes.Undefined(Reg::ArmCore(reg));
} else {
opcodes.SameValue(Reg::ArmCore(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 16) {
opcodes.Undefined(Reg::ArmFp(reg));
} else {
opcodes.SameValue(Reg::ArmFp(reg));
}
}
auto return_reg = Reg::ArmCore(14); // R14(LR).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kArm64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP).
// core registers.
for (int reg = 0; reg < 30; reg++) {
if (reg < 8 || reg == 16 || reg == 17) {
opcodes.Undefined(Reg::Arm64Core(reg));
} else {
opcodes.SameValue(Reg::Arm64Core(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 8 || reg >= 16) {
opcodes.Undefined(Reg::Arm64Fp(reg));
} else {
opcodes.SameValue(Reg::Arm64Fp(reg));
}
}
auto return_reg = Reg::Arm64Core(30); // R30(LR).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kMips:
case kMips64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP).
// core registers.
for (int reg = 1; reg < 26; reg++) {
if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*.
opcodes.Undefined(Reg::MipsCore(reg));
} else {
opcodes.SameValue(Reg::MipsCore(reg));
}
}
auto return_reg = Reg::MipsCore(31); // R31(RA).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kX86: {
// FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296
constexpr bool generate_opcodes_for_x86_fp = false;
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP).
opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP).
// core registers.
for (int reg = 0; reg < 8; reg++) {
if (reg <= 3) {
opcodes.Undefined(Reg::X86Core(reg));
} else if (reg == 4) {
// Stack pointer.
} else {
opcodes.SameValue(Reg::X86Core(reg));
}
}
// fp registers.
if (generate_opcodes_for_x86_fp) {
for (int reg = 0; reg < 8; reg++) {
opcodes.Undefined(Reg::X86Fp(reg));
}
}
auto return_reg = Reg::X86Core(8); // R8(EIP).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kX86_64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP).
opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP).
// core registers.
for (int reg = 0; reg < 16; reg++) {
if (reg == 4) {
// Stack pointer.
} else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP.
opcodes.Undefined(Reg::X86_64Core(reg));
} else {
opcodes.SameValue(Reg::X86_64Core(reg));
}
}
// fp registers.
for (int reg = 0; reg < 16; reg++) {
if (reg < 12) {
opcodes.Undefined(Reg::X86_64Fp(reg));
} else {
opcodes.SameValue(Reg::X86_64Fp(reg));
}
}
auto return_reg = Reg::X86_64Core(16); // R16(RIP).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kNone:
break;
}
LOG(FATAL) << "Can not write CIE frame for ISA " << isa;
UNREACHABLE();
}
void WriteEhFrame(const CompilerDriver* compiler,
const OatWriter* oat_writer,
ExceptionHeaderValueApplication address_type,
std::vector<uint8_t>* eh_frame,
std::vector<uintptr_t>* eh_frame_patches,
std::vector<uint8_t>* eh_frame_hdr,
std::vector<uintptr_t>* eh_frame_hdr_patches) {
const auto& method_infos = oat_writer->GetMethodDebugInfo();
const InstructionSet isa = compiler->GetInstructionSet();
// Write .eh_frame section.
std::map<uint32_t, size_t> address_to_fde_offset_map;
size_t cie_offset = eh_frame->size();
WriteEhFrameCIE(isa, address_type, eh_frame);
for (const OatWriter::DebugInfo& mi : method_infos) {
if (!mi.deduped_) { // Only one FDE per unique address.
const SwapVector<uint8_t>* opcodes = mi.compiled_method_->GetCFIInfo();
if (opcodes != nullptr) {
address_to_fde_offset_map.emplace(mi.low_pc_, eh_frame->size());
WriteEhFrameFDE(Is64BitInstructionSet(isa), cie_offset,
mi.low_pc_, mi.high_pc_ - mi.low_pc_,
opcodes, eh_frame, eh_frame_patches);
}
}
}
// Write .eh_frame_hdr section.
Writer<> header(eh_frame_hdr);
header.PushUint8(1); // Version.
// Encoding of .eh_frame pointer - libunwind does not honor datarel here,
// so we have to use pcrel which means relative to the pointer's location.
header.PushUint8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
// Encoding of binary search table size.
header.PushUint8(DW_EH_PE_udata4);
// Encoding of binary search table addresses - libunwind supports only this
// specific combination, which means relative to the start of .eh_frame_hdr.
header.PushUint8(DW_EH_PE_datarel | DW_EH_PE_sdata4);
// .eh_frame pointer - .eh_frame_hdr section is after .eh_frame section
const int32_t relative_eh_frame_begin = -static_cast<int32_t>(eh_frame->size());
header.PushInt32(relative_eh_frame_begin - 4U);
// Binary search table size (number of entries).
header.PushUint32(dchecked_integral_cast<uint32_t>(address_to_fde_offset_map.size()));
// Binary search table.
for (const auto& address_to_fde_offset : address_to_fde_offset_map) {
u_int32_t code_address = address_to_fde_offset.first;
int32_t fde_address = dchecked_integral_cast<int32_t>(address_to_fde_offset.second);
eh_frame_hdr_patches->push_back(header.data()->size());
header.PushUint32(code_address);
// We know the exact layout (eh_frame is immediately before eh_frame_hdr)
// and the data is relative to the start of the eh_frame_hdr,
// so patching isn't necessary (in contrast to the code address above).
header.PushInt32(relative_eh_frame_begin + fde_address);
}
}
/*
* @brief Generate the DWARF sections.
* @param oat_writer The Oat file Writer.
* @param eh_frame Call Frame Information.
* @param debug_info Compilation unit information.
* @param debug_info_patches Address locations to be patched.
* @param debug_abbrev Abbreviations used to generate dbg_info.
* @param debug_str Debug strings.
* @param debug_line Line number table.
* @param debug_line_patches Address locations to be patched.
*/
void WriteDebugSections(const CompilerDriver* compiler,
const OatWriter* oat_writer,
std::vector<uint8_t>* debug_info,
std::vector<uintptr_t>* debug_info_patches,
std::vector<uint8_t>* debug_abbrev,
std::vector<uint8_t>* debug_str,
std::vector<uint8_t>* debug_line,
std::vector<uintptr_t>* debug_line_patches) {
const std::vector<OatWriter::DebugInfo>& method_infos = oat_writer->GetMethodDebugInfo();
const InstructionSet isa = compiler->GetInstructionSet();
// Find all addresses (low_pc) which contain deduped methods.
// The first instance of method is not marked deduped_, but the rest is.
std::unordered_set<uint32_t> deduped_addresses;
for (auto it = method_infos.begin(); it != method_infos.end(); ++it) {
if (it->deduped_) {
deduped_addresses.insert(it->low_pc_);
}
}
// Group the methods into compilation units based on source file.
std::vector<std::vector<const OatWriter::DebugInfo*>> compilation_units;
const char* last_source_file = nullptr;
for (const auto& mi : method_infos) {
// Attribute given instruction range only to single method.
// Otherwise the debugger might get really confused.
if (!mi.deduped_) {
auto& dex_class_def = mi.dex_file_->GetClassDef(mi.class_def_index_);
const char* source_file = mi.dex_file_->GetSourceFile(dex_class_def);
if (compilation_units.empty() || source_file != last_source_file) {
compilation_units.push_back(std::vector<const OatWriter::DebugInfo*>());
}
compilation_units.back().push_back(&mi);
last_source_file = source_file;
}
}
// Write .debug_info section.
for (const auto& compilation_unit : compilation_units) {
uint32_t cunit_low_pc = 0xFFFFFFFFU;
uint32_t cunit_high_pc = 0;
for (auto method_info : compilation_unit) {
cunit_low_pc = std::min(cunit_low_pc, method_info->low_pc_);
cunit_high_pc = std::max(cunit_high_pc, method_info->high_pc_);
}
size_t debug_abbrev_offset = debug_abbrev->size();
DebugInfoEntryWriter<> info(false /* 32 bit */, debug_abbrev);
info.StartTag(DW_TAG_compile_unit, DW_CHILDREN_yes);
info.WriteStrp(DW_AT_producer, "Android dex2oat", debug_str);
info.WriteData1(DW_AT_language, DW_LANG_Java);
info.WriteAddr(DW_AT_low_pc, cunit_low_pc);
info.WriteAddr(DW_AT_high_pc, cunit_high_pc);
info.WriteData4(DW_AT_stmt_list, debug_line->size());
for (auto method_info : compilation_unit) {
std::string method_name = PrettyMethod(method_info->dex_method_index_,
*method_info->dex_file_, true);
if (deduped_addresses.find(method_info->low_pc_) != deduped_addresses.end()) {
method_name += " [DEDUPED]";
}
info.StartTag(DW_TAG_subprogram, DW_CHILDREN_no);
info.WriteStrp(DW_AT_name, method_name.data(), debug_str);
info.WriteAddr(DW_AT_low_pc, method_info->low_pc_);
info.WriteAddr(DW_AT_high_pc, method_info->high_pc_);
info.EndTag(); // DW_TAG_subprogram
}
info.EndTag(); // DW_TAG_compile_unit
WriteDebugInfoCU(debug_abbrev_offset, info, debug_info, debug_info_patches);
// Write .debug_line section.
std::vector<FileEntry> files;
std::unordered_map<std::string, size_t> files_map;
std::vector<std::string> directories;
std::unordered_map<std::string, size_t> directories_map;
int code_factor_bits_ = 0;
int dwarf_isa = -1;
switch (isa) {
case kArm: // arm actually means thumb2.
case kThumb2:
code_factor_bits_ = 1; // 16-bit instuctions
dwarf_isa = 1; // DW_ISA_ARM_thumb.
break;
case kArm64:
case kMips:
case kMips64:
code_factor_bits_ = 2; // 32-bit instructions
break;
case kNone:
case kX86:
case kX86_64:
break;
}
DebugLineOpCodeWriter<> opcodes(false /* 32bit */, code_factor_bits_);
opcodes.SetAddress(cunit_low_pc);
if (dwarf_isa != -1) {
opcodes.SetISA(dwarf_isa);
}
for (const OatWriter::DebugInfo* mi : compilation_unit) {
struct DebugInfoCallbacks {
static bool NewPosition(void* ctx, uint32_t address, uint32_t line) {
auto* context = reinterpret_cast<DebugInfoCallbacks*>(ctx);
context->dex2line_.push_back({address, static_cast<int32_t>(line)});
return false;
}
DefaultSrcMap dex2line_;
} debug_info_callbacks;
const DexFile* dex = mi->dex_file_;
if (mi->code_item_ != nullptr) {
dex->DecodeDebugInfo(mi->code_item_,
(mi->access_flags_ & kAccStatic) != 0,
mi->dex_method_index_,
DebugInfoCallbacks::NewPosition,
nullptr,
&debug_info_callbacks);
}
// Get and deduplicate directory and filename.
int file_index = 0; // 0 - primary source file of the compilation.
auto& dex_class_def = dex->GetClassDef(mi->class_def_index_);
const char* source_file = dex->GetSourceFile(dex_class_def);
if (source_file != nullptr) {
std::string file_name(source_file);
size_t file_name_slash = file_name.find_last_of('/');
std::string class_name(dex->GetClassDescriptor(dex_class_def));
size_t class_name_slash = class_name.find_last_of('/');
std::string full_path(file_name);
// Guess directory from package name.
int directory_index = 0; // 0 - current directory of the compilation.
if (file_name_slash == std::string::npos && // Just filename.
class_name.front() == 'L' && // Type descriptor for a class.
class_name_slash != std::string::npos) { // Has package name.
std::string package_name = class_name.substr(1, class_name_slash - 1);
auto it = directories_map.find(package_name);
if (it == directories_map.end()) {
directory_index = 1 + directories.size();
directories_map.emplace(package_name, directory_index);
directories.push_back(package_name);
} else {
directory_index = it->second;
}
full_path = package_name + "/" + file_name;
}
// Add file entry.
auto it2 = files_map.find(full_path);
if (it2 == files_map.end()) {
file_index = 1 + files.size();
files_map.emplace(full_path, file_index);
files.push_back(FileEntry {
file_name,
directory_index,
0, // Modification time - NA.
0, // File size - NA.
});
} else {
file_index = it2->second;
}
}
opcodes.SetFile(file_index);
// Generate mapping opcodes from PC to Java lines.
const DefaultSrcMap& dex2line_map = debug_info_callbacks.dex2line_;
if (file_index != 0 && !dex2line_map.empty()) {
bool first = true;
for (SrcMapElem pc2dex : mi->compiled_method_->GetSrcMappingTable()) {
uint32_t pc = pc2dex.from_;
int dex_pc = pc2dex.to_;
auto dex2line = dex2line_map.Find(static_cast<uint32_t>(dex_pc));
if (dex2line.first) {
int line = dex2line.second;
if (first) {
first = false;
if (pc > 0) {
// Assume that any preceding code is prologue.
int first_line = dex2line_map.front().to_;
// Prologue is not a sensible place for a breakpoint.
opcodes.NegateStmt();
opcodes.AddRow(mi->low_pc_, first_line);
opcodes.NegateStmt();
opcodes.SetPrologueEnd();
}
opcodes.AddRow(mi->low_pc_ + pc, line);
} else if (line != opcodes.CurrentLine()) {
opcodes.AddRow(mi->low_pc_ + pc, line);
}
}
}
} else {
// line 0 - instruction cannot be attributed to any source line.
opcodes.AddRow(mi->low_pc_, 0);
}
}
opcodes.AdvancePC(cunit_high_pc);
opcodes.EndSequence();
WriteDebugLineTable(directories, files, opcodes, debug_line, debug_line_patches);
}
}
} // namespace dwarf
} // namespace art