| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_TEST_TI_AGENT_TI_UTF_H_ |
| #define ART_TEST_TI_AGENT_TI_UTF_H_ |
| |
| #include <inttypes.h> |
| #include <string.h> |
| |
| #include "android-base/logging.h" |
| |
| namespace art { |
| namespace ti { |
| |
| inline size_t CountModifiedUtf8Chars(const char* utf8, size_t byte_count) { |
| DCHECK_LE(byte_count, strlen(utf8)); |
| size_t len = 0; |
| const char* end = utf8 + byte_count; |
| for (; utf8 < end; ++utf8) { |
| int ic = *utf8; |
| len++; |
| if (LIKELY((ic & 0x80) == 0)) { |
| // One-byte encoding. |
| continue; |
| } |
| // Two- or three-byte encoding. |
| utf8++; |
| if ((ic & 0x20) == 0) { |
| // Two-byte encoding. |
| continue; |
| } |
| utf8++; |
| if ((ic & 0x10) == 0) { |
| // Three-byte encoding. |
| continue; |
| } |
| |
| // Four-byte encoding: needs to be converted into a surrogate |
| // pair. |
| utf8++; |
| len++; |
| } |
| return len; |
| } |
| |
| inline uint16_t GetTrailingUtf16Char(uint32_t maybe_pair) { |
| return static_cast<uint16_t>(maybe_pair >> 16); |
| } |
| |
| inline uint16_t GetLeadingUtf16Char(uint32_t maybe_pair) { |
| return static_cast<uint16_t>(maybe_pair & 0x0000FFFF); |
| } |
| |
| inline uint32_t GetUtf16FromUtf8(const char** utf8_data_in) { |
| const uint8_t one = *(*utf8_data_in)++; |
| if ((one & 0x80) == 0) { |
| // one-byte encoding |
| return one; |
| } |
| |
| const uint8_t two = *(*utf8_data_in)++; |
| if ((one & 0x20) == 0) { |
| // two-byte encoding |
| return ((one & 0x1f) << 6) | (two & 0x3f); |
| } |
| |
| const uint8_t three = *(*utf8_data_in)++; |
| if ((one & 0x10) == 0) { |
| return ((one & 0x0f) << 12) | ((two & 0x3f) << 6) | (three & 0x3f); |
| } |
| |
| // Four byte encodings need special handling. We'll have |
| // to convert them into a surrogate pair. |
| const uint8_t four = *(*utf8_data_in)++; |
| |
| // Since this is a 4 byte UTF-8 sequence, it will lie between |
| // U+10000 and U+1FFFFF. |
| // |
| // TODO: What do we do about values in (U+10FFFF, U+1FFFFF) ? The |
| // spec says they're invalid but nobody appears to check for them. |
| const uint32_t code_point = ((one & 0x0f) << 18) | ((two & 0x3f) << 12) |
| | ((three & 0x3f) << 6) | (four & 0x3f); |
| |
| uint32_t surrogate_pair = 0; |
| // Step two: Write out the high (leading) surrogate to the bottom 16 bits |
| // of the of the 32 bit type. |
| surrogate_pair |= ((code_point >> 10) + 0xd7c0) & 0xffff; |
| // Step three : Write out the low (trailing) surrogate to the top 16 bits. |
| surrogate_pair |= ((code_point & 0x03ff) + 0xdc00) << 16; |
| |
| return surrogate_pair; |
| } |
| |
| inline void ConvertUtf16ToModifiedUtf8(char* utf8_out, |
| size_t byte_count, |
| const uint16_t* utf16_in, |
| size_t char_count) { |
| if (LIKELY(byte_count == char_count)) { |
| // Common case where all characters are ASCII. |
| const uint16_t *utf16_end = utf16_in + char_count; |
| for (const uint16_t *p = utf16_in; p < utf16_end;) { |
| *utf8_out++ = static_cast<char>(*p++); |
| } |
| return; |
| } |
| |
| // String contains non-ASCII characters. |
| while (char_count--) { |
| const uint16_t ch = *utf16_in++; |
| if (ch > 0 && ch <= 0x7f) { |
| *utf8_out++ = ch; |
| } else { |
| // Char_count == 0 here implies we've encountered an unpaired |
| // surrogate and we have no choice but to encode it as 3-byte UTF |
| // sequence. Note that unpaired surrogates can occur as a part of |
| // "normal" operation. |
| if ((ch >= 0xd800 && ch <= 0xdbff) && (char_count > 0)) { |
| const uint16_t ch2 = *utf16_in; |
| |
| // Check if the other half of the pair is within the expected |
| // range. If it isn't, we will have to emit both "halves" as |
| // separate 3 byte sequences. |
| if (ch2 >= 0xdc00 && ch2 <= 0xdfff) { |
| utf16_in++; |
| char_count--; |
| const uint32_t code_point = (ch << 10) + ch2 - 0x035fdc00; |
| *utf8_out++ = (code_point >> 18) | 0xf0; |
| *utf8_out++ = ((code_point >> 12) & 0x3f) | 0x80; |
| *utf8_out++ = ((code_point >> 6) & 0x3f) | 0x80; |
| *utf8_out++ = (code_point & 0x3f) | 0x80; |
| continue; |
| } |
| } |
| |
| if (ch > 0x07ff) { |
| // Three byte encoding. |
| *utf8_out++ = (ch >> 12) | 0xe0; |
| *utf8_out++ = ((ch >> 6) & 0x3f) | 0x80; |
| *utf8_out++ = (ch & 0x3f) | 0x80; |
| } else /*(ch > 0x7f || ch == 0)*/ { |
| // Two byte encoding. |
| *utf8_out++ = (ch >> 6) | 0xc0; |
| *utf8_out++ = (ch & 0x3f) | 0x80; |
| } |
| } |
| } |
| } |
| |
| inline size_t CountUtf8Bytes(const uint16_t* chars, size_t char_count) { |
| size_t result = 0; |
| const uint16_t *end = chars + char_count; |
| while (chars < end) { |
| const uint16_t ch = *chars++; |
| if (LIKELY(ch != 0 && ch < 0x80)) { |
| result++; |
| continue; |
| } |
| if (ch < 0x800) { |
| result += 2; |
| continue; |
| } |
| if (ch >= 0xd800 && ch < 0xdc00) { |
| if (chars < end) { |
| const uint16_t ch2 = *chars; |
| // If we find a properly paired surrogate, we emit it as a 4 byte |
| // UTF sequence. If we find an unpaired leading or trailing surrogate, |
| // we emit it as a 3 byte sequence like would have done earlier. |
| if (ch2 >= 0xdc00 && ch2 < 0xe000) { |
| chars++; |
| result += 4; |
| continue; |
| } |
| } |
| } |
| result += 3; |
| } |
| return result; |
| } |
| |
| } // namespace ti |
| } // namespace art |
| |
| #endif // ART_TEST_TI_AGENT_TI_UTF_H_ |