blob: ca5f306264d36c9b29e4e8ba7080f0610db63435 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "space_test.h"
#include "dlmalloc_space.h"
#include "rosalloc_space.h"
#include "scoped_thread_state_change-inl.h"
namespace art {
namespace gc {
namespace space {
enum MallocSpaceType {
kMallocSpaceDlMalloc,
kMallocSpaceRosAlloc,
};
class SpaceCreateTest : public SpaceTest<CommonRuntimeTestWithParam<MallocSpaceType>> {
public:
MallocSpace* CreateSpace(const std::string& name,
size_t initial_size,
size_t growth_limit,
size_t capacity,
uint8_t* requested_begin) {
const MallocSpaceType type = GetParam();
if (type == kMallocSpaceDlMalloc) {
return DlMallocSpace::Create(name,
initial_size,
growth_limit,
capacity,
requested_begin,
false);
}
DCHECK_EQ(static_cast<uint32_t>(type), static_cast<uint32_t>(kMallocSpaceRosAlloc));
return RosAllocSpace::Create(name,
initial_size,
growth_limit,
capacity,
requested_begin,
Runtime::Current()->GetHeap()->IsLowMemoryMode(),
false);
}
};
TEST_P(SpaceCreateTest, InitTestBody) {
// This will lead to error messages in the log.
ScopedLogSeverity sls(LogSeverity::FATAL);
{
// Init < max == growth
std::unique_ptr<Space> space(CreateSpace("test", 16 * MB, 32 * MB, 32 * MB, nullptr));
EXPECT_TRUE(space != nullptr);
// Init == max == growth
space.reset(CreateSpace("test", 16 * MB, 16 * MB, 16 * MB, nullptr));
EXPECT_TRUE(space != nullptr);
// Init > max == growth
space.reset(CreateSpace("test", 32 * MB, 16 * MB, 16 * MB, nullptr));
EXPECT_TRUE(space == nullptr);
// Growth == init < max
space.reset(CreateSpace("test", 16 * MB, 16 * MB, 32 * MB, nullptr));
EXPECT_TRUE(space != nullptr);
// Growth < init < max
space.reset(CreateSpace("test", 16 * MB, 8 * MB, 32 * MB, nullptr));
EXPECT_TRUE(space == nullptr);
// Init < growth < max
space.reset(CreateSpace("test", 8 * MB, 16 * MB, 32 * MB, nullptr));
EXPECT_TRUE(space != nullptr);
// Init < max < growth
space.reset(CreateSpace("test", 8 * MB, 32 * MB, 16 * MB, nullptr));
EXPECT_TRUE(space == nullptr);
}
}
// TODO: This test is not very good, we should improve it.
// The test should do more allocations before the creation of the ZygoteSpace, and then do
// allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
// the GC works with the ZygoteSpace.
TEST_P(SpaceCreateTest, ZygoteSpaceTestBody) {
size_t dummy;
MallocSpace* space(CreateSpace("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
ASSERT_TRUE(space != nullptr);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
// Succeeds, fits without adjusting the footprint limit.
size_t ptr1_bytes_allocated, ptr1_usable_size, ptr1_bytes_tl_bulk_allocated;
StackHandleScope<3> hs(soa.Self());
MutableHandle<mirror::Object> ptr1(hs.NewHandle(Alloc(space,
self,
1 * MB,
&ptr1_bytes_allocated,
&ptr1_usable_size,
&ptr1_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr1 != nullptr);
EXPECT_LE(1U * MB, ptr1_bytes_allocated);
EXPECT_LE(1U * MB, ptr1_usable_size);
EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
// Fails, requires a higher footprint limit.
mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr2 == nullptr);
// Succeeds, adjusts the footprint.
size_t ptr3_bytes_allocated, ptr3_usable_size, ptr3_bytes_tl_bulk_allocated;
MutableHandle<mirror::Object> ptr3(hs.NewHandle(AllocWithGrowth(space,
self,
8 * MB,
&ptr3_bytes_allocated,
&ptr3_usable_size,
&ptr3_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr3 != nullptr);
EXPECT_LE(8U * MB, ptr3_bytes_allocated);
EXPECT_LE(8U * MB, ptr3_usable_size);
EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
// Fails, requires a higher footprint limit.
mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr4 == nullptr);
// Also fails, requires a higher allowed footprint.
mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr5 == nullptr);
// Release some memory.
size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
EXPECT_EQ(free3, ptr3_bytes_allocated);
EXPECT_EQ(free3, space->Free(self, ptr3.Assign(nullptr)));
EXPECT_LE(8U * MB, free3);
// Succeeds, now that memory has been freed.
size_t ptr6_bytes_allocated, ptr6_usable_size, ptr6_bytes_tl_bulk_allocated;
Handle<mirror::Object> ptr6(hs.NewHandle(AllocWithGrowth(space,
self,
9 * MB,
&ptr6_bytes_allocated,
&ptr6_usable_size,
&ptr6_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr6 != nullptr);
EXPECT_LE(9U * MB, ptr6_bytes_allocated);
EXPECT_LE(9U * MB, ptr6_usable_size);
EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
EXPECT_EQ(ptr6_bytes_tl_bulk_allocated, ptr6_bytes_allocated);
// Final clean up.
size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
space->Free(self, ptr1.Assign(nullptr));
EXPECT_LE(1U * MB, free1);
// Make sure that the zygote space isn't directly at the start of the space.
EXPECT_TRUE(space->Alloc(self, 1U * MB, &dummy, nullptr, &dummy) != nullptr);
gc::Heap* heap = Runtime::Current()->GetHeap();
space::Space* old_space = space;
{
ScopedThreadSuspension sts(self, kSuspended);
ScopedSuspendAll ssa("Add image space");
heap->RemoveSpace(old_space);
}
heap->RevokeAllThreadLocalBuffers();
space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
heap->IsLowMemoryMode(),
&space);
delete old_space;
// Add the zygote space.
AddSpace(zygote_space, false);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space, false);
// Succeeds, fits without adjusting the footprint limit.
ptr1.Assign(Alloc(space,
self,
1 * MB,
&ptr1_bytes_allocated,
&ptr1_usable_size,
&ptr1_bytes_tl_bulk_allocated));
EXPECT_TRUE(ptr1 != nullptr);
EXPECT_LE(1U * MB, ptr1_bytes_allocated);
EXPECT_LE(1U * MB, ptr1_usable_size);
EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
// Fails, requires a higher footprint limit.
ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr2 == nullptr);
// Succeeds, adjusts the footprint.
ptr3.Assign(AllocWithGrowth(space,
self,
2 * MB,
&ptr3_bytes_allocated,
&ptr3_usable_size,
&ptr3_bytes_tl_bulk_allocated));
EXPECT_TRUE(ptr3 != nullptr);
EXPECT_LE(2U * MB, ptr3_bytes_allocated);
EXPECT_LE(2U * MB, ptr3_usable_size);
EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
space->Free(self, ptr3.Assign(nullptr));
// Final clean up.
free1 = space->AllocationSize(ptr1.Get(), nullptr);
space->Free(self, ptr1.Assign(nullptr));
EXPECT_LE(1U * MB, free1);
}
TEST_P(SpaceCreateTest, AllocAndFreeTestBody) {
size_t dummy = 0;
MallocSpace* space(CreateSpace("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
ASSERT_TRUE(space != nullptr);
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
// Succeeds, fits without adjusting the footprint limit.
size_t ptr1_bytes_allocated, ptr1_usable_size, ptr1_bytes_tl_bulk_allocated;
StackHandleScope<3> hs(soa.Self());
MutableHandle<mirror::Object> ptr1(hs.NewHandle(Alloc(space,
self,
1 * MB,
&ptr1_bytes_allocated,
&ptr1_usable_size,
&ptr1_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr1 != nullptr);
EXPECT_LE(1U * MB, ptr1_bytes_allocated);
EXPECT_LE(1U * MB, ptr1_usable_size);
EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
// Fails, requires a higher footprint limit.
mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr2 == nullptr);
// Succeeds, adjusts the footprint.
size_t ptr3_bytes_allocated, ptr3_usable_size, ptr3_bytes_tl_bulk_allocated;
MutableHandle<mirror::Object> ptr3(hs.NewHandle(AllocWithGrowth(space,
self,
8 * MB,
&ptr3_bytes_allocated,
&ptr3_usable_size,
&ptr3_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr3 != nullptr);
EXPECT_LE(8U * MB, ptr3_bytes_allocated);
EXPECT_LE(8U * MB, ptr3_usable_size);
EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
// Fails, requires a higher footprint limit.
mirror::Object* ptr4 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr4 == nullptr);
// Also fails, requires a higher allowed footprint.
mirror::Object* ptr5 = AllocWithGrowth(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr5 == nullptr);
// Release some memory.
size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
EXPECT_EQ(free3, ptr3_bytes_allocated);
space->Free(self, ptr3.Assign(nullptr));
EXPECT_LE(8U * MB, free3);
// Succeeds, now that memory has been freed.
size_t ptr6_bytes_allocated, ptr6_usable_size, ptr6_bytes_tl_bulk_allocated;
Handle<mirror::Object> ptr6(hs.NewHandle(AllocWithGrowth(space,
self,
9 * MB,
&ptr6_bytes_allocated,
&ptr6_usable_size,
&ptr6_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr6 != nullptr);
EXPECT_LE(9U * MB, ptr6_bytes_allocated);
EXPECT_LE(9U * MB, ptr6_usable_size);
EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
EXPECT_EQ(ptr6_bytes_tl_bulk_allocated, ptr6_bytes_allocated);
// Final clean up.
size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
space->Free(self, ptr1.Assign(nullptr));
EXPECT_LE(1U * MB, free1);
}
TEST_P(SpaceCreateTest, AllocAndFreeListTestBody) {
MallocSpace* space(CreateSpace("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
ASSERT_TRUE(space != nullptr);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
// Succeeds, fits without adjusting the max allowed footprint.
mirror::Object* lots_of_objects[1024];
for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
size_t allocation_size, usable_size, bytes_tl_bulk_allocated;
size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
lots_of_objects[i] = Alloc(space,
self,
size_of_zero_length_byte_array,
&allocation_size,
&usable_size,
&bytes_tl_bulk_allocated);
EXPECT_TRUE(lots_of_objects[i] != nullptr);
size_t computed_usable_size;
EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
EXPECT_EQ(usable_size, computed_usable_size);
EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
bytes_tl_bulk_allocated >= allocation_size);
}
// Release memory.
space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
// Succeeds, fits by adjusting the max allowed footprint.
for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
size_t allocation_size, usable_size, bytes_tl_bulk_allocated;
lots_of_objects[i] = AllocWithGrowth(space,
self,
1024,
&allocation_size,
&usable_size,
&bytes_tl_bulk_allocated);
EXPECT_TRUE(lots_of_objects[i] != nullptr);
size_t computed_usable_size;
EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
EXPECT_EQ(usable_size, computed_usable_size);
EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
bytes_tl_bulk_allocated >= allocation_size);
}
// Release memory.
space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
}
INSTANTIATE_TEST_CASE_P(CreateRosAllocSpace,
SpaceCreateTest,
testing::Values(kMallocSpaceRosAlloc));
INSTANTIATE_TEST_CASE_P(CreateDlMallocSpace,
SpaceCreateTest,
testing::Values(kMallocSpaceDlMalloc));
} // namespace space
} // namespace gc
} // namespace art