blob: 6e9b04ada191f1ca66e09221fad84716a71c7fcf [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_HEAP_INL_H_
#define ART_RUNTIME_GC_HEAP_INL_H_
#include "heap.h"
#include "debugger.h"
#include "gc/space/bump_pointer_space-inl.h"
#include "gc/space/dlmalloc_space-inl.h"
#include "gc/space/large_object_space.h"
#include "gc/space/rosalloc_space-inl.h"
#include "object_utils.h"
#include "runtime.h"
#include "thread.h"
#include "thread-inl.h"
namespace art {
namespace gc {
template <bool kInstrumented, typename PreFenceVisitor>
inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass,
size_t byte_count, AllocatorType allocator,
const PreFenceVisitor& pre_fence_visitor) {
DebugCheckPreconditionsForAllocObject(klass, byte_count);
// Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
// done in the runnable state where suspension is expected.
DCHECK_EQ(self->GetState(), kRunnable);
self->AssertThreadSuspensionIsAllowable();
mirror::Object* obj;
size_t bytes_allocated;
AllocationTimer alloc_timer(this, &obj);
if (UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
obj = TryToAllocate<kInstrumented>(self, kAllocatorTypeLOS, byte_count, false,
&bytes_allocated);
allocator = kAllocatorTypeLOS;
} else {
obj = TryToAllocate<kInstrumented>(self, allocator, byte_count, false, &bytes_allocated);
}
if (UNLIKELY(obj == nullptr)) {
SirtRef<mirror::Class> sirt_c(self, klass);
obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated);
if (obj == nullptr) {
return nullptr;
} else {
klass = sirt_c.get();
}
}
obj->SetClass(klass);
pre_fence_visitor(obj);
DCHECK_GT(bytes_allocated, 0u);
const size_t new_num_bytes_allocated =
static_cast<size_t>(num_bytes_allocated_.fetch_add(bytes_allocated)) + bytes_allocated;
// TODO: Deprecate.
if (kInstrumented) {
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* thread_stats = self->GetStats();
++thread_stats->allocated_objects;
thread_stats->allocated_bytes += bytes_allocated;
RuntimeStats* global_stats = Runtime::Current()->GetStats();
++global_stats->allocated_objects;
global_stats->allocated_bytes += bytes_allocated;
}
} else {
DCHECK(!Runtime::Current()->HasStatsEnabled());
}
if (AllocatorHasAllocationStack(allocator)) {
// This is safe to do since the GC will never free objects which are neither in the allocation
// stack or the live bitmap.
while (!allocation_stack_->AtomicPushBack(obj)) {
CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
}
}
if (kInstrumented) {
if (Dbg::IsAllocTrackingEnabled()) {
Dbg::RecordAllocation(klass, bytes_allocated);
}
} else {
DCHECK(!Dbg::IsAllocTrackingEnabled());
}
if (AllocatorHasConcurrentGC(allocator)) {
CheckConcurrentGC(self, new_num_bytes_allocated, obj);
}
if (kIsDebugBuild) {
if (kDesiredHeapVerification > kNoHeapVerification) {
VerifyObject(obj);
}
self->VerifyStack();
}
return obj;
}
template <const bool kInstrumented>
inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type,
size_t alloc_size, bool grow,
size_t* bytes_allocated) {
if (UNLIKELY(IsOutOfMemoryOnAllocation(alloc_size, grow))) {
return nullptr;
}
if (kInstrumented) {
if (UNLIKELY(running_on_valgrind_ && allocator_type == kAllocatorTypeFreeList)) {
return non_moving_space_->Alloc(self, alloc_size, bytes_allocated);
}
} else {
// If running on valgrind, we should be using the instrumented path.
DCHECK(!running_on_valgrind_);
}
mirror::Object* ret;
switch (allocator_type) {
case kAllocatorTypeBumpPointer: {
DCHECK(bump_pointer_space_ != nullptr);
alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
if (LIKELY(ret != nullptr)) {
*bytes_allocated = alloc_size;
}
break;
}
case kAllocatorTypeFreeList: {
if (kUseRosAlloc) {
ret = reinterpret_cast<space::RosAllocSpace*>(non_moving_space_)->AllocNonvirtual(
self, alloc_size, bytes_allocated);
} else {
ret = reinterpret_cast<space::DlMallocSpace*>(non_moving_space_)->AllocNonvirtual(
self, alloc_size, bytes_allocated);
}
break;
}
case kAllocatorTypeLOS: {
ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated);
// Note that the bump pointer spaces aren't necessarily next to
// the other continuous spaces like the non-moving alloc space or
// the zygote space.
DCHECK(ret == nullptr || large_object_space_->Contains(ret));
break;
}
default: {
LOG(FATAL) << "Invalid allocator type";
ret = nullptr;
}
}
return ret;
}
inline void Heap::DebugCheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
(c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
strlen(ClassHelper(c).GetDescriptor()) == 0);
DCHECK_GE(byte_count, sizeof(mirror::Object));
}
inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
: heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) {
if (kMeasureAllocationTime) {
allocation_start_time_ = NanoTime() / kTimeAdjust;
}
}
inline Heap::AllocationTimer::~AllocationTimer() {
if (kMeasureAllocationTime) {
mirror::Object* allocated_obj = *allocated_obj_ptr_;
// Only if the allocation succeeded, record the time.
if (allocated_obj != nullptr) {
uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
heap_->total_allocation_time_.fetch_add(allocation_end_time - allocation_start_time_);
}
}
};
inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const {
// We need to have a zygote space or else our newly allocated large object can end up in the
// Zygote resulting in it being prematurely freed.
// We can only do this for primitive objects since large objects will not be within the card table
// range. This also means that we rely on SetClass not dirtying the object's card.
return byte_count >= kLargeObjectThreshold && have_zygote_space_ && c->IsPrimitiveArray();
}
inline bool Heap::IsOutOfMemoryOnAllocation(size_t alloc_size, bool grow) {
size_t new_footprint = num_bytes_allocated_ + alloc_size;
if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
if (UNLIKELY(new_footprint > growth_limit_)) {
return true;
}
if (!concurrent_gc_) {
if (!grow) {
return true;
} else {
max_allowed_footprint_ = new_footprint;
}
}
}
return false;
}
inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
mirror::Object* obj) {
if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
// The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint.
SirtRef<mirror::Object> ref(self, obj);
RequestConcurrentGC(self);
}
}
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_HEAP_INL_H_