| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_GC_HEAP_INL_H_ |
| #define ART_RUNTIME_GC_HEAP_INL_H_ |
| |
| #include "heap.h" |
| |
| #include "debugger.h" |
| #include "gc/space/bump_pointer_space-inl.h" |
| #include "gc/space/dlmalloc_space-inl.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/rosalloc_space-inl.h" |
| #include "object_utils.h" |
| #include "runtime.h" |
| #include "thread.h" |
| #include "thread-inl.h" |
| |
| namespace art { |
| namespace gc { |
| |
| template <bool kInstrumented, typename PreFenceVisitor> |
| inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass, |
| size_t byte_count, AllocatorType allocator, |
| const PreFenceVisitor& pre_fence_visitor) { |
| DebugCheckPreconditionsForAllocObject(klass, byte_count); |
| // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are |
| // done in the runnable state where suspension is expected. |
| DCHECK_EQ(self->GetState(), kRunnable); |
| self->AssertThreadSuspensionIsAllowable(); |
| mirror::Object* obj; |
| size_t bytes_allocated; |
| AllocationTimer alloc_timer(this, &obj); |
| if (UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) { |
| obj = TryToAllocate<kInstrumented>(self, kAllocatorTypeLOS, byte_count, false, |
| &bytes_allocated); |
| allocator = kAllocatorTypeLOS; |
| } else { |
| obj = TryToAllocate<kInstrumented>(self, allocator, byte_count, false, &bytes_allocated); |
| } |
| |
| if (UNLIKELY(obj == nullptr)) { |
| SirtRef<mirror::Class> sirt_c(self, klass); |
| obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated); |
| if (obj == nullptr) { |
| return nullptr; |
| } else { |
| klass = sirt_c.get(); |
| } |
| } |
| obj->SetClass(klass); |
| pre_fence_visitor(obj); |
| DCHECK_GT(bytes_allocated, 0u); |
| const size_t new_num_bytes_allocated = |
| static_cast<size_t>(num_bytes_allocated_.fetch_add(bytes_allocated)) + bytes_allocated; |
| // TODO: Deprecate. |
| if (kInstrumented) { |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* thread_stats = self->GetStats(); |
| ++thread_stats->allocated_objects; |
| thread_stats->allocated_bytes += bytes_allocated; |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| ++global_stats->allocated_objects; |
| global_stats->allocated_bytes += bytes_allocated; |
| } |
| } else { |
| DCHECK(!Runtime::Current()->HasStatsEnabled()); |
| } |
| if (AllocatorHasAllocationStack(allocator)) { |
| // This is safe to do since the GC will never free objects which are neither in the allocation |
| // stack or the live bitmap. |
| while (!allocation_stack_->AtomicPushBack(obj)) { |
| CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); |
| } |
| } |
| if (kInstrumented) { |
| if (Dbg::IsAllocTrackingEnabled()) { |
| Dbg::RecordAllocation(klass, bytes_allocated); |
| } |
| } else { |
| DCHECK(!Dbg::IsAllocTrackingEnabled()); |
| } |
| if (AllocatorHasConcurrentGC(allocator)) { |
| CheckConcurrentGC(self, new_num_bytes_allocated, obj); |
| } |
| if (kIsDebugBuild) { |
| if (kDesiredHeapVerification > kNoHeapVerification) { |
| VerifyObject(obj); |
| } |
| self->VerifyStack(); |
| } |
| return obj; |
| } |
| |
| template <const bool kInstrumented> |
| inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type, |
| size_t alloc_size, bool grow, |
| size_t* bytes_allocated) { |
| if (UNLIKELY(IsOutOfMemoryOnAllocation(alloc_size, grow))) { |
| return nullptr; |
| } |
| if (kInstrumented) { |
| if (UNLIKELY(running_on_valgrind_ && allocator_type == kAllocatorTypeFreeList)) { |
| return non_moving_space_->Alloc(self, alloc_size, bytes_allocated); |
| } |
| } else { |
| // If running on valgrind, we should be using the instrumented path. |
| DCHECK(!running_on_valgrind_); |
| } |
| mirror::Object* ret; |
| switch (allocator_type) { |
| case kAllocatorTypeBumpPointer: { |
| DCHECK(bump_pointer_space_ != nullptr); |
| alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment); |
| ret = bump_pointer_space_->AllocNonvirtual(alloc_size); |
| if (LIKELY(ret != nullptr)) { |
| *bytes_allocated = alloc_size; |
| } |
| break; |
| } |
| case kAllocatorTypeFreeList: { |
| if (kUseRosAlloc) { |
| ret = reinterpret_cast<space::RosAllocSpace*>(non_moving_space_)->AllocNonvirtual( |
| self, alloc_size, bytes_allocated); |
| } else { |
| ret = reinterpret_cast<space::DlMallocSpace*>(non_moving_space_)->AllocNonvirtual( |
| self, alloc_size, bytes_allocated); |
| } |
| break; |
| } |
| case kAllocatorTypeLOS: { |
| ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated); |
| // Note that the bump pointer spaces aren't necessarily next to |
| // the other continuous spaces like the non-moving alloc space or |
| // the zygote space. |
| DCHECK(ret == nullptr || large_object_space_->Contains(ret)); |
| break; |
| } |
| default: { |
| LOG(FATAL) << "Invalid allocator type"; |
| ret = nullptr; |
| } |
| } |
| return ret; |
| } |
| |
| inline void Heap::DebugCheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) { |
| DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) || |
| (c->IsVariableSize() || c->GetObjectSize() == byte_count) || |
| strlen(ClassHelper(c).GetDescriptor()) == 0); |
| DCHECK_GE(byte_count, sizeof(mirror::Object)); |
| } |
| |
| inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr) |
| : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) { |
| if (kMeasureAllocationTime) { |
| allocation_start_time_ = NanoTime() / kTimeAdjust; |
| } |
| } |
| |
| inline Heap::AllocationTimer::~AllocationTimer() { |
| if (kMeasureAllocationTime) { |
| mirror::Object* allocated_obj = *allocated_obj_ptr_; |
| // Only if the allocation succeeded, record the time. |
| if (allocated_obj != nullptr) { |
| uint64_t allocation_end_time = NanoTime() / kTimeAdjust; |
| heap_->total_allocation_time_.fetch_add(allocation_end_time - allocation_start_time_); |
| } |
| } |
| }; |
| |
| inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const { |
| // We need to have a zygote space or else our newly allocated large object can end up in the |
| // Zygote resulting in it being prematurely freed. |
| // We can only do this for primitive objects since large objects will not be within the card table |
| // range. This also means that we rely on SetClass not dirtying the object's card. |
| return byte_count >= kLargeObjectThreshold && have_zygote_space_ && c->IsPrimitiveArray(); |
| } |
| |
| inline bool Heap::IsOutOfMemoryOnAllocation(size_t alloc_size, bool grow) { |
| size_t new_footprint = num_bytes_allocated_ + alloc_size; |
| if (UNLIKELY(new_footprint > max_allowed_footprint_)) { |
| if (UNLIKELY(new_footprint > growth_limit_)) { |
| return true; |
| } |
| if (!concurrent_gc_) { |
| if (!grow) { |
| return true; |
| } else { |
| max_allowed_footprint_ = new_footprint; |
| } |
| } |
| } |
| return false; |
| } |
| |
| inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, |
| mirror::Object* obj) { |
| if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) { |
| // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint. |
| SirtRef<mirror::Object> ref(self, obj); |
| RequestConcurrentGC(self); |
| } |
| } |
| |
| } // namespace gc |
| } // namespace art |
| |
| #endif // ART_RUNTIME_GC_HEAP_INL_H_ |