| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_ |
| #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_ |
| |
| #include <stdint.h> |
| #include <memory> |
| |
| #include "base/globals.h" |
| #include "common_runtime_test.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/object-inl.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread_list.h" |
| #include "zygote_space.h" |
| |
| namespace art { |
| namespace gc { |
| namespace space { |
| |
| template <class Super> |
| class SpaceTest : public Super { |
| public: |
| jobject byte_array_class_ = nullptr; |
| |
| void AddSpace(ContinuousSpace* space, bool revoke = true) { |
| Heap* heap = Runtime::Current()->GetHeap(); |
| if (revoke) { |
| heap->RevokeAllThreadLocalBuffers(); |
| } |
| { |
| ScopedThreadStateChange sts(Thread::Current(), kSuspended); |
| ScopedSuspendAll ssa("Add image space"); |
| heap->AddSpace(space); |
| } |
| heap->SetSpaceAsDefault(space); |
| } |
| |
| mirror::Class* GetByteArrayClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { |
| StackHandleScope<1> hs(self); |
| auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr)); |
| if (byte_array_class_ == nullptr) { |
| mirror::Class* byte_array_class = |
| Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader); |
| EXPECT_TRUE(byte_array_class != nullptr); |
| byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class); |
| EXPECT_TRUE(byte_array_class_ != nullptr); |
| } |
| return self->DecodeJObject(byte_array_class_)->AsClass(); |
| } |
| |
| mirror::Object* Alloc(space::MallocSpace* alloc_space, |
| Thread* self, |
| size_t bytes, |
| size_t* bytes_allocated, |
| size_t* usable_size, |
| size_t* bytes_tl_bulk_allocated) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self))); |
| mirror::Object* obj = alloc_space->Alloc(self, |
| bytes, |
| bytes_allocated, |
| usable_size, |
| bytes_tl_bulk_allocated); |
| if (obj != nullptr) { |
| InstallClass(obj, byte_array_class.Get(), bytes); |
| } |
| return obj; |
| } |
| |
| mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space, |
| Thread* self, |
| size_t bytes, |
| size_t* bytes_allocated, |
| size_t* usable_size, |
| size_t* bytes_tl_bulk_allocated) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self))); |
| mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size, |
| bytes_tl_bulk_allocated); |
| if (obj != nullptr) { |
| InstallClass(obj, byte_array_class.Get(), bytes); |
| } |
| return obj; |
| } |
| |
| void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Note the minimum size, which is the size of a zero-length byte array. |
| EXPECT_GE(size, SizeOfZeroLengthByteArray()); |
| EXPECT_TRUE(byte_array_class != nullptr); |
| o->SetClass(byte_array_class); |
| if (kUseBakerReadBarrier) { |
| // Like the proper heap object allocation, install and verify |
| // the correct read barrier state. |
| o->AssertReadBarrierState(); |
| } |
| mirror::Array* arr = o->AsArray<kVerifyNone>(); |
| size_t header_size = SizeOfZeroLengthByteArray(); |
| int32_t length = size - header_size; |
| arr->SetLength(length); |
| EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size); |
| } |
| |
| static size_t SizeOfZeroLengthByteArray() { |
| return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value(); |
| } |
| |
| typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit, |
| size_t capacity, uint8_t* requested_begin); |
| |
| void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size, |
| int round, size_t growth_limit); |
| void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space); |
| }; |
| |
| static inline size_t test_rand(size_t* seed) { |
| *seed = *seed * 1103515245 + 12345; |
| return *seed; |
| } |
| |
| template <class Super> |
| void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, |
| intptr_t object_size, |
| int round, |
| size_t growth_limit) { |
| if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) || |
| ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) { |
| // No allocation can succeed |
| return; |
| } |
| |
| // The space's footprint equals amount of resources requested from system |
| size_t footprint = space->GetFootprint(); |
| |
| // The space must at least have its book keeping allocated |
| EXPECT_GT(footprint, 0u); |
| |
| // But it shouldn't exceed the initial size |
| EXPECT_LE(footprint, growth_limit); |
| |
| // space's size shouldn't exceed the initial size |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // this invariant should always hold or else the space has grown to be larger than what the |
| // space believes its size is (which will break invariants) |
| EXPECT_GE(space->Size(), footprint); |
| |
| // Fill the space with lots of small objects up to the growth limit |
| size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1; |
| std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]); |
| size_t last_object = 0; // last object for which allocation succeeded |
| size_t amount_allocated = 0; // amount of space allocated |
| Thread* self = Thread::Current(); |
| ScopedObjectAccess soa(self); |
| size_t rand_seed = 123456789; |
| for (size_t i = 0; i < max_objects; i++) { |
| size_t alloc_fails = 0; // number of failed allocations |
| size_t max_fails = 30; // number of times we fail allocation before giving up |
| for (; alloc_fails < max_fails; alloc_fails++) { |
| size_t alloc_size; |
| if (object_size > 0) { |
| alloc_size = object_size; |
| } else { |
| alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size); |
| // Note the minimum size, which is the size of a zero-length byte array. |
| size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray(); |
| if (alloc_size < size_of_zero_length_byte_array) { |
| alloc_size = size_of_zero_length_byte_array; |
| } |
| } |
| StackHandleScope<1> hs(soa.Self()); |
| auto object(hs.NewHandle<mirror::Object>(nullptr)); |
| size_t bytes_allocated = 0; |
| size_t bytes_tl_bulk_allocated; |
| if (round <= 1) { |
| object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr, |
| &bytes_tl_bulk_allocated)); |
| } else { |
| object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr, |
| &bytes_tl_bulk_allocated)); |
| } |
| footprint = space->GetFootprint(); |
| EXPECT_GE(space->Size(), footprint); // invariant |
| if (object != nullptr) { // allocation succeeded |
| lots_of_objects[i] = object.Get(); |
| size_t allocation_size = space->AllocationSize(object.Get(), nullptr); |
| EXPECT_EQ(bytes_allocated, allocation_size); |
| if (object_size > 0) { |
| EXPECT_GE(allocation_size, static_cast<size_t>(object_size)); |
| } else { |
| EXPECT_GE(allocation_size, 8u); |
| } |
| EXPECT_TRUE(bytes_tl_bulk_allocated == 0 || |
| bytes_tl_bulk_allocated >= allocation_size); |
| amount_allocated += allocation_size; |
| break; |
| } |
| } |
| if (alloc_fails == max_fails) { |
| last_object = i; |
| break; |
| } |
| } |
| CHECK_NE(last_object, 0u); // we should have filled the space |
| EXPECT_GT(amount_allocated, 0u); |
| |
| // We shouldn't have gone past the growth_limit |
| EXPECT_LE(amount_allocated, growth_limit); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // footprint and size should agree with amount allocated |
| EXPECT_GE(footprint, amount_allocated); |
| EXPECT_GE(space->Size(), amount_allocated); |
| |
| // Release storage in a semi-adhoc manner |
| size_t free_increment = 96; |
| while (true) { |
| { |
| ScopedThreadStateChange tsc(self, kNative); |
| // Give the space a haircut. |
| space->Trim(); |
| } |
| |
| // Bounds sanity |
| footprint = space->GetFootprint(); |
| EXPECT_LE(amount_allocated, growth_limit); |
| EXPECT_GE(footprint, amount_allocated); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), amount_allocated); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| if (free_increment == 0) { |
| break; |
| } |
| |
| // Free some objects |
| for (size_t i = 0; i < last_object; i += free_increment) { |
| mirror::Object* object = lots_of_objects.get()[i]; |
| if (object == nullptr) { |
| continue; |
| } |
| size_t allocation_size = space->AllocationSize(object, nullptr); |
| if (object_size > 0) { |
| EXPECT_GE(allocation_size, static_cast<size_t>(object_size)); |
| } else { |
| EXPECT_GE(allocation_size, 8u); |
| } |
| space->Free(self, object); |
| lots_of_objects.get()[i] = nullptr; |
| amount_allocated -= allocation_size; |
| footprint = space->GetFootprint(); |
| EXPECT_GE(space->Size(), footprint); // invariant |
| } |
| |
| free_increment >>= 1; |
| } |
| |
| // The space has become empty here before allocating a large object |
| // below. For RosAlloc, revoke thread-local runs, which are kept |
| // even when empty for a performance reason, so that they won't |
| // cause the following large object allocation to fail due to |
| // potential fragmentation. Note they are normally revoked at each |
| // GC (but no GC here.) |
| space->RevokeAllThreadLocalBuffers(); |
| |
| // All memory was released, try a large allocation to check freed memory is being coalesced |
| StackHandleScope<1> hs(soa.Self()); |
| auto large_object(hs.NewHandle<mirror::Object>(nullptr)); |
| size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4); |
| size_t bytes_allocated = 0; |
| size_t bytes_tl_bulk_allocated; |
| if (round <= 1) { |
| large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr, |
| &bytes_tl_bulk_allocated)); |
| } else { |
| large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated, |
| nullptr, &bytes_tl_bulk_allocated)); |
| } |
| EXPECT_TRUE(large_object != nullptr); |
| |
| // Sanity check footprint |
| footprint = space->GetFootprint(); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), footprint); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // Clean up |
| space->Free(self, large_object.Assign(nullptr)); |
| |
| // Sanity check footprint |
| footprint = space->GetFootprint(); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), footprint); |
| EXPECT_LE(space->Size(), growth_limit); |
| } |
| |
| template <class Super> |
| void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, |
| CreateSpaceFn create_space) { |
| if (object_size < SizeOfZeroLengthByteArray()) { |
| // Too small for the object layout/model. |
| return; |
| } |
| size_t initial_size = 4 * MB; |
| size_t growth_limit = 8 * MB; |
| size_t capacity = 16 * MB; |
| MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr)); |
| ASSERT_TRUE(space != nullptr); |
| |
| // Basic sanity |
| EXPECT_EQ(space->Capacity(), growth_limit); |
| EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| AddSpace(space); |
| |
| // In this round we don't allocate with growth and therefore can't grow past the initial size. |
| // This effectively makes the growth_limit the initial_size, so assert this. |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size); |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit); |
| // Remove growth limit |
| space->ClearGrowthLimit(); |
| EXPECT_EQ(space->Capacity(), capacity); |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity); |
| } |
| |
| #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \ |
| TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \ |
| SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \ |
| } |
| |
| #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \ |
| TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \ |
| SizeFootPrintGrowthLimitAndTrimDriver(-(size), spaceFn); \ |
| } |
| |
| #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \ |
| class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \ |
| }; \ |
| \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB) |
| |
| #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \ |
| class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \ |
| }; \ |
| \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \ |
| TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB) |
| |
| } // namespace space |
| } // namespace gc |
| } // namespace art |
| |
| #endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_ |