| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_ |
| #define ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_ |
| |
| #include <deque> |
| #include <utility> |
| #include <vector> |
| |
| #include "arch/mips64/instruction_set_features_mips64.h" |
| #include "base/arena_containers.h" |
| #include "base/enums.h" |
| #include "base/globals.h" |
| #include "base/macros.h" |
| #include "base/stl_util_identity.h" |
| #include "constants_mips64.h" |
| #include "heap_poisoning.h" |
| #include "managed_register_mips64.h" |
| #include "offsets.h" |
| #include "utils/assembler.h" |
| #include "utils/jni_macro_assembler.h" |
| #include "utils/label.h" |
| |
| namespace art { |
| namespace mips64 { |
| |
| enum LoadConst64Path { |
| kLoadConst64PathZero = 0x0, |
| kLoadConst64PathOri = 0x1, |
| kLoadConst64PathDaddiu = 0x2, |
| kLoadConst64PathLui = 0x4, |
| kLoadConst64PathLuiOri = 0x8, |
| kLoadConst64PathOriDahi = 0x10, |
| kLoadConst64PathOriDati = 0x20, |
| kLoadConst64PathLuiDahi = 0x40, |
| kLoadConst64PathLuiDati = 0x80, |
| kLoadConst64PathDaddiuDsrlX = 0x100, |
| kLoadConst64PathOriDsllX = 0x200, |
| kLoadConst64PathDaddiuDsllX = 0x400, |
| kLoadConst64PathLuiOriDsllX = 0x800, |
| kLoadConst64PathOriDsllXOri = 0x1000, |
| kLoadConst64PathDaddiuDsllXOri = 0x2000, |
| kLoadConst64PathDaddiuDahi = 0x4000, |
| kLoadConst64PathDaddiuDati = 0x8000, |
| kLoadConst64PathDinsu1 = 0x10000, |
| kLoadConst64PathDinsu2 = 0x20000, |
| kLoadConst64PathCatchAll = 0x40000, |
| kLoadConst64PathAllPaths = 0x7ffff, |
| }; |
| |
| template <typename Asm> |
| void TemplateLoadConst32(Asm* a, GpuRegister rd, int32_t value) { |
| if (IsUint<16>(value)) { |
| // Use OR with (unsigned) immediate to encode 16b unsigned int. |
| a->Ori(rd, ZERO, value); |
| } else if (IsInt<16>(value)) { |
| // Use ADD with (signed) immediate to encode 16b signed int. |
| a->Addiu(rd, ZERO, value); |
| } else { |
| // Set 16 most significant bits of value. The "lui" instruction |
| // also clears the 16 least significant bits to zero. |
| a->Lui(rd, value >> 16); |
| if (value & 0xFFFF) { |
| // If the 16 least significant bits are non-zero, set them |
| // here. |
| a->Ori(rd, rd, value); |
| } |
| } |
| } |
| |
| static inline int InstrCountForLoadReplicatedConst32(int64_t value) { |
| int32_t x = Low32Bits(value); |
| int32_t y = High32Bits(value); |
| |
| if (x == y) { |
| return (IsUint<16>(x) || IsInt<16>(x) || ((x & 0xFFFF) == 0)) ? 2 : 3; |
| } |
| |
| return INT_MAX; |
| } |
| |
| template <typename Asm, typename Rtype, typename Vtype> |
| void TemplateLoadConst64(Asm* a, Rtype rd, Vtype value) { |
| int bit31 = (value & UINT64_C(0x80000000)) != 0; |
| int rep32_count = InstrCountForLoadReplicatedConst32(value); |
| |
| // Loads with 1 instruction. |
| if (IsUint<16>(value)) { |
| // 64-bit value can be loaded as an unsigned 16-bit number. |
| a->RecordLoadConst64Path(kLoadConst64PathOri); |
| a->Ori(rd, ZERO, value); |
| } else if (IsInt<16>(value)) { |
| // 64-bit value can be loaded as an signed 16-bit number. |
| a->RecordLoadConst64Path(kLoadConst64PathDaddiu); |
| a->Daddiu(rd, ZERO, value); |
| } else if ((value & 0xFFFF) == 0 && IsInt<16>(value >> 16)) { |
| // 64-bit value can be loaded as an signed 32-bit number which has all |
| // of its 16 least significant bits set to zero. |
| a->RecordLoadConst64Path(kLoadConst64PathLui); |
| a->Lui(rd, value >> 16); |
| } else if (IsInt<32>(value)) { |
| // Loads with 2 instructions. |
| // 64-bit value can be loaded as an signed 32-bit number which has some |
| // or all of its 16 least significant bits set to one. |
| a->RecordLoadConst64Path(kLoadConst64PathLuiOri); |
| a->Lui(rd, value >> 16); |
| a->Ori(rd, rd, value); |
| } else if ((value & 0xFFFF0000) == 0 && IsInt<16>(value >> 32)) { |
| // 64-bit value which consists of an unsigned 16-bit value in its |
| // least significant 32-bits, and a signed 16-bit value in its |
| // most significant 32-bits. |
| a->RecordLoadConst64Path(kLoadConst64PathOriDahi); |
| a->Ori(rd, ZERO, value); |
| a->Dahi(rd, value >> 32); |
| } else if ((value & UINT64_C(0xFFFFFFFF0000)) == 0) { |
| // 64-bit value which consists of an unsigned 16-bit value in its |
| // least significant 48-bits, and a signed 16-bit value in its |
| // most significant 16-bits. |
| a->RecordLoadConst64Path(kLoadConst64PathOriDati); |
| a->Ori(rd, ZERO, value); |
| a->Dati(rd, value >> 48); |
| } else if ((value & 0xFFFF) == 0 && |
| (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) { |
| // 16 LSBs (Least Significant Bits) all set to zero. |
| // 48 MSBs (Most Significant Bits) hold a signed 32-bit value. |
| a->RecordLoadConst64Path(kLoadConst64PathLuiDahi); |
| a->Lui(rd, value >> 16); |
| a->Dahi(rd, (value >> 32) + bit31); |
| } else if ((value & 0xFFFF) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) { |
| // 16 LSBs all set to zero. |
| // 48 MSBs hold a signed value which can't be represented by signed |
| // 32-bit number, and the middle 16 bits are all zero, or all one. |
| a->RecordLoadConst64Path(kLoadConst64PathLuiDati); |
| a->Lui(rd, value >> 16); |
| a->Dati(rd, (value >> 48) + bit31); |
| } else if (IsInt<16>(static_cast<int32_t>(value)) && |
| (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) { |
| // 32 LSBs contain an unsigned 16-bit number. |
| // 32 MSBs contain a signed 16-bit number. |
| a->RecordLoadConst64Path(kLoadConst64PathDaddiuDahi); |
| a->Daddiu(rd, ZERO, value); |
| a->Dahi(rd, (value >> 32) + bit31); |
| } else if (IsInt<16>(static_cast<int32_t>(value)) && |
| ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) { |
| // 48 LSBs contain an unsigned 16-bit number. |
| // 16 MSBs contain a signed 16-bit number. |
| a->RecordLoadConst64Path(kLoadConst64PathDaddiuDati); |
| a->Daddiu(rd, ZERO, value); |
| a->Dati(rd, (value >> 48) + bit31); |
| } else if (IsPowerOfTwo(value + UINT64_C(1))) { |
| // 64-bit values which have their "n" MSBs set to one, and their |
| // "64-n" LSBs set to zero. "n" must meet the restrictions 0 < n < 64. |
| int shift_cnt = 64 - CTZ(value + UINT64_C(1)); |
| a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsrlX); |
| a->Daddiu(rd, ZERO, -1); |
| if (shift_cnt < 32) { |
| a->Dsrl(rd, rd, shift_cnt); |
| } else { |
| a->Dsrl32(rd, rd, shift_cnt & 31); |
| } |
| } else { |
| int shift_cnt = CTZ(value); |
| int64_t tmp = value >> shift_cnt; |
| a->RecordLoadConst64Path(kLoadConst64PathOriDsllX); |
| if (IsUint<16>(tmp)) { |
| // Value can be computed by loading a 16-bit unsigned value, and |
| // then shifting left. |
| a->Ori(rd, ZERO, tmp); |
| if (shift_cnt < 32) { |
| a->Dsll(rd, rd, shift_cnt); |
| } else { |
| a->Dsll32(rd, rd, shift_cnt & 31); |
| } |
| } else if (IsInt<16>(tmp)) { |
| // Value can be computed by loading a 16-bit signed value, and |
| // then shifting left. |
| a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllX); |
| a->Daddiu(rd, ZERO, tmp); |
| if (shift_cnt < 32) { |
| a->Dsll(rd, rd, shift_cnt); |
| } else { |
| a->Dsll32(rd, rd, shift_cnt & 31); |
| } |
| } else if (rep32_count < 3) { |
| // Value being loaded has 32 LSBs equal to the 32 MSBs, and the |
| // value loaded into the 32 LSBs can be loaded with a single |
| // MIPS instruction. |
| a->LoadConst32(rd, value); |
| a->Dinsu(rd, rd, 32, 32); |
| a->RecordLoadConst64Path(kLoadConst64PathDinsu1); |
| } else if (IsInt<32>(tmp)) { |
| // Loads with 3 instructions. |
| // Value can be computed by loading a 32-bit signed value, and |
| // then shifting left. |
| a->RecordLoadConst64Path(kLoadConst64PathLuiOriDsllX); |
| a->Lui(rd, tmp >> 16); |
| a->Ori(rd, rd, tmp); |
| if (shift_cnt < 32) { |
| a->Dsll(rd, rd, shift_cnt); |
| } else { |
| a->Dsll32(rd, rd, shift_cnt & 31); |
| } |
| } else { |
| shift_cnt = 16 + CTZ(value >> 16); |
| tmp = value >> shift_cnt; |
| if (IsUint<16>(tmp)) { |
| // Value can be computed by loading a 16-bit unsigned value, |
| // shifting left, and "or"ing in another 16-bit unsigned value. |
| a->RecordLoadConst64Path(kLoadConst64PathOriDsllXOri); |
| a->Ori(rd, ZERO, tmp); |
| if (shift_cnt < 32) { |
| a->Dsll(rd, rd, shift_cnt); |
| } else { |
| a->Dsll32(rd, rd, shift_cnt & 31); |
| } |
| a->Ori(rd, rd, value); |
| } else if (IsInt<16>(tmp)) { |
| // Value can be computed by loading a 16-bit signed value, |
| // shifting left, and "or"ing in a 16-bit unsigned value. |
| a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllXOri); |
| a->Daddiu(rd, ZERO, tmp); |
| if (shift_cnt < 32) { |
| a->Dsll(rd, rd, shift_cnt); |
| } else { |
| a->Dsll32(rd, rd, shift_cnt & 31); |
| } |
| a->Ori(rd, rd, value); |
| } else if (rep32_count < 4) { |
| // Value being loaded has 32 LSBs equal to the 32 MSBs, and the |
| // value in the 32 LSBs requires 2 MIPS instructions to load. |
| a->LoadConst32(rd, value); |
| a->Dinsu(rd, rd, 32, 32); |
| a->RecordLoadConst64Path(kLoadConst64PathDinsu2); |
| } else { |
| // Loads with 3-4 instructions. |
| // Catch-all case to get any other 64-bit values which aren't |
| // handled by special cases above. |
| uint64_t tmp2 = value; |
| a->RecordLoadConst64Path(kLoadConst64PathCatchAll); |
| a->LoadConst32(rd, value); |
| if (bit31) { |
| tmp2 += UINT64_C(0x100000000); |
| } |
| if (((tmp2 >> 32) & 0xFFFF) != 0) { |
| a->Dahi(rd, tmp2 >> 32); |
| } |
| if (tmp2 & UINT64_C(0x800000000000)) { |
| tmp2 += UINT64_C(0x1000000000000); |
| } |
| if ((tmp2 >> 48) != 0) { |
| a->Dati(rd, tmp2 >> 48); |
| } |
| } |
| } |
| } |
| } |
| |
| static constexpr size_t kMips64HalfwordSize = 2; |
| static constexpr size_t kMips64WordSize = 4; |
| static constexpr size_t kMips64DoublewordSize = 8; |
| |
| enum LoadOperandType { |
| kLoadSignedByte, |
| kLoadUnsignedByte, |
| kLoadSignedHalfword, |
| kLoadUnsignedHalfword, |
| kLoadWord, |
| kLoadUnsignedWord, |
| kLoadDoubleword, |
| kLoadQuadword |
| }; |
| |
| enum StoreOperandType { |
| kStoreByte, |
| kStoreHalfword, |
| kStoreWord, |
| kStoreDoubleword, |
| kStoreQuadword |
| }; |
| |
| // Used to test the values returned by ClassS/ClassD. |
| enum FPClassMaskType { |
| kSignalingNaN = 0x001, |
| kQuietNaN = 0x002, |
| kNegativeInfinity = 0x004, |
| kNegativeNormal = 0x008, |
| kNegativeSubnormal = 0x010, |
| kNegativeZero = 0x020, |
| kPositiveInfinity = 0x040, |
| kPositiveNormal = 0x080, |
| kPositiveSubnormal = 0x100, |
| kPositiveZero = 0x200, |
| }; |
| |
| class Mips64Label : public Label { |
| public: |
| Mips64Label() : prev_branch_id_plus_one_(0) {} |
| |
| Mips64Label(Mips64Label&& src) |
| : Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {} |
| |
| private: |
| uint32_t prev_branch_id_plus_one_; // To get distance from preceding branch, if any. |
| |
| friend class Mips64Assembler; |
| DISALLOW_COPY_AND_ASSIGN(Mips64Label); |
| }; |
| |
| // Assembler literal is a value embedded in code, retrieved using a PC-relative load. |
| class Literal { |
| public: |
| static constexpr size_t kMaxSize = 8; |
| |
| Literal(uint32_t size, const uint8_t* data) |
| : label_(), size_(size) { |
| DCHECK_LE(size, Literal::kMaxSize); |
| memcpy(data_, data, size); |
| } |
| |
| template <typename T> |
| T GetValue() const { |
| DCHECK_EQ(size_, sizeof(T)); |
| T value; |
| memcpy(&value, data_, sizeof(T)); |
| return value; |
| } |
| |
| uint32_t GetSize() const { |
| return size_; |
| } |
| |
| const uint8_t* GetData() const { |
| return data_; |
| } |
| |
| Mips64Label* GetLabel() { |
| return &label_; |
| } |
| |
| const Mips64Label* GetLabel() const { |
| return &label_; |
| } |
| |
| private: |
| Mips64Label label_; |
| const uint32_t size_; |
| uint8_t data_[kMaxSize]; |
| |
| DISALLOW_COPY_AND_ASSIGN(Literal); |
| }; |
| |
| // Jump table: table of labels emitted after the code and before the literals. Similar to literals. |
| class JumpTable { |
| public: |
| explicit JumpTable(std::vector<Mips64Label*>&& labels) |
| : label_(), labels_(std::move(labels)) { |
| } |
| |
| size_t GetSize() const { |
| return labels_.size() * sizeof(uint32_t); |
| } |
| |
| const std::vector<Mips64Label*>& GetData() const { |
| return labels_; |
| } |
| |
| Mips64Label* GetLabel() { |
| return &label_; |
| } |
| |
| const Mips64Label* GetLabel() const { |
| return &label_; |
| } |
| |
| private: |
| Mips64Label label_; |
| std::vector<Mips64Label*> labels_; |
| |
| DISALLOW_COPY_AND_ASSIGN(JumpTable); |
| }; |
| |
| // Slowpath entered when Thread::Current()->_exception is non-null. |
| class Mips64ExceptionSlowPath { |
| public: |
| explicit Mips64ExceptionSlowPath(Mips64ManagedRegister scratch, size_t stack_adjust) |
| : scratch_(scratch), stack_adjust_(stack_adjust) {} |
| |
| Mips64ExceptionSlowPath(Mips64ExceptionSlowPath&& src) |
| : scratch_(src.scratch_), |
| stack_adjust_(src.stack_adjust_), |
| exception_entry_(std::move(src.exception_entry_)) {} |
| |
| private: |
| Mips64Label* Entry() { return &exception_entry_; } |
| const Mips64ManagedRegister scratch_; |
| const size_t stack_adjust_; |
| Mips64Label exception_entry_; |
| |
| friend class Mips64Assembler; |
| DISALLOW_COPY_AND_ASSIGN(Mips64ExceptionSlowPath); |
| }; |
| |
| class Mips64Assembler FINAL : public Assembler, public JNIMacroAssembler<PointerSize::k64> { |
| public: |
| using JNIBase = JNIMacroAssembler<PointerSize::k64>; |
| |
| explicit Mips64Assembler(ArenaAllocator* allocator, |
| const Mips64InstructionSetFeatures* instruction_set_features = nullptr) |
| : Assembler(allocator), |
| overwriting_(false), |
| overwrite_location_(0), |
| literals_(allocator->Adapter(kArenaAllocAssembler)), |
| long_literals_(allocator->Adapter(kArenaAllocAssembler)), |
| jump_tables_(allocator->Adapter(kArenaAllocAssembler)), |
| last_position_adjustment_(0), |
| last_old_position_(0), |
| last_branch_id_(0), |
| has_msa_(instruction_set_features != nullptr ? instruction_set_features->HasMsa() : false) { |
| cfi().DelayEmittingAdvancePCs(); |
| } |
| |
| virtual ~Mips64Assembler() { |
| for (auto& branch : branches_) { |
| CHECK(branch.IsResolved()); |
| } |
| } |
| |
| size_t CodeSize() const OVERRIDE { return Assembler::CodeSize(); } |
| DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); } |
| |
| // Emit Machine Instructions. |
| void Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 |
| void Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 |
| void Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 |
| |
| void MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 |
| void Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 |
| void Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 |
| void Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 |
| void Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 |
| void Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 |
| |
| void And(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Or(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| |
| void Bitswap(GpuRegister rd, GpuRegister rt); |
| void Dbitswap(GpuRegister rd, GpuRegister rt); // MIPS64 |
| void Seb(GpuRegister rd, GpuRegister rt); |
| void Seh(GpuRegister rd, GpuRegister rt); |
| void Dsbh(GpuRegister rd, GpuRegister rt); // MIPS64 |
| void Dshd(GpuRegister rd, GpuRegister rt); // MIPS64 |
| void Dext(GpuRegister rs, GpuRegister rt, int pos, int size); // MIPS64 |
| void Ins(GpuRegister rt, GpuRegister rs, int pos, int size); |
| void Dins(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64 |
| void Dinsm(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64 |
| void Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64 |
| void DblIns(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64 |
| void Lsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne); |
| void Dlsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne); // MIPS64 |
| void Wsbh(GpuRegister rd, GpuRegister rt); |
| void Sc(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); |
| void Scd(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); // MIPS64 |
| void Ll(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); |
| void Lld(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); // MIPS64 |
| |
| void Sll(GpuRegister rd, GpuRegister rt, int shamt); |
| void Srl(GpuRegister rd, GpuRegister rt, int shamt); |
| void Rotr(GpuRegister rd, GpuRegister rt, int shamt); |
| void Sra(GpuRegister rd, GpuRegister rt, int shamt); |
| void Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs); |
| void Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs); |
| void Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs); |
| void Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs); |
| void Dsll(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 |
| void Dsrl(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 |
| void Drotr(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 |
| void Dsra(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 |
| void Dsll32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 |
| void Dsrl32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 |
| void Drotr32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 |
| void Dsra32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 |
| void Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64 |
| void Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64 |
| void Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64 |
| void Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64 |
| |
| void Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 |
| void Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 |
| void Lwpc(GpuRegister rs, uint32_t imm19); |
| void Lwupc(GpuRegister rs, uint32_t imm19); // MIPS64 |
| void Ldpc(GpuRegister rs, uint32_t imm18); // MIPS64 |
| void Lui(GpuRegister rt, uint16_t imm16); |
| void Aui(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Daui(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 |
| void Dahi(GpuRegister rs, uint16_t imm16); // MIPS64 |
| void Dati(GpuRegister rs, uint16_t imm16); // MIPS64 |
| void Sync(uint32_t stype); |
| |
| void Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 |
| |
| void Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16); |
| void Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt); |
| void Clz(GpuRegister rd, GpuRegister rs); |
| void Clo(GpuRegister rd, GpuRegister rs); |
| void Dclz(GpuRegister rd, GpuRegister rs); // MIPS64 |
| void Dclo(GpuRegister rd, GpuRegister rs); // MIPS64 |
| |
| void Jalr(GpuRegister rd, GpuRegister rs); |
| void Jalr(GpuRegister rs); |
| void Jr(GpuRegister rs); |
| void Auipc(GpuRegister rs, uint16_t imm16); |
| void Addiupc(GpuRegister rs, uint32_t imm19); |
| void Bc(uint32_t imm26); |
| void Balc(uint32_t imm26); |
| void Jic(GpuRegister rt, uint16_t imm16); |
| void Jialc(GpuRegister rt, uint16_t imm16); |
| void Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16); |
| void Bltzc(GpuRegister rt, uint16_t imm16); |
| void Bgtzc(GpuRegister rt, uint16_t imm16); |
| void Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16); |
| void Bgezc(GpuRegister rt, uint16_t imm16); |
| void Blezc(GpuRegister rt, uint16_t imm16); |
| void Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16); |
| void Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16); |
| void Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16); |
| void Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16); |
| void Beqzc(GpuRegister rs, uint32_t imm21); |
| void Bnezc(GpuRegister rs, uint32_t imm21); |
| void Bc1eqz(FpuRegister ft, uint16_t imm16); |
| void Bc1nez(FpuRegister ft, uint16_t imm16); |
| void Beq(GpuRegister rs, GpuRegister rt, uint16_t imm16); // R2 |
| void Bne(GpuRegister rs, GpuRegister rt, uint16_t imm16); // R2 |
| void Beqz(GpuRegister rt, uint16_t imm16); // R2 |
| void Bnez(GpuRegister rt, uint16_t imm16); // R2 |
| void Bltz(GpuRegister rt, uint16_t imm16); // R2 |
| void Bgez(GpuRegister rt, uint16_t imm16); // R2 |
| void Blez(GpuRegister rt, uint16_t imm16); // R2 |
| void Bgtz(GpuRegister rt, uint16_t imm16); // R2 |
| |
| void AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void SqrtS(FpuRegister fd, FpuRegister fs); |
| void SqrtD(FpuRegister fd, FpuRegister fs); |
| void AbsS(FpuRegister fd, FpuRegister fs); |
| void AbsD(FpuRegister fd, FpuRegister fs); |
| void MovS(FpuRegister fd, FpuRegister fs); |
| void MovD(FpuRegister fd, FpuRegister fs); |
| void NegS(FpuRegister fd, FpuRegister fs); |
| void NegD(FpuRegister fd, FpuRegister fs); |
| void RoundLS(FpuRegister fd, FpuRegister fs); |
| void RoundLD(FpuRegister fd, FpuRegister fs); |
| void RoundWS(FpuRegister fd, FpuRegister fs); |
| void RoundWD(FpuRegister fd, FpuRegister fs); |
| void TruncLS(FpuRegister fd, FpuRegister fs); |
| void TruncLD(FpuRegister fd, FpuRegister fs); |
| void TruncWS(FpuRegister fd, FpuRegister fs); |
| void TruncWD(FpuRegister fd, FpuRegister fs); |
| void CeilLS(FpuRegister fd, FpuRegister fs); |
| void CeilLD(FpuRegister fd, FpuRegister fs); |
| void CeilWS(FpuRegister fd, FpuRegister fs); |
| void CeilWD(FpuRegister fd, FpuRegister fs); |
| void FloorLS(FpuRegister fd, FpuRegister fs); |
| void FloorLD(FpuRegister fd, FpuRegister fs); |
| void FloorWS(FpuRegister fd, FpuRegister fs); |
| void FloorWD(FpuRegister fd, FpuRegister fs); |
| void SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void SeleqzS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void SeleqzD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void SelnezS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void SelnezD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void RintS(FpuRegister fd, FpuRegister fs); |
| void RintD(FpuRegister fd, FpuRegister fs); |
| void ClassS(FpuRegister fd, FpuRegister fs); |
| void ClassD(FpuRegister fd, FpuRegister fs); |
| void MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| void CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft); |
| |
| void Cvtsw(FpuRegister fd, FpuRegister fs); |
| void Cvtdw(FpuRegister fd, FpuRegister fs); |
| void Cvtsd(FpuRegister fd, FpuRegister fs); |
| void Cvtds(FpuRegister fd, FpuRegister fs); |
| void Cvtsl(FpuRegister fd, FpuRegister fs); |
| void Cvtdl(FpuRegister fd, FpuRegister fs); |
| |
| void Mfc1(GpuRegister rt, FpuRegister fs); |
| void Mfhc1(GpuRegister rt, FpuRegister fs); |
| void Mtc1(GpuRegister rt, FpuRegister fs); |
| void Mthc1(GpuRegister rt, FpuRegister fs); |
| void Dmfc1(GpuRegister rt, FpuRegister fs); // MIPS64 |
| void Dmtc1(GpuRegister rt, FpuRegister fs); // MIPS64 |
| void Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16); |
| void Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16); |
| void Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16); |
| void Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16); |
| |
| void Break(); |
| void Nop(); |
| void Move(GpuRegister rd, GpuRegister rs); |
| void Clear(GpuRegister rd); |
| void Not(GpuRegister rd, GpuRegister rs); |
| |
| // MSA instructions. |
| void AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void Ffint_sW(VectorRegister wd, VectorRegister ws); |
| void Ffint_sD(VectorRegister wd, VectorRegister ws); |
| void Ftint_sW(VectorRegister wd, VectorRegister ws); |
| void Ftint_sD(VectorRegister wd, VectorRegister ws); |
| |
| void SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| // Immediate shift instructions, where shamtN denotes shift amount (must be between 0 and 2^N-1). |
| void SlliB(VectorRegister wd, VectorRegister ws, int shamt3); |
| void SlliH(VectorRegister wd, VectorRegister ws, int shamt4); |
| void SlliW(VectorRegister wd, VectorRegister ws, int shamt5); |
| void SlliD(VectorRegister wd, VectorRegister ws, int shamt6); |
| void SraiB(VectorRegister wd, VectorRegister ws, int shamt3); |
| void SraiH(VectorRegister wd, VectorRegister ws, int shamt4); |
| void SraiW(VectorRegister wd, VectorRegister ws, int shamt5); |
| void SraiD(VectorRegister wd, VectorRegister ws, int shamt6); |
| void SrliB(VectorRegister wd, VectorRegister ws, int shamt3); |
| void SrliH(VectorRegister wd, VectorRegister ws, int shamt4); |
| void SrliW(VectorRegister wd, VectorRegister ws, int shamt5); |
| void SrliD(VectorRegister wd, VectorRegister ws, int shamt6); |
| |
| void MoveV(VectorRegister wd, VectorRegister ws); |
| void SplatiB(VectorRegister wd, VectorRegister ws, int n4); |
| void SplatiH(VectorRegister wd, VectorRegister ws, int n3); |
| void SplatiW(VectorRegister wd, VectorRegister ws, int n2); |
| void SplatiD(VectorRegister wd, VectorRegister ws, int n1); |
| void Copy_sB(GpuRegister rd, VectorRegister ws, int n4); |
| void Copy_sH(GpuRegister rd, VectorRegister ws, int n3); |
| void Copy_sW(GpuRegister rd, VectorRegister ws, int n2); |
| void Copy_sD(GpuRegister rd, VectorRegister ws, int n1); |
| void Copy_uB(GpuRegister rd, VectorRegister ws, int n4); |
| void Copy_uH(GpuRegister rd, VectorRegister ws, int n3); |
| void Copy_uW(GpuRegister rd, VectorRegister ws, int n2); |
| void InsertB(VectorRegister wd, GpuRegister rs, int n4); |
| void InsertH(VectorRegister wd, GpuRegister rs, int n3); |
| void InsertW(VectorRegister wd, GpuRegister rs, int n2); |
| void InsertD(VectorRegister wd, GpuRegister rs, int n1); |
| void FillB(VectorRegister wd, GpuRegister rs); |
| void FillH(VectorRegister wd, GpuRegister rs); |
| void FillW(VectorRegister wd, GpuRegister rs); |
| void FillD(VectorRegister wd, GpuRegister rs); |
| |
| void LdiB(VectorRegister wd, int imm8); |
| void LdiH(VectorRegister wd, int imm10); |
| void LdiW(VectorRegister wd, int imm10); |
| void LdiD(VectorRegister wd, int imm10); |
| void LdB(VectorRegister wd, GpuRegister rs, int offset); |
| void LdH(VectorRegister wd, GpuRegister rs, int offset); |
| void LdW(VectorRegister wd, GpuRegister rs, int offset); |
| void LdD(VectorRegister wd, GpuRegister rs, int offset); |
| void StB(VectorRegister wd, GpuRegister rs, int offset); |
| void StH(VectorRegister wd, GpuRegister rs, int offset); |
| void StW(VectorRegister wd, GpuRegister rs, int offset); |
| void StD(VectorRegister wd, GpuRegister rs, int offset); |
| |
| void IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void PcntB(VectorRegister wd, VectorRegister ws); |
| void PcntH(VectorRegister wd, VectorRegister ws); |
| void PcntW(VectorRegister wd, VectorRegister ws); |
| void PcntD(VectorRegister wd, VectorRegister ws); |
| |
| // Helper for replicating floating point value in all destination elements. |
| void ReplicateFPToVectorRegister(VectorRegister dst, FpuRegister src, bool is_double); |
| |
| // Higher level composite instructions. |
| int InstrCountForLoadReplicatedConst32(int64_t); |
| void LoadConst32(GpuRegister rd, int32_t value); |
| void LoadConst64(GpuRegister rd, int64_t value); // MIPS64 |
| |
| // This function is only used for testing purposes. |
| void RecordLoadConst64Path(int value); |
| |
| void Addiu32(GpuRegister rt, GpuRegister rs, int32_t value); |
| void Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp = AT); // MIPS64 |
| |
| // |
| // Heap poisoning. |
| // |
| |
| // Poison a heap reference contained in `src` and store it in `dst`. |
| void PoisonHeapReference(GpuRegister dst, GpuRegister src) { |
| // dst = -src. |
| // Negate the 32-bit ref. |
| Dsubu(dst, ZERO, src); |
| // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64. |
| Dext(dst, dst, 0, 32); |
| } |
| // Poison a heap reference contained in `reg`. |
| void PoisonHeapReference(GpuRegister reg) { |
| // reg = -reg. |
| PoisonHeapReference(reg, reg); |
| } |
| // Unpoison a heap reference contained in `reg`. |
| void UnpoisonHeapReference(GpuRegister reg) { |
| // reg = -reg. |
| // Negate the 32-bit ref. |
| Dsubu(reg, ZERO, reg); |
| // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64. |
| Dext(reg, reg, 0, 32); |
| } |
| // Poison a heap reference contained in `reg` if heap poisoning is enabled. |
| void MaybePoisonHeapReference(GpuRegister reg) { |
| if (kPoisonHeapReferences) { |
| PoisonHeapReference(reg); |
| } |
| } |
| // Unpoison a heap reference contained in `reg` if heap poisoning is enabled. |
| void MaybeUnpoisonHeapReference(GpuRegister reg) { |
| if (kPoisonHeapReferences) { |
| UnpoisonHeapReference(reg); |
| } |
| } |
| |
| void Bind(Label* label) OVERRIDE { |
| Bind(down_cast<Mips64Label*>(label)); |
| } |
| void Jump(Label* label ATTRIBUTE_UNUSED) OVERRIDE { |
| UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS64"; |
| } |
| |
| void Bind(Mips64Label* label); |
| |
| // Don't warn about a different virtual Bind/Jump in the base class. |
| using JNIBase::Bind; |
| using JNIBase::Jump; |
| |
| // Create a new label that can be used with Jump/Bind calls. |
| std::unique_ptr<JNIMacroLabel> CreateLabel() OVERRIDE { |
| LOG(FATAL) << "Not implemented on MIPS64"; |
| UNREACHABLE(); |
| } |
| // Emit an unconditional jump to the label. |
| void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE { |
| LOG(FATAL) << "Not implemented on MIPS64"; |
| UNREACHABLE(); |
| } |
| // Emit a conditional jump to the label by applying a unary condition test to the register. |
| void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED, |
| JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED, |
| ManagedRegister test ATTRIBUTE_UNUSED) OVERRIDE { |
| LOG(FATAL) << "Not implemented on MIPS64"; |
| UNREACHABLE(); |
| } |
| |
| // Code at this offset will serve as the target for the Jump call. |
| void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE { |
| LOG(FATAL) << "Not implemented on MIPS64"; |
| UNREACHABLE(); |
| } |
| |
| // Create a new literal with a given value. |
| // NOTE: Force the template parameter to be explicitly specified. |
| template <typename T> |
| Literal* NewLiteral(typename Identity<T>::type value) { |
| static_assert(std::is_integral<T>::value, "T must be an integral type."); |
| return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value)); |
| } |
| |
| // Load label address using PC-relative loads. To be used with data labels in the literal / |
| // jump table area only and not with regular code labels. |
| void LoadLabelAddress(GpuRegister dest_reg, Mips64Label* label); |
| |
| // Create a new literal with the given data. |
| Literal* NewLiteral(size_t size, const uint8_t* data); |
| |
| // Load literal using PC-relative loads. |
| void LoadLiteral(GpuRegister dest_reg, LoadOperandType load_type, Literal* literal); |
| |
| // Create a jump table for the given labels that will be emitted when finalizing. |
| // When the table is emitted, offsets will be relative to the location of the table. |
| // The table location is determined by the location of its label (the label precedes |
| // the table data) and should be loaded using LoadLabelAddress(). |
| JumpTable* CreateJumpTable(std::vector<Mips64Label*>&& labels); |
| |
| // When `is_bare` is false, the branches will promote to long (if the range |
| // of the individual branch instruction is insufficient) and the delay/ |
| // forbidden slots will be taken care of. |
| // Use `is_bare = false` when the branch target may be out of reach of the |
| // individual branch instruction. IOW, this is for general purpose use. |
| // |
| // When `is_bare` is true, just the branch instructions will be generated |
| // leaving delay/forbidden slot filling up to the caller and the branches |
| // won't promote to long if the range is insufficient (you'll get a |
| // compilation error when the range is exceeded). |
| // Use `is_bare = true` when the branch target is known to be within reach |
| // of the individual branch instruction. This is intended for small local |
| // optimizations around delay/forbidden slots. |
| // Also prefer using `is_bare = true` if the code near the branch is to be |
| // patched or analyzed at run time (e.g. introspection) to |
| // - show the intent and |
| // - fail during compilation rather than during patching/execution if the |
| // bare branch range is insufficent but the code size and layout are |
| // expected to remain unchanged |
| // |
| // R6 compact branches without delay/forbidden slots. |
| void Bc(Mips64Label* label, bool is_bare = false); |
| void Balc(Mips64Label* label, bool is_bare = false); |
| // R6 compact branches with forbidden slots. |
| void Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Bltzc(GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Bgtzc(GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Bgezc(GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Blezc(GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); |
| void Beqzc(GpuRegister rs, Mips64Label* label, bool is_bare = false); |
| void Bnezc(GpuRegister rs, Mips64Label* label, bool is_bare = false); |
| // R6 branches with delay slots. |
| void Bc1eqz(FpuRegister ft, Mips64Label* label, bool is_bare = false); |
| void Bc1nez(FpuRegister ft, Mips64Label* label, bool is_bare = false); |
| // R2 branches with delay slots that are also available on R6. |
| // The `is_bare` parameter exists and is checked in these branches only to |
| // prevent programming mistakes. These branches never promote to long, not |
| // even if `is_bare` is false. |
| void Bltz(GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 |
| void Bgtz(GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 |
| void Bgez(GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 |
| void Blez(GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 |
| void Beq(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 |
| void Bne(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 |
| void Beqz(GpuRegister rs, Mips64Label* label, bool is_bare = false); // R2 |
| void Bnez(GpuRegister rs, Mips64Label* label, bool is_bare = false); // R2 |
| |
| void EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset, size_t size); |
| void AdjustBaseAndOffset(GpuRegister& base, int32_t& offset, bool is_doubleword); |
| // If element_size_shift is negative at entry, its value will be calculated based on the offset. |
| void AdjustBaseOffsetAndElementSizeShift(GpuRegister& base, |
| int32_t& offset, |
| int& element_size_shift); |
| |
| private: |
| // This will be used as an argument for loads/stores |
| // when there is no need for implicit null checks. |
| struct NoImplicitNullChecker { |
| void operator()() const {} |
| }; |
| |
| public: |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void StoreConstToOffset(StoreOperandType type, |
| int64_t value, |
| GpuRegister base, |
| int32_t offset, |
| GpuRegister temp, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| // We permit `base` and `temp` to coincide (however, we check that neither is AT), |
| // in which case the `base` register may be overwritten in the process. |
| CHECK_NE(temp, AT); // Must not use AT as temp, so as not to overwrite the adjusted base. |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword)); |
| GpuRegister reg; |
| // If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp` |
| // to load and hold the value but we can use AT instead as AT hasn't been used yet. |
| // Otherwise, `temp` can be used for the value. And if `temp` is the same as the |
| // original `base` (that is, `base` prior to the adjustment), the original `base` |
| // register will be overwritten. |
| if (base == temp) { |
| temp = AT; |
| } |
| |
| if (type == kStoreDoubleword && IsAligned<kMips64DoublewordSize>(offset)) { |
| if (value == 0) { |
| reg = ZERO; |
| } else { |
| reg = temp; |
| LoadConst64(reg, value); |
| } |
| Sd(reg, base, offset); |
| null_checker(); |
| } else { |
| uint32_t low = Low32Bits(value); |
| uint32_t high = High32Bits(value); |
| if (low == 0) { |
| reg = ZERO; |
| } else { |
| reg = temp; |
| LoadConst32(reg, low); |
| } |
| switch (type) { |
| case kStoreByte: |
| Sb(reg, base, offset); |
| break; |
| case kStoreHalfword: |
| Sh(reg, base, offset); |
| break; |
| case kStoreWord: |
| Sw(reg, base, offset); |
| break; |
| case kStoreDoubleword: |
| // not aligned to kMips64DoublewordSize |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Sw(reg, base, offset); |
| null_checker(); |
| if (high == 0) { |
| reg = ZERO; |
| } else { |
| reg = temp; |
| if (high != low) { |
| LoadConst32(reg, high); |
| } |
| } |
| Sw(reg, base, offset + kMips64WordSize); |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| if (type != kStoreDoubleword) { |
| null_checker(); |
| } |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void LoadFromOffset(LoadOperandType type, |
| GpuRegister reg, |
| GpuRegister base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword)); |
| |
| switch (type) { |
| case kLoadSignedByte: |
| Lb(reg, base, offset); |
| break; |
| case kLoadUnsignedByte: |
| Lbu(reg, base, offset); |
| break; |
| case kLoadSignedHalfword: |
| Lh(reg, base, offset); |
| break; |
| case kLoadUnsignedHalfword: |
| Lhu(reg, base, offset); |
| break; |
| case kLoadWord: |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Lw(reg, base, offset); |
| break; |
| case kLoadUnsignedWord: |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Lwu(reg, base, offset); |
| break; |
| case kLoadDoubleword: |
| if (!IsAligned<kMips64DoublewordSize>(offset)) { |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Lwu(reg, base, offset); |
| null_checker(); |
| Lwu(TMP2, base, offset + kMips64WordSize); |
| Dinsu(reg, TMP2, 32, 32); |
| } else { |
| Ld(reg, base, offset); |
| null_checker(); |
| } |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| if (type != kLoadDoubleword) { |
| null_checker(); |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void LoadFpuFromOffset(LoadOperandType type, |
| FpuRegister reg, |
| GpuRegister base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| int element_size_shift = -1; |
| if (type != kLoadQuadword) { |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword)); |
| } else { |
| AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift); |
| } |
| |
| switch (type) { |
| case kLoadWord: |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Lwc1(reg, base, offset); |
| null_checker(); |
| break; |
| case kLoadDoubleword: |
| if (!IsAligned<kMips64DoublewordSize>(offset)) { |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Lwc1(reg, base, offset); |
| null_checker(); |
| Lw(TMP2, base, offset + kMips64WordSize); |
| Mthc1(TMP2, reg); |
| } else { |
| Ldc1(reg, base, offset); |
| null_checker(); |
| } |
| break; |
| case kLoadQuadword: |
| switch (element_size_shift) { |
| case TIMES_1: LdB(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_2: LdH(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_4: LdW(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_8: LdD(static_cast<VectorRegister>(reg), base, offset); break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| null_checker(); |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void StoreToOffset(StoreOperandType type, |
| GpuRegister reg, |
| GpuRegister base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| // Must not use AT as `reg`, so as not to overwrite the value being stored |
| // with the adjusted `base`. |
| CHECK_NE(reg, AT); |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword)); |
| |
| switch (type) { |
| case kStoreByte: |
| Sb(reg, base, offset); |
| break; |
| case kStoreHalfword: |
| Sh(reg, base, offset); |
| break; |
| case kStoreWord: |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Sw(reg, base, offset); |
| break; |
| case kStoreDoubleword: |
| if (!IsAligned<kMips64DoublewordSize>(offset)) { |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Sw(reg, base, offset); |
| null_checker(); |
| Dsrl32(TMP2, reg, 0); |
| Sw(TMP2, base, offset + kMips64WordSize); |
| } else { |
| Sd(reg, base, offset); |
| null_checker(); |
| } |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| if (type != kStoreDoubleword) { |
| null_checker(); |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void StoreFpuToOffset(StoreOperandType type, |
| FpuRegister reg, |
| GpuRegister base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| int element_size_shift = -1; |
| if (type != kStoreQuadword) { |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword)); |
| } else { |
| AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift); |
| } |
| |
| switch (type) { |
| case kStoreWord: |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Swc1(reg, base, offset); |
| null_checker(); |
| break; |
| case kStoreDoubleword: |
| if (!IsAligned<kMips64DoublewordSize>(offset)) { |
| CHECK_ALIGNED(offset, kMips64WordSize); |
| Mfhc1(TMP2, reg); |
| Swc1(reg, base, offset); |
| null_checker(); |
| Sw(TMP2, base, offset + kMips64WordSize); |
| } else { |
| Sdc1(reg, base, offset); |
| null_checker(); |
| } |
| break; |
| case kStoreQuadword: |
| switch (element_size_shift) { |
| case TIMES_1: StB(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_2: StH(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_4: StW(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_8: StD(static_cast<VectorRegister>(reg), base, offset); break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| null_checker(); |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| } |
| |
| void LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base, int32_t offset); |
| void LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base, int32_t offset); |
| void StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base, int32_t offset); |
| void StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base, int32_t offset); |
| |
| // Emit data (e.g. encoded instruction or immediate) to the instruction stream. |
| void Emit(uint32_t value); |
| |
| // |
| // Overridden common assembler high-level functionality. |
| // |
| |
| // Emit code that will create an activation on the stack. |
| void BuildFrame(size_t frame_size, |
| ManagedRegister method_reg, |
| ArrayRef<const ManagedRegister> callee_save_regs, |
| const ManagedRegisterEntrySpills& entry_spills) OVERRIDE; |
| |
| // Emit code that will remove an activation from the stack. |
| void RemoveFrame(size_t frame_size, |
| ArrayRef<const ManagedRegister> callee_save_regs, |
| bool may_suspend) OVERRIDE; |
| |
| void IncreaseFrameSize(size_t adjust) OVERRIDE; |
| void DecreaseFrameSize(size_t adjust) OVERRIDE; |
| |
| // Store routines. |
| void Store(FrameOffset offs, ManagedRegister msrc, size_t size) OVERRIDE; |
| void StoreRef(FrameOffset dest, ManagedRegister msrc) OVERRIDE; |
| void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) OVERRIDE; |
| |
| void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) OVERRIDE; |
| |
| void StoreStackOffsetToThread(ThreadOffset64 thr_offs, |
| FrameOffset fr_offs, |
| ManagedRegister mscratch) OVERRIDE; |
| |
| void StoreStackPointerToThread(ThreadOffset64 thr_offs) OVERRIDE; |
| |
| void StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off, |
| ManagedRegister mscratch) OVERRIDE; |
| |
| // Load routines. |
| void Load(ManagedRegister mdest, FrameOffset src, size_t size) OVERRIDE; |
| |
| void LoadFromThread(ManagedRegister mdest, ThreadOffset64 src, size_t size) OVERRIDE; |
| |
| void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE; |
| |
| void LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, |
| bool unpoison_reference) OVERRIDE; |
| |
| void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) OVERRIDE; |
| |
| void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) OVERRIDE; |
| |
| // Copying routines. |
| void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) OVERRIDE; |
| |
| void CopyRawPtrFromThread(FrameOffset fr_offs, |
| ThreadOffset64 thr_offs, |
| ManagedRegister mscratch) OVERRIDE; |
| |
| void CopyRawPtrToThread(ThreadOffset64 thr_offs, |
| FrameOffset fr_offs, |
| ManagedRegister mscratch) OVERRIDE; |
| |
| void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) OVERRIDE; |
| |
| void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) OVERRIDE; |
| |
| void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch, |
| size_t size) OVERRIDE; |
| |
| void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, |
| ManagedRegister mscratch, size_t size) OVERRIDE; |
| |
| void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister mscratch, |
| size_t size) OVERRIDE; |
| |
| void Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, |
| ManagedRegister mscratch, size_t size) OVERRIDE; |
| |
| void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset, |
| ManagedRegister mscratch, size_t size) OVERRIDE; |
| |
| void MemoryBarrier(ManagedRegister) OVERRIDE; |
| |
| // Sign extension. |
| void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE; |
| |
| // Zero extension. |
| void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE; |
| |
| // Exploit fast access in managed code to Thread::Current(). |
| void GetCurrentThread(ManagedRegister tr) OVERRIDE; |
| void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) OVERRIDE; |
| |
| // Set up out_reg to hold a Object** into the handle scope, or to be null if the |
| // value is null and null_allowed. in_reg holds a possibly stale reference |
| // that can be used to avoid loading the handle scope entry to see if the value is |
| // null. |
| void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset, |
| ManagedRegister in_reg, bool null_allowed) OVERRIDE; |
| |
| // Set up out_off to hold a Object** into the handle scope, or to be null if the |
| // value is null and null_allowed. |
| void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, ManagedRegister |
| mscratch, bool null_allowed) OVERRIDE; |
| |
| // src holds a handle scope entry (Object**) load this into dst. |
| void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE; |
| |
| // Heap::VerifyObject on src. In some cases (such as a reference to this) we |
| // know that src may not be null. |
| void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE; |
| void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE; |
| |
| // Call to address held at [base+offset]. |
| void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) OVERRIDE; |
| void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) OVERRIDE; |
| void CallFromThread(ThreadOffset64 offset, ManagedRegister mscratch) OVERRIDE; |
| |
| // Generate code to check if Thread::Current()->exception_ is non-null |
| // and branch to a ExceptionSlowPath if it is. |
| void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) OVERRIDE; |
| |
| // Emit slow paths queued during assembly and promote short branches to long if needed. |
| void FinalizeCode() OVERRIDE; |
| |
| // Emit branches and finalize all instructions. |
| void FinalizeInstructions(const MemoryRegion& region); |
| |
| // Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS64, |
| // must be used instead of Mips64Label::GetPosition()). |
| uint32_t GetLabelLocation(const Mips64Label* label) const; |
| |
| // Get the final position of a label after local fixup based on the old position |
| // recorded before FinalizeCode(). |
| uint32_t GetAdjustedPosition(uint32_t old_position); |
| |
| // Note that PC-relative literal loads are handled as pseudo branches because they need very |
| // similar relocation and may similarly expand in size to accomodate for larger offsets relative |
| // to PC. |
| enum BranchCondition { |
| kCondLT, |
| kCondGE, |
| kCondLE, |
| kCondGT, |
| kCondLTZ, |
| kCondGEZ, |
| kCondLEZ, |
| kCondGTZ, |
| kCondEQ, |
| kCondNE, |
| kCondEQZ, |
| kCondNEZ, |
| kCondLTU, |
| kCondGEU, |
| kCondF, // Floating-point predicate false. |
| kCondT, // Floating-point predicate true. |
| kUncond, |
| }; |
| friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs); |
| |
| private: |
| class Branch { |
| public: |
| enum Type { |
| // R6 short branches (can be promoted to long). |
| kUncondBranch, |
| kCondBranch, |
| kCall, |
| // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. |
| kBareUncondBranch, |
| kBareCondBranch, |
| kBareCall, |
| // R2 short branches (can't be promoted to long), delay slots filled manually. |
| kR2BareCondBranch, |
| // Near label. |
| kLabel, |
| // Near literals. |
| kLiteral, |
| kLiteralUnsigned, |
| kLiteralLong, |
| // Long branches. |
| kLongUncondBranch, |
| kLongCondBranch, |
| kLongCall, |
| // Far label. |
| kFarLabel, |
| // Far literals. |
| kFarLiteral, |
| kFarLiteralUnsigned, |
| kFarLiteralLong, |
| }; |
| |
| // Bit sizes of offsets defined as enums to minimize chance of typos. |
| enum OffsetBits { |
| kOffset16 = 16, |
| kOffset18 = 18, |
| kOffset21 = 21, |
| kOffset23 = 23, |
| kOffset28 = 28, |
| kOffset32 = 32, |
| }; |
| |
| static constexpr uint32_t kUnresolved = 0xffffffff; // Unresolved target_ |
| static constexpr int32_t kMaxBranchLength = 32; |
| static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t); |
| |
| struct BranchInfo { |
| // Branch length as a number of 4-byte-long instructions. |
| uint32_t length; |
| // Ordinal number (0-based) of the first (or the only) instruction that contains the branch's |
| // PC-relative offset (or its most significant 16-bit half, which goes first). |
| uint32_t instr_offset; |
| // Different MIPS instructions with PC-relative offsets apply said offsets to slightly |
| // different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte |
| // instructions) from the instruction containing the offset. |
| uint32_t pc_org; |
| // How large (in bits) a PC-relative offset can be for a given type of branch (kCondBranch |
| // and kBareCondBranch are an exception: use kOffset23 for beqzc/bnezc). |
| OffsetBits offset_size; |
| // Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift |
| // count. |
| int offset_shift; |
| }; |
| static const BranchInfo branch_info_[/* Type */]; |
| |
| // Unconditional branch or call. |
| Branch(uint32_t location, uint32_t target, bool is_call, bool is_bare); |
| // Conditional branch. |
| Branch(bool is_r6, |
| uint32_t location, |
| uint32_t target, |
| BranchCondition condition, |
| GpuRegister lhs_reg, |
| GpuRegister rhs_reg, |
| bool is_bare); |
| // Label address (in literal area) or literal. |
| Branch(uint32_t location, GpuRegister dest_reg, Type label_or_literal_type); |
| |
| // Some conditional branches with lhs = rhs are effectively NOPs, while some |
| // others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs. |
| // So, we need a way to identify such branches in order to emit no instructions for them |
| // or change them to unconditional. |
| static bool IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs); |
| static bool IsUncond(BranchCondition condition, GpuRegister lhs, GpuRegister rhs); |
| |
| static BranchCondition OppositeCondition(BranchCondition cond); |
| |
| Type GetType() const; |
| BranchCondition GetCondition() const; |
| GpuRegister GetLeftRegister() const; |
| GpuRegister GetRightRegister() const; |
| uint32_t GetTarget() const; |
| uint32_t GetLocation() const; |
| uint32_t GetOldLocation() const; |
| uint32_t GetLength() const; |
| uint32_t GetOldLength() const; |
| uint32_t GetSize() const; |
| uint32_t GetOldSize() const; |
| uint32_t GetEndLocation() const; |
| uint32_t GetOldEndLocation() const; |
| bool IsBare() const; |
| bool IsLong() const; |
| bool IsResolved() const; |
| |
| // Returns the bit size of the signed offset that the branch instruction can handle. |
| OffsetBits GetOffsetSize() const; |
| |
| // Calculates the distance between two byte locations in the assembler buffer and |
| // returns the number of bits needed to represent the distance as a signed integer. |
| // |
| // Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc), |
| // and 26 (bc) bits, which are additionally shifted left 2 positions at run time. |
| // |
| // Composite branches (made of several instructions) with longer reach have 32-bit |
| // offsets encoded as 2 16-bit "halves" in two instructions (high half goes first). |
| // The composite branches cover the range of PC + ~+/-2GB. The range is not end-to-end, |
| // however. Consider the following implementation of a long unconditional branch, for |
| // example: |
| // |
| // auipc at, offset_31_16 // at = pc + sign_extend(offset_31_16) << 16 |
| // jic at, offset_15_0 // pc = at + sign_extend(offset_15_0) |
| // |
| // Both of the above instructions take 16-bit signed offsets as immediate operands. |
| // When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000 |
| // due to sign extension. This must be compensated for by incrementing offset_31_16 |
| // by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is |
| // 0x7FFF, adding 1 will overflow the positive offset into the negative range. |
| // Therefore, the long branch range is something like from PC - 0x80000000 to |
| // PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side. |
| // |
| // The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special |
| // case with the addiu instruction and a 16 bit offset. |
| static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target); |
| |
| // Resolve a branch when the target is known. |
| void Resolve(uint32_t target); |
| |
| // Relocate a branch by a given delta if needed due to expansion of this or another |
| // branch at a given location by this delta (just changes location_ and target_). |
| void Relocate(uint32_t expand_location, uint32_t delta); |
| |
| // If the branch is short, changes its type to long. |
| void PromoteToLong(); |
| |
| // If necessary, updates the type by promoting a short branch to a long branch |
| // based on the branch location and target. Returns the amount (in bytes) by |
| // which the branch size has increased. |
| // max_short_distance caps the maximum distance between location_ and target_ |
| // that is allowed for short branches. This is for debugging/testing purposes. |
| // max_short_distance = 0 forces all short branches to become long. |
| // Use the implicit default argument when not debugging/testing. |
| uint32_t PromoteIfNeeded(uint32_t max_short_distance = std::numeric_limits<uint32_t>::max()); |
| |
| // Returns the location of the instruction(s) containing the offset. |
| uint32_t GetOffsetLocation() const; |
| |
| // Calculates and returns the offset ready for encoding in the branch instruction(s). |
| uint32_t GetOffset() const; |
| |
| private: |
| // Completes branch construction by determining and recording its type. |
| void InitializeType(Type initial_type, bool is_r6); |
| // Helper for the above. |
| void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type); |
| |
| uint32_t old_location_; // Offset into assembler buffer in bytes. |
| uint32_t location_; // Offset into assembler buffer in bytes. |
| uint32_t target_; // Offset into assembler buffer in bytes. |
| |
| GpuRegister lhs_reg_; // Left-hand side register in conditional branches or |
| // destination register in literals. |
| GpuRegister rhs_reg_; // Right-hand side register in conditional branches. |
| BranchCondition condition_; // Condition for conditional branches. |
| |
| Type type_; // Current type of the branch. |
| Type old_type_; // Initial type of the branch. |
| }; |
| friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs); |
| friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs); |
| |
| void EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd, int shamt, int funct); |
| void EmitRsd(int opcode, GpuRegister rs, GpuRegister rd, int shamt, int funct); |
| void EmitRtd(int opcode, GpuRegister rt, GpuRegister rd, int shamt, int funct); |
| void EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm); |
| void EmitI21(int opcode, GpuRegister rs, uint32_t imm21); |
| void EmitI26(int opcode, uint32_t imm26); |
| void EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd, int funct); |
| void EmitFI(int opcode, int fmt, FpuRegister rt, uint16_t imm); |
| void EmitBcondR6(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint32_t imm16_21); |
| void EmitBcondR2(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint16_t imm16); |
| void EmitMsa3R(int operation, |
| int df, |
| VectorRegister wt, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode); |
| void EmitMsaBIT(int operation, int df_m, VectorRegister ws, VectorRegister wd, int minor_opcode); |
| void EmitMsaELM(int operation, int df_n, VectorRegister ws, VectorRegister wd, int minor_opcode); |
| void EmitMsaMI10(int s10, GpuRegister rs, VectorRegister wd, int minor_opcode, int df); |
| void EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode); |
| void EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode); |
| void EmitMsa2RF(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode); |
| |
| void Buncond(Mips64Label* label, bool is_bare); |
| void Bcond(Mips64Label* label, |
| bool is_r6, |
| bool is_bare, |
| BranchCondition condition, |
| GpuRegister lhs, |
| GpuRegister rhs = ZERO); |
| void Call(Mips64Label* label, bool is_bare); |
| void FinalizeLabeledBranch(Mips64Label* label); |
| |
| Branch* GetBranch(uint32_t branch_id); |
| const Branch* GetBranch(uint32_t branch_id) const; |
| |
| void EmitLiterals(); |
| void ReserveJumpTableSpace(); |
| void EmitJumpTables(); |
| void PromoteBranches(); |
| void EmitBranch(Branch* branch); |
| void EmitBranches(); |
| void PatchCFI(); |
| |
| // Emits exception block. |
| void EmitExceptionPoll(Mips64ExceptionSlowPath* exception); |
| |
| bool HasMsa() const { |
| return has_msa_; |
| } |
| |
| // List of exception blocks to generate at the end of the code cache. |
| std::vector<Mips64ExceptionSlowPath> exception_blocks_; |
| |
| std::vector<Branch> branches_; |
| |
| // Whether appending instructions at the end of the buffer or overwriting the existing ones. |
| bool overwriting_; |
| // The current overwrite location. |
| uint32_t overwrite_location_; |
| |
| // Use std::deque<> for literal labels to allow insertions at the end |
| // without invalidating pointers and references to existing elements. |
| ArenaDeque<Literal> literals_; |
| ArenaDeque<Literal> long_literals_; // 64-bit literals separated for alignment reasons. |
| |
| // Jump table list. |
| ArenaDeque<JumpTable> jump_tables_; |
| |
| // Data for AdjustedPosition(), see the description there. |
| uint32_t last_position_adjustment_; |
| uint32_t last_old_position_; |
| uint32_t last_branch_id_; |
| |
| const bool has_msa_; |
| |
| DISALLOW_COPY_AND_ASSIGN(Mips64Assembler); |
| }; |
| |
| } // namespace mips64 |
| } // namespace art |
| |
| #endif // ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_ |