| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_mips.h" |
| |
| #include "arch/mips/asm_support_mips.h" |
| #include "arch/mips/entrypoints_direct_mips.h" |
| #include "arch/mips/instruction_set_features_mips.h" |
| #include "art_method.h" |
| #include "class_table.h" |
| #include "code_generator_utils.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "gc/accounting/card_table.h" |
| #include "gc/space/image_space.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics.h" |
| #include "intrinsics_mips.h" |
| #include "linker/linker_patch.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "offsets.h" |
| #include "stack_map_stream.h" |
| #include "thread.h" |
| #include "utils/assembler.h" |
| #include "utils/mips/assembler_mips.h" |
| #include "utils/stack_checks.h" |
| |
| namespace art { |
| namespace mips { |
| |
| static constexpr int kCurrentMethodStackOffset = 0; |
| static constexpr Register kMethodRegisterArgument = A0; |
| |
| // Flags controlling the use of thunks for Baker read barriers. |
| constexpr bool kBakerReadBarrierThunksEnableForFields = true; |
| constexpr bool kBakerReadBarrierThunksEnableForArrays = true; |
| constexpr bool kBakerReadBarrierThunksEnableForGcRoots = true; |
| |
| Location MipsReturnLocation(DataType::Type return_type) { |
| switch (return_type) { |
| case DataType::Type::kReference: |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kUint32: |
| case DataType::Type::kInt32: |
| return Location::RegisterLocation(V0); |
| |
| case DataType::Type::kUint64: |
| case DataType::Type::kInt64: |
| return Location::RegisterPairLocation(V0, V1); |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| return Location::FpuRegisterLocation(F0); |
| |
| case DataType::Type::kVoid: |
| return Location(); |
| } |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(DataType::Type type) const { |
| return MipsReturnLocation(type); |
| } |
| |
| Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const { |
| return Location::RegisterLocation(kMethodRegisterArgument); |
| } |
| |
| Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(DataType::Type type) { |
| Location next_location; |
| |
| switch (type) { |
| case DataType::Type::kReference: |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: { |
| uint32_t gp_index = gp_index_++; |
| if (gp_index < calling_convention.GetNumberOfRegisters()) { |
| next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index)); |
| } else { |
| size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); |
| next_location = Location::StackSlot(stack_offset); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| uint32_t gp_index = gp_index_; |
| gp_index_ += 2; |
| if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) { |
| Register reg = calling_convention.GetRegisterAt(gp_index); |
| if (reg == A1 || reg == A3) { |
| gp_index_++; // Skip A1(A3), and use A2_A3(T0_T1) instead. |
| gp_index++; |
| } |
| Register low_even = calling_convention.GetRegisterAt(gp_index); |
| Register high_odd = calling_convention.GetRegisterAt(gp_index + 1); |
| DCHECK_EQ(low_even + 1, high_odd); |
| next_location = Location::RegisterPairLocation(low_even, high_odd); |
| } else { |
| size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); |
| next_location = Location::DoubleStackSlot(stack_offset); |
| } |
| break; |
| } |
| |
| // Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double |
| // will take up the even/odd pair, while floats are stored in even regs only. |
| // On 64 bit FPU, both double and float are stored in even registers only. |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| uint32_t float_index = float_index_++; |
| if (float_index < calling_convention.GetNumberOfFpuRegisters()) { |
| next_location = Location::FpuRegisterLocation( |
| calling_convention.GetFpuRegisterAt(float_index)); |
| } else { |
| size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); |
| next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) |
| : Location::StackSlot(stack_offset); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| break; |
| } |
| |
| // Space on the stack is reserved for all arguments. |
| stack_index_ += DataType::Is64BitType(type) ? 2 : 1; |
| |
| return next_location; |
| } |
| |
| Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type type) { |
| return MipsReturnLocation(type); |
| } |
| |
| static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| // The reference is returned in the same register. This differs from the standard return location. |
| return caller_saves; |
| } |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value() |
| |
| class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kInt32, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32); |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? kQuickThrowStringBounds |
| : kQuickThrowArrayBounds; |
| mips_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathMIPS"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS); |
| }; |
| |
| class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| __ Bind(GetEntryLabel()); |
| mips_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathMIPS"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS); |
| }; |
| |
| class LoadClassSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| LoadClassSlowPathMIPS(HLoadClass* cls, HInstruction* at) |
| : SlowPathCodeMIPS(at), cls_(cls) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location out = locations->Out(); |
| const uint32_t dex_pc = instruction_->GetDexPc(); |
| bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); |
| bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); |
| |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| if (must_resolve_type) { |
| DCHECK(IsSameDexFile(cls_->GetDexFile(), mips_codegen->GetGraph()->GetDexFile())); |
| dex::TypeIndex type_index = cls_->GetTypeIndex(); |
| __ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_); |
| mips_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>(); |
| // If we also must_do_clinit, the resolved type is now in the correct register. |
| } else { |
| DCHECK(must_do_clinit); |
| Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); |
| mips_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| source, |
| cls_->GetType()); |
| } |
| if (must_do_clinit) { |
| mips_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>(); |
| } |
| |
| // Move the class to the desired location. |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| DataType::Type type = instruction_->GetType(); |
| mips_codegen->MoveLocation(out, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| type); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathMIPS"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS); |
| }; |
| |
| class LoadStringSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| explicit LoadStringSlowPathMIPS(HLoadString* instruction) |
| : SlowPathCodeMIPS(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| DCHECK(instruction_->IsLoadString()); |
| DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| InvokeRuntimeCallingConvention calling_convention; |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| __ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_); |
| mips_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| |
| DataType::Type type = instruction_->GetType(); |
| mips_codegen->MoveLocation(locations->Out(), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| type); |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathMIPS"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS); |
| }; |
| |
| class NullCheckSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| mips_codegen->InvokeRuntime(kQuickThrowNullPointer, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathMIPS"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS); |
| }; |
| |
| class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCodeMIPS(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); // Only saves live vector registers for SIMD. |
| mips_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| RestoreLiveRegisters(codegen, locations); // Only restores live vector registers for SIMD. |
| if (successor_ == nullptr) { |
| __ B(GetReturnLabel()); |
| } else { |
| __ B(mips_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| MipsLabel* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathMIPS"; } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| private: |
| // If not null, the block to branch to after the suspend check. |
| HBasicBlock* const successor_; |
| |
| // If `successor_` is null, the label to branch to after the suspend check. |
| MipsLabel return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS); |
| }; |
| |
| class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| explicit TypeCheckSlowPathMIPS(HInstruction* instruction, bool is_fatal) |
| : SlowPathCodeMIPS(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| uint32_t dex_pc = instruction_->GetDexPc(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kReference); |
| if (instruction_->IsInstanceOf()) { |
| mips_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| DataType::Type ret_type = instruction_->GetType(); |
| Location ret_loc = calling_convention.GetReturnLocation(ret_type); |
| mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| mips_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathMIPS"; } |
| |
| bool IsFatal() const OVERRIDE { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS); |
| }; |
| |
| class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction) |
| : SlowPathCodeMIPS(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| __ Bind(GetEntryLabel()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| SaveLiveRegisters(codegen, locations); |
| InvokeRuntimeCallingConvention calling_convention; |
| __ LoadConst32(calling_convention.GetRegisterAt(0), |
| static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); |
| mips_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathMIPS"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS); |
| }; |
| |
| class ArraySetSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| explicit ArraySetSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kReference, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| mips_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathMIPS"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathMIPS); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read |
| // barrier. The field `obj.field` in the object `obj` holding this |
| // reference does not get updated by this slow path after marking (see |
| // ReadBarrierMarkAndUpdateFieldSlowPathMIPS below for that). |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| // |
| // If `entrypoint` is a valid location it is assumed to already be |
| // holding the entrypoint. The case where the entrypoint is passed in |
| // is for the GcRoot read barrier. |
| class ReadBarrierMarkSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| ReadBarrierMarkSlowPathMIPS(HInstruction* instruction, |
| Location ref, |
| Location entrypoint = Location::NoLocation()) |
| : SlowPathCodeMIPS(instruction), ref_(ref), entrypoint_(entrypoint) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathMIPS"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register ref_reg = ref_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsArraySet() || |
| instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || |
| (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| DCHECK((V0 <= ref_reg && ref_reg <= T7) || |
| (S2 <= ref_reg && ref_reg <= S7) || |
| (ref_reg == FP)) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in A0 and V0 respectively): |
| // |
| // A0 <- ref |
| // V0 <- ReadBarrierMark(A0) |
| // ref <- V0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| if (entrypoint_.IsValid()) { |
| mips_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); |
| DCHECK_EQ(entrypoint_.AsRegister<Register>(), T9); |
| __ Jalr(entrypoint_.AsRegister<Register>()); |
| __ NopIfNoReordering(); |
| } else { |
| int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1); |
| // This runtime call does not require a stack map. |
| mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, |
| instruction_, |
| this, |
| /* direct */ false); |
| } |
| __ B(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| |
| // The location of the entrypoint if already loaded. |
| const Location entrypoint_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathMIPS); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read barrier, |
| // and if needed, atomically updating the field `obj.field` in the |
| // object `obj` holding this reference after marking (contrary to |
| // ReadBarrierMarkSlowPathMIPS above, which never tries to update |
| // `obj.field`). |
| // |
| // This means that after the execution of this slow path, both `ref` |
| // and `obj.field` will be up-to-date; i.e., after the flip, both will |
| // hold the same to-space reference (unless another thread installed |
| // another object reference (different from `ref`) in `obj.field`). |
| class ReadBarrierMarkAndUpdateFieldSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| ReadBarrierMarkAndUpdateFieldSlowPathMIPS(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| Location field_offset, |
| Register temp1) |
| : SlowPathCodeMIPS(instruction), |
| ref_(ref), |
| obj_(obj), |
| field_offset_(field_offset), |
| temp1_(temp1) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "ReadBarrierMarkAndUpdateFieldSlowPathMIPS"; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register ref_reg = ref_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| // This slow path is only used by the UnsafeCASObject intrinsic. |
| DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking and field updating slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); |
| DCHECK(field_offset_.IsRegisterPair()) << field_offset_; |
| |
| __ Bind(GetEntryLabel()); |
| |
| // Save the old reference. |
| // Note that we cannot use AT or TMP to save the old reference, as those |
| // are used by the code that follows, but we need the old reference after |
| // the call to the ReadBarrierMarkRegX entry point. |
| DCHECK_NE(temp1_, AT); |
| DCHECK_NE(temp1_, TMP); |
| __ Move(temp1_, ref_reg); |
| |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| DCHECK((V0 <= ref_reg && ref_reg <= T7) || |
| (S2 <= ref_reg && ref_reg <= S7) || |
| (ref_reg == FP)) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in A0 and V0 respectively): |
| // |
| // A0 <- ref |
| // V0 <- ReadBarrierMark(A0) |
| // ref <- V0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1); |
| // This runtime call does not require a stack map. |
| mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, |
| instruction_, |
| this, |
| /* direct */ false); |
| |
| // If the new reference is different from the old reference, |
| // update the field in the holder (`*(obj_ + field_offset_)`). |
| // |
| // Note that this field could also hold a different object, if |
| // another thread had concurrently changed it. In that case, the |
| // the compare-and-set (CAS) loop below would abort, leaving the |
| // field as-is. |
| MipsLabel done; |
| __ Beq(temp1_, ref_reg, &done); |
| |
| // Update the the holder's field atomically. This may fail if |
| // mutator updates before us, but it's OK. This is achieved |
| // using a strong compare-and-set (CAS) operation with relaxed |
| // memory synchronization ordering, where the expected value is |
| // the old reference and the desired value is the new reference. |
| |
| // Convenience aliases. |
| Register base = obj_; |
| // The UnsafeCASObject intrinsic uses a register pair as field |
| // offset ("long offset"), of which only the low part contains |
| // data. |
| Register offset = field_offset_.AsRegisterPairLow<Register>(); |
| Register expected = temp1_; |
| Register value = ref_reg; |
| Register tmp_ptr = TMP; // Pointer to actual memory. |
| Register tmp = AT; // Value in memory. |
| |
| __ Addu(tmp_ptr, base, offset); |
| |
| if (kPoisonHeapReferences) { |
| __ PoisonHeapReference(expected); |
| // Do not poison `value` if it is the same register as |
| // `expected`, which has just been poisoned. |
| if (value != expected) { |
| __ PoisonHeapReference(value); |
| } |
| } |
| |
| // do { |
| // tmp = [r_ptr] - expected; |
| // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); |
| |
| bool is_r6 = mips_codegen->GetInstructionSetFeatures().IsR6(); |
| MipsLabel loop_head, exit_loop; |
| __ Bind(&loop_head); |
| if (is_r6) { |
| __ LlR6(tmp, tmp_ptr); |
| } else { |
| __ LlR2(tmp, tmp_ptr); |
| } |
| __ Bne(tmp, expected, &exit_loop); |
| __ Move(tmp, value); |
| if (is_r6) { |
| __ ScR6(tmp, tmp_ptr); |
| } else { |
| __ ScR2(tmp, tmp_ptr); |
| } |
| __ Beqz(tmp, &loop_head); |
| __ Bind(&exit_loop); |
| |
| if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(expected); |
| // Do not unpoison `value` if it is the same register as |
| // `expected`, which has just been unpoisoned. |
| if (value != expected) { |
| __ UnpoisonHeapReference(value); |
| } |
| } |
| |
| __ Bind(&done); |
| __ B(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| // The register containing the object holding the marked object reference field. |
| const Register obj_; |
| // The location of the offset of the marked reference field within `obj_`. |
| Location field_offset_; |
| |
| const Register temp1_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathMIPS); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| ReadBarrierForHeapReferenceSlowPathMIPS(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCodeMIPS(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ LoadFromOffset(kLoadWord, out, out, offset); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg_out = out_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| Register index_reg = index_.AsRegister<Register>(); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); |
| if (codegen->IsCoreCalleeSaveRegister(index_reg)) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to art::mips::MipsAssembler::Sll and |
| // art::mips::MipsAssembler::Addiu32 below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| Register free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ Move(free_reg, index_reg); |
| index_reg = free_reg; |
| index = Location::RegisterLocation(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ Sll(index_reg, index_reg, TIMES_4); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ Addiu32(index_reg, index_reg, offset_); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0U); |
| DCHECK(index_.IsRegisterPair()); |
| // UnsafeGet's offset location is a register pair, the low |
| // part contains the correct offset. |
| index = index_.ToLow(); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove(ref_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kReference, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kInt32, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| __ LoadConst32(calling_convention.GetRegisterAt(2), offset_); |
| } |
| mips_codegen->InvokeRuntime(kQuickReadBarrierSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| mips_codegen->MoveLocation(out_, |
| calling_convention.GetReturnLocation(DataType::Type::kReference), |
| DataType::Type::kReference); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathMIPS"; } |
| |
| private: |
| Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(ref_.AsRegister<Register>()); |
| size_t obj = static_cast<int>(obj_.AsRegister<Register>()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && |
| i != obj && |
| !codegen->IsCoreCalleeSaveRegister(i) && |
| !codegen->IsBlockedCoreRegister(i)) { |
| return static_cast<Register>(i); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on MIPS |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free caller-save register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathMIPS); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathMIPS : public SlowPathCodeMIPS { |
| public: |
| ReadBarrierForRootSlowPathMIPS(HInstruction* instruction, Location out, Location root) |
| : SlowPathCodeMIPS(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg_out = out_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); |
| mips_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| root_, |
| DataType::Type::kReference); |
| mips_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| mips_codegen->MoveLocation(out_, |
| calling_convention.GetReturnLocation(DataType::Type::kReference), |
| DataType::Type::kReference); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathMIPS"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathMIPS); |
| }; |
| |
| CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfCoreRegisters, |
| kNumberOfFRegisters, |
| kNumberOfRegisterPairs, |
| ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), |
| arraysize(kCoreCalleeSaves)), |
| ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), |
| arraysize(kFpuCalleeSaves)), |
| compiler_options, |
| stats), |
| block_labels_(nullptr), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetAllocator(), this), |
| assembler_(graph->GetAllocator(), |
| compiler_options.GetInstructionSetFeatures()->AsMipsInstructionSetFeatures()), |
| uint32_literals_(std::less<uint32_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_intrinsic_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| clobbered_ra_(false) { |
| // Save RA (containing the return address) to mimic Quick. |
| AddAllocatedRegister(Location::RegisterLocation(RA)); |
| } |
| |
| #undef __ |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<MipsAssembler*>(GetAssembler())-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value() |
| |
| void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) { |
| // Ensure that we fix up branches. |
| __ FinalizeCode(); |
| |
| // Adjust native pc offsets in stack maps. |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| for (size_t i = 0, num = stack_map_stream->GetNumberOfStackMaps(); i != num; ++i) { |
| uint32_t old_position = stack_map_stream->GetStackMapNativePcOffset(i); |
| uint32_t new_position = __ GetAdjustedPosition(old_position); |
| DCHECK_GE(new_position, old_position); |
| stack_map_stream->SetStackMapNativePcOffset(i, new_position); |
| } |
| |
| // Adjust pc offsets for the disassembly information. |
| if (disasm_info_ != nullptr) { |
| GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); |
| frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); |
| frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); |
| for (auto& it : *disasm_info_->GetInstructionIntervals()) { |
| it.second.start = __ GetAdjustedPosition(it.second.start); |
| it.second.end = __ GetAdjustedPosition(it.second.end); |
| } |
| for (auto& it : *disasm_info_->GetSlowPathIntervals()) { |
| it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start); |
| it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end); |
| } |
| } |
| |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverMIPS::EmitMove(size_t index) { |
| DCHECK_LT(index, moves_.size()); |
| MoveOperands* move = moves_[index]; |
| codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType()); |
| } |
| |
| void ParallelMoveResolverMIPS::EmitSwap(size_t index) { |
| DCHECK_LT(index, moves_.size()); |
| MoveOperands* move = moves_[index]; |
| DataType::Type type = move->GetType(); |
| Location loc1 = move->GetDestination(); |
| Location loc2 = move->GetSource(); |
| |
| DCHECK(!loc1.IsConstant()); |
| DCHECK(!loc2.IsConstant()); |
| |
| if (loc1.Equals(loc2)) { |
| return; |
| } |
| |
| if (loc1.IsRegister() && loc2.IsRegister()) { |
| // Swap 2 GPRs. |
| Register r1 = loc1.AsRegister<Register>(); |
| Register r2 = loc2.AsRegister<Register>(); |
| __ Move(TMP, r2); |
| __ Move(r2, r1); |
| __ Move(r1, TMP); |
| } else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) { |
| if (codegen_->GetGraph()->HasSIMD()) { |
| __ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(loc1)); |
| __ MoveV(VectorRegisterFrom(loc1), VectorRegisterFrom(loc2)); |
| __ MoveV(VectorRegisterFrom(loc2), static_cast<VectorRegister>(FTMP)); |
| } else { |
| FRegister f1 = loc1.AsFpuRegister<FRegister>(); |
| FRegister f2 = loc2.AsFpuRegister<FRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| __ MovS(FTMP, f2); |
| __ MovS(f2, f1); |
| __ MovS(f1, FTMP); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| __ MovD(FTMP, f2); |
| __ MovD(f2, f1); |
| __ MovD(f1, FTMP); |
| } |
| } |
| } else if ((loc1.IsRegister() && loc2.IsFpuRegister()) || |
| (loc1.IsFpuRegister() && loc2.IsRegister())) { |
| // Swap FPR and GPR. |
| DCHECK_EQ(type, DataType::Type::kFloat32); // Can only swap a float. |
| FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>() |
| : loc2.AsFpuRegister<FRegister>(); |
| Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>(); |
| __ Move(TMP, r2); |
| __ Mfc1(r2, f1); |
| __ Mtc1(TMP, f1); |
| } else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) { |
| // Swap 2 GPR register pairs. |
| Register r1 = loc1.AsRegisterPairLow<Register>(); |
| Register r2 = loc2.AsRegisterPairLow<Register>(); |
| __ Move(TMP, r2); |
| __ Move(r2, r1); |
| __ Move(r1, TMP); |
| r1 = loc1.AsRegisterPairHigh<Register>(); |
| r2 = loc2.AsRegisterPairHigh<Register>(); |
| __ Move(TMP, r2); |
| __ Move(r2, r1); |
| __ Move(r1, TMP); |
| } else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) || |
| (loc1.IsFpuRegister() && loc2.IsRegisterPair())) { |
| // Swap FPR and GPR register pair. |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>() |
| : loc2.AsFpuRegister<FRegister>(); |
| Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>() |
| : loc2.AsRegisterPairLow<Register>(); |
| Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>() |
| : loc2.AsRegisterPairHigh<Register>(); |
| // Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and |
| // then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR |
| // unpredictable and the following mfch1 will fail. |
| __ Mfc1(TMP, f1); |
| __ MoveFromFpuHigh(AT, f1); |
| __ Mtc1(r2_l, f1); |
| __ MoveToFpuHigh(r2_h, f1); |
| __ Move(r2_l, TMP); |
| __ Move(r2_h, AT); |
| } else if (loc1.IsStackSlot() && loc2.IsStackSlot()) { |
| Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ false); |
| } else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) { |
| Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ true); |
| } else if (loc1.IsSIMDStackSlot() && loc2.IsSIMDStackSlot()) { |
| ExchangeQuadSlots(loc1.GetStackIndex(), loc2.GetStackIndex()); |
| } else if ((loc1.IsRegister() && loc2.IsStackSlot()) || |
| (loc1.IsStackSlot() && loc2.IsRegister())) { |
| Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>(); |
| intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex(); |
| __ Move(TMP, reg); |
| __ LoadFromOffset(kLoadWord, reg, SP, offset); |
| __ StoreToOffset(kStoreWord, TMP, SP, offset); |
| } else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) || |
| (loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) { |
| Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>() |
| : loc2.AsRegisterPairLow<Register>(); |
| Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>() |
| : loc2.AsRegisterPairHigh<Register>(); |
| intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex(); |
| intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize) |
| : loc2.GetHighStackIndex(kMipsWordSize); |
| __ Move(TMP, reg_l); |
| __ LoadFromOffset(kLoadWord, reg_l, SP, offset_l); |
| __ StoreToOffset(kStoreWord, TMP, SP, offset_l); |
| __ Move(TMP, reg_h); |
| __ LoadFromOffset(kLoadWord, reg_h, SP, offset_h); |
| __ StoreToOffset(kStoreWord, TMP, SP, offset_h); |
| } else if ((loc1.IsFpuRegister() && loc2.IsSIMDStackSlot()) || |
| (loc1.IsSIMDStackSlot() && loc2.IsFpuRegister())) { |
| Location fp_loc = loc1.IsFpuRegister() ? loc1 : loc2; |
| intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex(); |
| __ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(fp_loc)); |
| __ LoadQFromOffset(fp_loc.AsFpuRegister<FRegister>(), SP, offset); |
| __ StoreQToOffset(FTMP, SP, offset); |
| } else if (loc1.IsFpuRegister() || loc2.IsFpuRegister()) { |
| FRegister reg = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>() |
| : loc2.AsFpuRegister<FRegister>(); |
| intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex(); |
| if (type == DataType::Type::kFloat32) { |
| __ MovS(FTMP, reg); |
| __ LoadSFromOffset(reg, SP, offset); |
| __ StoreSToOffset(FTMP, SP, offset); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| __ MovD(FTMP, reg); |
| __ LoadDFromOffset(reg, SP, offset); |
| __ StoreDToOffset(FTMP, SP, offset); |
| } |
| } else { |
| LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported"; |
| } |
| } |
| |
| void ParallelMoveResolverMIPS::RestoreScratch(int reg) { |
| __ Pop(static_cast<Register>(reg)); |
| } |
| |
| void ParallelMoveResolverMIPS::SpillScratch(int reg) { |
| __ Push(static_cast<Register>(reg)); |
| } |
| |
| void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) { |
| // Allocate a scratch register other than TMP, if available. |
| // Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be |
| // automatically unspilled when the scratch scope object is destroyed). |
| ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters()); |
| // If V0 spills onto the stack, SP-relative offsets need to be adjusted. |
| int stack_offset = ensure_scratch.IsSpilled() ? kStackAlignment : 0; |
| for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) { |
| __ LoadFromOffset(kLoadWord, |
| Register(ensure_scratch.GetRegister()), |
| SP, |
| index1 + stack_offset); |
| __ LoadFromOffset(kLoadWord, |
| TMP, |
| SP, |
| index2 + stack_offset); |
| __ StoreToOffset(kStoreWord, |
| Register(ensure_scratch.GetRegister()), |
| SP, |
| index2 + stack_offset); |
| __ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset); |
| } |
| } |
| |
| void ParallelMoveResolverMIPS::ExchangeQuadSlots(int index1, int index2) { |
| __ LoadQFromOffset(FTMP, SP, index1); |
| __ LoadQFromOffset(FTMP2, SP, index2); |
| __ StoreQToOffset(FTMP, SP, index2); |
| __ StoreQToOffset(FTMP2, SP, index1); |
| } |
| |
| void CodeGeneratorMIPS::ComputeSpillMask() { |
| core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; |
| fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; |
| DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; |
| // If there're FPU callee-saved registers and there's an odd number of GPR callee-saved |
| // registers, include the ZERO register to force alignment of FPU callee-saved registers |
| // within the stack frame. |
| if ((fpu_spill_mask_ != 0) && (POPCOUNT(core_spill_mask_) % 2 != 0)) { |
| core_spill_mask_ |= (1 << ZERO); |
| } |
| } |
| |
| bool CodeGeneratorMIPS::HasAllocatedCalleeSaveRegisters() const { |
| // If RA is clobbered by PC-relative operations on R2 and it's the only spilled register |
| // (this can happen in leaf methods), force CodeGenerator::InitializeCodeGeneration() |
| // into the path that creates a stack frame so that RA can be explicitly saved and restored. |
| // RA can't otherwise be saved/restored when it's the only spilled register. |
| return CodeGenerator::HasAllocatedCalleeSaveRegisters() || clobbered_ra_; |
| } |
| |
| static dwarf::Reg DWARFReg(Register reg) { |
| return dwarf::Reg::MipsCore(static_cast<int>(reg)); |
| } |
| |
| // TODO: mapping of floating-point registers to DWARF. |
| |
| void CodeGeneratorMIPS::GenerateFrameEntry() { |
| __ Bind(&frame_entry_label_); |
| |
| if (GetCompilerOptions().CountHotnessInCompiledCode()) { |
| __ Lhu(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value()); |
| __ Addiu(TMP, TMP, 1); |
| __ Sh(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value()); |
| } |
| |
| bool do_overflow_check = |
| FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kMips) || !IsLeafMethod(); |
| |
| if (do_overflow_check) { |
| __ LoadFromOffset(kLoadWord, |
| ZERO, |
| SP, |
| -static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kMips))); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| if (HasEmptyFrame()) { |
| CHECK_EQ(fpu_spill_mask_, 0u); |
| CHECK_EQ(core_spill_mask_, 1u << RA); |
| CHECK(!clobbered_ra_); |
| return; |
| } |
| |
| // Make sure the frame size isn't unreasonably large. |
| if (GetFrameSize() > GetStackOverflowReservedBytes(InstructionSet::kMips)) { |
| LOG(FATAL) << "Stack frame larger than " |
| << GetStackOverflowReservedBytes(InstructionSet::kMips) << " bytes"; |
| } |
| |
| // Spill callee-saved registers. |
| |
| uint32_t ofs = GetFrameSize(); |
| __ IncreaseFrameSize(ofs); |
| |
| for (uint32_t mask = core_spill_mask_; mask != 0; ) { |
| Register reg = static_cast<Register>(MostSignificantBit(mask)); |
| mask ^= 1u << reg; |
| ofs -= kMipsWordSize; |
| // The ZERO register is only included for alignment. |
| if (reg != ZERO) { |
| __ StoreToOffset(kStoreWord, reg, SP, ofs); |
| __ cfi().RelOffset(DWARFReg(reg), ofs); |
| } |
| } |
| |
| for (uint32_t mask = fpu_spill_mask_; mask != 0; ) { |
| FRegister reg = static_cast<FRegister>(MostSignificantBit(mask)); |
| mask ^= 1u << reg; |
| ofs -= kMipsDoublewordSize; |
| __ StoreDToOffset(reg, SP, ofs); |
| // TODO: __ cfi().RelOffset(DWARFReg(reg), ofs); |
| } |
| |
| // Save the current method if we need it. Note that we do not |
| // do this in HCurrentMethod, as the instruction might have been removed |
| // in the SSA graph. |
| if (RequiresCurrentMethod()) { |
| __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, kCurrentMethodStackOffset); |
| } |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| // Initialize should deoptimize flag to 0. |
| __ StoreToOffset(kStoreWord, ZERO, SP, GetStackOffsetOfShouldDeoptimizeFlag()); |
| } |
| } |
| |
| void CodeGeneratorMIPS::GenerateFrameExit() { |
| __ cfi().RememberState(); |
| |
| if (!HasEmptyFrame()) { |
| // Restore callee-saved registers. |
| |
| // For better instruction scheduling restore RA before other registers. |
| uint32_t ofs = GetFrameSize(); |
| for (uint32_t mask = core_spill_mask_; mask != 0; ) { |
| Register reg = static_cast<Register>(MostSignificantBit(mask)); |
| mask ^= 1u << reg; |
| ofs -= kMipsWordSize; |
| // The ZERO register is only included for alignment. |
| if (reg != ZERO) { |
| __ LoadFromOffset(kLoadWord, reg, SP, ofs); |
| __ cfi().Restore(DWARFReg(reg)); |
| } |
| } |
| |
| for (uint32_t mask = fpu_spill_mask_; mask != 0; ) { |
| FRegister reg = static_cast<FRegister>(MostSignificantBit(mask)); |
| mask ^= 1u << reg; |
| ofs -= kMipsDoublewordSize; |
| __ LoadDFromOffset(reg, SP, ofs); |
| // TODO: __ cfi().Restore(DWARFReg(reg)); |
| } |
| |
| size_t frame_size = GetFrameSize(); |
| // Adjust the stack pointer in the delay slot if doing so doesn't break CFI. |
| bool exchange = IsInt<16>(static_cast<int32_t>(frame_size)); |
| bool reordering = __ SetReorder(false); |
| if (exchange) { |
| __ Jr(RA); |
| __ DecreaseFrameSize(frame_size); // Single instruction in delay slot. |
| } else { |
| __ DecreaseFrameSize(frame_size); |
| __ Jr(RA); |
| __ Nop(); // In delay slot. |
| } |
| __ SetReorder(reordering); |
| } else { |
| __ Jr(RA); |
| __ NopIfNoReordering(); |
| } |
| |
| __ cfi().RestoreState(); |
| __ cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorMIPS::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| VectorRegister VectorRegisterFrom(Location location) { |
| DCHECK(location.IsFpuRegister()); |
| return static_cast<VectorRegister>(location.AsFpuRegister<FRegister>()); |
| } |
| |
| void CodeGeneratorMIPS::MoveLocation(Location destination, |
| Location source, |
| DataType::Type dst_type) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| |
| if (source.IsConstant()) { |
| MoveConstant(destination, source.GetConstant()); |
| } else { |
| if (destination.IsRegister()) { |
| if (source.IsRegister()) { |
| __ Move(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>()); |
| } else { |
| DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; |
| __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex()); |
| } |
| } else if (destination.IsRegisterPair()) { |
| if (source.IsRegisterPair()) { |
| __ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>()); |
| __ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>()); |
| } else if (source.IsFpuRegister()) { |
| Register dst_high = destination.AsRegisterPairHigh<Register>(); |
| Register dst_low = destination.AsRegisterPairLow<Register>(); |
| FRegister src = source.AsFpuRegister<FRegister>(); |
| __ Mfc1(dst_low, src); |
| __ MoveFromFpuHigh(dst_high, src); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()) |
| << "Cannot move from " << source << " to " << destination; |
| int32_t off = source.GetStackIndex(); |
| Register r = destination.AsRegisterPairLow<Register>(); |
| __ LoadFromOffset(kLoadDoubleword, r, SP, off); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsRegister()) { |
| DCHECK(!DataType::Is64BitType(dst_type)); |
| __ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>()); |
| } else if (source.IsRegisterPair()) { |
| DCHECK(DataType::Is64BitType(dst_type)); |
| FRegister dst = destination.AsFpuRegister<FRegister>(); |
| Register src_high = source.AsRegisterPairHigh<Register>(); |
| Register src_low = source.AsRegisterPairLow<Register>(); |
| __ Mtc1(src_low, dst); |
| __ MoveToFpuHigh(src_high, dst); |
| } else if (source.IsFpuRegister()) { |
| if (GetGraph()->HasSIMD()) { |
| __ MoveV(VectorRegisterFrom(destination), |
| VectorRegisterFrom(source)); |
| } else { |
| if (DataType::Is64BitType(dst_type)) { |
| __ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>()); |
| } else { |
| DCHECK_EQ(dst_type, DataType::Type::kFloat32); |
| __ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>()); |
| } |
| } |
| } else if (source.IsSIMDStackSlot()) { |
| __ LoadQFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); |
| } else if (source.IsDoubleStackSlot()) { |
| DCHECK(DataType::Is64BitType(dst_type)); |
| __ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); |
| } else { |
| DCHECK(!DataType::Is64BitType(dst_type)); |
| DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; |
| __ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); |
| } |
| } else if (destination.IsSIMDStackSlot()) { |
| if (source.IsFpuRegister()) { |
| __ StoreQToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex()); |
| } else { |
| DCHECK(source.IsSIMDStackSlot()); |
| __ LoadQFromOffset(FTMP, SP, source.GetStackIndex()); |
| __ StoreQToOffset(FTMP, SP, destination.GetStackIndex()); |
| } |
| } else if (destination.IsDoubleStackSlot()) { |
| int32_t dst_offset = destination.GetStackIndex(); |
| if (source.IsRegisterPair()) { |
| __ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, dst_offset); |
| } else if (source.IsFpuRegister()) { |
| __ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()) |
| << "Cannot move from " << source << " to " << destination; |
| __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex()); |
| __ StoreToOffset(kStoreWord, TMP, SP, dst_offset); |
| __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4); |
| __ StoreToOffset(kStoreWord, TMP, SP, dst_offset + 4); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| int32_t dst_offset = destination.GetStackIndex(); |
| if (source.IsRegister()) { |
| __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, dst_offset); |
| } else if (source.IsFpuRegister()) { |
| __ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset); |
| } else { |
| DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; |
| __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex()); |
| __ StoreToOffset(kStoreWord, TMP, SP, dst_offset); |
| } |
| } |
| } |
| } |
| |
| void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) { |
| if (c->IsIntConstant() || c->IsNullConstant()) { |
| // Move 32 bit constant. |
| int32_t value = GetInt32ValueOf(c); |
| if (destination.IsRegister()) { |
| Register dst = destination.AsRegister<Register>(); |
| __ LoadConst32(dst, value); |
| } else { |
| DCHECK(destination.IsStackSlot()) |
| << "Cannot move " << c->DebugName() << " to " << destination; |
| __ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP); |
| } |
| } else if (c->IsLongConstant()) { |
| // Move 64 bit constant. |
| int64_t value = GetInt64ValueOf(c); |
| if (destination.IsRegisterPair()) { |
| Register r_h = destination.AsRegisterPairHigh<Register>(); |
| Register r_l = destination.AsRegisterPairLow<Register>(); |
| __ LoadConst64(r_h, r_l, value); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) |
| << "Cannot move " << c->DebugName() << " to " << destination; |
| __ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP); |
| } |
| } else if (c->IsFloatConstant()) { |
| // Move 32 bit float constant. |
| int32_t value = GetInt32ValueOf(c); |
| if (destination.IsFpuRegister()) { |
| __ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP); |
| } else { |
| DCHECK(destination.IsStackSlot()) |
| << "Cannot move " << c->DebugName() << " to " << destination; |
| __ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP); |
| } |
| } else { |
| // Move 64 bit double constant. |
| DCHECK(c->IsDoubleConstant()) << c->DebugName(); |
| int64_t value = GetInt64ValueOf(c); |
| if (destination.IsFpuRegister()) { |
| FRegister fd = destination.AsFpuRegister<FRegister>(); |
| __ LoadDConst64(fd, value, TMP); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) |
| << "Cannot move " << c->DebugName() << " to " << destination; |
| __ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP); |
| } |
| } |
| } |
| |
| void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) { |
| DCHECK(destination.IsRegister()); |
| Register dst = destination.AsRegister<Register>(); |
| __ LoadConst32(dst, value); |
| } |
| |
| void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else if (location.IsRegisterPair()) { |
| locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); |
| locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorMIPS::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<PcRelativePatchInfo>& infos, |
| ArenaVector<linker::LinkerPatch>* linker_patches) { |
| for (const PcRelativePatchInfo& info : infos) { |
| const DexFile* dex_file = info.target_dex_file; |
| size_t offset_or_index = info.offset_or_index; |
| DCHECK(info.label.IsBound()); |
| uint32_t literal_offset = __ GetLabelLocation(&info.label); |
| // On R2 we use HMipsComputeBaseMethodAddress and patch relative to |
| // the assembler's base label used for PC-relative addressing. |
| const PcRelativePatchInfo& info_high = info.patch_info_high ? *info.patch_info_high : info; |
| uint32_t pc_rel_offset = info_high.pc_rel_label.IsBound() |
| ? __ GetLabelLocation(&info_high.pc_rel_label) |
| : __ GetPcRelBaseLabelLocation(); |
| linker_patches->push_back(Factory(literal_offset, dex_file, pc_rel_offset, offset_or_index)); |
| } |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)> |
| linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, |
| const DexFile* target_dex_file, |
| uint32_t pc_insn_offset, |
| uint32_t boot_image_offset) { |
| DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null. |
| return Factory(literal_offset, pc_insn_offset, boot_image_offset); |
| } |
| |
| void CodeGeneratorMIPS::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| boot_image_method_patches_.size() + |
| method_bss_entry_patches_.size() + |
| boot_image_type_patches_.size() + |
| type_bss_entry_patches_.size() + |
| boot_image_string_patches_.size() + |
| string_bss_entry_patches_.size() + |
| boot_image_intrinsic_patches_.size(); |
| linker_patches->reserve(size); |
| if (GetCompilerOptions().IsBootImage()) { |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>( |
| boot_image_method_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>( |
| boot_image_type_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>( |
| boot_image_string_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>( |
| boot_image_intrinsic_patches_, linker_patches); |
| } else { |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>( |
| boot_image_method_patches_, linker_patches); |
| DCHECK(boot_image_type_patches_.empty()); |
| DCHECK(boot_image_string_patches_.empty()); |
| DCHECK(boot_image_intrinsic_patches_.empty()); |
| } |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>( |
| method_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>( |
| type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>( |
| string_bss_entry_patches_, linker_patches); |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageIntrinsicPatch( |
| uint32_t intrinsic_data, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| /* dex_file */ nullptr, intrinsic_data, info_high, &boot_image_intrinsic_patches_); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageRelRoPatch( |
| uint32_t boot_image_offset, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| /* dex_file */ nullptr, boot_image_offset, info_high, &boot_image_method_patches_); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageMethodPatch( |
| MethodReference target_method, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, info_high, &boot_image_method_patches_); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewMethodBssEntryPatch( |
| MethodReference target_method, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, info_high, &method_bss_entry_patches_); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageTypePatch( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &boot_image_type_patches_); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewTypeBssEntryPatch( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &type_bss_entry_patches_); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageStringPatch( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| &dex_file, string_index.index_, info_high, &boot_image_string_patches_); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewStringBssEntryPatch( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &string_bss_entry_patches_); |
| } |
| |
| CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativePatch( |
| const DexFile* dex_file, |
| uint32_t offset_or_index, |
| const PcRelativePatchInfo* info_high, |
| ArenaDeque<PcRelativePatchInfo>* patches) { |
| patches->emplace_back(dex_file, offset_or_index, info_high); |
| return &patches->back(); |
| } |
| |
| Literal* CodeGeneratorMIPS::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) { |
| return map->GetOrCreate( |
| value, |
| [this, value]() { return __ NewLiteral<uint32_t>(value); }); |
| } |
| |
| Literal* CodeGeneratorMIPS::DeduplicateBootImageAddressLiteral(uint32_t address) { |
| return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_); |
| } |
| |
| void CodeGeneratorMIPS::EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high, |
| Register out, |
| Register base) { |
| DCHECK(!info_high->patch_info_high); |
| DCHECK_NE(out, base); |
| bool reordering = __ SetReorder(false); |
| if (GetInstructionSetFeatures().IsR6()) { |
| DCHECK_EQ(base, ZERO); |
| __ Bind(&info_high->label); |
| __ Bind(&info_high->pc_rel_label); |
| // Add the high half of a 32-bit offset to PC. |
| __ Auipc(out, /* placeholder */ 0x1234); |
| __ SetReorder(reordering); |
| } else { |
| // If base is ZERO, emit NAL to obtain the actual base. |
| if (base == ZERO) { |
| // Generate a dummy PC-relative call to obtain PC. |
| __ Nal(); |
| } |
| __ Bind(&info_high->label); |
| __ Lui(out, /* placeholder */ 0x1234); |
| // If we emitted the NAL, bind the pc_rel_label, otherwise base is a register holding |
| // the HMipsComputeBaseMethodAddress which has its own label stored in MipsAssembler. |
| if (base == ZERO) { |
| __ Bind(&info_high->pc_rel_label); |
| } |
| __ SetReorder(reordering); |
| // Add the high half of a 32-bit offset to PC. |
| __ Addu(out, out, (base == ZERO) ? RA : base); |
| } |
| // A following instruction will add the sign-extended low half of the 32-bit |
| // offset to `out` (e.g. lw, jialc, addiu). |
| } |
| |
| void CodeGeneratorMIPS::LoadBootImageAddress(Register reg, uint32_t boot_image_reference) { |
| if (GetCompilerOptions().IsBootImage()) { |
| PcRelativePatchInfo* info_high = NewBootImageIntrinsicPatch(boot_image_reference); |
| PcRelativePatchInfo* info_low = NewBootImageIntrinsicPatch(boot_image_reference, info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, /* base */ ZERO); |
| __ Addiu(reg, TMP, /* placeholder */ 0x5678, &info_low->label); |
| } else if (Runtime::Current()->IsAotCompiler()) { |
| PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_reference); |
| PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_reference, info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, reg, /* base */ ZERO); |
| __ Lw(reg, reg, /* placeholder */ 0x5678, &info_low->label); |
| } else { |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| DCHECK(!heap->GetBootImageSpaces().empty()); |
| const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference; |
| __ LoadConst32(reg, dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(address))); |
| } |
| } |
| |
| void CodeGeneratorMIPS::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke, |
| uint32_t boot_image_offset) { |
| DCHECK(invoke->IsStatic()); |
| InvokeRuntimeCallingConvention calling_convention; |
| Register argument = calling_convention.GetRegisterAt(0); |
| if (GetCompilerOptions().IsBootImage()) { |
| DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference); |
| // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. |
| MethodReference target_method = invoke->GetTargetMethod(); |
| dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; |
| PcRelativePatchInfo* info_high = NewBootImageTypePatch(*target_method.dex_file, type_idx); |
| PcRelativePatchInfo* info_low = |
| NewBootImageTypePatch(*target_method.dex_file, type_idx, info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, argument, /* base */ ZERO); |
| __ Addiu(argument, argument, /* placeholder */ 0x5678, &info_low->label); |
| } else { |
| LoadBootImageAddress(argument, boot_image_offset); |
| } |
| InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| } |
| |
| CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootStringPatch( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| Handle<mirror::String> handle) { |
| ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); |
| jit_string_patches_.emplace_back(dex_file, string_index.index_); |
| return &jit_string_patches_.back(); |
| } |
| |
| CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootClassPatch( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| Handle<mirror::Class> handle) { |
| ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); |
| jit_class_patches_.emplace_back(dex_file, type_index.index_); |
| return &jit_class_patches_.back(); |
| } |
| |
| void CodeGeneratorMIPS::PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| const CodeGeneratorMIPS::JitPatchInfo& info, |
| uint64_t index_in_table) const { |
| uint32_t high_literal_offset = GetAssembler().GetLabelLocation(&info.high_label); |
| uint32_t low_literal_offset = GetAssembler().GetLabelLocation(&info.low_label); |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| uint32_t addr32 = dchecked_integral_cast<uint32_t>(address); |
| // lui reg, addr32_high |
| DCHECK_EQ(code[high_literal_offset + 0], 0x34); |
| DCHECK_EQ(code[high_literal_offset + 1], 0x12); |
| DCHECK_EQ((code[high_literal_offset + 2] & 0xE0), 0x00); |
| DCHECK_EQ(code[high_literal_offset + 3], 0x3C); |
| // instr reg, reg, addr32_low |
| DCHECK_EQ(code[low_literal_offset + 0], 0x78); |
| DCHECK_EQ(code[low_literal_offset + 1], 0x56); |
| addr32 += (addr32 & 0x8000) << 1; // Account for sign extension in "instr reg, reg, addr32_low". |
| // lui reg, addr32_high |
| code[high_literal_offset + 0] = static_cast<uint8_t>(addr32 >> 16); |
| code[high_literal_offset + 1] = static_cast<uint8_t>(addr32 >> 24); |
| // instr reg, reg, addr32_low |
| code[low_literal_offset + 0] = static_cast<uint8_t>(addr32 >> 0); |
| code[low_literal_offset + 1] = static_cast<uint8_t>(addr32 >> 8); |
| } |
| |
| void CodeGeneratorMIPS::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const JitPatchInfo& info : jit_string_patches_) { |
| StringReference string_reference(&info.target_dex_file, dex::StringIndex(info.index)); |
| uint64_t index_in_table = GetJitStringRootIndex(string_reference); |
| PatchJitRootUse(code, roots_data, info, index_in_table); |
| } |
| for (const JitPatchInfo& info : jit_class_patches_) { |
| TypeReference type_reference(&info.target_dex_file, dex::TypeIndex(info.index)); |
| uint64_t index_in_table = GetJitClassRootIndex(type_reference); |
| PatchJitRootUse(code, roots_data, info, index_in_table); |
| } |
| } |
| |
| void CodeGeneratorMIPS::MarkGCCard(Register object, |
| Register value, |
| bool value_can_be_null) { |
| MipsLabel done; |
| Register card = AT; |
| Register temp = TMP; |
| if (value_can_be_null) { |
| __ Beqz(value, &done); |
| } |
| // Load the address of the card table into `card`. |
| __ LoadFromOffset(kLoadWord, |
| card, |
| TR, |
| Thread::CardTableOffset<kMipsPointerSize>().Int32Value()); |
| // Calculate the address of the card corresponding to `object`. |
| __ Srl(temp, object, gc::accounting::CardTable::kCardShift); |
| __ Addu(temp, card, temp); |
| // Write the `art::gc::accounting::CardTable::kCardDirty` value into the |
| // `object`'s card. |
| // |
| // Register `card` contains the address of the card table. Note that the card |
| // table's base is biased during its creation so that it always starts at an |
| // address whose least-significant byte is equal to `kCardDirty` (see |
| // art::gc::accounting::CardTable::Create). Therefore the SB instruction |
| // below writes the `kCardDirty` (byte) value into the `object`'s card |
| // (located at `card + object >> kCardShift`). |
| // |
| // This dual use of the value in register `card` (1. to calculate the location |
| // of the card to mark; and 2. to load the `kCardDirty` value) saves a load |
| // (no need to explicitly load `kCardDirty` as an immediate value). |
| __ Sb(card, temp, 0); |
| if (value_can_be_null) { |
| __ Bind(&done); |
| } |
| } |
| |
| void CodeGeneratorMIPS::SetupBlockedRegisters() const { |
| // ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated. |
| blocked_core_registers_[ZERO] = true; |
| blocked_core_registers_[K0] = true; |
| blocked_core_registers_[K1] = true; |
| blocked_core_registers_[GP] = true; |
| blocked_core_registers_[SP] = true; |
| blocked_core_registers_[RA] = true; |
| |
| // AT and TMP(T8) are used as temporary/scratch registers |
| // (similar to how AT is used by MIPS assemblers). |
| blocked_core_registers_[AT] = true; |
| blocked_core_registers_[TMP] = true; |
| blocked_fpu_registers_[FTMP] = true; |
| |
| if (GetInstructionSetFeatures().HasMsa()) { |
| // To be used just for MSA instructions. |
| blocked_fpu_registers_[FTMP2] = true; |
| } |
| |
| // Reserve suspend and thread registers. |
| blocked_core_registers_[S0] = true; |
| blocked_core_registers_[TR] = true; |
| |
| // Reserve T9 for function calls |
| blocked_core_registers_[T9] = true; |
| |
| // Reserve odd-numbered FPU registers. |
| for (size_t i = 1; i < kNumberOfFRegisters; i += 2) { |
| blocked_fpu_registers_[i] = true; |
| } |
| |
| if (GetGraph()->IsDebuggable()) { |
| // Stubs do not save callee-save floating point registers. If the graph |
| // is debuggable, we need to deal with these registers differently. For |
| // now, just block them. |
| for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { |
| blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; |
| } |
| } |
| } |
| |
| size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index); |
| return kMipsWordSize; |
| } |
| |
| size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index); |
| return kMipsWordSize; |
| } |
| |
| size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| if (GetGraph()->HasSIMD()) { |
| __ StoreQToOffset(FRegister(reg_id), SP, stack_index); |
| } else { |
| __ StoreDToOffset(FRegister(reg_id), SP, stack_index); |
| } |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| if (GetGraph()->HasSIMD()) { |
| __ LoadQFromOffset(FRegister(reg_id), SP, stack_index); |
| } else { |
| __ LoadDFromOffset(FRegister(reg_id), SP, stack_index); |
| } |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << Register(reg); |
| } |
| |
| void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << FRegister(reg); |
| } |
| |
| const MipsInstructionSetFeatures& CodeGeneratorMIPS::GetInstructionSetFeatures() const { |
| return *GetCompilerOptions().GetInstructionSetFeatures()->AsMipsInstructionSetFeatures(); |
| } |
| |
| constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16; |
| |
| void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| GenerateInvokeRuntime(GetThreadOffset<kMipsPointerSize>(entrypoint).Int32Value(), |
| IsDirectEntrypoint(entrypoint)); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| |
| void CodeGeneratorMIPS::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path, |
| bool direct) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| GenerateInvokeRuntime(entry_point_offset, direct); |
| } |
| |
| void CodeGeneratorMIPS::GenerateInvokeRuntime(int32_t entry_point_offset, bool direct) { |
| bool reordering = __ SetReorder(false); |
| __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); |
| __ Jalr(T9); |
| if (direct) { |
| // Reserve argument space on stack (for $a0-$a3) for |
| // entrypoints that directly reference native implementations. |
| // Called function may use this space to store $a0-$a3 regs. |
| __ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); // Single instruction in delay slot. |
| __ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); |
| } else { |
| __ Nop(); // In delay slot. |
| } |
| __ SetReorder(reordering); |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path, |
| Register class_reg) { |
| constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf(); |
| const size_t status_byte_offset = |
| mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte); |
| constexpr uint32_t shifted_initialized_value = |
| enum_cast<uint32_t>(ClassStatus::kInitialized) << (status_lsb_position % kBitsPerByte); |
| |
| __ LoadFromOffset(kLoadUnsignedByte, TMP, class_reg, status_byte_offset); |
| __ Sltiu(TMP, TMP, shifted_initialized_value); |
| __ Bnez(TMP, slow_path->GetEntryLabel()); |
| // Even if the initialized flag is set, we need to ensure consistent memory ordering. |
| __ Sync(0); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check, |
| Register temp) { |
| uint32_t path_to_root = check->GetBitstringPathToRoot(); |
| uint32_t mask = check->GetBitstringMask(); |
| DCHECK(IsPowerOfTwo(mask + 1)); |
| size_t mask_bits = WhichPowerOf2(mask + 1); |
| |
| if (mask_bits == 16u) { |
| // Load only the bitstring part of the status word. |
| __ LoadFromOffset( |
| kLoadUnsignedHalfword, temp, temp, mirror::Class::StatusOffset().Int32Value()); |
| // Compare the bitstring bits using XOR. |
| __ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root)); |
| } else { |
| // /* uint32_t */ temp = temp->status_ |
| __ LoadFromOffset(kLoadWord, temp, temp, mirror::Class::StatusOffset().Int32Value()); |
| // Compare the bitstring bits using XOR. |
| if (IsUint<16>(path_to_root)) { |
| __ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root)); |
| } else { |
| __ LoadConst32(TMP, path_to_root); |
| __ Xor(temp, temp, TMP); |
| } |
| // Shift out bits that do not contribute to the comparison. |
| __ Sll(temp, temp, 32 - mask_bits); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) { |
| __ Sync(0); // Only stype 0 is supported. |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathMIPS* slow_path = |
| down_cast<SuspendCheckSlowPathMIPS*>(instruction->GetSlowPath()); |
| |
| if (slow_path == nullptr) { |
| slow_path = |
| new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathMIPS(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| __ LoadFromOffset(kLoadUnsignedHalfword, |
| TMP, |
| TR, |
| Thread::ThreadFlagsOffset<kMipsPointerSize>().Int32Value()); |
| if (successor == nullptr) { |
| __ Bnez(TMP, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ Beqz(TMP, codegen_->GetLabelOf(successor)); |
| __ B(slow_path->GetEntryLabel()); |
| // slow_path will return to GetLabelOf(successor). |
| } |
| } |
| |
| InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph, |
| CodeGeneratorMIPS* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) { |
| DCHECK_EQ(instruction->InputCount(), 2U); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| DataType::Type type = instruction->GetResultType(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| switch (type) { |
| case DataType::Type::kInt32: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| HInstruction* right = instruction->InputAt(1); |
| bool can_use_imm = false; |
| if (right->IsConstant()) { |
| int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant()); |
| if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) { |
| can_use_imm = IsUint<16>(imm); |
| } else { |
| DCHECK(instruction->IsSub() || instruction->IsAdd()); |
| if (instruction->IsSub()) { |
| imm = -imm; |
| } |
| if (isR6) { |
| bool single_use = right->GetUses().HasExactlyOneElement(); |
| int16_t imm_high = High16Bits(imm); |
| int16_t imm_low = Low16Bits(imm); |
| if (imm_low < 0) { |
| imm_high += 1; |
| } |
| can_use_imm = !((imm_high != 0) && (imm_low != 0)) || single_use; |
| } else { |
| can_use_imm = IsInt<16>(imm); |
| } |
| } |
| } |
| if (can_use_imm) |
| locations->SetInAt(1, Location::ConstantLocation(right->AsConstant())); |
| else |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| DCHECK(instruction->IsAdd() || instruction->IsSub()); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: { |
| Register dst = locations->Out().AsRegister<Register>(); |
| Register lhs = locations->InAt(0).AsRegister<Register>(); |
| Location rhs_location = locations->InAt(1); |
| |
| Register rhs_reg = ZERO; |
| int32_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_reg = rhs_location.AsRegister<Register>(); |
| } |
| |
| if (instruction->IsAnd()) { |
| if (use_imm) |
| __ Andi(dst, lhs, rhs_imm); |
| else |
| __ And(dst, lhs, rhs_reg); |
| } else if (instruction->IsOr()) { |
| if (use_imm) |
| __ Ori(dst, lhs, rhs_imm); |
| else |
| __ Or(dst, lhs, rhs_reg); |
| } else if (instruction->IsXor()) { |
| if (use_imm) |
| __ Xori(dst, lhs, rhs_imm); |
| else |
| __ Xor(dst, lhs, rhs_reg); |
| } else { |
| DCHECK(instruction->IsAdd() || instruction->IsSub()); |
| if (use_imm) { |
| if (instruction->IsSub()) { |
| rhs_imm = -rhs_imm; |
| } |
| if (IsInt<16>(rhs_imm)) { |
| __ Addiu(dst, lhs, rhs_imm); |
| } else { |
| DCHECK(isR6); |
| int16_t rhs_imm_high = High16Bits(rhs_imm); |
| int16_t rhs_imm_low = Low16Bits(rhs_imm); |
| if (rhs_imm_low < 0) { |
| rhs_imm_high += 1; |
| } |
| __ Aui(dst, lhs, rhs_imm_high); |
| if (rhs_imm_low != 0) { |
| __ Addiu(dst, dst, rhs_imm_low); |
| } |
| } |
| } else if (instruction->IsAdd()) { |
| __ Addu(dst, lhs, rhs_reg); |
| } else { |
| DCHECK(instruction->IsSub()); |
| __ Subu(dst, lhs, rhs_reg); |
| } |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register dst_low = locations->Out().AsRegisterPairLow<Register>(); |
| Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Location rhs_location = locations->InAt(1); |
| bool use_imm = rhs_location.IsConstant(); |
| if (!use_imm) { |
| Register rhs_high = rhs_location.AsRegisterPairHigh<Register>(); |
| Register rhs_low = rhs_location.AsRegisterPairLow<Register>(); |
| if (instruction->IsAnd()) { |
| __ And(dst_low, lhs_low, rhs_low); |
| __ And(dst_high, lhs_high, rhs_high); |
| } else if (instruction->IsOr()) { |
| __ Or(dst_low, lhs_low, rhs_low); |
| __ Or(dst_high, lhs_high, rhs_high); |
| } else if (instruction->IsXor()) { |
| __ Xor(dst_low, lhs_low, rhs_low); |
| __ Xor(dst_high, lhs_high, rhs_high); |
| } else if (instruction->IsAdd()) { |
| if (lhs_low == rhs_low) { |
| // Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs. |
| __ Slt(TMP, lhs_low, ZERO); |
| __ Addu(dst_low, lhs_low, rhs_low); |
| } else { |
| __ Addu(dst_low, lhs_low, rhs_low); |
| // If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged. |
| __ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low); |
| } |
| __ Addu(dst_high, lhs_high, rhs_high); |
| __ Addu(dst_high, dst_high, TMP); |
| } else { |
| DCHECK(instruction->IsSub()); |
| __ Sltu(TMP, lhs_low, rhs_low); |
| __ Subu(dst_low, lhs_low, rhs_low); |
| __ Subu(dst_high, lhs_high, rhs_high); |
| __ Subu(dst_high, dst_high, TMP); |
| } |
| } else { |
| int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant()); |
| if (instruction->IsOr()) { |
| uint32_t low = Low32Bits(value); |
| uint32_t high = High32Bits(value); |
| if (IsUint<16>(low)) { |
| if (dst_low != lhs_low || low != 0) { |
| __ Ori(dst_low, lhs_low, low); |
| } |
| } else { |
| __ LoadConst32(TMP, low); |
| __ Or(dst_low, lhs_low, TMP); |
| } |
| if (IsUint<16>(high)) { |
| if (dst_high != lhs_high || high != 0) { |
| __ Ori(dst_high, lhs_high, high); |
| } |
| } else { |
| if (high != low) { |
| __ LoadConst32(TMP, high); |
| } |
| __ Or(dst_high, lhs_high, TMP); |
| } |
| } else if (instruction->IsXor()) { |
| uint32_t low = Low32Bits(value); |
| uint32_t high = High32Bits(value); |
| if (IsUint<16>(low)) { |
| if (dst_low != lhs_low || low != 0) { |
| __ Xori(dst_low, lhs_low, low); |
| } |
| } else { |
| __ LoadConst32(TMP, low); |
| __ Xor(dst_low, lhs_low, TMP); |
| } |
| if (IsUint<16>(high)) { |
| if (dst_high != lhs_high || high != 0) { |
| __ Xori(dst_high, lhs_high, high); |
| } |
| } else { |
| if (high != low) { |
| __ LoadConst32(TMP, high); |
| } |
| __ Xor(dst_high, lhs_high, TMP); |
| } |
| } else if (instruction->IsAnd()) { |
| uint32_t low = Low32Bits(value); |
| uint32_t high = High32Bits(value); |
| if (IsUint<16>(low)) { |
| __ Andi(dst_low, lhs_low, low); |
| } else if (low != 0xFFFFFFFF) { |
| __ LoadConst32(TMP, low); |
| __ And(dst_low, lhs_low, TMP); |
| } else if (dst_low != lhs_low) { |
| __ Move(dst_low, lhs_low); |
| } |
| if (IsUint<16>(high)) { |
| __ Andi(dst_high, lhs_high, high); |
| } else if (high != 0xFFFFFFFF) { |
| if (high != low) { |
| __ LoadConst32(TMP, high); |
| } |
| __ And(dst_high, lhs_high, TMP); |
| } else if (dst_high != lhs_high) { |
| __ Move(dst_high, lhs_high); |
| } |
| } else { |
| if (instruction->IsSub()) { |
| value = -value; |
| } else { |
| DCHECK(instruction->IsAdd()); |
| } |
| int32_t low = Low32Bits(value); |
| int32_t high = High32Bits(value); |
| if (IsInt<16>(low)) { |
| if (dst_low != lhs_low || low != 0) { |
| __ Addiu(dst_low, lhs_low, low); |
| } |
| if (low != 0) { |
| __ Sltiu(AT, dst_low, low); |
| } |
| } else { |
| __ LoadConst32(TMP, low); |
| __ Addu(dst_low, lhs_low, TMP); |
| __ Sltu(AT, dst_low, TMP); |
| } |
| if (IsInt<16>(high)) { |
| if (dst_high != lhs_high || high != 0) { |
| __ Addiu(dst_high, lhs_high, high); |
| } |
| } else { |
| if (high != low) { |
| __ LoadConst32(TMP, high); |
| } |
| __ Addu(dst_high, lhs_high, TMP); |
| } |
| if (low != 0) { |
| __ Addu(dst_high, dst_high, AT); |
| } |
| } |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); |
| if (instruction->IsAdd()) { |
| if (type == DataType::Type::kFloat32) { |
| __ AddS(dst, lhs, rhs); |
| } else { |
| __ AddD(dst, lhs, rhs); |
| } |
| } else { |
| DCHECK(instruction->IsSub()); |
| if (type == DataType::Type::kFloat32) { |
| __ SubS(dst, lhs, rhs); |
| } else { |
| __ SubD(dst, lhs, rhs); |
| } |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected binary operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor()); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); |
| DataType::Type type = instr->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected shift type " << type; |
| } |
| } |
| |
| static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte; |
| |
| void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor()); |
| LocationSummary* locations = instr->GetLocations(); |
| DataType::Type type = instr->GetType(); |
| |
| Location rhs_location = locations->InAt(1); |
| bool use_imm = rhs_location.IsConstant(); |
| Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>(); |
| int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0; |
| const uint32_t shift_mask = |
| (type == DataType::Type::kInt32) ? kMaxIntShiftDistance : kMaxLongShiftDistance; |
| const uint32_t shift_value = rhs_imm & shift_mask; |
| // Are the INS (Insert Bit Field) and ROTR instructions supported? |
| bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: { |
| Register dst = locations->Out().AsRegister<Register>(); |
| Register lhs = locations->InAt(0).AsRegister<Register>(); |
| if (use_imm) { |
| if (shift_value == 0) { |
| if (dst != lhs) { |
| __ Move(dst, lhs); |
| } |
| } else if (instr->IsShl()) { |
| __ Sll(dst, lhs, shift_value); |
| } else if (instr->IsShr()) { |
| __ Sra(dst, lhs, shift_value); |
| } else if (instr->IsUShr()) { |
| __ Srl(dst, lhs, shift_value); |
| } else { |
| if (has_ins_rotr) { |
| __ Rotr(dst, lhs, shift_value); |
| } else { |
| __ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask); |
| __ Srl(dst, lhs, shift_value); |
| __ Or(dst, dst, TMP); |
| } |
| } |
| } else { |
| if (instr->IsShl()) { |
| __ Sllv(dst, lhs, rhs_reg); |
| } else if (instr->IsShr()) { |
| __ Srav(dst, lhs, rhs_reg); |
| } else if (instr->IsUShr()) { |
| __ Srlv(dst, lhs, rhs_reg); |
| } else { |
| if (has_ins_rotr) { |
| __ Rotrv(dst, lhs, rhs_reg); |
| } else { |
| __ Subu(TMP, ZERO, rhs_reg); |
| // 32-bit shift instructions use the 5 least significant bits of the shift count, so |
| // shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case |
| // when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out |
| // by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`, |
| // IOW, the OR'd values are equal. |
| __ Sllv(TMP, lhs, TMP); |
| __ Srlv(dst, lhs, rhs_reg); |
| __ Or(dst, dst, TMP); |
| } |
| } |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register dst_low = locations->Out().AsRegisterPairLow<Register>(); |
| Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| if (use_imm) { |
| if (shift_value == 0) { |
| codegen_->MoveLocation(locations->Out(), locations->InAt(0), type); |
| } else if (shift_value < kMipsBitsPerWord) { |
| if (has_ins_rotr) { |
| if (instr->IsShl()) { |
| __ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value); |
| __ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value); |
| __ Sll(dst_low, lhs_low, shift_value); |
| } else if (instr->IsShr()) { |
| __ Srl(dst_low, lhs_low, shift_value); |
| __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); |
| __ Sra(dst_high, lhs_high, shift_value); |
| } else if (instr->IsUShr()) { |
| __ Srl(dst_low, lhs_low, shift_value); |
| __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); |
| __ Srl(dst_high, lhs_high, shift_value); |
| } else { |
| __ Srl(dst_low, lhs_low, shift_value); |
| __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); |
| __ Srl(dst_high, lhs_high, shift_value); |
| __ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value); |
| } |
| } else { |
| if (instr->IsShl()) { |
| __ Sll(dst_low, lhs_low, shift_value); |
| __ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value); |
| __ Sll(dst_high, lhs_high, shift_value); |
| __ Or(dst_high, dst_high, TMP); |
| } else if (instr->IsShr()) { |
| __ Sra(dst_high, lhs_high, shift_value); |
| __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value); |
| __ Srl(dst_low, lhs_low, shift_value); |
| __ Or(dst_low, dst_low, TMP); |
| } else if (instr->IsUShr()) { |
| __ Srl(dst_high, lhs_high, shift_value); |
| __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value); |
| __ Srl(dst_low, lhs_low, shift_value); |
| __ Or(dst_low, dst_low, TMP); |
| } else { |
| __ Srl(TMP, lhs_low, shift_value); |
| __ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value); |
| __ Or(dst_low, dst_low, TMP); |
| __ Srl(TMP, lhs_high, shift_value); |
| __ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value); |
| __ Or(dst_high, dst_high, TMP); |
| } |
| } |
| } else { |
| const uint32_t shift_value_high = shift_value - kMipsBitsPerWord; |
| if (instr->IsShl()) { |
| __ Sll(dst_high, lhs_low, shift_value_high); |
| __ Move(dst_low, ZERO); |
| } else if (instr->IsShr()) { |
| __ Sra(dst_low, lhs_high, shift_value_high); |
| __ Sra(dst_high, dst_low, kMipsBitsPerWord - 1); |
| } else if (instr->IsUShr()) { |
| __ Srl(dst_low, lhs_high, shift_value_high); |
| __ Move(dst_high, ZERO); |
| } else { |
| if (shift_value == kMipsBitsPerWord) { |
| // 64-bit rotation by 32 is just a swap. |
| __ Move(dst_low, lhs_high); |
| __ Move(dst_high, lhs_low); |
| } else { |
| if (has_ins_rotr) { |
| __ Srl(dst_low, lhs_high, shift_value_high); |
| __ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high); |
| __ Srl(dst_high, lhs_low, shift_value_high); |
| __ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high); |
| } else { |
| __ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high); |
| __ Srl(dst_low, lhs_high, shift_value_high); |
| __ Or(dst_low, dst_low, TMP); |
| __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high); |
| __ Srl(dst_high, lhs_low, shift_value_high); |
| __ Or(dst_high, dst_high, TMP); |
| } |
| } |
| } |
| } |
| } else { |
| const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| MipsLabel done; |
| if (instr->IsShl()) { |
| __ Sllv(dst_low, lhs_low, rhs_reg); |
| __ Nor(AT, ZERO, rhs_reg); |
| __ Srl(TMP, lhs_low, 1); |
| __ Srlv(TMP, TMP, AT); |
| __ Sllv(dst_high, lhs_high, rhs_reg); |
| __ Or(dst_high, dst_high, TMP); |
| __ Andi(TMP, rhs_reg, kMipsBitsPerWord); |
| if (isR6) { |
| __ Beqzc(TMP, &done, /* is_bare */ true); |
| __ Move(dst_high, dst_low); |
| __ Move(dst_low, ZERO); |
| } else { |
| __ Movn(dst_high, dst_low, TMP); |
| __ Movn(dst_low, ZERO, TMP); |
| } |
| } else if (instr->IsShr()) { |
| __ Srav(dst_high, lhs_high, rhs_reg); |
| __ Nor(AT, ZERO, rhs_reg); |
| __ Sll(TMP, lhs_high, 1); |
| __ Sllv(TMP, TMP, AT); |
| __ Srlv(dst_low, lhs_low, rhs_reg); |
| __ Or(dst_low, dst_low, TMP); |
| __ Andi(TMP, rhs_reg, kMipsBitsPerWord); |
| if (isR6) { |
| __ Beqzc(TMP, &done, /* is_bare */ true); |
| __ Move(dst_low, dst_high); |
| __ Sra(dst_high, dst_high, 31); |
| } else { |
| __ Sra(AT, dst_high, 31); |
| __ Movn(dst_low, dst_high, TMP); |
| __ Movn(dst_high, AT, TMP); |
| } |
| } else if (instr->IsUShr()) { |
| __ Srlv(dst_high, lhs_high, rhs_reg); |
| __ Nor(AT, ZERO, rhs_reg); |
| __ Sll(TMP, lhs_high, 1); |
| __ Sllv(TMP, TMP, AT); |
| __ Srlv(dst_low, lhs_low, rhs_reg); |
| __ Or(dst_low, dst_low, TMP); |
| __ Andi(TMP, rhs_reg, kMipsBitsPerWord); |
| if (isR6) { |
| __ Beqzc(TMP, &done, /* is_bare */ true); |
| __ Move(dst_low, dst_high); |
| __ Move(dst_high, ZERO); |
| } else { |
| __ Movn(dst_low, dst_high, TMP); |
| __ Movn(dst_high, ZERO, TMP); |
| } |
| } else { // Rotate. |
| __ Nor(AT, ZERO, rhs_reg); |
| __ Srlv(TMP, lhs_low, rhs_reg); |
| __ Sll(dst_low, lhs_high, 1); |
| __ Sllv(dst_low, dst_low, AT); |
| __ Or(dst_low, dst_low, TMP); |
| __ Srlv(TMP, lhs_high, rhs_reg); |
| __ Sll(dst_high, lhs_low, 1); |
| __ Sllv(dst_high, dst_high, AT); |
| __ Or(dst_high, dst_high, TMP); |
| __ Andi(TMP, rhs_reg, kMipsBitsPerWord); |
| if (isR6) { |
| __ Beqzc(TMP, &done, /* is_bare */ true); |
| __ Move(TMP, dst_high); |
| __ Move(dst_high, dst_low); |
| __ Move(dst_low, TMP); |
| } else { |
| __ Movn(AT, dst_high, TMP); |
| __ Movn(dst_high, dst_low, TMP); |
| __ Movn(dst_low, AT, TMP); |
| } |
| } |
| __ Bind(&done); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected shift operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) { |
| DataType::Type type = instruction->GetType(); |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (type == DataType::Type::kReference); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, |
| object_array_get_with_read_barrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (DataType::IsFloatingPointType(type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in the case of an object array get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // array's location, as we need it to emit the read barrier. |
| locations->SetOut(Location::RequiresRegister(), |
| object_array_get_with_read_barrier |
| ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier. |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| bool temp_needed = instruction->GetIndex()->IsConstant() |
| ? !kBakerReadBarrierThunksEnableForFields |
| : !kBakerReadBarrierThunksEnableForArrays; |
| if (temp_needed) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| |
| static auto GetImplicitNullChecker(HInstruction* instruction, CodeGeneratorMIPS* codegen) { |
| auto null_checker = [codegen, instruction]() { |
| codegen->MaybeRecordImplicitNullCheck(instruction); |
| }; |
| return null_checker; |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location out_loc = locations->Out(); |
| Location index = locations->InAt(1); |
| uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); |
| auto null_checker = GetImplicitNullChecker(instruction, codegen_); |
| |
| DataType::Type type = instruction->GetType(); |
| const bool maybe_compressed_char_at = mirror::kUseStringCompression && |
| instruction->IsStringCharAt(); |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; |
| __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset, null_checker); |
| } else { |
| __ Addu(TMP, obj, index.AsRegister<Register>()); |
| __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt8: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; |
| __ LoadFromOffset(kLoadSignedByte, out, obj, offset, null_checker); |
| } else { |
| __ Addu(TMP, obj, index.AsRegister<Register>()); |
| __ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint16: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (maybe_compressed_char_at) { |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| __ LoadFromOffset(kLoadWord, TMP, obj, count_offset, null_checker); |
| __ Sll(TMP, TMP, 31); // Extract compression flag into the most significant bit of TMP. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| } |
| if (index.IsConstant()) { |
| int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); |
| if (maybe_compressed_char_at) { |
| MipsLabel uncompressed_load, done; |
| __ Bnez(TMP, &uncompressed_load); |
| __ LoadFromOffset(kLoadUnsignedByte, |
| out, |
| obj, |
| data_offset + (const_index << TIMES_1)); |
| __ B(&done); |
| __ Bind(&uncompressed_load); |
| __ LoadFromOffset(kLoadUnsignedHalfword, |
| out, |
| obj, |
| data_offset + (const_index << TIMES_2)); |
| __ Bind(&done); |
| } else { |
| __ LoadFromOffset(kLoadUnsignedHalfword, |
| out, |
| obj, |
| data_offset + (const_index << TIMES_2), |
| null_checker); |
| } |
| } else { |
| Register index_reg = index.AsRegister<Register>(); |
| if (maybe_compressed_char_at) { |
| MipsLabel uncompressed_load, done; |
| __ Bnez(TMP, &uncompressed_load); |
| __ Addu(TMP, obj, index_reg); |
| __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset); |
| __ B(&done); |
| __ Bind(&uncompressed_load); |
| __ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP); |
| __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset); |
| __ Bind(&done); |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(TMP, index_reg, obj); |
| __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker); |
| } else { |
| __ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP); |
| __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker); |
| } |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt16: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; |
| __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset, null_checker); |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(TMP, index.AsRegister<Register>(), obj); |
| __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker); |
| } else { |
| __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_2, TMP); |
| __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt32: { |
| DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t)); |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ LoadFromOffset(kLoadWord, out, obj, offset, null_checker); |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(TMP, index.AsRegister<Register>(), obj); |
| __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker); |
| } else { |
| __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP); |
| __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kReference: { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ out = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| bool temp_needed = index.IsConstant() |
| ? !kBakerReadBarrierThunksEnableForFields |
| : !kBakerReadBarrierThunksEnableForArrays; |
| Location temp = temp_needed ? locations->GetTemp(0) : Location::NoLocation(); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier call. |
| DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); |
| if (index.IsConstant()) { |
| // Array load with a constant index can be treated as a field load. |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out_loc, |
| obj, |
| offset, |
| temp, |
| /* needs_null_check */ false); |
| } else { |
| codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction, |
| out_loc, |
| obj, |
| data_offset, |
| index, |
| temp, |
| /* needs_null_check */ false); |
| } |
| } else { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ LoadFromOffset(kLoadWord, out, obj, offset, null_checker); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); |
| } else { |
| __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP); |
| __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, |
| out_loc, |
| out_loc, |
| obj_loc, |
| data_offset, |
| index); |
| } |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| Register out = out_loc.AsRegisterPairLow<Register>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ LoadFromOffset(kLoadDoubleword, out, obj, offset, null_checker); |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(TMP, index.AsRegister<Register>(), obj); |
| __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker); |
| } else { |
| __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP); |
| __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| FRegister out = out_loc.AsFpuRegister<FRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ LoadSFromOffset(out, obj, offset, null_checker); |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(TMP, index.AsRegister<Register>(), obj); |
| __ LoadSFromOffset(out, TMP, data_offset, null_checker); |
| } else { |
| __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP); |
| __ LoadSFromOffset(out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| FRegister out = out_loc.AsFpuRegister<FRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ LoadDFromOffset(out, obj, offset, null_checker); |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(TMP, index.AsRegister<Register>(), obj); |
| __ LoadDFromOffset(out, TMP, data_offset, null_checker); |
| } else { |
| __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP); |
| __ LoadDFromOffset(out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << instruction->GetType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| __ LoadFromOffset(kLoadWord, out, obj, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // Mask out compression flag from String's array length. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ Srl(out, out, 1u); |
| } |
| } |
| |
| Location LocationsBuilderMIPS::RegisterOrZeroConstant(HInstruction* instruction) { |
| return (instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern()) |
| ? Location::ConstantLocation(instruction->AsConstant()) |
| : Location::RequiresRegister(); |
| } |
| |
| Location LocationsBuilderMIPS::FpuRegisterOrConstantForStore(HInstruction* instruction) { |
| // We can store 0.0 directly (from the ZERO register) without loading it into an FPU register. |
| // We can store a non-zero float or double constant without first loading it into the FPU, |
| // but we should only prefer this if the constant has a single use. |
| if (instruction->IsConstant() && |
| (instruction->AsConstant()->IsZeroBitPattern() || |
| instruction->GetUses().HasExactlyOneElement())) { |
| return Location::ConstantLocation(instruction->AsConstant()); |
| // Otherwise fall through and require an FPU register for the constant. |
| } |
| return Location::RequiresFpuRegister(); |
| } |
| |
| void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) { |
| DataType::Type value_type = instruction->GetComponentType(); |
| |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, |
| may_need_runtime_call_for_type_check ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (DataType::IsFloatingPointType(instruction->InputAt(2)->GetType())) { |
| locations->SetInAt(2, FpuRegisterOrConstantForStore(instruction->InputAt(2))); |
| } else { |
| locations->SetInAt(2, RegisterOrZeroConstant(instruction->InputAt(2))); |
| } |
| if (needs_write_barrier) { |
| // Temporary register for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| Location value_location = locations->InAt(2); |
| DataType::Type value_type = instruction->GetComponentType(); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| auto null_checker = GetImplicitNullChecker(instruction, codegen_); |
| Register base_reg = index.IsConstant() ? obj : TMP; |
| |
| switch (value_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1; |
| } else { |
| __ Addu(base_reg, obj, index.AsRegister<Register>()); |
| } |
| if (value_location.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreByte, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| Register value = value_location.AsRegister<Register>(); |
| __ StoreToOffset(kStoreByte, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2; |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(base_reg, index.AsRegister<Register>(), obj); |
| } else { |
| __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_2, base_reg); |
| } |
| if (value_location.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreHalfword, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| Register value = value_location.AsRegister<Register>(); |
| __ StoreToOffset(kStoreHalfword, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt32: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(base_reg, index.AsRegister<Register>(), obj); |
| } else { |
| __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); |
| } |
| if (value_location.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| Register value = value_location.AsRegister<Register>(); |
| __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kReference: { |
| if (value_location.IsConstant()) { |
| // Just setting null. |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else { |
| __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); |
| } |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| DCHECK_EQ(value, 0); |
| __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); |
| DCHECK(!needs_write_barrier); |
| DCHECK(!may_need_runtime_call_for_type_check); |
| break; |
| } |
| |
| DCHECK(needs_write_barrier); |
| Register value = value_location.AsRegister<Register>(); |
| Register temp1 = locations->GetTemp(0).AsRegister<Register>(); |
| Register temp2 = TMP; // Doesn't need to survive slow path. |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| MipsLabel done; |
| SlowPathCodeMIPS* slow_path = nullptr; |
| |
| if (may_need_runtime_call_for_type_check) { |
| slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathMIPS(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (instruction->GetValueCanBeNull()) { |
| MipsLabel non_zero; |
| __ Bnez(value, &non_zero); |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(base_reg, index.AsRegister<Register>(), obj); |
| } else { |
| __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); |
| } |
| __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker); |
| __ B(&done); |
| __ Bind(&non_zero); |
| } |
| |
| // Note that when read barriers are enabled, the type checks |
| // are performed without read barriers. This is fine, even in |
| // the case where a class object is in the from-space after |
| // the flip, as a comparison involving such a type would not |
| // produce a false positive; it may of course produce a false |
| // negative, in which case we would take the ArraySet slow |
| // path. |
| |
| // /* HeapReference<Class> */ temp1 = obj->klass_ |
| __ LoadFromOffset(kLoadWord, temp1, obj, class_offset, null_checker); |
| __ MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset); |
| // /* HeapReference<Class> */ temp2 = value->klass_ |
| __ LoadFromOffset(kLoadWord, temp2, value, class_offset); |
| // If heap poisoning is enabled, no need to unpoison `temp1` |
| // nor `temp2`, as we are comparing two poisoned references. |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| MipsLabel do_put; |
| __ Beq(temp1, temp2, &do_put); |
| // If heap poisoning is enabled, the `temp1` reference has |
| // not been unpoisoned yet; unpoison it now. |
| __ MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp1`, as we are comparing against null below. |
| __ Bnez(temp1, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ Bne(temp1, temp2, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| Register source = value; |
| if (kPoisonHeapReferences) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as a null reference does not |
| // need poisoning. |
| __ Move(temp1, value); |
| __ PoisonHeapReference(temp1); |
| source = temp1; |
| } |
| |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else { |
| __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); |
| } |
| __ StoreToOffset(kStoreWord, source, base_reg, data_offset); |
| |
| if (!may_need_runtime_call_for_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| codegen_->MarkGCCard(obj, value, instruction->GetValueCanBeNull()); |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8; |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(base_reg, index.AsRegister<Register>(), obj); |
| } else { |
| __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg); |
| } |
| if (value_location.IsConstant()) { |
| int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| Register value = value_location.AsRegisterPairLow<Register>(); |
| __ StoreToOffset(kStoreDoubleword, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(base_reg, index.AsRegister<Register>(), obj); |
| } else { |
| __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); |
| } |
| if (value_location.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| FRegister value = value_location.AsFpuRegister<FRegister>(); |
| __ StoreSToOffset(value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8; |
| } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { |
| __ Addu(base_reg, index.AsRegister<Register>(), obj); |
| } else { |
| __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg); |
| } |
| if (value_location.IsConstant()) { |
| int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| FRegister value = value_location.AsFpuRegister<FRegister>(); |
| __ StoreDToOffset(value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << instruction->GetType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitIntermediateArrayAddressIndex( |
| HIntermediateArrayAddressIndex* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| |
| HIntConstant* shift = instruction->GetShift()->AsIntConstant(); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(shift)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitIntermediateArrayAddressIndex( |
| HIntermediateArrayAddressIndex* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register index_reg = locations->InAt(0).AsRegister<Register>(); |
| uint32_t shift = instruction->GetShift()->AsIntConstant()->GetValue(); |
| __ Sll(locations->Out().AsRegister<Register>(), index_reg, shift); |
| } |
| |
| void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| |
| HInstruction* index = instruction->InputAt(0); |
| HInstruction* length = instruction->InputAt(1); |
| |
| bool const_index = false; |
| bool const_length = false; |
| |
| if (index->IsConstant()) { |
| if (length->IsConstant()) { |
| const_index = true; |
| const_length = true; |
| } else { |
| int32_t index_value = index->AsIntConstant()->GetValue(); |
| if (index_value < 0 || IsInt<16>(index_value + 1)) { |
| const_index = true; |
| } |
| } |
| } else if (length->IsConstant()) { |
| int32_t length_value = length->AsIntConstant()->GetValue(); |
| if (IsUint<15>(length_value)) { |
| const_length = true; |
| } |
| } |
| |
| locations->SetInAt(0, const_index |
| ? Location::ConstantLocation(index->AsConstant()) |
| : Location::RequiresRegister()); |
| locations->SetInAt(1, const_length |
| ? Location::ConstantLocation(length->AsConstant()) |
| : Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| |
| if (length_loc.IsConstant()) { |
| int32_t length = length_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index_loc.IsConstant()) { |
| int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index < 0 || index >= length) { |
| BoundsCheckSlowPathMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction); |
| codegen_->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| } else { |
| // Nothing to be done. |
| } |
| return; |
| } |
| |
| BoundsCheckSlowPathMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction); |
| codegen_->AddSlowPath(slow_path); |
| Register index = index_loc.AsRegister<Register>(); |
| if (length == 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } else if (length == 1) { |
| __ Bnez(index, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(IsUint<15>(length)) << length; |
| __ Sltiu(TMP, index, length); |
| __ Beqz(TMP, slow_path->GetEntryLabel()); |
| } |
| } else { |
| Register length = length_loc.AsRegister<Register>(); |
| BoundsCheckSlowPathMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (index_loc.IsConstant()) { |
| int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index < 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } else if (index == 0) { |
| __ Blez(length, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(IsInt<16>(index + 1)) << index; |
| __ Sltiu(TMP, length, index + 1); |
| __ Bnez(TMP, slow_path->GetEntryLabel()); |
| } |
| } else { |
| Register index = index_loc.AsRegister<Register>(); |
| __ Bgeu(index, length, slow_path->GetEntryLabel()); |
| } |
| } |
| } |
| |
| // Temp is used for read barrier. |
| static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { |
| if (kEmitCompilerReadBarrier && |
| !(kUseBakerReadBarrier && kBakerReadBarrierThunksEnableForFields) && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Extra temp is used for read barrier. |
| static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { |
| return 1 + NumberOfInstanceOfTemps(type_check_kind); |
| } |
| |
| void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location cls = locations->InAt(1); |
| Location temp_loc = locations->GetTemp(0); |
| Register temp = temp_loc.AsRegister<Register>(); |
| const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); |
| DCHECK_LE(num_temps, 2u); |
| Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| MipsLabel done; |
| |
| bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); |
| SlowPathCodeMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS( |
| instruction, is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(slow_path); |
| |
| // Avoid this check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Beqz(obj, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ Bne(temp, cls.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| MipsLabel loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ Beqz(temp, slow_path->GetEntryLabel()); |
| // Otherwise, compare the classes. |
| __ Bne(temp, cls.AsRegister<Register>(), &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Walk over the class hierarchy to find a match. |
| MipsLabel loop; |
| __ Bind(&loop); |
| __ Beq(temp, cls.AsRegister<Register>(), &done); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. Otherwise, jump to the beginning of the loop. |
| __ Bnez(temp, &loop); |
| __ B(slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Do an exact check. |
| __ Beq(temp, cls.AsRegister<Register>(), &done); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the component type is null, jump to the slow path to throw the exception. |
| __ Beqz(temp, slow_path->GetEntryLabel()); |
| // Otherwise, the object is indeed an array, further check that this component |
| // type is not a primitive type. |
| __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Bnez(temp, slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| // We always go into the type check slow path for the unresolved check case. |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| __ B(slow_path->GetEntryLabel()); |
| break; |
| |
| case TypeCheckKind::kInterfaceCheck: { |
| // Avoid read barriers to improve performance of the fast path. We can not get false |
| // positives by doing this. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| temp_loc, |
| iftable_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Iftable is never null. |
| __ Lw(TMP, temp, array_length_offset); |
| // Loop through the iftable and check if any class matches. |
| MipsLabel loop; |
| __ Bind(&loop); |
| __ Addiu(temp, temp, 2 * kHeapReferenceSize); // Possibly in delay slot on R2. |
| __ Beqz(TMP, slow_path->GetEntryLabel()); |
| __ Lw(AT, temp, object_array_data_offset - 2 * kHeapReferenceSize); |
| __ MaybeUnpoisonHeapReference(AT); |
| // Go to next interface. |
| __ Addiu(TMP, TMP, -2); |
| // Compare the classes and continue the loop if they do not match. |
| __ Bne(AT, cls.AsRegister<Register>(), &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, temp); |
| __ Bnez(temp, slow_path->GetEntryLabel()); |
| break; |
| } |
| } |
| |
| __ Bind(&done); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| // Rely on the type initialization to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class is not null. |
| SlowPathCodeMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS(check->GetLoadClass(), check); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, |
| check->GetLocations()->InAt(0).AsRegister<Register>()); |
| } |
| |
| void LocationsBuilderMIPS::VisitCompare(HCompare* compare) { |
| DataType::Type in_type = compare->InputAt(0)->GetType(); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall); |
| |
| switch (in_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Output overlaps because it is written before doing the low comparison. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << in_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register res = locations->Out().AsRegister<Register>(); |
| DataType::Type in_type = instruction->InputAt(0)->GetType(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| |
| // 0 if: left == right |
| // 1 if: left > right |
| // -1 if: left < right |
| switch (in_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: { |
| Register lhs = locations->InAt(0).AsRegister<Register>(); |
| Register rhs = locations->InAt(1).AsRegister<Register>(); |
| __ Slt(TMP, lhs, rhs); |
| __ Slt(res, rhs, lhs); |
| __ Subu(res, res, TMP); |
| break; |
| } |
| case DataType::Type::kInt64: { |
| MipsLabel done; |
| Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>(); |
| Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>(); |
| // TODO: more efficient (direct) comparison with a constant. |
| __ Slt(TMP, lhs_high, rhs_high); |
| __ Slt(AT, rhs_high, lhs_high); // Inverted: is actually gt. |
| __ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ]. |
| __ Bnez(res, &done); // If we compared ==, check if lower bits are also equal. |
| __ Sltu(TMP, lhs_low, rhs_low); |
| __ Sltu(AT, rhs_low, lhs_low); // Inverted: is actually gt. |
| __ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ]. |
| __ Bind(&done); |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| bool gt_bias = instruction->IsGtBias(); |
| FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); |
| MipsLabel done; |
| if (isR6) { |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ LoadConst32(res, 0); |
| __ Bc1nez(FTMP, &done); |
| if (gt_bias) { |
| __ CmpLtS(FTMP, lhs, rhs); |
| __ LoadConst32(res, -1); |
| __ Bc1nez(FTMP, &done); |
| __ LoadConst32(res, 1); |
| } else { |
| __ CmpLtS(FTMP, rhs, lhs); |
| __ LoadConst32(res, 1); |
| __ Bc1nez(FTMP, &done); |
| __ LoadConst32(res, -1); |
| } |
| } else { |
| if (gt_bias) { |
| __ ColtS(0, lhs, rhs); |
| __ LoadConst32(res, -1); |
| __ Bc1t(0, &done); |
| __ CeqS(0, lhs, rhs); |
| __ LoadConst32(res, 1); |
| __ Movt(res, ZERO, 0); |
| } else { |
| __ ColtS(0, rhs, lhs); |
| __ LoadConst32(res, 1); |
| __ Bc1t(0, &done); |
| __ CeqS(0, lhs, rhs); |
| __ LoadConst32(res, -1); |
| __ Movt(res, ZERO, 0); |
| } |
| } |
| __ Bind(&done); |
| break; |
| } |
| case DataType::Type::kFloat64: { |
| bool gt_bias = instruction->IsGtBias(); |
| FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); |
| MipsLabel done; |
| if (isR6) { |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ LoadConst32(res, 0); |
| __ Bc1nez(FTMP, &done); |
| if (gt_bias) { |
| __ CmpLtD(FTMP, lhs, rhs); |
| __ LoadConst32(res, -1); |
| __ Bc1nez(FTMP, &done); |
| __ LoadConst32(res, 1); |
| } else { |
| __ CmpLtD(FTMP, rhs, lhs); |
| __ LoadConst32(res, 1); |
| __ Bc1nez(FTMP, &done); |
| __ LoadConst32(res, -1); |
| } |
| } else { |
| if (gt_bias) { |
| __ ColtD(0, lhs, rhs); |
| __ LoadConst32(res, -1); |
| __ Bc1t(0, &done); |
| __ CeqD(0, lhs, rhs); |
| __ LoadConst32(res, 1); |
| __ Movt(res, ZERO, 0); |
| } else { |
| __ ColtD(0, rhs, lhs); |
| __ LoadConst32(res, 1); |
| __ Bc1t(0, &done); |
| __ CeqD(0, lhs, rhs); |
| __ LoadConst32(res, -1); |
| __ Movt(res, ZERO, 0); |
| } |
| } |
| __ Bind(&done); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unimplemented compare type " << in_type; |
| } |
| } |
| |
| void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| switch (instruction->InputAt(0)->GetType()) { |
| default: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| break; |
| } |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| DataType::Type type = instruction->InputAt(0)->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| default: |
| // Integer case. |
| GenerateIntCompare(instruction->GetCondition(), locations); |
| return; |
| |
| case DataType::Type::kInt64: |
| GenerateLongCompare(instruction->GetCondition(), locations); |
| return; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateFpCompare(instruction->GetCondition(), instruction->IsGtBias(), type, locations); |
| return; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->GetResultType() == DataType::Type::kInt32) { |
| Register out = locations->Out().AsRegister<Register>(); |
| Register dividend = locations->InAt(0).AsRegister<Register>(); |
| |
| if (instruction->IsRem()) { |
| __ Move(out, ZERO); |
| } else { |
| if (imm == -1) { |
| __ Subu(out, ZERO, dividend); |
| } else if (out != dividend) { |
| __ Move(out, dividend); |
| } |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); |
| Register out_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register out_low = locations->Out().AsRegisterPairLow<Register>(); |
| Register in_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register in_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| |
| if (instruction->IsRem()) { |
| __ Move(out_high, ZERO); |
| __ Move(out_low, ZERO); |
| } else { |
| if (imm == -1) { |
| __ Subu(out_low, ZERO, in_low); |
| __ Sltu(AT, ZERO, out_low); |
| __ Subu(out_high, ZERO, in_high); |
| __ Subu(out_high, out_high, AT); |
| } else { |
| __ Move(out_low, in_low); |
| __ Move(out_high, in_high); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| const bool is_r2_or_newer = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); |
| const bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| DCHECK(second.IsConstant()); |
| |
| if (instruction->GetResultType() == DataType::Type::kInt32) { |
| Register out = locations->Out().AsRegister<Register>(); |
| Register dividend = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); |
| int ctz_imm = CTZ(abs_imm); |
| |
| if (instruction->IsDiv()) { |
| if (ctz_imm == 1) { |
| // Fast path for division by +/-2, which is very common. |
| __ Srl(TMP, dividend, 31); |
| } else { |
| __ Sra(TMP, dividend, 31); |
| __ Srl(TMP, TMP, 32 - ctz_imm); |
| } |
| __ Addu(out, dividend, TMP); |
| __ Sra(out, out, ctz_imm); |
| if (imm < 0) { |
| __ Subu(out, ZERO, out); |
| } |
| } else { |
| if (ctz_imm == 1) { |
| // Fast path for modulo +/-2, which is very common. |
| __ Sra(TMP, dividend, 31); |
| __ Subu(out, dividend, TMP); |
| __ Andi(out, out, 1); |
| __ Addu(out, out, TMP); |
| } else { |
| __ Sra(TMP, dividend, 31); |
| __ Srl(TMP, TMP, 32 - ctz_imm); |
| __ Addu(out, dividend, TMP); |
| if (IsUint<16>(abs_imm - 1)) { |
| __ Andi(out, out, abs_imm - 1); |
| } else { |
| if (is_r2_or_newer) { |
| __ Ins(out, ZERO, ctz_imm, 32 - ctz_imm); |
| } else { |
| __ Sll(out, out, 32 - ctz_imm); |
| __ Srl(out, out, 32 - ctz_imm); |
| } |
| } |
| __ Subu(out, out, TMP); |
| } |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); |
| Register out_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register out_low = locations->Out().AsRegisterPairLow<Register>(); |
| Register in_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register in_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); |
| int ctz_imm = CTZ(abs_imm); |
| |
| if (instruction->IsDiv()) { |
| if (ctz_imm < 32) { |
| if (ctz_imm == 1) { |
| __ Srl(AT, in_high, 31); |
| } else { |
| __ Sra(AT, in_high, 31); |
| __ Srl(AT, AT, 32 - ctz_imm); |
| } |
| __ Addu(AT, AT, in_low); |
| __ Sltu(TMP, AT, in_low); |
| __ Addu(out_high, in_high, TMP); |
| __ Srl(out_low, AT, ctz_imm); |
| if (is_r2_or_newer) { |
| __ Ins(out_low, out_high, 32 - ctz_imm, ctz_imm); |
| __ Sra(out_high, out_high, ctz_imm); |
| } else { |
| __ Sll(AT, out_high, 32 - ctz_imm); |
| __ Sra(out_high, out_high, ctz_imm); |
| __ Or(out_low, out_low, AT); |
| } |
| if (imm < 0) { |
| __ Subu(out_low, ZERO, out_low); |
| __ Sltu(AT, ZERO, out_low); |
| __ Subu(out_high, ZERO, out_high); |
| __ Subu(out_high, out_high, AT); |
| } |
| } else if (ctz_imm == 32) { |
| __ Sra(AT, in_high, 31); |
| __ Addu(AT, AT, in_low); |
| __ Sltu(AT, AT, in_low); |
| __ Addu(out_low, in_high, AT); |
| if (imm < 0) { |
| __ Srl(TMP, out_low, 31); |
| __ Subu(out_low, ZERO, out_low); |
| __ Sltu(AT, ZERO, out_low); |
| __ Subu(out_high, TMP, AT); |
| } else { |
| __ Sra(out_high, out_low, 31); |
| } |
| } else if (ctz_imm < 63) { |
| __ Sra(AT, in_high, 31); |
| __ Srl(TMP, AT, 64 - ctz_imm); |
| __ Addu(AT, AT, in_low); |
| __ Sltu(AT, AT, in_low); |
| __ Addu(out_low, in_high, AT); |
| __ Addu(out_low, out_low, TMP); |
| __ Sra(out_low, out_low, ctz_imm - 32); |
| if (imm < 0) { |
| __ Subu(out_low, ZERO, out_low); |
| } |
| __ Sra(out_high, out_low, 31); |
| } else { |
| DCHECK_LT(imm, 0); |
| if (is_r6) { |
| __ Aui(AT, in_high, 0x8000); |
| } else { |
| __ Lui(AT, 0x8000); |
| __ Xor(AT, AT, in_high); |
| } |
| __ Or(AT, AT, in_low); |
| __ Sltiu(out_low, AT, 1); |
| __ Move(out_high, ZERO); |
| } |
| } else { |
| if ((ctz_imm == 1) && !is_r6) { |
| __ Andi(AT, in_low, 1); |
| __ Sll(TMP, in_low, 31); |
| __ And(TMP, in_high, TMP); |
| __ Sra(out_high, TMP, 31); |
| __ Or(out_low, out_high, AT); |
| } else if (ctz_imm < 32) { |
| __ Sra(AT, in_high, 31); |
| if (ctz_imm <= 16) { |
| __ Andi(out_low, in_low, abs_imm - 1); |
| } else if (is_r2_or_newer) { |
| __ Ext(out_low, in_low, 0, ctz_imm); |
| } else { |
| __ Sll(out_low, in_low, 32 - ctz_imm); |
| __ Srl(out_low, out_low, 32 - ctz_imm); |
| } |
| if (is_r6) { |
| __ Selnez(out_high, AT, out_low); |
| } else { |
| __ Movz(AT, ZERO, out_low); |
| __ Move(out_high, AT); |
| } |
| if (is_r2_or_newer) { |
| __ Ins(out_low, out_high, ctz_imm, 32 - ctz_imm); |
| } else { |
| __ Sll(AT, out_high, ctz_imm); |
| __ Or(out_low, out_low, AT); |
| } |
| } else if (ctz_imm == 32) { |
| __ Sra(AT, in_high, 31); |
| __ Move(out_low, in_low); |
| if (is_r6) { |
| __ Selnez(out_high, AT, out_low); |
| } else { |
| __ Movz(AT, ZERO, out_low); |
| __ Move(out_high, AT); |
| } |
| } else if (ctz_imm < 63) { |
| __ Sra(AT, in_high, 31); |
| __ Move(TMP, in_low); |
| if (ctz_imm - 32 <= 16) { |
| __ Andi(out_high, in_high, (1 << (ctz_imm - 32)) - 1); |
| } else if (is_r2_or_newer) { |
| __ Ext(out_high, in_high, 0, ctz_imm - 32); |
| } else { |
| __ Sll(out_high, in_high, 64 - ctz_imm); |
| __ Srl(out_high, out_high, 64 - ctz_imm); |
| } |
| __ Move(out_low, TMP); |
| __ Or(TMP, TMP, out_high); |
| if (is_r6) { |
| __ Selnez(AT, AT, TMP); |
| } else { |
| __ Movz(AT, ZERO, TMP); |
| } |
| if (is_r2_or_newer) { |
| __ Ins(out_high, AT, ctz_imm - 32, 64 - ctz_imm); |
| } else { |
| __ Sll(AT, AT, ctz_imm - 32); |
| __ Or(out_high, out_high, AT); |
| } |
| } else { |
| if (is_r6) { |
| __ Aui(AT, in_high, 0x8000); |
| } else { |
| __ Lui(AT, 0x8000); |
| __ Xor(AT, AT, in_high); |
| } |
| __ Or(AT, AT, in_low); |
| __ Sltiu(AT, AT, 1); |
| __ Sll(AT, AT, 31); |
| __ Move(out_low, in_low); |
| __ Xor(out_high, in_high, AT); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt32); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = locations->Out().AsRegister<Register>(); |
| Register dividend = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); |
| |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| |
| __ LoadConst32(TMP, magic); |
| if (isR6) { |
| __ MuhR6(TMP, dividend, TMP); |
| } else { |
| __ MultR2(dividend, TMP); |
| __ Mfhi(TMP); |
| } |
| if (imm > 0 && magic < 0) { |
| __ Addu(TMP, TMP, dividend); |
| } else if (imm < 0 && magic > 0) { |
| __ Subu(TMP, TMP, dividend); |
| } |
| |
| if (shift != 0) { |
| __ Sra(TMP, TMP, shift); |
| } |
| |
| if (instruction->IsDiv()) { |
| __ Sra(out, TMP, 31); |
| __ Subu(out, TMP, out); |
| } else { |
| __ Sra(AT, TMP, 31); |
| __ Subu(AT, TMP, AT); |
| __ LoadConst32(TMP, imm); |
| if (isR6) { |
| __ MulR6(TMP, AT, TMP); |
| } else { |
| __ MulR2(TMP, AT, TMP); |
| } |
| __ Subu(out, dividend, TMP); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt32); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Location second = locations->InAt(1); |
| |
| if (second.IsConstant()) { |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (IsPowerOfTwo(AbsOrMin(imm))) { |
| DivRemByPowerOfTwo(instruction); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| Register dividend = locations->InAt(0).AsRegister<Register>(); |
| Register divisor = second.AsRegister<Register>(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| if (instruction->IsDiv()) { |
| if (isR6) { |
| __ DivR6(out, dividend, divisor); |
| } else { |
| __ DivR2(out, dividend, divisor); |
| } |
| } else { |
| if (isR6) { |
| __ ModR6(out, dividend, divisor); |
| } else { |
| __ ModR2(out, dividend, divisor); |
| } |
| } |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitDiv(HDiv* div) { |
| DataType::Type type = div->GetResultType(); |
| bool call_long_div = false; |
| if (type == DataType::Type::kInt64) { |
| if (div->InputAt(1)->IsConstant()) { |
| int64_t imm = CodeGenerator::GetInt64ValueOf(div->InputAt(1)->AsConstant()); |
| call_long_div = (imm != 0) && !IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm))); |
| } else { |
| call_long_div = true; |
| } |
| } |
| LocationSummary::CallKind call_kind = call_long_div |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kInt64: { |
| if (call_long_div) { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| locations->SetOut(calling_convention.GetReturnLocation(type)); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant())); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| GenerateDivRemIntegral(instruction); |
| break; |
| case DataType::Type::kInt64: { |
| if (locations->InAt(1).IsConstant()) { |
| int64_t imm = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue(); |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else { |
| DCHECK(IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm)))); |
| DivRemByPowerOfTwo(instruction); |
| } |
| } else { |
| codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| __ DivS(dst, lhs, rhs); |
| } else { |
| __ DivD(dst, lhs, rhs); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected div type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCodeMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathMIPS(instruction); |
| codegen_->AddSlowPath(slow_path); |
| Location value = instruction->GetLocations()->InAt(0); |
| DataType::Type type = instruction->GetType(); |
| |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: { |
| if (value.IsConstant()) { |
| if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } else { |
| // A division by a non-null constant is valid. We don't need to perform |
| // any check, so simply fall through. |
| } |
| } else { |
| DCHECK(value.IsRegister()) << value; |
| __ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| } |
| break; |
| } |
| case DataType::Type::kInt64: { |
| if (value.IsConstant()) { |
| if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } else { |
| // A division by a non-null constant is valid. We don't need to perform |
| // any check, so simply fall through. |
| } |
| } else { |
| DCHECK(value.IsRegisterPair()) << value; |
| __ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>()); |
| __ Beqz(TMP, slow_path->GetEntryLabel()); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| if (successor->IsExitBlock()) { |
| DCHECK(got->GetPrevious()->AlwaysThrows()); |
| return; // no code needed |
| } |
| |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| HLoopInformation* info = block->GetLoopInformation(); |
| |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| if (codegen_->GetCompilerOptions().CountHotnessInCompiledCode()) { |
| __ Lw(AT, SP, kCurrentMethodStackOffset); |
| __ Lhu(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value()); |
| __ Addiu(TMP, TMP, 1); |
| __ Sh(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value()); |
| } |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(block, successor)) { |
| __ B(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond, |
| LocationSummary* locations) { |
| Register dst = locations->Out().AsRegister<Register>(); |
| Register lhs = locations->InAt(0).AsRegister<Register>(); |
| Location rhs_location = locations->InAt(1); |
| Register rhs_reg = ZERO; |
| int64_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_reg = rhs_location.AsRegister<Register>(); |
| } |
| |
| switch (cond) { |
| case kCondEQ: |
| case kCondNE: |
| if (use_imm && IsInt<16>(-rhs_imm)) { |
| if (rhs_imm == 0) { |
| if (cond == kCondEQ) { |
| __ Sltiu(dst, lhs, 1); |
| } else { |
| __ Sltu(dst, ZERO, lhs); |
| } |
| } else { |
| __ Addiu(dst, lhs, -rhs_imm); |
| if (cond == kCondEQ) { |
| __ Sltiu(dst, dst, 1); |
| } else { |
| __ Sltu(dst, ZERO, dst); |
| } |
| } |
| } else { |
| if (use_imm && IsUint<16>(rhs_imm)) { |
| __ Xori(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Xor(dst, lhs, rhs_reg); |
| } |
| if (cond == kCondEQ) { |
| __ Sltiu(dst, dst, 1); |
| } else { |
| __ Sltu(dst, ZERO, dst); |
| } |
| } |
| break; |
| |
| case kCondLT: |
| case kCondGE: |
| if (use_imm && IsInt<16>(rhs_imm)) { |
| __ Slti(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Slt(dst, lhs, rhs_reg); |
| } |
| if (cond == kCondGE) { |
| // Simulate lhs >= rhs via !(lhs < rhs) since there's |
| // only the slt instruction but no sge. |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| |
| case kCondLE: |
| case kCondGT: |
| if (use_imm && IsInt<16>(rhs_imm + 1)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| __ Slti(dst, lhs, rhs_imm + 1); |
| if (cond == kCondGT) { |
| // Simulate lhs > rhs via !(lhs <= rhs) since there's |
| // only the slti instruction but no sgti. |
| __ Xori(dst, dst, 1); |
| } |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Slt(dst, rhs_reg, lhs); |
| if (cond == kCondLE) { |
| // Simulate lhs <= rhs via !(rhs < lhs) since there's |
| // only the slt instruction but no sle. |
| __ Xori(dst, dst, 1); |
| } |
| } |
| break; |
| |
| case kCondB: |
| case kCondAE: |
| if (use_imm && IsInt<16>(rhs_imm)) { |
| // Sltiu sign-extends its 16-bit immediate operand before |
| // the comparison and thus lets us compare directly with |
| // unsigned values in the ranges [0, 0x7fff] and |
| // [0xffff8000, 0xffffffff]. |
| __ Sltiu(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Sltu(dst, lhs, rhs_reg); |
| } |
| if (cond == kCondAE) { |
| // Simulate lhs >= rhs via !(lhs < rhs) since there's |
| // only the sltu instruction but no sgeu. |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| |
| case kCondBE: |
| case kCondA: |
| if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| // Note that this only works if rhs + 1 does not overflow |
| // to 0, hence the check above. |
| // Sltiu sign-extends its 16-bit immediate operand before |
| // the comparison and thus lets us compare directly with |
| // unsigned values in the ranges [0, 0x7fff] and |
| // [0xffff8000, 0xffffffff]. |
| __ Sltiu(dst, lhs, rhs_imm + 1); |
| if (cond == kCondA) { |
| // Simulate lhs > rhs via !(lhs <= rhs) since there's |
| // only the sltiu instruction but no sgtiu. |
| __ Xori(dst, dst, 1); |
| } |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Sltu(dst, rhs_reg, lhs); |
| if (cond == kCondBE) { |
| // Simulate lhs <= rhs via !(rhs < lhs) since there's |
| // only the sltu instruction but no sleu. |
| __ Xori(dst, dst, 1); |
| } |
| } |
| break; |
| } |
| } |
| |
| bool InstructionCodeGeneratorMIPS::MaterializeIntCompare(IfCondition cond, |
| LocationSummary* input_locations, |
| Register dst) { |
| Register lhs = input_locations->InAt(0).AsRegister<Register>(); |
| Location rhs_location = input_locations->InAt(1); |
| Register rhs_reg = ZERO; |
| int64_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_reg = rhs_location.AsRegister<Register>(); |
| } |
| |
| switch (cond) { |
| case kCondEQ: |
| case kCondNE: |
| if (use_imm && IsInt<16>(-rhs_imm)) { |
| __ Addiu(dst, lhs, -rhs_imm); |
| } else if (use_imm && IsUint<16>(rhs_imm)) { |
| __ Xori(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Xor(dst, lhs, rhs_reg); |
| } |
| return (cond == kCondEQ); |
| |
| case kCondLT: |
| case kCondGE: |
| if (use_imm && IsInt<16>(rhs_imm)) { |
| __ Slti(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Slt(dst, lhs, rhs_reg); |
| } |
| return (cond == kCondGE); |
| |
| case kCondLE: |
| case kCondGT: |
| if (use_imm && IsInt<16>(rhs_imm + 1)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| __ Slti(dst, lhs, rhs_imm + 1); |
| return (cond == kCondGT); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Slt(dst, rhs_reg, lhs); |
| return (cond == kCondLE); |
| } |
| |
| case kCondB: |
| case kCondAE: |
| if (use_imm && IsInt<16>(rhs_imm)) { |
| // Sltiu sign-extends its 16-bit immediate operand before |
| // the comparison and thus lets us compare directly with |
| // unsigned values in the ranges [0, 0x7fff] and |
| // [0xffff8000, 0xffffffff]. |
| __ Sltiu(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Sltu(dst, lhs, rhs_reg); |
| } |
| return (cond == kCondAE); |
| |
| case kCondBE: |
| case kCondA: |
| if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| // Note that this only works if rhs + 1 does not overflow |
| // to 0, hence the check above. |
| // Sltiu sign-extends its 16-bit immediate operand before |
| // the comparison and thus lets us compare directly with |
| // unsigned values in the ranges [0, 0x7fff] and |
| // [0xffff8000, 0xffffffff]. |
| __ Sltiu(dst, lhs, rhs_imm + 1); |
| return (cond == kCondA); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| __ Sltu(dst, rhs_reg, lhs); |
| return (cond == kCondBE); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond, |
| LocationSummary* locations, |
| MipsLabel* label) { |
| Register lhs = locations->InAt(0).AsRegister<Register>(); |
| Location rhs_location = locations->InAt(1); |
| Register rhs_reg = ZERO; |
| int64_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_reg = rhs_location.AsRegister<Register>(); |
| } |
| |
| if (use_imm && rhs_imm == 0) { |
| switch (cond) { |
| case kCondEQ: |
| case kCondBE: // <= 0 if zero |
| __ Beqz(lhs, label); |
| break; |
| case kCondNE: |
| case kCondA: // > 0 if non-zero |
| __ Bnez(lhs, label); |
| break; |
| case kCondLT: |
| __ Bltz(lhs, label); |
| break; |
| case kCondGE: |
| __ Bgez(lhs, label); |
| break; |
| case kCondLE: |
| __ Blez(lhs, label); |
| break; |
| case kCondGT: |
| __ Bgtz(lhs, label); |
| break; |
| case kCondB: // always false |
| break; |
| case kCondAE: // always true |
| __ B(label); |
| break; |
| } |
| } else { |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| if (isR6 || !use_imm) { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst32(rhs_reg, rhs_imm); |
| } |
| switch (cond) { |
| case kCondEQ: |
| __ Beq(lhs, rhs_reg, label); |
| break; |
| case kCondNE: |
| __ Bne(lhs, rhs_reg, label); |
| break; |
| case kCondLT: |
| __ Blt(lhs, rhs_reg, label); |
| break; |
| case kCondGE: |
| __ Bge(lhs, rhs_reg, label); |
| break; |
| case kCondLE: |
| __ Bge(rhs_reg, lhs, label); |
| break; |
| case kCondGT: |
| __ Blt(rhs_reg, lhs, label); |
| break; |
| case kCondB: |
| __ Bltu(lhs, rhs_reg, label); |
| break; |
| case kCondAE: |
| __ Bgeu(lhs, rhs_reg, label); |
| break; |
| case kCondBE: |
| __ Bgeu(rhs_reg, lhs, label); |
| break; |
| case kCondA: |
| __ Bltu(rhs_reg, lhs, label); |
| break; |
| } |
| } else { |
| // Special cases for more efficient comparison with constants on R2. |
| switch (cond) { |
| case kCondEQ: |
| __ LoadConst32(TMP, rhs_imm); |
| __ Beq(lhs, TMP, label); |
| break; |
| case kCondNE: |
| __ LoadConst32(TMP, rhs_imm); |
| __ Bne(lhs, TMP, label); |
| break; |
| case kCondLT: |
| if (IsInt<16>(rhs_imm)) { |
| __ Slti(TMP, lhs, rhs_imm); |
| __ Bnez(TMP, label); |
| } else { |
| __ LoadConst32(TMP, rhs_imm); |
| __ Blt(lhs, TMP, label); |
| } |
| break; |
| case kCondGE: |
| if (IsInt<16>(rhs_imm)) { |
| __ Slti(TMP, lhs, rhs_imm); |
| __ Beqz(TMP, label); |
| } else { |
| __ LoadConst32(TMP, rhs_imm); |
| __ Bge(lhs, TMP, label); |
| } |
| break; |
| case kCondLE: |
| if (IsInt<16>(rhs_imm + 1)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| __ Slti(TMP, lhs, rhs_imm + 1); |
| __ Bnez(TMP, label); |
| } else { |
| __ LoadConst32(TMP, rhs_imm); |
| __ Bge(TMP, lhs, label); |
| } |
| break; |
| case kCondGT: |
| if (IsInt<16>(rhs_imm + 1)) { |
| // Simulate lhs > rhs via !(lhs < rhs + 1). |
| __ Slti(TMP, lhs, rhs_imm + 1); |
| __ Beqz(TMP, label); |
| } else { |
| __ LoadConst32(TMP, rhs_imm); |
| __ Blt(TMP, lhs, label); |
| } |
| break; |
| case kCondB: |
| if (IsInt<16>(rhs_imm)) { |
| __ Sltiu(TMP, lhs, rhs_imm); |
| __ Bnez(TMP, label); |
| } else { |
| __ LoadConst32(TMP, rhs_imm); |
| __ Bltu(lhs, TMP, label); |
| } |
| break; |
| case kCondAE: |
| if (IsInt<16>(rhs_imm)) { |
| __ Sltiu(TMP, lhs, rhs_imm); |
| __ Beqz(TMP, label); |
| } else { |
| __ LoadConst32(TMP, rhs_imm); |
| __ Bgeu(lhs, TMP, label); |
| } |
| break; |
| case kCondBE: |
| if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| // Note that this only works if rhs + 1 does not overflow |
| // to 0, hence the check above. |
| __ Sltiu(TMP, lhs, rhs_imm + 1); |
| __ Bnez(TMP, label); |
| } else { |
| __ LoadConst32(TMP, rhs_imm); |
| __ Bgeu(TMP, lhs, label); |
| } |
| break; |
| case kCondA: |
| if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { |
| // Simulate lhs > rhs via !(lhs < rhs + 1). |
| // Note that this only works if rhs + 1 does not overflow |
| // to 0, hence the check above. |
| __ Sltiu(TMP, lhs, rhs_imm + 1); |
| __ Beqz(TMP, label); |
| } else { |
| __ LoadConst32(TMP, rhs_imm); |
| __ Bltu(TMP, lhs, label); |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateLongCompare(IfCondition cond, |
| LocationSummary* locations) { |
| Register dst = locations->Out().AsRegister<Register>(); |
| Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Location rhs_location = locations->InAt(1); |
| Register rhs_high = ZERO; |
| Register rhs_low = ZERO; |
| int64_t imm = 0; |
| uint32_t imm_high = 0; |
| uint32_t imm_low = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| imm = rhs_location.GetConstant()->AsLongConstant()->GetValue(); |
| imm_high = High32Bits(imm); |
| imm_low = Low32Bits(imm); |
| } else { |
| rhs_high = rhs_location.AsRegisterPairHigh<Register>(); |
| rhs_low = rhs_location.AsRegisterPairLow<Register>(); |
| } |
| if (use_imm && imm == 0) { |
| switch (cond) { |
| case kCondEQ: |
| case kCondBE: // <= 0 if zero |
| __ Or(dst, lhs_high, lhs_low); |
| __ Sltiu(dst, dst, 1); |
| break; |
| case kCondNE: |
| case kCondA: // > 0 if non-zero |
| __ Or(dst, lhs_high, lhs_low); |
| __ Sltu(dst, ZERO, dst); |
| break; |
| case kCondLT: |
| __ Slt(dst, lhs_high, ZERO); |
| break; |
| case kCondGE: |
| __ Slt(dst, lhs_high, ZERO); |
| __ Xori(dst, dst, 1); |
| break; |
| case kCondLE: |
| __ Or(TMP, lhs_high, lhs_low); |
| __ Sra(AT, lhs_high, 31); |
| __ Sltu(dst, AT, TMP); |
| __ Xori(dst, dst, 1); |
| break; |
| case kCondGT: |
| __ Or(TMP, lhs_high, lhs_low); |
| __ Sra(AT, lhs_high, 31); |
| __ Sltu(dst, AT, TMP); |
| break; |
| case kCondB: // always false |
| __ Andi(dst, dst, 0); |
| break; |
| case kCondAE: // always true |
| __ Ori(dst, ZERO, 1); |
| break; |
| } |
| } else if (use_imm) { |
| // TODO: more efficient comparison with constants without loading them into TMP/AT. |
| switch (cond) { |
| case kCondEQ: |
| __ LoadConst32(TMP, imm_high); |
| __ Xor(TMP, TMP, lhs_high); |
| __ LoadConst32(AT, imm_low); |
| __ Xor(AT, AT, lhs_low); |
| __ Or(dst, TMP, AT); |
| __ Sltiu(dst, dst, 1); |
| break; |
| case kCondNE: |
| __ LoadConst32(TMP, imm_high); |
| __ Xor(TMP, TMP, lhs_high); |
| __ LoadConst32(AT, imm_low); |
| __ Xor(AT, AT, lhs_low); |
| __ Or(dst, TMP, AT); |
| __ Sltu(dst, ZERO, dst); |
| break; |
| case kCondLT: |
| case kCondGE: |
| if (dst == lhs_low) { |
| __ LoadConst32(TMP, imm_low); |
| __ Sltu(dst, lhs_low, TMP); |
| } |
| __ LoadConst32(TMP, imm_high); |
| __ Slt(AT, lhs_high, TMP); |
| __ Slt(TMP, TMP, lhs_high); |
| if (dst != lhs_low) { |
| __ LoadConst32(dst, imm_low); |
| __ Sltu(dst, lhs_low, dst); |
| } |
| __ Slt(dst, TMP, dst); |
| __ Or(dst, dst, AT); |
| if (cond == kCondGE) { |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| case kCondGT: |
| case kCondLE: |
| if (dst == lhs_low) { |
| __ LoadConst32(TMP, imm_low); |
| __ Sltu(dst, TMP, lhs_low); |
| } |
| __ LoadConst32(TMP, imm_high); |
| __ Slt(AT, TMP, lhs_high); |
| __ Slt(TMP, lhs_high, TMP); |
| if (dst != lhs_low) { |
| __ LoadConst32(dst, imm_low); |
| __ Sltu(dst, dst, lhs_low); |
| } |
| __ Slt(dst, TMP, dst); |
| __ Or(dst, dst, AT); |
| if (cond == kCondLE) { |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| case kCondB: |
| case kCondAE: |
| if (dst == lhs_low) { |
| __ LoadConst32(TMP, imm_low); |
| __ Sltu(dst, lhs_low, TMP); |
| } |
| __ LoadConst32(TMP, imm_high); |
| __ Sltu(AT, lhs_high, TMP); |
| __ Sltu(TMP, TMP, lhs_high); |
| if (dst != lhs_low) { |
| __ LoadConst32(dst, imm_low); |
| __ Sltu(dst, lhs_low, dst); |
| } |
| __ Slt(dst, TMP, dst); |
| __ Or(dst, dst, AT); |
| if (cond == kCondAE) { |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| case kCondA: |
| case kCondBE: |
| if (dst == lhs_low) { |
| __ LoadConst32(TMP, imm_low); |
| __ Sltu(dst, TMP, lhs_low); |
| } |
| __ LoadConst32(TMP, imm_high); |
| __ Sltu(AT, TMP, lhs_high); |
| __ Sltu(TMP, lhs_high, TMP); |
| if (dst != lhs_low) { |
| __ LoadConst32(dst, imm_low); |
| __ Sltu(dst, dst, lhs_low); |
| } |
| __ Slt(dst, TMP, dst); |
| __ Or(dst, dst, AT); |
| if (cond == kCondBE) { |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| } |
| } else { |
| switch (cond) { |
| case kCondEQ: |
| __ Xor(TMP, lhs_high, rhs_high); |
| __ Xor(AT, lhs_low, rhs_low); |
| __ Or(dst, TMP, AT); |
| __ Sltiu(dst, dst, 1); |
| break; |
| case kCondNE: |
| __ Xor(TMP, lhs_high, rhs_high); |
| __ Xor(AT, lhs_low, rhs_low); |
| __ Or(dst, TMP, AT); |
| __ Sltu(dst, ZERO, dst); |
| break; |
| case kCondLT: |
| case kCondGE: |
| __ Slt(TMP, rhs_high, lhs_high); |
| __ Sltu(AT, lhs_low, rhs_low); |
| __ Slt(TMP, TMP, AT); |
| __ Slt(AT, lhs_high, rhs_high); |
| __ Or(dst, AT, TMP); |
| if (cond == kCondGE) { |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| case kCondGT: |
| case kCondLE: |
| __ Slt(TMP, lhs_high, rhs_high); |
| __ Sltu(AT, rhs_low, lhs_low); |
| __ Slt(TMP, TMP, AT); |
| __ Slt(AT, rhs_high, lhs_high); |
| __ Or(dst, AT, TMP); |
| if (cond == kCondLE) { |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| case kCondB: |
| case kCondAE: |
| __ Sltu(TMP, rhs_high, lhs_high); |
| __ Sltu(AT, lhs_low, rhs_low); |
| __ Slt(TMP, TMP, AT); |
| __ Sltu(AT, lhs_high, rhs_high); |
| __ Or(dst, AT, TMP); |
| if (cond == kCondAE) { |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| case kCondA: |
| case kCondBE: |
| __ Sltu(TMP, lhs_high, rhs_high); |
| __ Sltu(AT, rhs_low, lhs_low); |
| __ Slt(TMP, TMP, AT); |
| __ Sltu(AT, rhs_high, lhs_high); |
| __ Or(dst, AT, TMP); |
| if (cond == kCondBE) { |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond, |
| LocationSummary* locations, |
| MipsLabel* label) { |
| Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Location rhs_location = locations->InAt(1); |
| Register rhs_high = ZERO; |
| Register rhs_low = ZERO; |
| int64_t imm = 0; |
| uint32_t imm_high = 0; |
| uint32_t imm_low = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| imm = rhs_location.GetConstant()->AsLongConstant()->GetValue(); |
| imm_high = High32Bits(imm); |
| imm_low = Low32Bits(imm); |
| } else { |
| rhs_high = rhs_location.AsRegisterPairHigh<Register>(); |
| rhs_low = rhs_location.AsRegisterPairLow<Register>(); |
| } |
| |
| if (use_imm && imm == 0) { |
| switch (cond) { |
| case kCondEQ: |
| case kCondBE: // <= 0 if zero |
| __ Or(TMP, lhs_high, lhs_low); |
| __ Beqz(TMP, label); |
| break; |
| case kCondNE: |
| case kCondA: // > 0 if non-zero |
| __ Or(TMP, lhs_high, lhs_low); |
| __ Bnez(TMP, label); |
| break; |
| case kCondLT: |
| __ Bltz(lhs_high, label); |
| break; |
| case kCondGE: |
| __ Bgez(lhs_high, label); |
| break; |
| case kCondLE: |
| __ Or(TMP, lhs_high, lhs_low); |
| __ Sra(AT, lhs_high, 31); |
| __ Bgeu(AT, TMP, label); |
| break; |
| case kCondGT: |
| __ Or(TMP, lhs_high, lhs_low); |
| __ Sra(AT, lhs_high, 31); |
| __ Bltu(AT, TMP, label); |
| break; |
| case kCondB: // always false |
| break; |
| case kCondAE: // always true |
| __ B(label); |
| break; |
| } |
| } else if (use_imm) { |
| // TODO: more efficient comparison with constants without loading them into TMP/AT. |
| switch (cond) { |
| case kCondEQ: |
| __ LoadConst32(TMP, imm_high); |
| __ Xor(TMP, TMP, lhs_high); |
| __ LoadConst32(AT, imm_low); |
| __ Xor(AT, AT, lhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondNE: |
| __ LoadConst32(TMP, imm_high); |
| __ Xor(TMP, TMP, lhs_high); |
| __ LoadConst32(AT, imm_low); |
| __ Xor(AT, AT, lhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Bnez(TMP, label); |
| break; |
| case kCondLT: |
| __ LoadConst32(TMP, imm_high); |
| __ Blt(lhs_high, TMP, label); |
| __ Slt(TMP, TMP, lhs_high); |
| __ LoadConst32(AT, imm_low); |
| __ Sltu(AT, lhs_low, AT); |
| __ Blt(TMP, AT, label); |
| break; |
| case kCondGE: |
| __ LoadConst32(TMP, imm_high); |
| __ Blt(TMP, lhs_high, label); |
| __ Slt(TMP, lhs_high, TMP); |
| __ LoadConst32(AT, imm_low); |
| __ Sltu(AT, lhs_low, AT); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondLE: |
| __ LoadConst32(TMP, imm_high); |
| __ Blt(lhs_high, TMP, label); |
| __ Slt(TMP, TMP, lhs_high); |
| __ LoadConst32(AT, imm_low); |
| __ Sltu(AT, AT, lhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondGT: |
| __ LoadConst32(TMP, imm_high); |
| __ Blt(TMP, lhs_high, label); |
| __ Slt(TMP, lhs_high, TMP); |
| __ LoadConst32(AT, imm_low); |
| __ Sltu(AT, AT, lhs_low); |
| __ Blt(TMP, AT, label); |
| break; |
| case kCondB: |
| __ LoadConst32(TMP, imm_high); |
| __ Bltu(lhs_high, TMP, label); |
| __ Sltu(TMP, TMP, lhs_high); |
| __ LoadConst32(AT, imm_low); |
| __ Sltu(AT, lhs_low, AT); |
| __ Blt(TMP, AT, label); |
| break; |
| case kCondAE: |
| __ LoadConst32(TMP, imm_high); |
| __ Bltu(TMP, lhs_high, label); |
| __ Sltu(TMP, lhs_high, TMP); |
| __ LoadConst32(AT, imm_low); |
| __ Sltu(AT, lhs_low, AT); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondBE: |
| __ LoadConst32(TMP, imm_high); |
| __ Bltu(lhs_high, TMP, label); |
| __ Sltu(TMP, TMP, lhs_high); |
| __ LoadConst32(AT, imm_low); |
| __ Sltu(AT, AT, lhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondA: |
| __ LoadConst32(TMP, imm_high); |
| __ Bltu(TMP, lhs_high, label); |
| __ Sltu(TMP, lhs_high, TMP); |
| __ LoadConst32(AT, imm_low); |
| __ Sltu(AT, AT, lhs_low); |
| __ Blt(TMP, AT, label); |
| break; |
| } |
| } else { |
| switch (cond) { |
| case kCondEQ: |
| __ Xor(TMP, lhs_high, rhs_high); |
| __ Xor(AT, lhs_low, rhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondNE: |
| __ Xor(TMP, lhs_high, rhs_high); |
| __ Xor(AT, lhs_low, rhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Bnez(TMP, label); |
| break; |
| case kCondLT: |
| __ Blt(lhs_high, rhs_high, label); |
| __ Slt(TMP, rhs_high, lhs_high); |
| __ Sltu(AT, lhs_low, rhs_low); |
| __ Blt(TMP, AT, label); |
| break; |
| case kCondGE: |
| __ Blt(rhs_high, lhs_high, label); |
| __ Slt(TMP, lhs_high, rhs_high); |
| __ Sltu(AT, lhs_low, rhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondLE: |
| __ Blt(lhs_high, rhs_high, label); |
| __ Slt(TMP, rhs_high, lhs_high); |
| __ Sltu(AT, rhs_low, lhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondGT: |
| __ Blt(rhs_high, lhs_high, label); |
| __ Slt(TMP, lhs_high, rhs_high); |
| __ Sltu(AT, rhs_low, lhs_low); |
| __ Blt(TMP, AT, label); |
| break; |
| case kCondB: |
| __ Bltu(lhs_high, rhs_high, label); |
| __ Sltu(TMP, rhs_high, lhs_high); |
| __ Sltu(AT, lhs_low, rhs_low); |
| __ Blt(TMP, AT, label); |
| break; |
| case kCondAE: |
| __ Bltu(rhs_high, lhs_high, label); |
| __ Sltu(TMP, lhs_high, rhs_high); |
| __ Sltu(AT, lhs_low, rhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondBE: |
| __ Bltu(lhs_high, rhs_high, label); |
| __ Sltu(TMP, rhs_high, lhs_high); |
| __ Sltu(AT, rhs_low, lhs_low); |
| __ Or(TMP, TMP, AT); |
| __ Beqz(TMP, label); |
| break; |
| case kCondA: |
| __ Bltu(rhs_high, lhs_high, label); |
| __ Sltu(TMP, lhs_high, rhs_high); |
| __ Sltu(AT, rhs_low, lhs_low); |
| __ Blt(TMP, AT, label); |
| break; |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateFpCompare(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* locations) { |
| Register dst = locations->Out().AsRegister<Register>(); |
| FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| if (type == DataType::Type::kFloat32) { |
| if (isR6) { |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondNE: |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ Mfc1(dst, FTMP); |
| __ Addiu(dst, dst, 1); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtS(FTMP, lhs, rhs); |
| } else { |
| __ CmpUltS(FTMP, lhs, rhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeS(FTMP, lhs, rhs); |
| } else { |
| __ CmpUleS(FTMP, lhs, rhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltS(FTMP, rhs, lhs); |
| } else { |
| __ CmpLtS(FTMP, rhs, lhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleS(FTMP, rhs, lhs); |
| } else { |
| __ CmpLeS(FTMP, rhs, lhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| } else { |
| switch (cond) { |
| case kCondEQ: |
| __ CeqS(0, lhs, rhs); |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| case kCondNE: |
| __ CeqS(0, lhs, rhs); |
| __ LoadConst32(dst, 1); |
| __ Movt(dst, ZERO, 0); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ ColtS(0, lhs, rhs); |
| } else { |
| __ CultS(0, lhs, rhs); |
| } |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ ColeS(0, lhs, rhs); |
| } else { |
| __ CuleS(0, lhs, rhs); |
| } |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CultS(0, rhs, lhs); |
| } else { |
| __ ColtS(0, rhs, lhs); |
| } |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CuleS(0, rhs, lhs); |
| } else { |
| __ ColeS(0, rhs, lhs); |
| } |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| if (isR6) { |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondNE: |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ Mfc1(dst, FTMP); |
| __ Addiu(dst, dst, 1); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtD(FTMP, lhs, rhs); |
| } else { |
| __ CmpUltD(FTMP, lhs, rhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeD(FTMP, lhs, rhs); |
| } else { |
| __ CmpUleD(FTMP, lhs, rhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltD(FTMP, rhs, lhs); |
| } else { |
| __ CmpLtD(FTMP, rhs, lhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleD(FTMP, rhs, lhs); |
| } else { |
| __ CmpLeD(FTMP, rhs, lhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| } else { |
| switch (cond) { |
| case kCondEQ: |
| __ CeqD(0, lhs, rhs); |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| case kCondNE: |
| __ CeqD(0, lhs, rhs); |
| __ LoadConst32(dst, 1); |
| __ Movt(dst, ZERO, 0); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ ColtD(0, lhs, rhs); |
| } else { |
| __ CultD(0, lhs, rhs); |
| } |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ ColeD(0, lhs, rhs); |
| } else { |
| __ CuleD(0, lhs, rhs); |
| } |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CultD(0, rhs, lhs); |
| } else { |
| __ ColtD(0, rhs, lhs); |
| } |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CuleD(0, rhs, lhs); |
| } else { |
| __ ColeD(0, rhs, lhs); |
| } |
| __ LoadConst32(dst, 1); |
| __ Movf(dst, ZERO, 0); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| } |
| } |
| } |
| |
| bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR2(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* input_locations, |
| int cc) { |
| FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>(); |
| CHECK(!codegen_->GetInstructionSetFeatures().IsR6()); |
| if (type == DataType::Type::kFloat32) { |
| switch (cond) { |
| case kCondEQ: |
| __ CeqS(cc, lhs, rhs); |
| return false; |
| case kCondNE: |
| __ CeqS(cc, lhs, rhs); |
| return true; |
| case kCondLT: |
| if (gt_bias) { |
| __ ColtS(cc, lhs, rhs); |
| } else { |
| __ CultS(cc, lhs, rhs); |
| } |
| return false; |
| case kCondLE: |
| if (gt_bias) { |
| __ ColeS(cc, lhs, rhs); |
| } else { |
| __ CuleS(cc, lhs, rhs); |
| } |
| return false; |
| case kCondGT: |
| if (gt_bias) { |
| __ CultS(cc, rhs, lhs); |
| } else { |
| __ ColtS(cc, rhs, lhs); |
| } |
| return false; |
| case kCondGE: |
| if (gt_bias) { |
| __ CuleS(cc, rhs, lhs); |
| } else { |
| __ ColeS(cc, rhs, lhs); |
| } |
| return false; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| switch (cond) { |
| case kCondEQ: |
| __ CeqD(cc, lhs, rhs); |
| return false; |
| case kCondNE: |
| __ CeqD(cc, lhs, rhs); |
| return true; |
| case kCondLT: |
| if (gt_bias) { |
| __ ColtD(cc, lhs, rhs); |
| } else { |
| __ CultD(cc, lhs, rhs); |
| } |
| return false; |
| case kCondLE: |
| if (gt_bias) { |
| __ ColeD(cc, lhs, rhs); |
| } else { |
| __ CuleD(cc, lhs, rhs); |
| } |
| return false; |
| case kCondGT: |
| if (gt_bias) { |
| __ CultD(cc, rhs, lhs); |
| } else { |
| __ ColtD(cc, rhs, lhs); |
| } |
| return false; |
| case kCondGE: |
| if (gt_bias) { |
| __ CuleD(cc, rhs, lhs); |
| } else { |
| __ ColeD(cc, rhs, lhs); |
| } |
| return false; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR6(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* input_locations, |
| FRegister dst) { |
| FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>(); |
| CHECK(codegen_->GetInstructionSetFeatures().IsR6()); |
| if (type == DataType::Type::kFloat32) { |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqS(dst, lhs, rhs); |
| return false; |
| case kCondNE: |
| __ CmpEqS(dst, lhs, rhs); |
| return true; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtS(dst, lhs, rhs); |
| } else { |
| __ CmpUltS(dst, lhs, rhs); |
| } |
| return false; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeS(dst, lhs, rhs); |
| } else { |
| __ CmpUleS(dst, lhs, rhs); |
| } |
| return false; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltS(dst, rhs, lhs); |
| } else { |
| __ CmpLtS(dst, rhs, lhs); |
| } |
| return false; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleS(dst, rhs, lhs); |
| } else { |
| __ CmpLeS(dst, rhs, lhs); |
| } |
| return false; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqD(dst, lhs, rhs); |
| return false; |
| case kCondNE: |
| __ CmpEqD(dst, lhs, rhs); |
| return true; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtD(dst, lhs, rhs); |
| } else { |
| __ CmpUltD(dst, lhs, rhs); |
| } |
| return false; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeD(dst, lhs, rhs); |
| } else { |
| __ CmpUleD(dst, lhs, rhs); |
| } |
| return false; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltD(dst, rhs, lhs); |
| } else { |
| __ CmpLtD(dst, rhs, lhs); |
| } |
| return false; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleD(dst, rhs, lhs); |
| } else { |
| __ CmpLeD(dst, rhs, lhs); |
| } |
| return false; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* locations, |
| MipsLabel* label) { |
| FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| if (type == DataType::Type::kFloat32) { |
| if (isR6) { |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondNE: |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ Bc1eqz(FTMP, label); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtS(FTMP, lhs, rhs); |
| } else { |
| __ CmpUltS(FTMP, lhs, rhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeS(FTMP, lhs, rhs); |
| } else { |
| __ CmpUleS(FTMP, lhs, rhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltS(FTMP, rhs, lhs); |
| } else { |
| __ CmpLtS(FTMP, rhs, lhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleS(FTMP, rhs, lhs); |
| } else { |
| __ CmpLeS(FTMP, rhs, lhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } else { |
| switch (cond) { |
| case kCondEQ: |
| __ CeqS(0, lhs, rhs); |
| __ Bc1t(0, label); |
| break; |
| case kCondNE: |
| __ CeqS(0, lhs, rhs); |
| __ Bc1f(0, label); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ ColtS(0, lhs, rhs); |
| } else { |
| __ CultS(0, lhs, rhs); |
| } |
| __ Bc1t(0, label); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ ColeS(0, lhs, rhs); |
| } else { |
| __ CuleS(0, lhs, rhs); |
| } |
| __ Bc1t(0, label); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CultS(0, rhs, lhs); |
| } else { |
| __ ColtS(0, rhs, lhs); |
| } |
| __ Bc1t(0, label); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CuleS(0, rhs, lhs); |
| } else { |
| __ ColeS(0, rhs, lhs); |
| } |
| __ Bc1t(0, label); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| if (isR6) { |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondNE: |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ Bc1eqz(FTMP, label); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtD(FTMP, lhs, rhs); |
| } else { |
| __ CmpUltD(FTMP, lhs, rhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeD(FTMP, lhs, rhs); |
| } else { |
| __ CmpUleD(FTMP, lhs, rhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltD(FTMP, rhs, lhs); |
| } else { |
| __ CmpLtD(FTMP, rhs, lhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleD(FTMP, rhs, lhs); |
| } else { |
| __ CmpLeD(FTMP, rhs, lhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } else { |
| switch (cond) { |
| case kCondEQ: |
| __ CeqD(0, lhs, rhs); |
| __ Bc1t(0, label); |
| break; |
| case kCondNE: |
| __ CeqD(0, lhs, rhs); |
| __ Bc1f(0, label); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ ColtD(0, lhs, rhs); |
| } else { |
| __ CultD(0, lhs, rhs); |
| } |
| __ Bc1t(0, label); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ ColeD(0, lhs, rhs); |
| } else { |
| __ CuleD(0, lhs, rhs); |
| } |
| __ Bc1t(0, label); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CultD(0, rhs, lhs); |
| } else { |
| __ ColtD(0, rhs, lhs); |
| } |
| __ Bc1t(0, label); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CuleD(0, rhs, lhs); |
| } else { |
| __ ColeD(0, rhs, lhs); |
| } |
| __ Bc1t(0, label); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| MipsLabel* true_target, |
| MipsLabel* false_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ B(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ B(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| // The condition instruction has been materialized, compare the output to 0. |
| Location cond_val = instruction->GetLocations()->InAt(condition_input_index); |
| DCHECK(cond_val.IsRegister()); |
| if (true_target == nullptr) { |
| __ Beqz(cond_val.AsRegister<Register>(), false_target); |
| } else { |
| __ Bnez(cond_val.AsRegister<Register>(), true_target); |
| } |
| } else { |
| // The condition instruction has not been materialized, use its inputs as |
| // the comparison and its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| DataType::Type type = condition->InputAt(0)->GetType(); |
| LocationSummary* locations = cond->GetLocations(); |
| IfCondition if_cond = condition->GetCondition(); |
| MipsLabel* branch_target = true_target; |
| |
| if (true_target == nullptr) { |
| if_cond = condition->GetOppositeCondition(); |
| branch_target = false_target; |
| } |
| |
| switch (type) { |
| default: |
| GenerateIntCompareAndBranch(if_cond, locations, branch_target); |
| break; |
| case DataType::Type::kInt64: |
| GenerateLongCompareAndBranch(if_cond, locations, branch_target); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target); |
| break; |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ B(false_target); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? |
| nullptr : codegen_->GetLabelOf(true_successor); |
| MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? |
| nullptr : codegen_->GetLabelOf(false_successor); |
| GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCodeMIPS* slow_path = |
| deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize); |
| GenerateTestAndBranch(deoptimize, |
| /* condition_input_index */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target */ nullptr); |
| } |
| |
| // This function returns true if a conditional move can be generated for HSelect. |
| // Otherwise it returns false and HSelect must be implemented in terms of conditonal |
| // branches and regular moves. |
| // |
| // If `locations_to_set` isn't nullptr, its inputs and outputs are set for HSelect. |
| // |
| // While determining feasibility of a conditional move and setting inputs/outputs |
| // are two distinct tasks, this function does both because they share quite a bit |
| // of common logic. |
| static bool CanMoveConditionally(HSelect* select, bool is_r6, LocationSummary* locations_to_set) { |
| bool materialized = IsBooleanValueOrMaterializedCondition(select->GetCondition()); |
| HInstruction* cond = select->InputAt(/* condition_input_index */ 2); |
| HCondition* condition = cond->AsCondition(); |
| |
| DataType::Type cond_type = |
| materialized ? DataType::Type::kInt32 : condition->InputAt(0)->GetType(); |
| DataType::Type dst_type = select->GetType(); |
| |
| HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); |
| HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); |
| bool is_true_value_zero_constant = |
| (cst_true_value != nullptr && cst_true_value->IsZeroBitPattern()); |
| bool is_false_value_zero_constant = |
| (cst_false_value != nullptr && cst_false_value->IsZeroBitPattern()); |
| |
| bool can_move_conditionally = false; |
| bool use_const_for_false_in = false; |
| bool use_const_for_true_in = false; |
| |
| if (!cond->IsConstant()) { |
| switch (cond_type) { |
| default: |
| switch (dst_type) { |
| default: |
| // Moving int on int condition. |
| if (is_r6) { |
| if (is_true_value_zero_constant) { |
| // seleqz out_reg, false_reg, cond_reg |
| can_move_conditionally = true; |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // selnez out_reg, true_reg, cond_reg |
| can_move_conditionally = true; |
| use_const_for_false_in = true; |
| } else if (materialized) { |
| // Not materializing unmaterialized int conditions |
| // to keep the instruction count low. |
| // selnez AT, true_reg, cond_reg |
| // seleqz TMP, false_reg, cond_reg |
| // or out_reg, AT, TMP |
| can_move_conditionally = true; |
| } |
| } else { |
| // movn out_reg, true_reg/ZERO, cond_reg |
| can_move_conditionally = true; |
| use_const_for_true_in = is_true_value_zero_constant; |
| } |
| break; |
| case DataType::Type::kInt64: |
| // Moving long on int condition. |
| if (is_r6) { |
| if (is_true_value_zero_constant) { |
| // seleqz out_reg_lo, false_reg_lo, cond_reg |
| // seleqz out_reg_hi, false_reg_hi, cond_reg |
| can_move_conditionally = true; |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // selnez out_reg_lo, true_reg_lo, cond_reg |
| // selnez out_reg_hi, true_reg_hi, cond_reg |
| can_move_conditionally = true; |
| use_const_for_false_in = true; |
| } |
| // Other long conditional moves would generate 6+ instructions, |
| // which is too many. |
| } else { |
| // movn out_reg_lo, true_reg_lo/ZERO, cond_reg |
| // movn out_reg_hi, true_reg_hi/ZERO, cond_reg |
| can_move_conditionally = true; |
| use_const_for_true_in = is_true_value_zero_constant; |
| } |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| // Moving float/double on int condition. |
| if (is_r6) { |
| if (materialized) { |
| // Not materializing unmaterialized int conditions |
| // to keep the instruction count low. |
| can_move_conditionally = true; |
| if (is_true_value_zero_constant) { |
| // sltu TMP, ZERO, cond_reg |
| // mtc1 TMP, temp_cond_reg |
| // seleqz.fmt out_reg, false_reg, temp_cond_reg |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // sltu TMP, ZERO, cond_reg |
| // mtc1 TMP, temp_cond_reg |
| // selnez.fmt out_reg, true_reg, temp_cond_reg |
| use_const_for_false_in = true; |
| } else { |
| // sltu TMP, ZERO, cond_reg |
| // mtc1 TMP, temp_cond_reg |
| // sel.fmt temp_cond_reg, false_reg, true_reg |
| // mov.fmt out_reg, temp_cond_reg |
| } |
| } |
| } else { |
| // movn.fmt out_reg, true_reg, cond_reg |
| can_move_conditionally = true; |
| } |
| break; |
| } |
| break; |
| case DataType::Type::kInt64: |
| // We don't materialize long comparison now |
| // and use conditional branches instead. |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| switch (dst_type) { |
| default: |
| // Moving int on float/double condition. |
| if (is_r6) { |
| if (is_true_value_zero_constant) { |
| // mfc1 TMP, temp_cond_reg |
| // seleqz out_reg, false_reg, TMP |
| can_move_conditionally = true; |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // mfc1 TMP, temp_cond_reg |
| // selnez out_reg, true_reg, TMP |
| can_move_conditionally = true; |
| use_const_for_false_in = true; |
| } else { |
| // mfc1 TMP, temp_cond_reg |
| // selnez AT, true_reg, TMP |
| // seleqz TMP, false_reg, TMP |
| // or out_reg, AT, TMP |
| can_move_conditionally = true; |
| } |
| } else { |
| // movt out_reg, true_reg/ZERO, cc |
| can_move_conditionally = true; |
| use_const_for_true_in = is_true_value_zero_constant; |
| } |
| break; |
| case DataType::Type::kInt64: |
| // Moving long on float/double condition. |
| if (is_r6) { |
| if (is_true_value_zero_constant) { |
| // mfc1 TMP, temp_cond_reg |
| // seleqz out_reg_lo, false_reg_lo, TMP |
| // seleqz out_reg_hi, false_reg_hi, TMP |
| can_move_conditionally = true; |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // mfc1 TMP, temp_cond_reg |
| // selnez out_reg_lo, true_reg_lo, TMP |
| // selnez out_reg_hi, true_reg_hi, TMP |
| can_move_conditionally = true; |
| use_const_for_false_in = true; |
| } |
| // Other long conditional moves would generate 6+ instructions, |
| // which is too many. |
| } else { |
| // movt out_reg_lo, true_reg_lo/ZERO, cc |
| // movt out_reg_hi, true_reg_hi/ZERO, cc |
| can_move_conditionally = true; |
| use_const_for_true_in = is_true_value_zero_constant; |
| } |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| // Moving float/double on float/double condition. |
| if (is_r6) { |
| can_move_conditionally = true; |
| if (is_true_value_zero_constant) { |
| // seleqz.fmt out_reg, false_reg, temp_cond_reg |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // selnez.fmt out_reg, true_reg, temp_cond_reg |
| use_const_for_false_in = true; |
| } else { |
| // sel.fmt temp_cond_reg, false_reg, true_reg |
| // mov.fmt out_reg, temp_cond_reg |
| } |
| } else { |
| // movt.fmt out_reg, true_reg, cc |
| can_move_conditionally = true; |
| } |
| break; |
| } |
| break; |
| } |
| } |
| |
| if (can_move_conditionally) { |
| DCHECK(!use_const_for_false_in || !use_const_for_true_in); |
| } else { |
| DCHECK(!use_const_for_false_in); |
| DCHECK(!use_const_for_true_in); |
| } |
| |
| if (locations_to_set != nullptr) { |
| if (use_const_for_false_in) { |
| locations_to_set->SetInAt(0, Location::ConstantLocation(cst_false_value)); |
| } else { |
| locations_to_set->SetInAt(0, |
| DataType::IsFloatingPointType(dst_type) |
| ? Location::RequiresFpuRegister() |
| : Location::RequiresRegister()); |
| } |
| if (use_const_for_true_in) { |
| locations_to_set->SetInAt(1, Location::ConstantLocation(cst_true_value)); |
| } else { |
| locations_to_set->SetInAt(1, |
| DataType::IsFloatingPointType(dst_type) |
| ? Location::RequiresFpuRegister() |
| : Location::RequiresRegister()); |
| } |
| if (materialized) { |
| locations_to_set->SetInAt(2, Location::RequiresRegister()); |
| } |
| // On R6 we don't require the output to be the same as the |
| // first input for conditional moves unlike on R2. |
| bool is_out_same_as_first_in = !can_move_conditionally || !is_r6; |
| if (is_out_same_as_first_in) { |
| locations_to_set->SetOut(Location::SameAsFirstInput()); |
| } else { |
| locations_to_set->SetOut(DataType::IsFloatingPointType(dst_type) |
| ? Location::RequiresFpuRegister() |
| : Location::RequiresRegister()); |
| } |
| } |
| |
| return can_move_conditionally; |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenConditionalMoveR2(HSelect* select) { |
| LocationSummary* locations = select->GetLocations(); |
| Location dst = locations->Out(); |
| Location src = locations->InAt(1); |
| Register src_reg = ZERO; |
| Register src_reg_high = ZERO; |
| HInstruction* cond = select->InputAt(/* condition_input_index */ 2); |
| Register cond_reg = TMP; |
| int cond_cc = 0; |
| DataType::Type cond_type = DataType::Type::kInt32; |
| bool cond_inverted = false; |
| DataType::Type dst_type = select->GetType(); |
| |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<Register>(); |
| } else { |
| HCondition* condition = cond->AsCondition(); |
| LocationSummary* cond_locations = cond->GetLocations(); |
| IfCondition if_cond = condition->GetCondition(); |
| cond_type = condition->InputAt(0)->GetType(); |
| switch (cond_type) { |
| default: |
| DCHECK_NE(cond_type, DataType::Type::kInt64); |
| cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| cond_inverted = MaterializeFpCompareR2(if_cond, |
| condition->IsGtBias(), |
| cond_type, |
| cond_locations, |
| cond_cc); |
| break; |
| } |
| } |
| |
| DCHECK(dst.Equals(locations->InAt(0))); |
| if (src.IsRegister()) { |
| src_reg = src.AsRegister<Register>(); |
| } else if (src.IsRegisterPair()) { |
| src_reg = src.AsRegisterPairLow<Register>(); |
| src_reg_high = src.AsRegisterPairHigh<Register>(); |
| } else if (src.IsConstant()) { |
| DCHECK(src.GetConstant()->IsZeroBitPattern()); |
| } |
| |
| switch (cond_type) { |
| default: |
| switch (dst_type) { |
| default: |
| if (cond_inverted) { |
| __ Movz(dst.AsRegister<Register>(), src_reg, cond_reg); |
| } else { |
| __ Movn(dst.AsRegister<Register>(), src_reg, cond_reg); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (cond_inverted) { |
| __ Movz(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg); |
| __ Movz(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg); |
| } else { |
| __ Movn(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg); |
| __ Movn(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg); |
| } |
| break; |
| case DataType::Type::kFloat32: |
| if (cond_inverted) { |
| __ MovzS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg); |
| } else { |
| __ MovnS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg); |
| } |
| break; |
| case DataType::Type::kFloat64: |
| if (cond_inverted) { |
| __ MovzD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg); |
| } else { |
| __ MovnD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg); |
| } |
| break; |
| } |
| break; |
| case DataType::Type::kInt64: |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| switch (dst_type) { |
| default: |
| if (cond_inverted) { |
| __ Movf(dst.AsRegister<Register>(), src_reg, cond_cc); |
| } else { |
| __ Movt(dst.AsRegister<Register>(), src_reg, cond_cc); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (cond_inverted) { |
| __ Movf(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc); |
| __ Movf(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc); |
| } else { |
| __ Movt(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc); |
| __ Movt(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc); |
| } |
| break; |
| case DataType::Type::kFloat32: |
| if (cond_inverted) { |
| __ MovfS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc); |
| } else { |
| __ MovtS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc); |
| } |
| break; |
| case DataType::Type::kFloat64: |
| if (cond_inverted) { |
| __ MovfD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc); |
| } else { |
| __ MovtD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc); |
| } |
| break; |
| } |
| break; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenConditionalMoveR6(HSelect* select) { |
| LocationSummary* locations = select->GetLocations(); |
| Location dst = locations->Out(); |
| Location false_src = locations->InAt(0); |
| Location true_src = locations->InAt(1); |
| HInstruction* cond = select->InputAt(/* condition_input_index */ 2); |
| Register cond_reg = TMP; |
| FRegister fcond_reg = FTMP; |
| DataType::Type cond_type = DataType::Type::kInt32; |
| bool cond_inverted = false; |
| DataType::Type dst_type = select->GetType(); |
| |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<Register>(); |
| } else { |
| HCondition* condition = cond->AsCondition(); |
| LocationSummary* cond_locations = cond->GetLocations(); |
| IfCondition if_cond = condition->GetCondition(); |
| cond_type = condition->InputAt(0)->GetType(); |
| switch (cond_type) { |
| default: |
| DCHECK_NE(cond_type, DataType::Type::kInt64); |
| cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| cond_inverted = MaterializeFpCompareR6(if_cond, |
| condition->IsGtBias(), |
| cond_type, |
| cond_locations, |
| fcond_reg); |
| break; |
| } |
| } |
| |
| if (true_src.IsConstant()) { |
| DCHECK(true_src.GetConstant()->IsZeroBitPattern()); |
| } |
| if (false_src.IsConstant()) { |
| DCHECK(false_src.GetConstant()->IsZeroBitPattern()); |
| } |
| |
| switch (dst_type) { |
| default: |
| if (DataType::IsFloatingPointType(cond_type)) { |
| __ Mfc1(cond_reg, fcond_reg); |
| } |
| if (true_src.IsConstant()) { |
| if (cond_inverted) { |
| __ Selnez(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg); |
| } else { |
| __ Seleqz(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg); |
| } |
| } else if (false_src.IsConstant()) { |
| if (cond_inverted) { |
| __ Seleqz(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg); |
| } else { |
| __ Selnez(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg); |
| } |
| } else { |
| DCHECK_NE(cond_reg, AT); |
| if (cond_inverted) { |
| __ Seleqz(AT, true_src.AsRegister<Register>(), cond_reg); |
| __ Selnez(TMP, false_src.AsRegister<Register>(), cond_reg); |
| } else { |
| __ Selnez(AT, true_src.AsRegister<Register>(), cond_reg); |
| __ Seleqz(TMP, false_src.AsRegister<Register>(), cond_reg); |
| } |
| __ Or(dst.AsRegister<Register>(), AT, TMP); |
| } |
| break; |
| case DataType::Type::kInt64: { |
| if (DataType::IsFloatingPointType(cond_type)) { |
| __ Mfc1(cond_reg, fcond_reg); |
| } |
| Register dst_lo = dst.AsRegisterPairLow<Register>(); |
| Register dst_hi = dst.AsRegisterPairHigh<Register>(); |
| if (true_src.IsConstant()) { |
| Register src_lo = false_src.AsRegisterPairLow<Register>(); |
| Register src_hi = false_src.AsRegisterPairHigh<Register>(); |
| if (cond_inverted) { |
| __ Selnez(dst_lo, src_lo, cond_reg); |
| __ Selnez(dst_hi, src_hi, cond_reg); |
| } else { |
| __ Seleqz(dst_lo, src_lo, cond_reg); |
| __ Seleqz(dst_hi, src_hi, cond_reg); |
| } |
| } else { |
| DCHECK(false_src.IsConstant()); |
| Register src_lo = true_src.AsRegisterPairLow<Register>(); |
| Register src_hi = true_src.AsRegisterPairHigh<Register>(); |
| if (cond_inverted) { |
| __ Seleqz(dst_lo, src_lo, cond_reg); |
| __ Seleqz(dst_hi, src_hi, cond_reg); |
| } else { |
| __ Selnez(dst_lo, src_lo, cond_reg); |
| __ Selnez(dst_hi, src_hi, cond_reg); |
| } |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: { |
| if (!DataType::IsFloatingPointType(cond_type)) { |
| // sel*.fmt tests bit 0 of the condition register, account for that. |
| __ Sltu(TMP, ZERO, cond_reg); |
| __ Mtc1(TMP, fcond_reg); |
| } |
| FRegister dst_reg = dst.AsFpuRegister<FRegister>(); |
| if (true_src.IsConstant()) { |
| FRegister src_reg = false_src.AsFpuRegister<FRegister>(); |
| if (cond_inverted) { |
| __ SelnezS(dst_reg, src_reg, fcond_reg); |
| } else { |
| __ SeleqzS(dst_reg, src_reg, fcond_reg); |
| } |
| } else if (false_src.IsConstant()) { |
| FRegister src_reg = true_src.AsFpuRegister<FRegister>(); |
| if (cond_inverted) { |
| __ SeleqzS(dst_reg, src_reg, fcond_reg); |
| } else { |
| __ SelnezS(dst_reg, src_reg, fcond_reg); |
| } |
| } else { |
| if (cond_inverted) { |
| __ SelS(fcond_reg, |
| true_src.AsFpuRegister<FRegister>(), |
| false_src.AsFpuRegister<FRegister>()); |
| } else { |
| __ SelS(fcond_reg, |
| false_src.AsFpuRegister<FRegister>(), |
| true_src.AsFpuRegister<FRegister>()); |
| } |
| __ MovS(dst_reg, fcond_reg); |
| } |
| break; |
| } |
| case DataType::Type::kFloat64: { |
| if (!DataType::IsFloatingPointType(cond_type)) { |
| // sel*.fmt tests bit 0 of the condition register, account for that. |
| __ Sltu(TMP, ZERO, cond_reg); |
| __ Mtc1(TMP, fcond_reg); |
| } |
| FRegister dst_reg = dst.AsFpuRegister<FRegister>(); |
| if (true_src.IsConstant()) { |
| FRegister src_reg = false_src.AsFpuRegister<FRegister>(); |
| if (cond_inverted) { |
| __ SelnezD(dst_reg, src_reg, fcond_reg); |
| } else { |
| __ SeleqzD(dst_reg, src_reg, fcond_reg); |
| } |
| } else if (false_src.IsConstant()) { |
| FRegister src_reg = true_src.AsFpuRegister<FRegister>(); |
| if (cond_inverted) { |
| __ SeleqzD(dst_reg, src_reg, fcond_reg); |
| } else { |
| __ SelnezD(dst_reg, src_reg, fcond_reg); |
| } |
| } else { |
| if (cond_inverted) { |
| __ SelD(fcond_reg, |
| true_src.AsFpuRegister<FRegister>(), |
| false_src.AsFpuRegister<FRegister>()); |
| } else { |
| __ SelD(fcond_reg, |
| false_src.AsFpuRegister<FRegister>(), |
| true_src.AsFpuRegister<FRegister>()); |
| } |
| __ MovD(dst_reg, fcond_reg); |
| } |
| break; |
| } |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(flag, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| __ LoadFromOffset(kLoadWord, |
| flag->GetLocations()->Out().AsRegister<Register>(), |
| SP, |
| codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); |
| } |
| |
| void LocationsBuilderMIPS::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); |
| CanMoveConditionally(select, codegen_->GetInstructionSetFeatures().IsR6(), locations); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) { |
| bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| if (CanMoveConditionally(select, is_r6, /* locations_to_set */ nullptr)) { |
| if (is_r6) { |
| GenConditionalMoveR6(select); |
| } else { |
| GenConditionalMoveR2(select); |
| } |
| } else { |
| LocationSummary* locations = select->GetLocations(); |
| MipsLabel false_target; |
| GenerateTestAndBranch(select, |
| /* condition_input_index */ 2, |
| /* true_target */ nullptr, |
| &false_target); |
| codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); |
| __ Bind(&false_target); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetAllocator()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorMIPS::GenerateNop() { |
| __ Nop(); |
| } |
| |
| void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { |
| DataType::Type field_type = field_info.GetFieldType(); |
| bool is_wide = (field_type == DataType::Type::kInt64) || (field_type == DataType::Type::kFloat64); |
| bool generate_volatile = field_info.IsVolatile() && is_wide; |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (field_type == DataType::Type::kReference); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, |
| generate_volatile |
| ? LocationSummary::kCallOnMainOnly |
| : (object_field_get_with_read_barrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall)); |
| |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (generate_volatile) { |
| InvokeRuntimeCallingConvention calling_convention; |
| // need A0 to hold base + offset |
| locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| if (field_type == DataType::Type::kInt64) { |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt64)); |
| } else { |
| // Use Location::Any() to prevent situations when running out of available fp registers. |
| locations->SetOut(Location::Any()); |
| // Need some temp core regs since FP results are returned in core registers |
| Location reg = calling_convention.GetReturnLocation(DataType::Type::kInt64); |
| locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>())); |
| locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>())); |
| } |
| } else { |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps in the case of an object field get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // object's location, as we need it to emit the read barrier. |
| locations->SetOut(Location::RequiresRegister(), |
| object_field_get_with_read_barrier |
| ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier. |
| if (!kBakerReadBarrierThunksEnableForFields) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| uint32_t dex_pc) { |
| DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location dst_loc = locations->Out(); |
| LoadOperandType load_type = kLoadUnsignedByte; |
| bool is_volatile = field_info.IsVolatile(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| auto null_checker = GetImplicitNullChecker(instruction, codegen_); |
| |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| load_type = kLoadUnsignedByte; |
| break; |
| case DataType::Type::kInt8: |
| load_type = kLoadSignedByte; |
| break; |
| case DataType::Type::kUint16: |
| load_type = kLoadUnsignedHalfword; |
| break; |
| case DataType::Type::kInt16: |
| load_type = kLoadSignedHalfword; |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kFloat32: |
| case DataType::Type::kReference: |
| load_type = kLoadWord; |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat64: |
| load_type = kLoadDoubleword; |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| |
| if (is_volatile && load_type == kLoadDoubleword) { |
| InvokeRuntimeCallingConvention calling_convention; |
| __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset); |
| // Do implicit Null check |
| __ LoadFromOffset(kLoadWord, |
| ZERO, |
| locations->GetTemp(0).AsRegister<Register>(), |
| 0, |
| null_checker); |
| codegen_->InvokeRuntime(kQuickA64Load, instruction, dex_pc); |
| CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>(); |
| if (type == DataType::Type::kFloat64) { |
| // FP results are returned in core registers. Need to move them. |
| if (dst_loc.IsFpuRegister()) { |
| __ Mtc1(locations->GetTemp(1).AsRegister<Register>(), dst_loc.AsFpuRegister<FRegister>()); |
| __ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(), |
| dst_loc.AsFpuRegister<FRegister>()); |
| } else { |
| DCHECK(dst_loc.IsDoubleStackSlot()); |
| __ StoreToOffset(kStoreWord, |
| locations->GetTemp(1).AsRegister<Register>(), |
| SP, |
| dst_loc.GetStackIndex()); |
| __ StoreToOffset(kStoreWord, |
| locations->GetTemp(2).AsRegister<Register>(), |
| SP, |
| dst_loc.GetStackIndex() + 4); |
| } |
| } |
| } else { |
| if (type == DataType::Type::kReference) { |
| // /* HeapReference<Object> */ dst = *(obj + offset) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| Location temp_loc = |
| kBakerReadBarrierThunksEnableForFields ? Location::NoLocation() : locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| dst_loc, |
| obj, |
| offset, |
| temp_loc, |
| /* needs_null_check */ true); |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } else { |
| __ LoadFromOffset(kLoadWord, dst_loc.AsRegister<Register>(), obj, offset, null_checker); |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset); |
| } |
| } else if (!DataType::IsFloatingPointType(type)) { |
| Register dst; |
| if (type == DataType::Type::kInt64) { |
| DCHECK(dst_loc.IsRegisterPair()); |
| dst = dst_loc.AsRegisterPairLow<Register>(); |
| } else { |
| DCHECK(dst_loc.IsRegister()); |
| dst = dst_loc.AsRegister<Register>(); |
| } |
| __ LoadFromOffset(load_type, dst, obj, offset, null_checker); |
| } else { |
| DCHECK(dst_loc.IsFpuRegister()); |
| FRegister dst = dst_loc.AsFpuRegister<FRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| __ LoadSFromOffset(dst, obj, offset, null_checker); |
| } else { |
| __ LoadDFromOffset(dst, obj, offset, null_checker); |
| } |
| } |
| } |
| |
| // Memory barriers, in the case of references, are handled in the |
| // previous switch statement. |
| if (is_volatile && (type != DataType::Type::kReference)) { |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } |
| |
| void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { |
| DataType::Type field_type = field_info.GetFieldType(); |
| bool is_wide = (field_type == DataType::Type::kInt64) || (field_type == DataType::Type::kFloat64); |
| bool generate_volatile = field_info.IsVolatile() && is_wide; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, generate_volatile ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (generate_volatile) { |
| InvokeRuntimeCallingConvention calling_convention; |
| // need A0 to hold base + offset |
| locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| if (field_type == DataType::Type::kInt64) { |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| } else { |
| // Use Location::Any() to prevent situations when running out of available fp registers. |
| locations->SetInAt(1, Location::Any()); |
| // Pass FP parameters in core registers. |
| locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3))); |
| } |
| } else { |
| if (DataType::IsFloatingPointType(field_type)) { |
| locations->SetInAt(1, FpuRegisterOrConstantForStore(instruction->InputAt(1))); |
| } else { |
| locations->SetInAt(1, RegisterOrZeroConstant(instruction->InputAt(1))); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| uint32_t dex_pc, |
| bool value_can_be_null) { |
| DataType::Type type = field_info.GetFieldType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Location value_location = locations->InAt(1); |
| StoreOperandType store_type = kStoreByte; |
| bool is_volatile = field_info.IsVolatile(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1)); |
| auto null_checker = GetImplicitNullChecker(instruction, codegen_); |
| |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| store_type = kStoreByte; |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| store_type = kStoreHalfword; |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kFloat32: |
| case DataType::Type::kReference: |
| store_type = kStoreWord; |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat64: |
| store_type = kStoreDoubleword; |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| if (is_volatile && store_type == kStoreDoubleword) { |
| InvokeRuntimeCallingConvention calling_convention; |
| __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset); |
| // Do implicit Null check. |
| __ LoadFromOffset(kLoadWord, |
| ZERO, |
| locations->GetTemp(0).AsRegister<Register>(), |
| 0, |
| null_checker); |
| if (type == DataType::Type::kFloat64) { |
| // Pass FP parameters in core registers. |
| if (value_location.IsFpuRegister()) { |
| __ Mfc1(locations->GetTemp(1).AsRegister<Register>(), |
| value_location.AsFpuRegister<FRegister>()); |
| __ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(), |
| value_location.AsFpuRegister<FRegister>()); |
| } else if (value_location.IsDoubleStackSlot()) { |
| __ LoadFromOffset(kLoadWord, |
| locations->GetTemp(1).AsRegister<Register>(), |
| SP, |
| value_location.GetStackIndex()); |
| __ LoadFromOffset(kLoadWord, |
| locations->GetTemp(2).AsRegister<Register>(), |
| SP, |
| value_location.GetStackIndex() + 4); |
| } else { |
| DCHECK(value_location.IsConstant()); |
| DCHECK(value_location.GetConstant()->IsDoubleConstant()); |
| int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); |
| __ LoadConst64(locations->GetTemp(2).AsRegister<Register>(), |
| locations->GetTemp(1).AsRegister<Register>(), |
| value); |
| } |
| } |
| codegen_->InvokeRuntime(kQuickA64Store, instruction, dex_pc); |
| CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>(); |
| } else { |
| if (value_location.IsConstant()) { |
| int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(store_type, value, obj, offset, TMP, null_checker); |
| } else if (!DataType::IsFloatingPointType(type)) { |
| Register src; |
| if (type == DataType::Type::kInt64) { |
| src = value_location.AsRegisterPairLow<Register>(); |
| } else { |
| src = value_location.AsRegister<Register>(); |
| } |
| if (kPoisonHeapReferences && needs_write_barrier) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as a null reference does not |
| // need poisoning. |
| DCHECK_EQ(type, DataType::Type::kReference); |
| __ PoisonHeapReference(TMP, src); |
| __ StoreToOffset(store_type, TMP, obj, offset, null_checker); |
| } else { |
| __ StoreToOffset(store_type, src, obj, offset, null_checker); |
| } |
| } else { |
| FRegister src = value_location.AsFpuRegister<FRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| __ StoreSToOffset(src, obj, offset, null_checker); |
| } else { |
| __ StoreDToOffset(src, obj, offset, null_checker); |
| } |
| } |
| } |
| |
| if (needs_write_barrier) { |
| Register src = value_location.AsRegister<Register>(); |
| codegen_->MarkGCCard(obj, src, value_can_be_null); |
| } |
| |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc()); |
| } |
| |
| void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, |
| instruction->GetFieldInfo(), |
| instruction->GetDexPc(), |
| instruction->GetValueCanBeNull()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| Register out_reg = out.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (!kUseBakerReadBarrier || !kBakerReadBarrierThunksEnableForFields) { |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| } |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| out_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| __ Move(maybe_temp.AsRegister<Register>(), out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| Register out_reg = out.AsRegister<Register>(); |
| Register obj_reg = obj.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| if (!kBakerReadBarrierThunksEnableForFields) { |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| } |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| obj_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| static inline int GetBakerMarkThunkNumber(Register reg) { |
| static_assert(BAKER_MARK_INTROSPECTION_REGISTER_COUNT == 21, "Expecting equal"); |
| if (reg >= V0 && reg <= T7) { // 14 consequtive regs. |
| return reg - V0; |
| } else if (reg >= S2 && reg <= S7) { // 6 consequtive regs. |
| return 14 + (reg - S2); |
| } else if (reg == FP) { // One more. |
| return 20; |
| } |
| LOG(FATAL) << "Unexpected register " << reg; |
| UNREACHABLE(); |
| } |
| |
| static inline int GetBakerMarkFieldArrayThunkDisplacement(Register reg, bool short_offset) { |
| int num = GetBakerMarkThunkNumber(reg) + |
| (short_offset ? BAKER_MARK_INTROSPECTION_REGISTER_COUNT : 0); |
| return num * BAKER_MARK_INTROSPECTION_FIELD_ARRAY_ENTRY_SIZE; |
| } |
| |
| static inline int GetBakerMarkGcRootThunkDisplacement(Register reg) { |
| return GetBakerMarkThunkNumber(reg) * BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRY_SIZE + |
| BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRIES_OFFSET; |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateGcRootFieldLoad(HInstruction* instruction, |
| Location root, |
| Register obj, |
| uint32_t offset, |
| ReadBarrierOption read_barrier_option, |
| MipsLabel* label_low) { |
| bool reordering; |
| if (label_low != nullptr) { |
| DCHECK_EQ(offset, 0x5678u); |
| } |
| Register root_reg = root.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used: |
| if (kBakerReadBarrierThunksEnableForGcRoots) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded GC root or not. Instead, we |
| // load into `temp` (T9) the read barrier mark introspection entrypoint. |
| // If `temp` is null, it means that `GetIsGcMarking()` is false, and |
| // vice versa. |
| // |
| // We use thunks for the slow path. That thunk checks the reference |
| // and jumps to the entrypoint if needed. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkReg00 |
| // // AKA &art_quick_read_barrier_mark_introspection. |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // if (temp != nullptr) { |
| // temp = &gc_root_thunk<root_reg> |
| // root = temp(root) |
| // } |
| |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0); |
| const int thunk_disp = GetBakerMarkGcRootThunkDisplacement(root_reg); |
| int16_t offset_low = Low16Bits(offset); |
| int16_t offset_high = High16Bits(offset - offset_low); // Accounts for sign |
| // extension in lw. |
| bool short_offset = IsInt<16>(static_cast<int32_t>(offset)); |
| Register base = short_offset ? obj : TMP; |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); |
| reordering = __ SetReorder(false); |
| if (!short_offset) { |
| DCHECK(!label_low); |
| __ AddUpper(base, obj, offset_high); |
| } |
| MipsLabel skip_call; |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| if (label_low != nullptr) { |
| DCHECK(short_offset); |
| __ Bind(label_low); |
| } |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, root_reg, base, offset_low); // Single instruction |
| // in delay slot. |
| if (isR6) { |
| __ Jialc(T9, thunk_disp); |
| } else { |
| __ Addiu(T9, T9, thunk_disp); |
| __ Jalr(T9); |
| __ Nop(); |
| } |
| __ Bind(&skip_call); |
| __ SetReorder(reordering); |
| } else { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded GC root or not. Instead, we |
| // load into `temp` (T9) the read barrier mark entry point corresponding |
| // to register `root`. If `temp` is null, it means that `GetIsGcMarking()` |
| // is false, and vice versa. |
| // |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp != null) { |
| // root = temp(root) |
| // } |
| |
| if (label_low != nullptr) { |
| reordering = __ SetReorder(false); |
| __ Bind(label_low); |
| } |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, root_reg, obj, offset); |
| if (label_low != nullptr) { |
| __ SetReorder(reordering); |
| } |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // Slow path marking the GC root `root`. |
| Location temp = Location::RegisterLocation(T9); |
| SlowPathCodeMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS( |
| instruction, |
| root, |
| /*entrypoint*/ temp); |
| codegen_->AddSlowPath(slow_path); |
| |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(root.reg() - 1); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset); |
| __ Bnez(temp.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } else { |
| if (label_low != nullptr) { |
| reordering = __ SetReorder(false); |
| __ Bind(label_low); |
| } |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = obj + offset |
| __ Addiu32(root_reg, obj, offset); |
| if (label_low != nullptr) { |
| __ SetReorder(reordering); |
| } |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| if (label_low != nullptr) { |
| reordering = __ SetReorder(false); |
| __ Bind(label_low); |
| } |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, root_reg, obj, offset); |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| if (label_low != nullptr) { |
| __ SetReorder(reordering); |
| } |
| } |
| } |
| |
| void CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| if (kBakerReadBarrierThunksEnableForFields) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded reference or not. Instead, we |
| // load into `temp` (T9) the read barrier mark introspection entrypoint. |
| // If `temp` is null, it means that `GetIsGcMarking()` is false, and |
| // vice versa. |
| // |
| // We use thunks for the slow path. That thunk checks the reference |
| // and jumps to the entrypoint if needed. If the holder is not gray, |
| // it issues a load-load memory barrier and returns to the original |
| // reference load. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkReg00 |
| // // AKA &art_quick_read_barrier_mark_introspection. |
| // if (temp != nullptr) { |
| // temp = &field_array_thunk<holder_reg> |
| // temp() |
| // } |
| // not_gray_return_address: |
| // // If the offset is too large to fit into the lw instruction, we |
| // // use an adjusted base register (TMP) here. This register |
| // // receives bits 16 ... 31 of the offset before the thunk invocation |
| // // and the thunk benefits from it. |
| // HeapReference<mirror::Object> reference = *(obj+offset); // Original reference load. |
| // gray_return_address: |
| |
| DCHECK(temp.IsInvalid()); |
| bool isR6 = GetInstructionSetFeatures().IsR6(); |
| int16_t offset_low = Low16Bits(offset); |
| int16_t offset_high = High16Bits(offset - offset_low); // Accounts for sign extension in lw. |
| bool short_offset = IsInt<16>(static_cast<int32_t>(offset)); |
| bool reordering = __ SetReorder(false); |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0); |
| // There may have or may have not been a null check if the field offset is smaller than |
| // the page size. |
| // There must've been a null check in case it's actually a load from an array. |
| // We will, however, perform an explicit null check in the thunk as it's easier to |
| // do it than not. |
| if (instruction->IsArrayGet()) { |
| DCHECK(!needs_null_check); |
| } |
| const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, short_offset); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); |
| Register ref_reg = ref.AsRegister<Register>(); |
| Register base = short_offset ? obj : TMP; |
| MipsLabel skip_call; |
| if (short_offset) { |
| if (isR6) { |
| __ Beqzc(T9, &skip_call, /* is_bare */ true); |
| __ Nop(); // In forbidden slot. |
| __ Jialc(T9, thunk_disp); |
| } else { |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| __ Addiu(T9, T9, thunk_disp); // In delay slot. |
| __ Jalr(T9); |
| __ Nop(); // In delay slot. |
| } |
| __ Bind(&skip_call); |
| } else { |
| if (isR6) { |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| __ Aui(base, obj, offset_high); // In delay slot. |
| __ Jialc(T9, thunk_disp); |
| __ Bind(&skip_call); |
| } else { |
| __ Lui(base, offset_high); |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| __ Addiu(T9, T9, thunk_disp); // In delay slot. |
| __ Jalr(T9); |
| __ Bind(&skip_call); |
| __ Addu(base, base, obj); // In delay slot. |
| } |
| } |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, ref_reg, base, offset_low); // Single instruction. |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| __ SetReorder(reordering); |
| return; |
| } |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Location no_index = Location::NoLocation(); |
| ScaleFactor no_scale_factor = TIMES_1; |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, |
| ref, |
| obj, |
| offset, |
| no_index, |
| no_scale_factor, |
| temp, |
| needs_null_check); |
| } |
| |
| void CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t data_offset, |
| Location index, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| ScaleFactor scale_factor = TIMES_4; |
| |
| if (kBakerReadBarrierThunksEnableForArrays) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded reference or not. Instead, we |
| // load into `temp` (T9) the read barrier mark introspection entrypoint. |
| // If `temp` is null, it means that `GetIsGcMarking()` is false, and |
| // vice versa. |
| // |
| // We use thunks for the slow path. That thunk checks the reference |
| // and jumps to the entrypoint if needed. If the holder is not gray, |
| // it issues a load-load memory barrier and returns to the original |
| // reference load. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkReg00 |
| // // AKA &art_quick_read_barrier_mark_introspection. |
| // if (temp != nullptr) { |
| // temp = &field_array_thunk<holder_reg> |
| // temp() |
| // } |
| // not_gray_return_address: |
| // // The element address is pre-calculated in the TMP register before the |
| // // thunk invocation and the thunk benefits from it. |
| // HeapReference<mirror::Object> reference = data[index]; // Original reference load. |
| // gray_return_address: |
| |
| DCHECK(temp.IsInvalid()); |
| DCHECK(index.IsValid()); |
| bool reordering = __ SetReorder(false); |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0); |
| // We will not do the explicit null check in the thunk as some form of a null check |
| // must've been done earlier. |
| DCHECK(!needs_null_check); |
| const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, /* short_offset */ false); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); |
| Register ref_reg = ref.AsRegister<Register>(); |
| Register index_reg = index.IsRegisterPair() |
| ? index.AsRegisterPairLow<Register>() |
| : index.AsRegister<Register>(); |
| MipsLabel skip_call; |
| if (GetInstructionSetFeatures().IsR6()) { |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| __ Lsa(TMP, index_reg, obj, scale_factor); // In delay slot. |
| __ Jialc(T9, thunk_disp); |
| __ Bind(&skip_call); |
| } else { |
| __ Sll(TMP, index_reg, scale_factor); |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| __ Addiu(T9, T9, thunk_disp); // In delay slot. |
| __ Jalr(T9); |
| __ Bind(&skip_call); |
| __ Addu(TMP, TMP, obj); // In delay slot. |
| } |
| // /* HeapReference<Object> */ ref = *(obj + data_offset + (index << scale_factor)) |
| DCHECK(IsInt<16>(static_cast<int32_t>(data_offset))) << data_offset; |
| __ LoadFromOffset(kLoadWord, ref_reg, TMP, data_offset); // Single instruction. |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| __ SetReorder(reordering); |
| return; |
| } |
| |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, |
| ref, |
| obj, |
| data_offset, |
| index, |
| scale_factor, |
| temp, |
| needs_null_check); |
| } |
| |
| void CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| ScaleFactor scale_factor, |
| Location temp, |
| bool needs_null_check, |
| bool always_update_field) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // In slow path based read barriers, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The fast path/slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as it performs additional checks that we do |
| // not do here for performance reasons. |
| |
| Register ref_reg = ref.AsRegister<Register>(); |
| Register temp_reg = temp.AsRegister<Register>(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| __ Sync(0); // Barrier to prevent load-load reordering. |
| |
| // The actual reference load. |
| if (index.IsValid()) { |
| // Load types involving an "index": ArrayGet, |
| // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject |
| // intrinsics. |
| // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor)) |
| if (index.IsConstant()) { |
| size_t computed_offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset; |
| __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset); |
| } else { |
| // Handle the special case of the |
| // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject |
| // intrinsics, which use a register pair as index ("long |
| // offset"), of which only the low part contains data. |
| Register index_reg = index.IsRegisterPair() |
| ? index.AsRegisterPairLow<Register>() |
| : index.AsRegister<Register>(); |
| __ ShiftAndAdd(TMP, index_reg, obj, scale_factor, TMP); |
| __ LoadFromOffset(kLoadWord, ref_reg, TMP, offset); |
| } |
| } else { |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, ref_reg, obj, offset); |
| } |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| |
| // Slow path marking the object `ref` when it is gray. |
| SlowPathCodeMIPS* slow_path; |
| if (always_update_field) { |
| // ReadBarrierMarkAndUpdateFieldSlowPathMIPS only supports address |
| // of the form `obj + field_offset`, where `obj` is a register and |
| // `field_offset` is a register pair (of which only the lower half |
| // is used). Thus `offset` and `scale_factor` above are expected |
| // to be null in this code path. |
| DCHECK_EQ(offset, 0u); |
| DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1); |
| slow_path = new (GetScopedAllocator()) |
| ReadBarrierMarkAndUpdateFieldSlowPathMIPS(instruction, |
| ref, |
| obj, |
| /* field_offset */ index, |
| temp_reg); |
| } else { |
| slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS(instruction, ref); |
| } |
| AddSlowPath(slow_path); |
| |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // Given the numeric representation, it's enough to check the low bit of the |
| // rb_state. We do that by shifting the bit into the sign bit (31) and |
| // performing a branch on less than zero. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| static_assert(LockWord::kReadBarrierStateSize == 1, "Expecting 1-bit read barrier state size"); |
| __ Sll(temp_reg, temp_reg, 31 - LockWord::kReadBarrierStateShift); |
| __ Bltz(temp_reg, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorMIPS::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCodeMIPS* slow_path = new (GetScopedAllocator()) |
| ReadBarrierForHeapReferenceSlowPathMIPS(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorMIPS::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(out.AsRegister<Register>()); |
| } |
| } |
| |
| void CodeGeneratorMIPS::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCodeMIPS* slow_path = |
| new (GetScopedAllocator()) ReadBarrierForRootSlowPathMIPS(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: { |
| bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); |
| call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; |
| break; |
| } |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| case TypeCheckKind::kBitstringCheck: |
| break; |
| } |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| // The output does overlap inputs. |
| // Note that TypeCheckSlowPathMIPS uses this register too. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location cls = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); |
| DCHECK_LE(num_temps, 1u); |
| Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| MipsLabel done; |
| SlowPathCodeMIPS* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // Avoid this check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Move(out, ZERO); |
| __ Beqz(obj, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // Classes must be equal for the instanceof to succeed. |
| __ Xor(out, out, cls.AsRegister<Register>()); |
| __ Sltiu(out, out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| MipsLabel loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Beqz(out, &done); |
| __ Bne(out, cls.AsRegister<Register>(), &loop); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // Walk over the class hierarchy to find a match. |
| MipsLabel loop, success; |
| __ Bind(&loop); |
| __ Beq(out, cls.AsRegister<Register>(), &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| __ Bnez(out, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ B(&done); |
| __ Bind(&success); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // Do an exact check. |
| MipsLabel success; |
| __ Beq(out, cls.AsRegister<Register>(), &success); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| component_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Beqz(out, &done); |
| __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Sltiu(out, out, 1); |
| __ B(&done); |
| __ Bind(&success); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS( |
| instruction, /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ Bne(out, cls.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS( |
| instruction, /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, out); |
| __ Sltiu(out, out, 1); |
| break; |
| } |
| } |
| |
| __ Bind(&done); |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorMIPS calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| // The register T7 is required to be used for the hidden argument in |
| // art_quick_imt_conflict_trampoline, so add the hidden argument. |
| invoke->GetLocations()->AddTemp(Location::RegisterLocation(T7)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>(); |
| Location receiver = invoke->GetLocations()->InAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize); |
| |
| // temp = object->GetClass(); |
| if (receiver.IsStackSlot()) { |
| __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); |
| __ LoadFromOffset(kLoadWord, temp, temp, class_offset); |
| } else { |
| __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| __ LoadFromOffset(kLoadWord, temp, temp, |
| mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value()); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kMipsPointerSize)); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ LoadFromOffset(kLoadWord, temp, temp, method_offset); |
| // T9 = temp->GetEntryPoint(); |
| __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value()); |
| // Set the hidden argument. |
| __ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(), |
| invoke->GetDexMethodIndex()); |
| // T9(); |
| __ Jalr(T9); |
| __ NopIfNoReordering(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderMIPS intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops(); |
| bool has_extra_input = invoke->HasPcRelativeMethodLoadKind() && !is_r6 && !has_irreducible_loops; |
| |
| IntrinsicLocationsBuilderMIPS intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| if (invoke->GetLocations()->CanCall() && has_extra_input) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); |
| } |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| |
| // Add the extra input register if either the dex cache array base register |
| // or the PC-relative base register for accessing literals is needed. |
| if (has_extra_input) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| codegen_->GenerateInvokePolymorphicCall(invoke); |
| } |
| |
| void LocationsBuilderMIPS::VisitInvokeCustom(HInvokeCustom* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInvokeCustom(HInvokeCustom* invoke) { |
| codegen_->GenerateInvokeCustomCall(invoke); |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorMIPS intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageRelRo: |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kJitBootImageAddress: |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorMIPS::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBootImageRelRo: |
| case HLoadClass::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kJitBootImageAddress: |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| Register CodeGeneratorMIPS::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, |
| Register temp) { |
| CHECK(!GetInstructionSetFeatures().IsR6()); |
| CHECK(!GetGraph()->HasIrreducibleLoops()); |
| CHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); |
| Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| if (!invoke->GetLocations()->Intrinsified()) { |
| return location.AsRegister<Register>(); |
| } |
| // For intrinsics we allow any location, so it may be on the stack. |
| if (!location.IsRegister()) { |
| __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex()); |
| return temp; |
| } |
| // For register locations, check if the register was saved. If so, get it from the stack. |
| // Note: There is a chance that the register was saved but not overwritten, so we could |
| // save one load. However, since this is just an intrinsic slow path we prefer this |
| // simple and more robust approach rather that trying to determine if that's the case. |
| SlowPathCode* slow_path = GetCurrentSlowPath(); |
| DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path. |
| if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) { |
| int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>()); |
| __ LoadFromOffset(kLoadWord, temp, SP, stack_offset); |
| return temp; |
| } |
| return location.AsRegister<Register>(); |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) { |
| return desired_dispatch_info; |
| } |
| |
| void CodeGeneratorMIPS::GenerateStaticOrDirectCall( |
| HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { |
| // All registers are assumed to be correctly set up per the calling convention. |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind(); |
| HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation(); |
| bool is_r6 = GetInstructionSetFeatures().IsR6(); |
| bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops(); |
| Register base_reg = (invoke->HasPcRelativeMethodLoadKind() && !is_r6 && !has_irreducible_loops) |
| ? GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister<Register>()) |
| : ZERO; |
| |
| switch (method_load_kind) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { |
| // temp = thread->string_init_entrypoint |
| uint32_t offset = |
| GetThreadOffset<kMipsPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| __ LoadFromOffset(kLoadWord, |
| temp.AsRegister<Register>(), |
| TR, |
| offset); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(GetCompilerOptions().IsBootImage()); |
| PcRelativePatchInfo* info_high = NewBootImageMethodPatch(invoke->GetTargetMethod()); |
| PcRelativePatchInfo* info_low = |
| NewBootImageMethodPatch(invoke->GetTargetMethod(), info_high); |
| Register temp_reg = temp.AsRegister<Register>(); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg); |
| __ Addiu(temp_reg, TMP, /* placeholder */ 0x5678, &info_low->label); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: { |
| uint32_t boot_image_offset = GetBootImageOffset(invoke); |
| PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_offset); |
| PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_offset, info_high); |
| Register temp_reg = temp.AsRegister<Register>(); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg); |
| __ Lw(temp_reg, TMP, /* placeholder */ 0x5678, &info_low->label); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: { |
| PcRelativePatchInfo* info_high = NewMethodBssEntryPatch( |
| MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex())); |
| PcRelativePatchInfo* info_low = NewMethodBssEntryPatch( |
| MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()), info_high); |
| Register temp_reg = temp.AsRegister<Register>(); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg); |
| __ Lw(temp_reg, TMP, /* placeholder */ 0x5678, &info_low->label); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress: |
| __ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: { |
| GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); |
| return; // No code pointer retrieval; the runtime performs the call directly. |
| } |
| } |
| |
| switch (code_ptr_location) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| __ Bal(&frame_entry_label_); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // T9 = callee_method->entry_point_from_quick_compiled_code_; |
| __ LoadFromOffset(kLoadWord, |
| T9, |
| callee_method.AsRegister<Register>(), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kMipsPointerSize).Int32Value()); |
| // T9() |
| __ Jalr(T9); |
| __ NopIfNoReordering(); |
| break; |
| } |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall(invoke, |
| locations->HasTemps() |
| ? locations->GetTemp(0) |
| : Location::NoLocation()); |
| } |
| |
| void CodeGeneratorMIPS::GenerateVirtualCall( |
| HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) { |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| Register receiver = calling_convention.GetRegisterAt(0); |
| |
| Register temp = temp_location.AsRegister<Register>(); |
| size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kMipsPointerSize).SizeValue(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize); |
| |
| // temp = object->GetClass(); |
| __ LoadFromOffset(kLoadWord, temp, receiver, class_offset); |
| MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetMethodAt(method_offset); |
| __ LoadFromOffset(kLoadWord, temp, temp, method_offset); |
| // T9 = temp->GetEntryPoint(); |
| __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value()); |
| // T9(); |
| __ Jalr(T9); |
| __ NopIfNoReordering(); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(cls, loc, loc); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| const bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops(); |
| const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| switch (load_kind) { |
| // We need an extra register for PC-relative literals on R2. |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBootImageRelRo: |
| case HLoadClass::LoadKind::kBssEntry: |
| case HLoadClass::LoadKind::kJitBootImageAddress: |
| if (isR6) { |
| break; |
| } |
| if (has_irreducible_loops) { |
| if (load_kind != HLoadClass::LoadKind::kJitBootImageAddress) { |
| codegen_->ClobberRA(); |
| } |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| case HLoadClass::LoadKind::kReferrersClass: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| break; |
| default: |
| break; |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadClass::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the type resolution or initialization and marking to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } else { |
| // For non-Baker read barriers we have a temp-clobbering call. |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| codegen_->GenerateLoadClassRuntimeCall(cls); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| LocationSummary* locations = cls->GetLocations(); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| Register base_or_current_method_reg; |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops(); |
| switch (load_kind) { |
| // We need an extra register for PC-relative literals on R2. |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBootImageRelRo: |
| case HLoadClass::LoadKind::kBssEntry: |
| case HLoadClass::LoadKind::kJitBootImageAddress: |
| base_or_current_method_reg = |
| (isR6 || has_irreducible_loops) ? ZERO : locations->InAt(0).AsRegister<Register>(); |
| break; |
| case HLoadClass::LoadKind::kReferrersClass: |
| case HLoadClass::LoadKind::kRuntimeCall: |
| base_or_current_method_reg = locations->InAt(0).AsRegister<Register>(); |
| break; |
| default: |
| base_or_current_method_reg = ZERO; |
| break; |
| } |
| |
| const ReadBarrierOption read_barrier_option = cls->IsInBootImage() |
| ? kWithoutReadBarrier |
| : kCompilerReadBarrierOption; |
| bool generate_null_check = false; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| base_or_current_method_reg, |
| ArtMethod::DeclaringClassOffset().Int32Value(), |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex()); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex(), info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, |
| out, |
| base_or_current_method_reg); |
| __ Addiu(out, out, /* placeholder */ 0x5678, &info_low->label); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| uint32_t boot_image_offset = codegen_->GetBootImageOffset(cls); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, |
| out, |
| base_or_current_method_reg); |
| __ Lw(out, out, /* placeholder */ 0x5678, &info_low->label); |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: { |
| CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high = |
| codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex()); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_low = |
| codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex(), bss_info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(bss_info_high, |
| out, |
| base_or_current_method_reg); |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| out, |
| /* placeholder */ 0x5678, |
| read_barrier_option, |
| &info_low->label); |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get()); |
| DCHECK_NE(address, 0u); |
| if (isR6 || !has_irreducible_loops) { |
| __ LoadLiteral(out, |
| base_or_current_method_reg, |
| codegen_->DeduplicateBootImageAddressLiteral(address)); |
| } else { |
| __ LoadConst32(out, address); |
| } |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: { |
| CodeGeneratorMIPS::JitPatchInfo* info = codegen_->NewJitRootClassPatch(cls->GetDexFile(), |
| cls->GetTypeIndex(), |
| cls->GetClass()); |
| bool reordering = __ SetReorder(false); |
| __ Bind(&info->high_label); |
| __ Lui(out, /* placeholder */ 0x1234); |
| __ SetReorder(reordering); |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| out, |
| /* placeholder */ 0x5678, |
| read_barrier_option, |
| &info->low_label); |
| break; |
| } |
| case HLoadClass::LoadKind::kRuntimeCall: |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| if (generate_null_check || cls->MustGenerateClinitCheck()) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCodeMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS(cls, cls); |
| codegen_->AddSlowPath(slow_path); |
| if (generate_null_check) { |
| __ Beqz(out, slow_path->GetEntryLabel()); |
| } |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitLoadMethodHandle(HLoadMethodHandle* load) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, loc, loc); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitLoadMethodHandle(HLoadMethodHandle* load) { |
| codegen_->GenerateLoadMethodHandleRuntimeCall(load); |
| } |
| |
| void LocationsBuilderMIPS::VisitLoadMethodType(HLoadMethodType* load) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, loc, loc); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitLoadMethodType(HLoadMethodType* load) { |
| codegen_->GenerateLoadMethodTypeRuntimeCall(load); |
| } |
| |
| static int32_t GetExceptionTlsOffset() { |
| return Thread::ExceptionOffset<kMipsPointerSize>().Int32Value(); |
| } |
| |
| void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) { |
| Register out = load->GetLocations()->Out().AsRegister<Register>(); |
| __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderMIPS::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| const bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops(); |
| switch (load_kind) { |
| // We need an extra register for PC-relative literals on R2. |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageRelRo: |
| case HLoadString::LoadKind::kBssEntry: |
| case HLoadString::LoadKind::kJitBootImageAddress: |
| if (isR6) { |
| break; |
| } |
| if (has_irreducible_loops) { |
| if (load_kind != HLoadString::LoadKind::kJitBootImageAddress) { |
| codegen_->ClobberRA(); |
| } |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| // We need an extra register for PC-relative dex cache accesses. |
| case HLoadString::LoadKind::kRuntimeCall: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| break; |
| default: |
| break; |
| } |
| if (load_kind == HLoadString::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadString::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the pResolveString and marking to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } else { |
| // For non-Baker read barriers we have a temp-clobbering call. |
| } |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| LocationSummary* locations = load->GetLocations(); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| Register base_or_current_method_reg; |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops(); |
| switch (load_kind) { |
| // We need an extra register for PC-relative literals on R2. |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageRelRo: |
| case HLoadString::LoadKind::kBssEntry: |
| case HLoadString::LoadKind::kJitBootImageAddress: |
| base_or_current_method_reg = |
| (isR6 || has_irreducible_loops) ? ZERO : locations->InAt(0).AsRegister<Register>(); |
| break; |
| default: |
| base_or_current_method_reg = ZERO; |
| break; |
| } |
| |
| switch (load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex()); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex(), info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, |
| out, |
| base_or_current_method_reg); |
| __ Addiu(out, out, /* placeholder */ 0x5678, &info_low->label); |
| return; |
| } |
| case HLoadString::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| uint32_t boot_image_offset = codegen_->GetBootImageOffset(load); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, |
| out, |
| base_or_current_method_reg); |
| __ Lw(out, out, /* placeholder */ 0x5678, &info_low->label); |
| return; |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_high = |
| codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex()); |
| CodeGeneratorMIPS::PcRelativePatchInfo* info_low = |
| codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex(), info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, |
| out, |
| base_or_current_method_reg); |
| GenerateGcRootFieldLoad(load, |
| out_loc, |
| out, |
| /* placeholder */ 0x5678, |
| kCompilerReadBarrierOption, |
| &info_low->label); |
| SlowPathCodeMIPS* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadStringSlowPathMIPS(load); |
| codegen_->AddSlowPath(slow_path); |
| __ Beqz(out, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| case HLoadString::LoadKind::kJitBootImageAddress: { |
| uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get()); |
| DCHECK_NE(address, 0u); |
| if (isR6 || !has_irreducible_loops) { |
| __ LoadLiteral(out, |
| base_or_current_method_reg, |
| codegen_->DeduplicateBootImageAddressLiteral(address)); |
| } else { |
| __ LoadConst32(out, address); |
| } |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: { |
| CodeGeneratorMIPS::JitPatchInfo* info = |
| codegen_->NewJitRootStringPatch(load->GetDexFile(), |
| load->GetStringIndex(), |
| load->GetString()); |
| bool reordering = __ SetReorder(false); |
| __ Bind(&info->high_label); |
| __ Lui(out, /* placeholder */ 0x1234); |
| __ SetReorder(reordering); |
| GenerateGcRootFieldLoad(load, |
| out_loc, |
| out, |
| /* placeholder */ 0x5678, |
| kCompilerReadBarrierOption, |
| &info->low_label); |
| return; |
| } |
| default: |
| break; |
| } |
| |
| // TODO: Re-add the compiler code to do string dex cache lookup again. |
| DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), out); |
| __ LoadConst32(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_); |
| codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| } |
| |
| void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) { |
| if (instruction->IsEnter()) { |
| codegen_->InvokeRuntime(kQuickLockObject, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| codegen_->InvokeRuntime(kQuickUnlockObject, instruction, instruction->GetDexPc()); |
| } |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| |
| void LocationsBuilderMIPS::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: { |
| Register dst = locations->Out().AsRegister<Register>(); |
| Register lhs = locations->InAt(0).AsRegister<Register>(); |
| Register rhs = locations->InAt(1).AsRegister<Register>(); |
| |
| if (isR6) { |
| __ MulR6(dst, lhs, rhs); |
| } else { |
| __ MulR2(dst, lhs, rhs); |
| } |
| break; |
| } |
| case DataType::Type::kInt64: { |
| Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register dst_low = locations->Out().AsRegisterPairLow<Register>(); |
| Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>(); |
| Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>(); |
| |
| // Extra checks to protect caused by the existance of A1_A2. |
| // The algorithm is wrong if dst_high is either lhs_lo or rhs_lo: |
| // (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2). |
| DCHECK_NE(dst_high, lhs_low); |
| DCHECK_NE(dst_high, rhs_low); |
| |
| // A_B * C_D |
| // dst_hi: [ low(A*D) + low(B*C) + hi(B*D) ] |
| // dst_lo: [ low(B*D) ] |
| // Note: R2 and R6 MUL produce the low 32 bit of the multiplication result. |
| |
| if (isR6) { |
| __ MulR6(TMP, lhs_high, rhs_low); |
| __ MulR6(dst_high, lhs_low, rhs_high); |
| __ Addu(dst_high, dst_high, TMP); |
| __ MuhuR6(TMP, lhs_low, rhs_low); |
| __ Addu(dst_high, dst_high, TMP); |
| __ MulR6(dst_low, lhs_low, rhs_low); |
| } else { |
| __ MulR2(TMP, lhs_high, rhs_low); |
| __ MulR2(dst_high, lhs_low, rhs_high); |
| __ Addu(dst_high, dst_high, TMP); |
| __ MultuR2(lhs_low, rhs_low); |
| __ Mfhi(TMP); |
| __ Addu(dst_high, dst_high, TMP); |
| __ Mflo(dst_low); |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| __ MulS(dst, lhs, rhs); |
| } else { |
| __ MulD(dst, lhs, rhs); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected mul type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: { |
| Register dst = locations->Out().AsRegister<Register>(); |
| Register src = locations->InAt(0).AsRegister<Register>(); |
| __ Subu(dst, ZERO, src); |
| break; |
| } |
| case DataType::Type::kInt64: { |
| Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register dst_low = locations->Out().AsRegisterPairLow<Register>(); |
| Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| __ Subu(dst_low, ZERO, src_low); |
| __ Sltu(TMP, ZERO, dst_low); |
| __ Subu(dst_high, ZERO, src_high); |
| __ Subu(dst_high, dst_high, TMP); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| __ NegS(dst, src); |
| } else { |
| __ NegD(dst, src); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected neg type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes care |
| // of poisoning the reference. |
| QuickEntrypointEnum entrypoint = |
| CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass()); |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| } |
| |
| void LocationsBuilderMIPS::VisitNot(HNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: { |
| Register dst = locations->Out().AsRegister<Register>(); |
| Register src = locations->InAt(0).AsRegister<Register>(); |
| __ Nor(dst, src, ZERO); |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register dst_low = locations->Out().AsRegisterPairLow<Register>(); |
| Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| __ Nor(dst_high, src_high, ZERO); |
| __ Nor(dst_low, src_low, ZERO); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| __ Xori(locations->Out().AsRegister<Register>(), |
| locations->InAt(0).AsRegister<Register>(), |
| 1); |
| } |
| |
| void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| Location obj = instruction->GetLocations()->InAt(0); |
| |
| __ Lw(ZERO, obj.AsRegister<Register>(), 0); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCodeMIPS* slow_path = new (GetScopedAllocator()) NullCheckSlowPathMIPS(instruction); |
| AddSlowPath(slow_path); |
| |
| Location obj = instruction->GetLocations()->InAt(0); |
| |
| __ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderMIPS::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) { |
| if (instruction->GetNext()->IsSuspendCheck() && |
| instruction->GetBlock()->GetLoopInformation() != nullptr) { |
| HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); |
| // The back edge will generate the suspend check. |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); |
| } |
| |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction |
| ATTRIBUTE_UNUSED) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction |
| ATTRIBUTE_UNUSED) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderMIPS::VisitRem(HRem* rem) { |
| DataType::Type type = rem->GetResultType(); |
| bool call_rem; |
| if ((type == DataType::Type::kInt64) && rem->InputAt(1)->IsConstant()) { |
| int64_t imm = CodeGenerator::GetInt64ValueOf(rem->InputAt(1)->AsConstant()); |
| call_rem = (imm != 0) && !IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm))); |
| } else { |
| call_rem = (type != DataType::Type::kInt32); |
| } |
| LocationSummary::CallKind call_kind = call_rem |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kInt64: { |
| if (call_rem) { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| locations->SetOut(calling_convention.GetReturnLocation(type)); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant())); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(type)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| GenerateDivRemIntegral(instruction); |
| break; |
| case DataType::Type::kInt64: { |
| if (locations->InAt(1).IsConstant()) { |
| int64_t imm = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue(); |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else { |
| DCHECK(IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm)))); |
| DivRemByPowerOfTwo(instruction); |
| } |
| } else { |
| codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: { |
| codegen_->InvokeRuntime(kQuickFmodf, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickFmodf, float, float, float>(); |
| break; |
| } |
| case DataType::Type::kFloat64: { |
| codegen_->InvokeRuntime(kQuickFmod, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickFmod, double, double, double>(); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) { |
| LocationSummary* locations = new (allocator) LocationSummary(minmax); |
| switch (minmax->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateMinMaxInt(LocationSummary* locations, |
| bool is_min, |
| bool isR6, |
| DataType::Type type) { |
| if (isR6) { |
| // Some architectures, such as ARM and MIPS (prior to r6), have a |
| // conditional move instruction which only changes the target |
| // (output) register if the condition is true (MIPS prior to r6 had |
| // MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions |
| // always change the target (output) register. If the condition is |
| // true the output register gets the contents of the "rs" register; |
| // otherwise, the output register is set to zero. One consequence |
| // of this is that to implement something like "rd = c==0 ? rs : rt" |
| // MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions. |
| // After executing this pair of instructions one of the output |
| // registers from the pair will necessarily contain zero. Then the |
| // code ORs the output registers from the SELEQZ/SELNEZ instructions |
| // to get the final result. |
| // |
| // The initial test to see if the output register is same as the |
| // first input register is needed to make sure that value in the |
| // first input register isn't clobbered before we've finished |
| // computing the output value. The logic in the corresponding else |
| // clause performs the same task but makes sure the second input |
| // register isn't clobbered in the event that it's the same register |
| // as the output register; the else clause also handles the case |
| // where the output register is distinct from both the first, and the |
| // second input registers. |
| if (type == DataType::Type::kInt64) { |
| Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>(); |
| Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>(); |
| Register out_lo = locations->Out().AsRegisterPairLow<Register>(); |
| Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); |
| |
| MipsLabel compare_done; |
| |
| if (a_lo == b_lo) { |
| if (out_lo != a_lo) { |
| __ Move(out_lo, a_lo); |
| __ Move(out_hi, a_hi); |
| } |
| } else { |
| __ Slt(TMP, b_hi, a_hi); |
| __ Bne(b_hi, a_hi, &compare_done); |
| |
| __ Sltu(TMP, b_lo, a_lo); |
| |
| __ Bind(&compare_done); |
| |
| if (is_min) { |
| __ Seleqz(AT, a_lo, TMP); |
| __ Selnez(out_lo, b_lo, TMP); // Safe even if out_lo == a_lo/b_lo |
| // because at this point we're |
| // done using a_lo/b_lo. |
| } else { |
| __ Selnez(AT, a_lo, TMP); |
| __ Seleqz(out_lo, b_lo, TMP); // ditto |
| } |
| __ Or(out_lo, out_lo, AT); |
| if (is_min) { |
| __ Seleqz(AT, a_hi, TMP); |
| __ Selnez(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi |
| } else { |
| __ Selnez(AT, a_hi, TMP); |
| __ Seleqz(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi |
| } |
| __ Or(out_hi, out_hi, AT); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt32); |
| Register a = locations->InAt(0).AsRegister<Register>(); |
| Register b = locations->InAt(1).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (a == b) { |
| if (out != a) { |
| __ Move(out, a); |
| } |
| } else { |
| __ Slt(AT, b, a); |
| if (is_min) { |
| __ Seleqz(TMP, a, AT); |
| __ Selnez(AT, b, AT); |
| } else { |
| __ Selnez(TMP, a, AT); |
| __ Seleqz(AT, b, AT); |
| } |
| __ Or(out, TMP, AT); |
| } |
| } |
| } else { // !isR6 |
| if (type == DataType::Type::kInt64) { |
| Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>(); |
| Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>(); |
| Register out_lo = locations->Out().AsRegisterPairLow<Register>(); |
| Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); |
| |
| MipsLabel compare_done; |
| |
| if (a_lo == b_lo) { |
| if (out_lo != a_lo) { |
| __ Move(out_lo, a_lo); |
| __ Move(out_hi, a_hi); |
| } |
| } else { |
| __ Slt(TMP, a_hi, b_hi); |
| __ Bne(a_hi, b_hi, &compare_done); |
| |
| __ Sltu(TMP, a_lo, b_lo); |
| |
| __ Bind(&compare_done); |
| |
| if (is_min) { |
| if (out_lo != a_lo) { |
| __ Movn(out_hi, a_hi, TMP); |
| __ Movn(out_lo, a_lo, TMP); |
| } |
| if (out_lo != b_lo) { |
| __ Movz(out_hi, b_hi, TMP); |
| __ Movz(out_lo, b_lo, TMP); |
| } |
| } else { |
| if (out_lo != a_lo) { |
| __ Movz(out_hi, a_hi, TMP); |
| __ Movz(out_lo, a_lo, TMP); |
| } |
| if (out_lo != b_lo) { |
| __ Movn(out_hi, b_hi, TMP); |
| __ Movn(out_lo, b_lo, TMP); |
| } |
| } |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt32); |
| Register a = locations->InAt(0).AsRegister<Register>(); |
| Register b = locations->InAt(1).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (a == b) { |
| if (out != a) { |
| __ Move(out, a); |
| } |
| } else { |
| __ Slt(AT, a, b); |
| if (is_min) { |
| if (out != a) { |
| __ Movn(out, a, AT); |
| } |
| if (out != b) { |
| __ Movz(out, b, AT); |
| } |
| } else { |
| if (out != a) { |
| __ Movz(out, a, AT); |
| } |
| if (out != b) { |
| __ Movn(out, b, AT); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateMinMaxFP(LocationSummary* locations, |
| bool is_min, |
| bool isR6, |
| DataType::Type type) { |
| FRegister out = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister a = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister b = locations->InAt(1).AsFpuRegister<FRegister>(); |
| |
| if (isR6) { |
| MipsLabel noNaNs; |
| MipsLabel done; |
| FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP; |
| |
| // When Java computes min/max it prefers a NaN to a number; the |
| // behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of |
| // the inputs is a NaN and the other is a valid number, the MIPS |
| // instruction will return the number; Java wants the NaN value |
| // returned. This is why there is extra logic preceding the use of |
| // the MIPS min.fmt/max.fmt instructions. If either a, or b holds a |
| // NaN, return the NaN, otherwise return the min/max. |
| if (type == DataType::Type::kFloat64) { |
| __ CmpUnD(FTMP, a, b); |
| __ Bc1eqz(FTMP, &noNaNs); |
| |
| // One of the inputs is a NaN |
| __ CmpEqD(ftmp, a, a); |
| // If a == a then b is the NaN, otherwise a is the NaN. |
| __ SelD(ftmp, a, b); |
| |
| if (ftmp != out) { |
| __ MovD(out, ftmp); |
| } |
| |
| __ B(&done); |
| |
| __ Bind(&noNaNs); |
| |
| if (is_min) { |
| __ MinD(out, a, b); |
| } else { |
| __ MaxD(out, a, b); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| __ CmpUnS(FTMP, a, b); |
| __ Bc1eqz(FTMP, &noNaNs); |
| |
| // One of the inputs is a NaN |
| __ CmpEqS(ftmp, a, a); |
| // If a == a then b is the NaN, otherwise a is the NaN. |
| __ SelS(ftmp, a, b); |
| |
| if (ftmp != out) { |
| __ MovS(out, ftmp); |
| } |
| |
| __ B(&done); |
| |
| __ Bind(&noNaNs); |
| |
| if (is_min) { |
| __ MinS(out, a, b); |
| } else { |
| __ MaxS(out, a, b); |
| } |
| } |
| |
| __ Bind(&done); |
| |
| } else { // !isR6 |
| MipsLabel ordered; |
| MipsLabel compare; |
| MipsLabel select; |
| MipsLabel done; |
| |
| if (type == DataType::Type::kFloat64) { |
| __ CunD(a, b); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| __ CunS(a, b); |
| } |
| __ Bc1f(&ordered); |
| |
| // a or b (or both) is a NaN. Return one, which is a NaN. |
| if (type == DataType::Type::kFloat64) { |
| __ CeqD(b, b); |
| } else { |
| __ CeqS(b, b); |
| } |
| __ B(&select); |
| |
| __ Bind(&ordered); |
| |
| // Neither is a NaN. |
| // a == b? (-0.0 compares equal with +0.0) |
| // If equal, handle zeroes, else compare further. |
| if (type == DataType::Type::kFloat64) { |
| __ CeqD(a, b); |
| } else { |
| __ CeqS(a, b); |
| } |
| __ Bc1f(&compare); |
| |
| // a == b either bit for bit or one is -0.0 and the other is +0.0. |
| if (type == DataType::Type::kFloat64) { |
| __ MoveFromFpuHigh(TMP, a); |
| __ MoveFromFpuHigh(AT, b); |
| } else { |
| __ Mfc1(TMP, a); |
| __ Mfc1(AT, b); |
| } |
| |
| if (is_min) { |
| // -0.0 prevails over +0.0. |
| __ Or(TMP, TMP, AT); |
| } else { |
| // +0.0 prevails over -0.0. |
| __ And(TMP, TMP, AT); |
| } |
| |
| if (type == DataType::Type::kFloat64) { |
| __ Mfc1(AT, a); |
| __ Mtc1(AT, out); |
| __ MoveToFpuHigh(TMP, out); |
| } else { |
| __ Mtc1(TMP, out); |
| } |
| __ B(&done); |
| |
| __ Bind(&compare); |
| |
| if (type == DataType::Type::kFloat64) { |
| if (is_min) { |
| // return (a <= b) ? a : b; |
| __ ColeD(a, b); |
| } else { |
| // return (a >= b) ? a : b; |
| __ ColeD(b, a); // b <= a |
| } |
| } else { |
| if (is_min) { |
| // return (a <= b) ? a : b; |
| __ ColeS(a, b); |
| } else { |
| // return (a >= b) ? a : b; |
| __ ColeS(b, a); // b <= a |
| } |
| } |
| |
| __ Bind(&select); |
| |
| if (type == DataType::Type::kFloat64) { |
| __ MovtD(out, a); |
| __ MovfD(out, b); |
| } else { |
| __ MovtS(out, a); |
| __ MovfS(out, b); |
| } |
| |
| __ Bind(&done); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateMinMax(HBinaryOperation* minmax, bool is_min) { |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| DataType::Type type = minmax->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| GenerateMinMaxInt(minmax->GetLocations(), is_min, isR6, type); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateMinMaxFP(minmax->GetLocations(), is_min, isR6, type); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for HMinMax " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitMin(HMin* min) { |
| CreateMinMaxLocations(GetGraph()->GetAllocator(), min); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitMin(HMin* min) { |
| GenerateMinMax(min, /*is_min*/ true); |
| } |
| |
| void LocationsBuilderMIPS::VisitMax(HMax* max) { |
| CreateMinMaxLocations(GetGraph()->GetAllocator(), max); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitMax(HMax* max) { |
| GenerateMinMax(max, /*is_min*/ false); |
| } |
| |
| void LocationsBuilderMIPS::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected abs type " << abs->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenerateAbsFP(LocationSummary* locations, |
| DataType::Type type, |
| bool isR2OrNewer, |
| bool isR6) { |
| FRegister in = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister out = locations->Out().AsFpuRegister<FRegister>(); |
| |
| // Note, as a "quality of implementation", rather than pure "spec compliance", we require that |
| // Math.abs() clears the sign bit (but changes nothing else) for all numbers, including NaN |
| // (signaling NaN may become quiet though). |
| // |
| // The ABS.fmt instructions (abs.s and abs.d) do exactly that when NAN2008=1 (R6). For this case, |
| // both regular floating point numbers and NAN values are treated alike, only the sign bit is |
| // affected by this instruction. |
| // But when NAN2008=0 (R2 and before), the ABS.fmt instructions can't be used. For this case, any |
| // NaN operand signals invalid operation. This means that other bits (not just sign bit) might be |
| // changed when doing abs(NaN). Because of that, we clear sign bit in a different way. |
| if (isR6) { |
| if (type == DataType::Type::kFloat64) { |
| __ AbsD(out, in); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| __ AbsS(out, in); |
| } |
| } else { |
| if (type == DataType::Type::kFloat64) { |
| if (in != out) { |
| __ MovD(out, in); |
| } |
| __ MoveFromFpuHigh(TMP, in); |
| // ins instruction is not available for R1. |
| if (isR2OrNewer) { |
| __ Ins(TMP, ZERO, 31, 1); |
| } else { |
| __ Sll(TMP, TMP, 1); |
| __ Srl(TMP, TMP, 1); |
| } |
| __ MoveToFpuHigh(TMP, out); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| __ Mfc1(TMP, in); |
| // ins instruction is not available for R1. |
| if (isR2OrNewer) { |
| __ Ins(TMP, ZERO, 31, 1); |
| } else { |
| __ Sll(TMP, TMP, 1); |
| __ Srl(TMP, TMP, 1); |
| } |
| __ Mtc1(TMP, out); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = abs->GetLocations(); |
| bool isR2OrNewer = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: { |
| Register in = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| __ Sra(AT, in, 31); |
| __ Xor(out, in, AT); |
| __ Subu(out, out, AT); |
| break; |
| } |
| case DataType::Type::kInt64: { |
| Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register out_lo = locations->Out().AsRegisterPairLow<Register>(); |
| Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); |
| // The comments in this section show the analogous operations which would |
| // be performed if we had 64-bit registers "in", and "out". |
| // __ Dsra32(AT, in, 31); |
| __ Sra(AT, in_hi, 31); |
| // __ Xor(out, in, AT); |
| __ Xor(TMP, in_lo, AT); |
| __ Xor(out_hi, in_hi, AT); |
| // __ Dsubu(out, out, AT); |
| __ Subu(out_lo, TMP, AT); |
| __ Sltu(TMP, out_lo, TMP); |
| __ Addu(out_hi, out_hi, TMP); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateAbsFP(locations, abs->GetResultType(), isR2OrNewer, isR6); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected abs type " << abs->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitConstructorFence(HConstructorFence* constructor_fence) { |
| constructor_fence->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitConstructorFence( |
| HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { |
| GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| |
| void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderMIPS::VisitReturn(HReturn* ret) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(ret); |
| DataType::Type return_type = ret->InputAt(0)->GetType(); |
| locations->SetInAt(0, MipsReturnLocation(return_type)); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) { |
| ret->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderMIPS::VisitRor(HRor* ror) { |
| HandleShift(ror); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) { |
| HandleShift(ror); |
| } |
| |
| void LocationsBuilderMIPS::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderMIPS::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderMIPS::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc()); |
| } |
| |
| void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, |
| instruction->GetFieldInfo(), |
| instruction->GetDexPc(), |
| instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionMIPS calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary(instruction, |
| instruction->GetFieldType(), |
| calling_convention); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionMIPS calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionMIPS calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary(instruction, |
| instruction->GetFieldType(), |
| calling_convention); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionMIPS calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionMIPS calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary(instruction, |
| instruction->GetFieldType(), |
| calling_convention); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionMIPS calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionMIPS calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary(instruction, |
| instruction->GetFieldType(), |
| calling_convention); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionMIPS calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnSlowPath); |
| // In suspend check slow path, usually there are no caller-save registers at all. |
| // If SIMD instructions are present, however, we force spilling all live SIMD |
| // registers in full width (since the runtime only saves/restores lower part). |
| locations->SetCustomSlowPathCallerSaves( |
| GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) { |
| DataType::Type input_type = conversion->GetInputType(); |
| DataType::Type result_type = conversion->GetResultType(); |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| |
| if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) || |
| (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) { |
| LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; |
| } |
| |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| if (!isR6 && |
| ((DataType::IsFloatingPointType(result_type) && input_type == DataType::Type::kInt64) || |
| (result_type == DataType::Type::kInt64 && DataType::IsFloatingPointType(input_type)))) { |
| call_kind = LocationSummary::kCallOnMainOnly; |
| } |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind); |
| |
| if (call_kind == LocationSummary::kNoCall) { |
| if (DataType::IsFloatingPointType(input_type)) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| if (DataType::IsFloatingPointType(result_type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } else { |
| InvokeRuntimeCallingConvention calling_convention; |
| |
| if (DataType::IsFloatingPointType(input_type)) { |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| } else { |
| DCHECK_EQ(input_type, DataType::Type::kInt64); |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| } |
| |
| locations->SetOut(calling_convention.GetReturnLocation(result_type)); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = conversion->GetLocations(); |
| DataType::Type result_type = conversion->GetResultType(); |
| DataType::Type input_type = conversion->GetInputType(); |
| bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); |
| bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); |
| |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| |
| if (result_type == DataType::Type::kInt64 && DataType::IsIntegralType(input_type)) { |
| Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register dst_low = locations->Out().AsRegisterPairLow<Register>(); |
| Register src = locations->InAt(0).AsRegister<Register>(); |
| |
| if (dst_low != src) { |
| __ Move(dst_low, src); |
| } |
| __ Sra(dst_high, src, 31); |
| } else if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) { |
| Register dst = locations->Out().AsRegister<Register>(); |
| Register src = (input_type == DataType::Type::kInt64) |
| ? locations->InAt(0).AsRegisterPairLow<Register>() |
| : locations->InAt(0).AsRegister<Register>(); |
| |
| switch (result_type) { |
| case DataType::Type::kUint8: |
| __ Andi(dst, src, 0xFF); |
| break; |
| case DataType::Type::kInt8: |
| if (has_sign_extension) { |
| __ Seb(dst, src); |
| } else { |
| __ Sll(dst, src, 24); |
| __ Sra(dst, dst, 24); |
| } |
| break; |
| case DataType::Type::kUint16: |
| __ Andi(dst, src, 0xFFFF); |
| break; |
| case DataType::Type::kInt16: |
| if (has_sign_extension) { |
| __ Seh(dst, src); |
| } else { |
| __ Sll(dst, src, 16); |
| __ Sra(dst, dst, 16); |
| } |
| break; |
| case DataType::Type::kInt32: |
| if (dst != src) { |
| __ Move(dst, src); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) { |
| if (input_type == DataType::Type::kInt64) { |
| if (isR6) { |
| // cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary |
| // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction. |
| Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| __ Mtc1(src_low, FTMP); |
| __ Mthc1(src_high, FTMP); |
| if (result_type == DataType::Type::kFloat32) { |
| __ Cvtsl(dst, FTMP); |
| } else { |
| __ Cvtdl(dst, FTMP); |
| } |
| } else { |
| QuickEntrypointEnum entrypoint = |
| (result_type == DataType::Type::kFloat32) ? kQuickL2f : kQuickL2d; |
| codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc()); |
| if (result_type == DataType::Type::kFloat32) { |
| CheckEntrypointTypes<kQuickL2f, float, int64_t>(); |
| } else { |
| CheckEntrypointTypes<kQuickL2d, double, int64_t>(); |
| } |
| } |
| } else { |
| Register src = locations->InAt(0).AsRegister<Register>(); |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| __ Mtc1(src, FTMP); |
| if (result_type == DataType::Type::kFloat32) { |
| __ Cvtsw(dst, FTMP); |
| } else { |
| __ Cvtdw(dst, FTMP); |
| } |
| } |
| } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) { |
| CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64); |
| |
| // When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum |
| // value of the output type if the input is outside of the range after the truncation or |
| // produces 0 when the input is a NaN. IOW, the three special cases produce three distinct |
| // results. This matches the desired float/double-to-int/long conversion exactly. |
| // |
| // When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive |
| // value when the input is either a NaN or is outside of the range of the output type |
| // after the truncation. IOW, the three special cases (NaN, too small, too big) produce |
| // the same result. |
| // |
| // The code takes care of the different behaviors by first comparing the input to the |
| // minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int). |
| // If the input is greater than or equal to the minimum, it procedes to the truncate |
| // instruction, which will handle such an input the same way irrespective of NAN2008. |
| // Otherwise the input is compared to itself to determine whether it is a NaN or not |
| // in order to return either zero or the minimum value. |
| if (result_type == DataType::Type::kInt64) { |
| if (isR6) { |
| // trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary |
| // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction. |
| FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); |
| Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); |
| Register dst_low = locations->Out().AsRegisterPairLow<Register>(); |
| |
| if (input_type == DataType::Type::kFloat32) { |
| __ TruncLS(FTMP, src); |
| } else { |
| __ TruncLD(FTMP, src); |
| } |
| __ Mfc1(dst_low, FTMP); |
| __ Mfhc1(dst_high, FTMP); |
| } else { |
| QuickEntrypointEnum entrypoint = |
| (input_type == DataType::Type::kFloat32) ? kQuickF2l : kQuickD2l; |
| codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc()); |
| if (input_type == DataType::Type::kFloat32) { |
| CheckEntrypointTypes<kQuickF2l, int64_t, float>(); |
| } else { |
| CheckEntrypointTypes<kQuickD2l, int64_t, double>(); |
| } |
| } |
| } else { |
| FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); |
| Register dst = locations->Out().AsRegister<Register>(); |
| MipsLabel truncate; |
| MipsLabel done; |
| |
| if (!isR6) { |
| if (input_type == DataType::Type::kFloat32) { |
| uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min()); |
| __ LoadConst32(TMP, min_val); |
| __ Mtc1(TMP, FTMP); |
| } else { |
| uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min()); |
| __ LoadConst32(TMP, High32Bits(min_val)); |
| __ Mtc1(ZERO, FTMP); |
| __ MoveToFpuHigh(TMP, FTMP); |
| } |
| |
| if (input_type == DataType::Type::kFloat32) { |
| __ ColeS(0, FTMP, src); |
| } else { |
| __ ColeD(0, FTMP, src); |
| } |
| __ Bc1t(0, &truncate); |
| |
| if (input_type == DataType::Type::kFloat32) { |
| __ CeqS(0, src, src); |
| } else { |
| __ CeqD(0, src, src); |
| } |
| __ LoadConst32(dst, std::numeric_limits<int32_t>::min()); |
| __ Movf(dst, ZERO, 0); |
| |
| __ B(&done); |
| |
| __ Bind(&truncate); |
| } |
| |
| if (input_type == DataType::Type::kFloat32) { |
| __ TruncWS(FTMP, src); |
| } else { |
| __ TruncWD(FTMP, src); |
| } |
| __ Mfc1(dst, FTMP); |
| |
| if (!isR6) { |
| __ Bind(&done); |
| } |
| } |
| } else if (DataType::IsFloatingPointType(result_type) && |
| DataType::IsFloatingPointType(input_type)) { |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); |
| if (result_type == DataType::Type::kFloat32) { |
| __ Cvtsd(dst, src); |
| } else { |
| __ Cvtds(dst, src); |
| } |
| } else { |
| LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderMIPS::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderMIPS::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (!codegen_->GetInstructionSetFeatures().IsR6()) { |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| if (num_entries > InstructionCodeGeneratorMIPS::kPackedSwitchJumpTableThreshold) { |
| // When there's no HMipsComputeBaseMethodAddress input, R2 uses the NAL |
| // instruction to simulate PC-relative addressing when accessing the jump table. |
| // NAL clobbers RA. Make sure RA is preserved. |
| codegen_->ClobberRA(); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenPackedSwitchWithCompares(Register value_reg, |
| int32_t lower_bound, |
| uint32_t num_entries, |
| HBasicBlock* switch_block, |
| HBasicBlock* default_block) { |
| // Create a set of compare/jumps. |
| Register temp_reg = TMP; |
| __ Addiu32(temp_reg, value_reg, -lower_bound); |
| // Jump to default if index is negative |
| // Note: We don't check the case that index is positive while value < lower_bound, because in |
| // this case, index >= num_entries must be true. So that we can save one branch instruction. |
| __ Bltz(temp_reg, codegen_->GetLabelOf(default_block)); |
| |
| const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); |
| // Jump to successors[0] if value == lower_bound. |
| __ Beqz(temp_reg, codegen_->GetLabelOf(successors[0])); |
| int32_t last_index = 0; |
| for (; num_entries - last_index > 2; last_index += 2) { |
| __ Addiu(temp_reg, temp_reg, -2); |
| // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. |
| __ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1])); |
| // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. |
| __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2])); |
| } |
| if (num_entries - last_index == 2) { |
| // The last missing case_value. |
| __ Addiu(temp_reg, temp_reg, -1); |
| __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_block, default_block)) { |
| __ B(codegen_->GetLabelOf(default_block)); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS::GenTableBasedPackedSwitch(Register value_reg, |
| Register constant_area, |
| int32_t lower_bound, |
| uint32_t num_entries, |
| HBasicBlock* switch_block, |
| HBasicBlock* default_block) { |
| // Create a jump table. |
| std::vector<MipsLabel*> labels(num_entries); |
| const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| labels[i] = codegen_->GetLabelOf(successors[i]); |
| } |
| JumpTable* table = __ CreateJumpTable(std::move(labels)); |
| |
| // Is the value in range? |
| __ Addiu32(TMP, value_reg, -lower_bound); |
| if (IsInt<16>(static_cast<int32_t>(num_entries))) { |
| __ Sltiu(AT, TMP, num_entries); |
| __ Beqz(AT, codegen_->GetLabelOf(default_block)); |
| } else { |
| __ LoadConst32(AT, num_entries); |
| __ Bgeu(TMP, AT, codegen_->GetLabelOf(default_block)); |
| } |
| |
| // We are in the range of the table. |
| // Load the target address from the jump table, indexing by the value. |
| __ LoadLabelAddress(AT, constant_area, table->GetLabel()); |
| __ ShiftAndAdd(TMP, TMP, AT, 2, TMP); |
| __ Lw(TMP, TMP, 0); |
| // Compute the absolute target address by adding the table start address |
| // (the table contains offsets to targets relative to its start). |
| __ Addu(TMP, TMP, AT); |
| // And jump. |
| __ Jr(TMP); |
| __ NopIfNoReordering(); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| Register value_reg = locations->InAt(0).AsRegister<Register>(); |
| HBasicBlock* switch_block = switch_instr->GetBlock(); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| if (num_entries > kPackedSwitchJumpTableThreshold) { |
| // R6 uses PC-relative addressing to access the jump table. |
| // |
| // R2, OTOH, uses an HMipsComputeBaseMethodAddress input (when available) |
| // to access the jump table and it is implemented by changing HPackedSwitch to |
| // HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress (see |
| // VisitMipsPackedSwitch()). |
| // |
| // When there's no HMipsComputeBaseMethodAddress input (e.g. in presence of |
| // irreducible loops), R2 uses the NAL instruction to simulate PC-relative |
| // addressing. |
| GenTableBasedPackedSwitch(value_reg, |
| ZERO, |
| lower_bound, |
| num_entries, |
| switch_block, |
| default_block); |
| } else { |
| GenPackedSwitchWithCompares(value_reg, |
| lower_bound, |
| num_entries, |
| switch_block, |
| default_block); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // Constant area pointer (HMipsComputeBaseMethodAddress). |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| Register value_reg = locations->InAt(0).AsRegister<Register>(); |
| Register constant_area = locations->InAt(1).AsRegister<Register>(); |
| HBasicBlock* switch_block = switch_instr->GetBlock(); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| // This is an R2-only path. HPackedSwitch has been changed to |
| // HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress |
| // required to address the jump table relative to PC. |
| GenTableBasedPackedSwitch(value_reg, |
| constant_area, |
| lower_bound, |
| num_entries, |
| switch_block, |
| default_block); |
| } |
| |
| void LocationsBuilderMIPS::VisitMipsComputeBaseMethodAddress( |
| HMipsComputeBaseMethodAddress* insn) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(insn, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitMipsComputeBaseMethodAddress( |
| HMipsComputeBaseMethodAddress* insn) { |
| LocationSummary* locations = insn->GetLocations(); |
| Register reg = locations->Out().AsRegister<Register>(); |
| |
| CHECK(!codegen_->GetInstructionSetFeatures().IsR6()); |
| |
| // Generate a dummy PC-relative call to obtain PC. |
| __ Nal(); |
| // Grab the return address off RA. |
| __ Move(reg, RA); |
| |
| // Remember this offset (the obtained PC value) for later use with constant area. |
| __ BindPcRelBaseLabel(); |
| } |
| |
| void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kMipsPointerSize).SizeValue(); |
| __ LoadFromOffset(kLoadWord, |
| locations->Out().AsRegister<Register>(), |
| locations->InAt(0).AsRegister<Register>(), |
| method_offset); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kMipsPointerSize)); |
| __ LoadFromOffset(kLoadWord, |
| locations->Out().AsRegister<Register>(), |
| locations->InAt(0).AsRegister<Register>(), |
| mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value()); |
| __ LoadFromOffset(kLoadWord, |
| locations->Out().AsRegister<Register>(), |
| locations->Out().AsRegister<Register>(), |
| method_offset); |
| } |
| } |
| |
| void LocationsBuilderMIPS::VisitIntermediateAddress(HIntermediateAddress* instruction |
| ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorMIPS::VisitIntermediateAddress(HIntermediateAddress* instruction |
| ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| #undef __ |
| #undef QUICK_ENTRY_POINT |
| |
| } // namespace mips |
| } // namespace art |