blob: 7831cf6f7a15bccbd334d182d12c11ae7cd26acb [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "object_utils.h"
#include <llvm/ADT/DepthFirstIterator.h>
#include <llvm/Analysis/Verifier.h>
#include <llvm/Bitcode/ReaderWriter.h>
#include <llvm/IR/Instruction.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Metadata.h>
#include <llvm/IR/Type.h>
#include <llvm/Support/Casting.h>
#include <llvm/Support/InstIterator.h>
#include <llvm/Support/ToolOutputFile.h>
#include "dex/compiler_internals.h"
#include "dex/dataflow_iterator-inl.h"
#include "dex/frontend.h"
#include "mir_to_gbc.h"
#include "llvm/llvm_compilation_unit.h"
#include "llvm/utils_llvm.h"
const char* kLabelFormat = "%c0x%x_%d";
const char kInvalidBlock = 0xff;
const char kNormalBlock = 'L';
const char kCatchBlock = 'C';
namespace art {
::llvm::BasicBlock* MirConverter::GetLLVMBlock(int id) {
return id_to_block_map_.Get(id);
}
::llvm::Value* MirConverter::GetLLVMValue(int s_reg) {
return llvm_values_.Get(s_reg);
}
void MirConverter::SetVregOnValue(::llvm::Value* val, int s_reg) {
// Set vreg for debugging
art::llvm::IntrinsicHelper::IntrinsicId id = art::llvm::IntrinsicHelper::SetVReg;
::llvm::Function* func = intrinsic_helper_->GetIntrinsicFunction(id);
int v_reg = mir_graph_->SRegToVReg(s_reg);
::llvm::Value* table_slot = irb_->getInt32(v_reg);
::llvm::Value* args[] = { table_slot, val };
irb_->CreateCall(func, args);
}
// Replace the placeholder value with the real definition
void MirConverter::DefineValueOnly(::llvm::Value* val, int s_reg) {
::llvm::Value* placeholder = GetLLVMValue(s_reg);
if (placeholder == NULL) {
// This can happen on instruction rewrite on verification failure
LOG(WARNING) << "Null placeholder";
return;
}
placeholder->replaceAllUsesWith(val);
val->takeName(placeholder);
llvm_values_.Put(s_reg, val);
::llvm::Instruction* inst = ::llvm::dyn_cast< ::llvm::Instruction>(placeholder);
DCHECK(inst != NULL);
inst->eraseFromParent();
}
void MirConverter::DefineValue(::llvm::Value* val, int s_reg) {
DefineValueOnly(val, s_reg);
SetVregOnValue(val, s_reg);
}
::llvm::Type* MirConverter::LlvmTypeFromLocRec(RegLocation loc) {
::llvm::Type* res = NULL;
if (loc.wide) {
if (loc.fp)
res = irb_->getDoubleTy();
else
res = irb_->getInt64Ty();
} else {
if (loc.fp) {
res = irb_->getFloatTy();
} else {
if (loc.ref)
res = irb_->getJObjectTy();
else
res = irb_->getInt32Ty();
}
}
return res;
}
void MirConverter::InitIR() {
if (llvm_info_ == NULL) {
CompilerTls* tls = cu_->compiler_driver->GetTls();
CHECK(tls != NULL);
llvm_info_ = static_cast<LLVMInfo*>(tls->GetLLVMInfo());
if (llvm_info_ == NULL) {
llvm_info_ = new LLVMInfo();
tls->SetLLVMInfo(llvm_info_);
}
}
context_ = llvm_info_->GetLLVMContext();
module_ = llvm_info_->GetLLVMModule();
intrinsic_helper_ = llvm_info_->GetIntrinsicHelper();
irb_ = llvm_info_->GetIRBuilder();
}
::llvm::BasicBlock* MirConverter::FindCaseTarget(uint32_t vaddr) {
BasicBlock* bb = mir_graph_->FindBlock(vaddr);
DCHECK(bb != NULL);
return GetLLVMBlock(bb->id);
}
void MirConverter::ConvertPackedSwitch(BasicBlock* bb,
int32_t table_offset, RegLocation rl_src) {
const Instruction::PackedSwitchPayload* payload =
reinterpret_cast<const Instruction::PackedSwitchPayload*>(
cu_->insns + current_dalvik_offset_ + table_offset);
::llvm::Value* value = GetLLVMValue(rl_src.orig_sreg);
::llvm::SwitchInst* sw =
irb_->CreateSwitch(value, GetLLVMBlock(bb->fall_through->id),
payload->case_count);
for (uint16_t i = 0; i < payload->case_count; ++i) {
::llvm::BasicBlock* llvm_bb =
FindCaseTarget(current_dalvik_offset_ + payload->targets[i]);
sw->addCase(irb_->getInt32(payload->first_key + i), llvm_bb);
}
::llvm::MDNode* switch_node =
::llvm::MDNode::get(*context_, irb_->getInt32(table_offset));
sw->setMetadata("SwitchTable", switch_node);
bb->taken = NULL;
bb->fall_through = NULL;
}
void MirConverter::ConvertSparseSwitch(BasicBlock* bb,
int32_t table_offset, RegLocation rl_src) {
const Instruction::SparseSwitchPayload* payload =
reinterpret_cast<const Instruction::SparseSwitchPayload*>(
cu_->insns + current_dalvik_offset_ + table_offset);
const int32_t* keys = payload->GetKeys();
const int32_t* targets = payload->GetTargets();
::llvm::Value* value = GetLLVMValue(rl_src.orig_sreg);
::llvm::SwitchInst* sw =
irb_->CreateSwitch(value, GetLLVMBlock(bb->fall_through->id),
payload->case_count);
for (size_t i = 0; i < payload->case_count; ++i) {
::llvm::BasicBlock* llvm_bb =
FindCaseTarget(current_dalvik_offset_ + targets[i]);
sw->addCase(irb_->getInt32(keys[i]), llvm_bb);
}
::llvm::MDNode* switch_node =
::llvm::MDNode::get(*context_, irb_->getInt32(table_offset));
sw->setMetadata("SwitchTable", switch_node);
bb->taken = NULL;
bb->fall_through = NULL;
}
void MirConverter::ConvertSget(int32_t field_index,
art::llvm::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest) {
::llvm::Constant* field_idx = irb_->getInt32(field_index);
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* res = irb_->CreateCall(intr, field_idx);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertSput(int32_t field_index,
art::llvm::IntrinsicHelper::IntrinsicId id, RegLocation rl_src) {
::llvm::SmallVector< ::llvm::Value*, 2> args;
args.push_back(irb_->getInt32(field_index));
args.push_back(GetLLVMValue(rl_src.orig_sreg));
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
irb_->CreateCall(intr, args);
}
void MirConverter::ConvertFillArrayData(int32_t offset, RegLocation rl_array) {
art::llvm::IntrinsicHelper::IntrinsicId id;
id = art::llvm::IntrinsicHelper::HLFillArrayData;
::llvm::SmallVector< ::llvm::Value*, 2> args;
args.push_back(irb_->getInt32(offset));
args.push_back(GetLLVMValue(rl_array.orig_sreg));
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
irb_->CreateCall(intr, args);
}
::llvm::Value* MirConverter::EmitConst(::llvm::ArrayRef< ::llvm::Value*> src,
RegLocation loc) {
art::llvm::IntrinsicHelper::IntrinsicId id;
if (loc.wide) {
if (loc.fp) {
id = art::llvm::IntrinsicHelper::ConstDouble;
} else {
id = art::llvm::IntrinsicHelper::ConstLong;
}
} else {
if (loc.fp) {
id = art::llvm::IntrinsicHelper::ConstFloat;
} else if (loc.ref) {
id = art::llvm::IntrinsicHelper::ConstObj;
} else {
id = art::llvm::IntrinsicHelper::ConstInt;
}
}
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
return irb_->CreateCall(intr, src);
}
void MirConverter::EmitPopShadowFrame() {
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(
art::llvm::IntrinsicHelper::PopShadowFrame);
irb_->CreateCall(intr);
}
::llvm::Value* MirConverter::EmitCopy(::llvm::ArrayRef< ::llvm::Value*> src,
RegLocation loc) {
art::llvm::IntrinsicHelper::IntrinsicId id;
if (loc.wide) {
if (loc.fp) {
id = art::llvm::IntrinsicHelper::CopyDouble;
} else {
id = art::llvm::IntrinsicHelper::CopyLong;
}
} else {
if (loc.fp) {
id = art::llvm::IntrinsicHelper::CopyFloat;
} else if (loc.ref) {
id = art::llvm::IntrinsicHelper::CopyObj;
} else {
id = art::llvm::IntrinsicHelper::CopyInt;
}
}
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
return irb_->CreateCall(intr, src);
}
void MirConverter::ConvertMoveException(RegLocation rl_dest) {
::llvm::Function* func = intrinsic_helper_->GetIntrinsicFunction(
art::llvm::IntrinsicHelper::GetException);
::llvm::Value* res = irb_->CreateCall(func);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertThrow(RegLocation rl_src) {
::llvm::Value* src = GetLLVMValue(rl_src.orig_sreg);
::llvm::Function* func = intrinsic_helper_->GetIntrinsicFunction(
art::llvm::IntrinsicHelper::HLThrowException);
irb_->CreateCall(func, src);
}
void MirConverter::ConvertMonitorEnterExit(int opt_flags,
art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_src) {
::llvm::SmallVector< ::llvm::Value*, 2> args;
args.push_back(irb_->getInt32(opt_flags));
args.push_back(GetLLVMValue(rl_src.orig_sreg));
::llvm::Function* func = intrinsic_helper_->GetIntrinsicFunction(id);
irb_->CreateCall(func, args);
}
void MirConverter::ConvertArrayLength(int opt_flags,
RegLocation rl_dest, RegLocation rl_src) {
::llvm::SmallVector< ::llvm::Value*, 2> args;
args.push_back(irb_->getInt32(opt_flags));
args.push_back(GetLLVMValue(rl_src.orig_sreg));
::llvm::Function* func = intrinsic_helper_->GetIntrinsicFunction(
art::llvm::IntrinsicHelper::OptArrayLength);
::llvm::Value* res = irb_->CreateCall(func, args);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::EmitSuspendCheck() {
art::llvm::IntrinsicHelper::IntrinsicId id =
art::llvm::IntrinsicHelper::CheckSuspend;
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
irb_->CreateCall(intr);
}
::llvm::Value* MirConverter::ConvertCompare(ConditionCode cc,
::llvm::Value* src1, ::llvm::Value* src2) {
::llvm::Value* res = NULL;
DCHECK_EQ(src1->getType(), src2->getType());
switch (cc) {
case kCondEq: res = irb_->CreateICmpEQ(src1, src2); break;
case kCondNe: res = irb_->CreateICmpNE(src1, src2); break;
case kCondLt: res = irb_->CreateICmpSLT(src1, src2); break;
case kCondGe: res = irb_->CreateICmpSGE(src1, src2); break;
case kCondGt: res = irb_->CreateICmpSGT(src1, src2); break;
case kCondLe: res = irb_->CreateICmpSLE(src1, src2); break;
default: LOG(FATAL) << "Unexpected cc value " << cc;
}
return res;
}
void MirConverter::ConvertCompareAndBranch(BasicBlock* bb, MIR* mir,
ConditionCode cc, RegLocation rl_src1, RegLocation rl_src2) {
if (bb->taken->start_offset <= mir->offset) {
EmitSuspendCheck();
}
::llvm::Value* src1 = GetLLVMValue(rl_src1.orig_sreg);
::llvm::Value* src2 = GetLLVMValue(rl_src2.orig_sreg);
::llvm::Value* cond_value = ConvertCompare(cc, src1, src2);
cond_value->setName(StringPrintf("t%d", temp_name_++));
irb_->CreateCondBr(cond_value, GetLLVMBlock(bb->taken->id),
GetLLVMBlock(bb->fall_through->id));
// Don't redo the fallthrough branch in the BB driver
bb->fall_through = NULL;
}
void MirConverter::ConvertCompareZeroAndBranch(BasicBlock* bb,
MIR* mir, ConditionCode cc, RegLocation rl_src1) {
if (bb->taken->start_offset <= mir->offset) {
EmitSuspendCheck();
}
::llvm::Value* src1 = GetLLVMValue(rl_src1.orig_sreg);
::llvm::Value* src2;
if (rl_src1.ref) {
src2 = irb_->getJNull();
} else {
src2 = irb_->getInt32(0);
}
::llvm::Value* cond_value = ConvertCompare(cc, src1, src2);
irb_->CreateCondBr(cond_value, GetLLVMBlock(bb->taken->id),
GetLLVMBlock(bb->fall_through->id));
// Don't redo the fallthrough branch in the BB driver
bb->fall_through = NULL;
}
::llvm::Value* MirConverter::GenDivModOp(bool is_div, bool is_long,
::llvm::Value* src1, ::llvm::Value* src2) {
art::llvm::IntrinsicHelper::IntrinsicId id;
if (is_long) {
if (is_div) {
id = art::llvm::IntrinsicHelper::DivLong;
} else {
id = art::llvm::IntrinsicHelper::RemLong;
}
} else {
if (is_div) {
id = art::llvm::IntrinsicHelper::DivInt;
} else {
id = art::llvm::IntrinsicHelper::RemInt;
}
}
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::SmallVector< ::llvm::Value*, 2>args;
args.push_back(src1);
args.push_back(src2);
return irb_->CreateCall(intr, args);
}
::llvm::Value* MirConverter::GenArithOp(OpKind op, bool is_long,
::llvm::Value* src1, ::llvm::Value* src2) {
::llvm::Value* res = NULL;
switch (op) {
case kOpAdd: res = irb_->CreateAdd(src1, src2); break;
case kOpSub: res = irb_->CreateSub(src1, src2); break;
case kOpRsub: res = irb_->CreateSub(src2, src1); break;
case kOpMul: res = irb_->CreateMul(src1, src2); break;
case kOpOr: res = irb_->CreateOr(src1, src2); break;
case kOpAnd: res = irb_->CreateAnd(src1, src2); break;
case kOpXor: res = irb_->CreateXor(src1, src2); break;
case kOpDiv: res = GenDivModOp(true, is_long, src1, src2); break;
case kOpRem: res = GenDivModOp(false, is_long, src1, src2); break;
case kOpLsl: res = irb_->CreateShl(src1, src2); break;
case kOpLsr: res = irb_->CreateLShr(src1, src2); break;
case kOpAsr: res = irb_->CreateAShr(src1, src2); break;
default:
LOG(FATAL) << "Invalid op " << op;
}
return res;
}
void MirConverter::ConvertFPArithOp(OpKind op, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
::llvm::Value* src1 = GetLLVMValue(rl_src1.orig_sreg);
::llvm::Value* src2 = GetLLVMValue(rl_src2.orig_sreg);
::llvm::Value* res = NULL;
switch (op) {
case kOpAdd: res = irb_->CreateFAdd(src1, src2); break;
case kOpSub: res = irb_->CreateFSub(src1, src2); break;
case kOpMul: res = irb_->CreateFMul(src1, src2); break;
case kOpDiv: res = irb_->CreateFDiv(src1, src2); break;
case kOpRem: res = irb_->CreateFRem(src1, src2); break;
default:
LOG(FATAL) << "Invalid op " << op;
}
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertShift(art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::SmallVector< ::llvm::Value*, 2>args;
args.push_back(GetLLVMValue(rl_src1.orig_sreg));
args.push_back(GetLLVMValue(rl_src2.orig_sreg));
::llvm::Value* res = irb_->CreateCall(intr, args);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertShiftLit(art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_dest, RegLocation rl_src, int shift_amount) {
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::SmallVector< ::llvm::Value*, 2>args;
args.push_back(GetLLVMValue(rl_src.orig_sreg));
args.push_back(irb_->getInt32(shift_amount));
::llvm::Value* res = irb_->CreateCall(intr, args);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertArithOp(OpKind op, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
::llvm::Value* src1 = GetLLVMValue(rl_src1.orig_sreg);
::llvm::Value* src2 = GetLLVMValue(rl_src2.orig_sreg);
DCHECK_EQ(src1->getType(), src2->getType());
::llvm::Value* res = GenArithOp(op, rl_dest.wide, src1, src2);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertArithOpLit(OpKind op, RegLocation rl_dest,
RegLocation rl_src1, int32_t imm) {
::llvm::Value* src1 = GetLLVMValue(rl_src1.orig_sreg);
::llvm::Value* src2 = irb_->getInt32(imm);
::llvm::Value* res = GenArithOp(op, rl_dest.wide, src1, src2);
DefineValue(res, rl_dest.orig_sreg);
}
/*
* Process arguments for invoke. Note: this code is also used to
* collect and process arguments for NEW_FILLED_ARRAY and NEW_FILLED_ARRAY_RANGE.
* The requirements are similar.
*/
void MirConverter::ConvertInvoke(BasicBlock* bb, MIR* mir,
InvokeType invoke_type, bool is_range, bool is_filled_new_array) {
CallInfo* info = mir_graph_->NewMemCallInfo(bb, mir, invoke_type, is_range);
::llvm::SmallVector< ::llvm::Value*, 10> args;
// Insert the invoke_type
args.push_back(irb_->getInt32(static_cast<int>(invoke_type)));
// Insert the method_idx
args.push_back(irb_->getInt32(info->index));
// Insert the optimization flags
args.push_back(irb_->getInt32(info->opt_flags));
// Now, insert the actual arguments
for (int i = 0; i < info->num_arg_words;) {
::llvm::Value* val = GetLLVMValue(info->args[i].orig_sreg);
args.push_back(val);
i += info->args[i].wide ? 2 : 1;
}
/*
* Choose the invoke return type based on actual usage. Note: may
* be different than shorty. For example, if a function return value
* is not used, we'll treat this as a void invoke.
*/
art::llvm::IntrinsicHelper::IntrinsicId id;
if (is_filled_new_array) {
id = art::llvm::IntrinsicHelper::HLFilledNewArray;
} else if (info->result.location == kLocInvalid) {
id = art::llvm::IntrinsicHelper::HLInvokeVoid;
} else {
if (info->result.wide) {
if (info->result.fp) {
id = art::llvm::IntrinsicHelper::HLInvokeDouble;
} else {
id = art::llvm::IntrinsicHelper::HLInvokeLong;
}
} else if (info->result.ref) {
id = art::llvm::IntrinsicHelper::HLInvokeObj;
} else if (info->result.fp) {
id = art::llvm::IntrinsicHelper::HLInvokeFloat;
} else {
id = art::llvm::IntrinsicHelper::HLInvokeInt;
}
}
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* res = irb_->CreateCall(intr, args);
if (info->result.location != kLocInvalid) {
DefineValue(res, info->result.orig_sreg);
}
}
void MirConverter::ConvertConstObject(uint32_t idx,
art::llvm::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest) {
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* index = irb_->getInt32(idx);
::llvm::Value* res = irb_->CreateCall(intr, index);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertCheckCast(uint32_t type_idx, RegLocation rl_src) {
art::llvm::IntrinsicHelper::IntrinsicId id;
id = art::llvm::IntrinsicHelper::HLCheckCast;
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::SmallVector< ::llvm::Value*, 2> args;
args.push_back(irb_->getInt32(type_idx));
args.push_back(GetLLVMValue(rl_src.orig_sreg));
irb_->CreateCall(intr, args);
}
void MirConverter::ConvertNewInstance(uint32_t type_idx, RegLocation rl_dest) {
art::llvm::IntrinsicHelper::IntrinsicId id;
id = art::llvm::IntrinsicHelper::NewInstance;
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* index = irb_->getInt32(type_idx);
::llvm::Value* res = irb_->CreateCall(intr, index);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertNewArray(uint32_t type_idx,
RegLocation rl_dest, RegLocation rl_src) {
art::llvm::IntrinsicHelper::IntrinsicId id;
id = art::llvm::IntrinsicHelper::NewArray;
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::SmallVector< ::llvm::Value*, 2> args;
args.push_back(irb_->getInt32(type_idx));
args.push_back(GetLLVMValue(rl_src.orig_sreg));
::llvm::Value* res = irb_->CreateCall(intr, args);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertAget(int opt_flags,
art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_dest, RegLocation rl_array, RegLocation rl_index) {
::llvm::SmallVector< ::llvm::Value*, 3> args;
args.push_back(irb_->getInt32(opt_flags));
args.push_back(GetLLVMValue(rl_array.orig_sreg));
args.push_back(GetLLVMValue(rl_index.orig_sreg));
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* res = irb_->CreateCall(intr, args);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertAput(int opt_flags,
art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_src, RegLocation rl_array, RegLocation rl_index) {
::llvm::SmallVector< ::llvm::Value*, 4> args;
args.push_back(irb_->getInt32(opt_flags));
args.push_back(GetLLVMValue(rl_src.orig_sreg));
args.push_back(GetLLVMValue(rl_array.orig_sreg));
args.push_back(GetLLVMValue(rl_index.orig_sreg));
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
irb_->CreateCall(intr, args);
}
void MirConverter::ConvertIget(int opt_flags,
art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_dest, RegLocation rl_obj, int field_index) {
::llvm::SmallVector< ::llvm::Value*, 3> args;
args.push_back(irb_->getInt32(opt_flags));
args.push_back(GetLLVMValue(rl_obj.orig_sreg));
args.push_back(irb_->getInt32(field_index));
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* res = irb_->CreateCall(intr, args);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertIput(int opt_flags,
art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_src, RegLocation rl_obj, int field_index) {
::llvm::SmallVector< ::llvm::Value*, 4> args;
args.push_back(irb_->getInt32(opt_flags));
args.push_back(GetLLVMValue(rl_src.orig_sreg));
args.push_back(GetLLVMValue(rl_obj.orig_sreg));
args.push_back(irb_->getInt32(field_index));
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
irb_->CreateCall(intr, args);
}
void MirConverter::ConvertInstanceOf(uint32_t type_idx,
RegLocation rl_dest, RegLocation rl_src) {
art::llvm::IntrinsicHelper::IntrinsicId id;
id = art::llvm::IntrinsicHelper::InstanceOf;
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::SmallVector< ::llvm::Value*, 2> args;
args.push_back(irb_->getInt32(type_idx));
args.push_back(GetLLVMValue(rl_src.orig_sreg));
::llvm::Value* res = irb_->CreateCall(intr, args);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertIntToLong(RegLocation rl_dest, RegLocation rl_src) {
::llvm::Value* res = irb_->CreateSExt(GetLLVMValue(rl_src.orig_sreg),
irb_->getInt64Ty());
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertLongToInt(RegLocation rl_dest, RegLocation rl_src) {
::llvm::Value* src = GetLLVMValue(rl_src.orig_sreg);
::llvm::Value* res = irb_->CreateTrunc(src, irb_->getInt32Ty());
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertFloatToDouble(RegLocation rl_dest, RegLocation rl_src) {
::llvm::Value* src = GetLLVMValue(rl_src.orig_sreg);
::llvm::Value* res = irb_->CreateFPExt(src, irb_->getDoubleTy());
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertDoubleToFloat(RegLocation rl_dest, RegLocation rl_src) {
::llvm::Value* src = GetLLVMValue(rl_src.orig_sreg);
::llvm::Value* res = irb_->CreateFPTrunc(src, irb_->getFloatTy());
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertWideComparison(art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) {
DCHECK_EQ(rl_src1.fp, rl_src2.fp);
DCHECK_EQ(rl_src1.wide, rl_src2.wide);
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::SmallVector< ::llvm::Value*, 2> args;
args.push_back(GetLLVMValue(rl_src1.orig_sreg));
args.push_back(GetLLVMValue(rl_src2.orig_sreg));
::llvm::Value* res = irb_->CreateCall(intr, args);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertIntNarrowing(RegLocation rl_dest, RegLocation rl_src,
art::llvm::IntrinsicHelper::IntrinsicId id) {
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* res =
irb_->CreateCall(intr, GetLLVMValue(rl_src.orig_sreg));
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertNeg(RegLocation rl_dest, RegLocation rl_src) {
::llvm::Value* res = irb_->CreateNeg(GetLLVMValue(rl_src.orig_sreg));
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertIntToFP(::llvm::Type* ty, RegLocation rl_dest,
RegLocation rl_src) {
::llvm::Value* res =
irb_->CreateSIToFP(GetLLVMValue(rl_src.orig_sreg), ty);
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertFPToInt(art::llvm::IntrinsicHelper::IntrinsicId id,
RegLocation rl_dest,
RegLocation rl_src) {
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* res = irb_->CreateCall(intr, GetLLVMValue(rl_src.orig_sreg));
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertNegFP(RegLocation rl_dest, RegLocation rl_src) {
::llvm::Value* res =
irb_->CreateFNeg(GetLLVMValue(rl_src.orig_sreg));
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::ConvertNot(RegLocation rl_dest, RegLocation rl_src) {
::llvm::Value* src = GetLLVMValue(rl_src.orig_sreg);
::llvm::Value* res = irb_->CreateXor(src, static_cast<uint64_t>(-1));
DefineValue(res, rl_dest.orig_sreg);
}
void MirConverter::EmitConstructorBarrier() {
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(
art::llvm::IntrinsicHelper::ConstructorBarrier);
irb_->CreateCall(intr);
}
/*
* Target-independent code generation. Use only high-level
* load/store utilities here, or target-dependent genXX() handlers
* when necessary.
*/
bool MirConverter::ConvertMIRNode(MIR* mir, BasicBlock* bb,
::llvm::BasicBlock* llvm_bb) {
bool res = false; // Assume success
RegLocation rl_src[3];
RegLocation rl_dest = mir_graph_->GetBadLoc();
Instruction::Code opcode = mir->dalvikInsn.opcode;
int op_val = opcode;
uint32_t vB = mir->dalvikInsn.vB;
uint32_t vC = mir->dalvikInsn.vC;
int opt_flags = mir->optimization_flags;
if (cu_->verbose) {
if (op_val < kMirOpFirst) {
LOG(INFO) << ".. " << Instruction::Name(opcode) << " 0x" << std::hex << op_val;
} else {
LOG(INFO) << mir_graph_->extended_mir_op_names_[op_val - kMirOpFirst] << " 0x" << std::hex << op_val;
}
}
/* Prep Src and Dest locations */
int next_sreg = 0;
int next_loc = 0;
int attrs = mir_graph_->oat_data_flow_attributes_[opcode];
rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
if (attrs & DF_UA) {
if (attrs & DF_A_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
next_sreg+= 2;
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
next_sreg++;
}
}
if (attrs & DF_UB) {
if (attrs & DF_B_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
next_sreg+= 2;
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
next_sreg++;
}
}
if (attrs & DF_UC) {
if (attrs & DF_C_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
}
}
if (attrs & DF_DA) {
if (attrs & DF_A_WIDE) {
rl_dest = mir_graph_->GetDestWide(mir);
} else {
rl_dest = mir_graph_->GetDest(mir);
}
}
switch (opcode) {
case Instruction::NOP:
break;
case Instruction::MOVE:
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_16:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_OBJECT_FROM16:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_16:
case Instruction::MOVE_WIDE_FROM16: {
/*
* Moves/copies are meaningless in pure SSA register form,
* but we need to preserve them for the conversion back into
* MIR (at least until we stop using the Dalvik register maps).
* Insert a dummy intrinsic copy call, which will be recognized
* by the quick path and removed by the portable path.
*/
::llvm::Value* src = GetLLVMValue(rl_src[0].orig_sreg);
::llvm::Value* res = EmitCopy(src, rl_dest);
DefineValue(res, rl_dest.orig_sreg);
}
break;
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16: {
::llvm::Constant* imm_value = irb_->getJInt(vB);
::llvm::Value* res = EmitConst(imm_value, rl_dest);
DefineValue(res, rl_dest.orig_sreg);
}
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32: {
// Sign extend to 64 bits
int64_t imm = static_cast<int32_t>(vB);
::llvm::Constant* imm_value = irb_->getJLong(imm);
::llvm::Value* res = EmitConst(imm_value, rl_dest);
DefineValue(res, rl_dest.orig_sreg);
}
break;
case Instruction::CONST_HIGH16: {
::llvm::Constant* imm_value = irb_->getJInt(vB << 16);
::llvm::Value* res = EmitConst(imm_value, rl_dest);
DefineValue(res, rl_dest.orig_sreg);
}
break;
case Instruction::CONST_WIDE: {
::llvm::Constant* imm_value =
irb_->getJLong(mir->dalvikInsn.vB_wide);
::llvm::Value* res = EmitConst(imm_value, rl_dest);
DefineValue(res, rl_dest.orig_sreg);
}
break;
case Instruction::CONST_WIDE_HIGH16: {
int64_t imm = static_cast<int64_t>(vB) << 48;
::llvm::Constant* imm_value = irb_->getJLong(imm);
::llvm::Value* res = EmitConst(imm_value, rl_dest);
DefineValue(res, rl_dest.orig_sreg);
}
break;
case Instruction::SPUT_OBJECT:
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSputObject,
rl_src[0]);
break;
case Instruction::SPUT:
if (rl_src[0].fp) {
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSputFloat,
rl_src[0]);
} else {
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSput, rl_src[0]);
}
break;
case Instruction::SPUT_BOOLEAN:
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSputBoolean,
rl_src[0]);
break;
case Instruction::SPUT_BYTE:
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSputByte, rl_src[0]);
break;
case Instruction::SPUT_CHAR:
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSputChar, rl_src[0]);
break;
case Instruction::SPUT_SHORT:
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSputShort, rl_src[0]);
break;
case Instruction::SPUT_WIDE:
if (rl_src[0].fp) {
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSputDouble,
rl_src[0]);
} else {
ConvertSput(vB, art::llvm::IntrinsicHelper::HLSputWide,
rl_src[0]);
}
break;
case Instruction::SGET_OBJECT:
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSgetObject, rl_dest);
break;
case Instruction::SGET:
if (rl_dest.fp) {
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSgetFloat, rl_dest);
} else {
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSget, rl_dest);
}
break;
case Instruction::SGET_BOOLEAN:
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSgetBoolean, rl_dest);
break;
case Instruction::SGET_BYTE:
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSgetByte, rl_dest);
break;
case Instruction::SGET_CHAR:
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSgetChar, rl_dest);
break;
case Instruction::SGET_SHORT:
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSgetShort, rl_dest);
break;
case Instruction::SGET_WIDE:
if (rl_dest.fp) {
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSgetDouble,
rl_dest);
} else {
ConvertSget(vB, art::llvm::IntrinsicHelper::HLSgetWide, rl_dest);
}
break;
case Instruction::RETURN_WIDE:
case Instruction::RETURN:
case Instruction::RETURN_OBJECT: {
if (!mir_graph_->MethodIsLeaf()) {
EmitSuspendCheck();
}
EmitPopShadowFrame();
irb_->CreateRet(GetLLVMValue(rl_src[0].orig_sreg));
DCHECK(bb->terminated_by_return);
}
break;
case Instruction::RETURN_VOID: {
if (((cu_->access_flags & kAccConstructor) != 0) &&
cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(),
cu_->dex_file,
cu_->class_def_idx)) {
EmitConstructorBarrier();
}
if (!mir_graph_->MethodIsLeaf()) {
EmitSuspendCheck();
}
EmitPopShadowFrame();
irb_->CreateRetVoid();
DCHECK(bb->terminated_by_return);
}
break;
case Instruction::IF_EQ:
ConvertCompareAndBranch(bb, mir, kCondEq, rl_src[0], rl_src[1]);
break;
case Instruction::IF_NE:
ConvertCompareAndBranch(bb, mir, kCondNe, rl_src[0], rl_src[1]);
break;
case Instruction::IF_LT:
ConvertCompareAndBranch(bb, mir, kCondLt, rl_src[0], rl_src[1]);
break;
case Instruction::IF_GE:
ConvertCompareAndBranch(bb, mir, kCondGe, rl_src[0], rl_src[1]);
break;
case Instruction::IF_GT:
ConvertCompareAndBranch(bb, mir, kCondGt, rl_src[0], rl_src[1]);
break;
case Instruction::IF_LE:
ConvertCompareAndBranch(bb, mir, kCondLe, rl_src[0], rl_src[1]);
break;
case Instruction::IF_EQZ:
ConvertCompareZeroAndBranch(bb, mir, kCondEq, rl_src[0]);
break;
case Instruction::IF_NEZ:
ConvertCompareZeroAndBranch(bb, mir, kCondNe, rl_src[0]);
break;
case Instruction::IF_LTZ:
ConvertCompareZeroAndBranch(bb, mir, kCondLt, rl_src[0]);
break;
case Instruction::IF_GEZ:
ConvertCompareZeroAndBranch(bb, mir, kCondGe, rl_src[0]);
break;
case Instruction::IF_GTZ:
ConvertCompareZeroAndBranch(bb, mir, kCondGt, rl_src[0]);
break;
case Instruction::IF_LEZ:
ConvertCompareZeroAndBranch(bb, mir, kCondLe, rl_src[0]);
break;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32: {
if (bb->taken->start_offset <= bb->start_offset) {
EmitSuspendCheck();
}
irb_->CreateBr(GetLLVMBlock(bb->taken->id));
}
break;
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
ConvertArithOp(kOpAdd, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
ConvertArithOp(kOpSub, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::MUL_LONG:
case Instruction::MUL_LONG_2ADDR:
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
ConvertArithOp(kOpMul, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
ConvertArithOp(kOpDiv, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
ConvertArithOp(kOpRem, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::AND_LONG:
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
ConvertArithOp(kOpAnd, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
ConvertArithOp(kOpOr, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
ConvertArithOp(kOpXor, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::SHL_LONG:
case Instruction::SHL_LONG_2ADDR:
ConvertShift(art::llvm::IntrinsicHelper::SHLLong,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
ConvertShift(art::llvm::IntrinsicHelper::SHLInt,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::SHR_LONG:
case Instruction::SHR_LONG_2ADDR:
ConvertShift(art::llvm::IntrinsicHelper::SHRLong,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
ConvertShift(art::llvm::IntrinsicHelper::SHRInt,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::USHR_LONG:
case Instruction::USHR_LONG_2ADDR:
ConvertShift(art::llvm::IntrinsicHelper::USHRLong,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
ConvertShift(art::llvm::IntrinsicHelper::USHRInt,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::ADD_INT_LIT16:
case Instruction::ADD_INT_LIT8:
ConvertArithOpLit(kOpAdd, rl_dest, rl_src[0], vC);
break;
case Instruction::RSUB_INT:
case Instruction::RSUB_INT_LIT8:
ConvertArithOpLit(kOpRsub, rl_dest, rl_src[0], vC);
break;
case Instruction::MUL_INT_LIT16:
case Instruction::MUL_INT_LIT8:
ConvertArithOpLit(kOpMul, rl_dest, rl_src[0], vC);
break;
case Instruction::DIV_INT_LIT16:
case Instruction::DIV_INT_LIT8:
ConvertArithOpLit(kOpDiv, rl_dest, rl_src[0], vC);
break;
case Instruction::REM_INT_LIT16:
case Instruction::REM_INT_LIT8:
ConvertArithOpLit(kOpRem, rl_dest, rl_src[0], vC);
break;
case Instruction::AND_INT_LIT16:
case Instruction::AND_INT_LIT8:
ConvertArithOpLit(kOpAnd, rl_dest, rl_src[0], vC);
break;
case Instruction::OR_INT_LIT16:
case Instruction::OR_INT_LIT8:
ConvertArithOpLit(kOpOr, rl_dest, rl_src[0], vC);
break;
case Instruction::XOR_INT_LIT16:
case Instruction::XOR_INT_LIT8:
ConvertArithOpLit(kOpXor, rl_dest, rl_src[0], vC);
break;
case Instruction::SHL_INT_LIT8:
ConvertShiftLit(art::llvm::IntrinsicHelper::SHLInt,
rl_dest, rl_src[0], vC & 0x1f);
break;
case Instruction::SHR_INT_LIT8:
ConvertShiftLit(art::llvm::IntrinsicHelper::SHRInt,
rl_dest, rl_src[0], vC & 0x1f);
break;
case Instruction::USHR_INT_LIT8:
ConvertShiftLit(art::llvm::IntrinsicHelper::USHRInt,
rl_dest, rl_src[0], vC & 0x1f);
break;
case Instruction::ADD_FLOAT:
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::ADD_DOUBLE:
case Instruction::ADD_DOUBLE_2ADDR:
ConvertFPArithOp(kOpAdd, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::SUB_FLOAT:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::SUB_DOUBLE:
case Instruction::SUB_DOUBLE_2ADDR:
ConvertFPArithOp(kOpSub, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::MUL_FLOAT:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::MUL_DOUBLE:
case Instruction::MUL_DOUBLE_2ADDR:
ConvertFPArithOp(kOpMul, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::DIV_FLOAT:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::DIV_DOUBLE:
case Instruction::DIV_DOUBLE_2ADDR:
ConvertFPArithOp(kOpDiv, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::REM_FLOAT:
case Instruction::REM_FLOAT_2ADDR:
case Instruction::REM_DOUBLE:
case Instruction::REM_DOUBLE_2ADDR:
ConvertFPArithOp(kOpRem, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::INVOKE_STATIC:
ConvertInvoke(bb, mir, kStatic, false /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_STATIC_RANGE:
ConvertInvoke(bb, mir, kStatic, true /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_DIRECT:
ConvertInvoke(bb, mir, kDirect, false /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_DIRECT_RANGE:
ConvertInvoke(bb, mir, kDirect, true /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_VIRTUAL:
ConvertInvoke(bb, mir, kVirtual, false /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
ConvertInvoke(bb, mir, kVirtual, true /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_SUPER:
ConvertInvoke(bb, mir, kSuper, false /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_SUPER_RANGE:
ConvertInvoke(bb, mir, kSuper, true /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_INTERFACE:
ConvertInvoke(bb, mir, kInterface, false /*range*/,
false /* NewFilledArray */);
break;
case Instruction::INVOKE_INTERFACE_RANGE:
ConvertInvoke(bb, mir, kInterface, true /*range*/,
false /* NewFilledArray */);
break;
case Instruction::FILLED_NEW_ARRAY:
ConvertInvoke(bb, mir, kInterface, false /*range*/,
true /* NewFilledArray */);
break;
case Instruction::FILLED_NEW_ARRAY_RANGE:
ConvertInvoke(bb, mir, kInterface, true /*range*/,
true /* NewFilledArray */);
break;
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
ConvertConstObject(vB, art::llvm::IntrinsicHelper::ConstString,
rl_dest);
break;
case Instruction::CONST_CLASS:
ConvertConstObject(vB, art::llvm::IntrinsicHelper::ConstClass,
rl_dest);
break;
case Instruction::CHECK_CAST:
ConvertCheckCast(vB, rl_src[0]);
break;
case Instruction::NEW_INSTANCE:
ConvertNewInstance(vB, rl_dest);
break;
case Instruction::MOVE_EXCEPTION:
ConvertMoveException(rl_dest);
break;
case Instruction::THROW:
ConvertThrow(rl_src[0]);
/*
* If this throw is standalone, terminate.
* If it might rethrow, force termination
* of the following block.
*/
if (bb->fall_through == NULL) {
irb_->CreateUnreachable();
} else {
bb->fall_through->fall_through = NULL;
bb->fall_through->taken = NULL;
}
break;
case Instruction::MOVE_RESULT_WIDE:
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_OBJECT:
/*
* All move_results should have been folded into the preceeding invoke.
*/
LOG(FATAL) << "Unexpected move_result";
break;
case Instruction::MONITOR_ENTER:
ConvertMonitorEnterExit(opt_flags,
art::llvm::IntrinsicHelper::MonitorEnter,
rl_src[0]);
break;
case Instruction::MONITOR_EXIT:
ConvertMonitorEnterExit(opt_flags,
art::llvm::IntrinsicHelper::MonitorExit,
rl_src[0]);
break;
case Instruction::ARRAY_LENGTH:
ConvertArrayLength(opt_flags, rl_dest, rl_src[0]);
break;
case Instruction::NEW_ARRAY:
ConvertNewArray(vC, rl_dest, rl_src[0]);
break;
case Instruction::INSTANCE_OF:
ConvertInstanceOf(vC, rl_dest, rl_src[0]);
break;
case Instruction::AGET:
if (rl_dest.fp) {
ConvertAget(opt_flags,
art::llvm::IntrinsicHelper::HLArrayGetFloat,
rl_dest, rl_src[0], rl_src[1]);
} else {
ConvertAget(opt_flags, art::llvm::IntrinsicHelper::HLArrayGet,
rl_dest, rl_src[0], rl_src[1]);
}
break;
case Instruction::AGET_OBJECT:
ConvertAget(opt_flags, art::llvm::IntrinsicHelper::HLArrayGetObject,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::AGET_BOOLEAN:
ConvertAget(opt_flags,
art::llvm::IntrinsicHelper::HLArrayGetBoolean,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::AGET_BYTE:
ConvertAget(opt_flags, art::llvm::IntrinsicHelper::HLArrayGetByte,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::AGET_CHAR:
ConvertAget(opt_flags, art::llvm::IntrinsicHelper::HLArrayGetChar,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::AGET_SHORT:
ConvertAget(opt_flags, art::llvm::IntrinsicHelper::HLArrayGetShort,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::AGET_WIDE:
if (rl_dest.fp) {
ConvertAget(opt_flags,
art::llvm::IntrinsicHelper::HLArrayGetDouble,
rl_dest, rl_src[0], rl_src[1]);
} else {
ConvertAget(opt_flags, art::llvm::IntrinsicHelper::HLArrayGetWide,
rl_dest, rl_src[0], rl_src[1]);
}
break;
case Instruction::APUT:
if (rl_src[0].fp) {
ConvertAput(opt_flags,
art::llvm::IntrinsicHelper::HLArrayPutFloat,
rl_src[0], rl_src[1], rl_src[2]);
} else {
ConvertAput(opt_flags, art::llvm::IntrinsicHelper::HLArrayPut,
rl_src[0], rl_src[1], rl_src[2]);
}
break;
case Instruction::APUT_OBJECT:
ConvertAput(opt_flags, art::llvm::IntrinsicHelper::HLArrayPutObject,
rl_src[0], rl_src[1], rl_src[2]);
break;
case Instruction::APUT_BOOLEAN:
ConvertAput(opt_flags,
art::llvm::IntrinsicHelper::HLArrayPutBoolean,
rl_src[0], rl_src[1], rl_src[2]);
break;
case Instruction::APUT_BYTE:
ConvertAput(opt_flags, art::llvm::IntrinsicHelper::HLArrayPutByte,
rl_src[0], rl_src[1], rl_src[2]);
break;
case Instruction::APUT_CHAR:
ConvertAput(opt_flags, art::llvm::IntrinsicHelper::HLArrayPutChar,
rl_src[0], rl_src[1], rl_src[2]);
break;
case Instruction::APUT_SHORT:
ConvertAput(opt_flags, art::llvm::IntrinsicHelper::HLArrayPutShort,
rl_src[0], rl_src[1], rl_src[2]);
break;
case Instruction::APUT_WIDE:
if (rl_src[0].fp) {
ConvertAput(opt_flags,
art::llvm::IntrinsicHelper::HLArrayPutDouble,
rl_src[0], rl_src[1], rl_src[2]);
} else {
ConvertAput(opt_flags, art::llvm::IntrinsicHelper::HLArrayPutWide,
rl_src[0], rl_src[1], rl_src[2]);
}
break;
case Instruction::IGET:
if (rl_dest.fp) {
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGetFloat,
rl_dest, rl_src[0], vC);
} else {
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGet,
rl_dest, rl_src[0], vC);
}
break;
case Instruction::IGET_OBJECT:
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGetObject,
rl_dest, rl_src[0], vC);
break;
case Instruction::IGET_BOOLEAN:
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGetBoolean,
rl_dest, rl_src[0], vC);
break;
case Instruction::IGET_BYTE:
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGetByte,
rl_dest, rl_src[0], vC);
break;
case Instruction::IGET_CHAR:
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGetChar,
rl_dest, rl_src[0], vC);
break;
case Instruction::IGET_SHORT:
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGetShort,
rl_dest, rl_src[0], vC);
break;
case Instruction::IGET_WIDE:
if (rl_dest.fp) {
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGetDouble,
rl_dest, rl_src[0], vC);
} else {
ConvertIget(opt_flags, art::llvm::IntrinsicHelper::HLIGetWide,
rl_dest, rl_src[0], vC);
}
break;
case Instruction::IPUT:
if (rl_src[0].fp) {
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPutFloat,
rl_src[0], rl_src[1], vC);
} else {
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPut,
rl_src[0], rl_src[1], vC);
}
break;
case Instruction::IPUT_OBJECT:
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPutObject,
rl_src[0], rl_src[1], vC);
break;
case Instruction::IPUT_BOOLEAN:
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPutBoolean,
rl_src[0], rl_src[1], vC);
break;
case Instruction::IPUT_BYTE:
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPutByte,
rl_src[0], rl_src[1], vC);
break;
case Instruction::IPUT_CHAR:
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPutChar,
rl_src[0], rl_src[1], vC);
break;
case Instruction::IPUT_SHORT:
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPutShort,
rl_src[0], rl_src[1], vC);
break;
case Instruction::IPUT_WIDE:
if (rl_src[0].fp) {
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPutDouble,
rl_src[0], rl_src[1], vC);
} else {
ConvertIput(opt_flags, art::llvm::IntrinsicHelper::HLIPutWide,
rl_src[0], rl_src[1], vC);
}
break;
case Instruction::FILL_ARRAY_DATA:
ConvertFillArrayData(vB, rl_src[0]);
break;
case Instruction::LONG_TO_INT:
ConvertLongToInt(rl_dest, rl_src[0]);
break;
case Instruction::INT_TO_LONG:
ConvertIntToLong(rl_dest, rl_src[0]);
break;
case Instruction::INT_TO_CHAR:
ConvertIntNarrowing(rl_dest, rl_src[0],
art::llvm::IntrinsicHelper::IntToChar);
break;
case Instruction::INT_TO_BYTE:
ConvertIntNarrowing(rl_dest, rl_src[0],
art::llvm::IntrinsicHelper::IntToByte);
break;
case Instruction::INT_TO_SHORT:
ConvertIntNarrowing(rl_dest, rl_src[0],
art::llvm::IntrinsicHelper::IntToShort);
break;
case Instruction::INT_TO_FLOAT:
case Instruction::LONG_TO_FLOAT:
ConvertIntToFP(irb_->getFloatTy(), rl_dest, rl_src[0]);
break;
case Instruction::INT_TO_DOUBLE:
case Instruction::LONG_TO_DOUBLE:
ConvertIntToFP(irb_->getDoubleTy(), rl_dest, rl_src[0]);
break;
case Instruction::FLOAT_TO_DOUBLE:
ConvertFloatToDouble(rl_dest, rl_src[0]);
break;
case Instruction::DOUBLE_TO_FLOAT:
ConvertDoubleToFloat(rl_dest, rl_src[0]);
break;
case Instruction::NEG_LONG:
case Instruction::NEG_INT:
ConvertNeg(rl_dest, rl_src[0]);
break;
case Instruction::NEG_FLOAT:
case Instruction::NEG_DOUBLE:
ConvertNegFP(rl_dest, rl_src[0]);
break;
case Instruction::NOT_LONG:
case Instruction::NOT_INT:
ConvertNot(rl_dest, rl_src[0]);
break;
case Instruction::FLOAT_TO_INT:
ConvertFPToInt(art::llvm::IntrinsicHelper::F2I, rl_dest, rl_src[0]);
break;
case Instruction::DOUBLE_TO_INT:
ConvertFPToInt(art::llvm::IntrinsicHelper::D2I, rl_dest, rl_src[0]);
break;
case Instruction::FLOAT_TO_LONG:
ConvertFPToInt(art::llvm::IntrinsicHelper::F2L, rl_dest, rl_src[0]);
break;
case Instruction::DOUBLE_TO_LONG:
ConvertFPToInt(art::llvm::IntrinsicHelper::D2L, rl_dest, rl_src[0]);
break;
case Instruction::CMPL_FLOAT:
ConvertWideComparison(art::llvm::IntrinsicHelper::CmplFloat,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::CMPG_FLOAT:
ConvertWideComparison(art::llvm::IntrinsicHelper::CmpgFloat,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::CMPL_DOUBLE:
ConvertWideComparison(art::llvm::IntrinsicHelper::CmplDouble,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::CMPG_DOUBLE:
ConvertWideComparison(art::llvm::IntrinsicHelper::CmpgDouble,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::CMP_LONG:
ConvertWideComparison(art::llvm::IntrinsicHelper::CmpLong,
rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::PACKED_SWITCH:
ConvertPackedSwitch(bb, vB, rl_src[0]);
break;
case Instruction::SPARSE_SWITCH:
ConvertSparseSwitch(bb, vB, rl_src[0]);
break;
default:
UNIMPLEMENTED(FATAL) << "Unsupported Dex opcode 0x" << std::hex << opcode;
res = true;
}
return res;
} // NOLINT(readability/fn_size)
void MirConverter::SetDexOffset(int32_t offset) {
current_dalvik_offset_ = offset;
::llvm::SmallVector< ::llvm::Value*, 1> array_ref;
array_ref.push_back(irb_->getInt32(offset));
::llvm::MDNode* node = ::llvm::MDNode::get(*context_, array_ref);
irb_->SetDexOffset(node);
}
// Attach method info as metadata to special intrinsic
void MirConverter::SetMethodInfo() {
// We don't want dex offset on this
irb_->SetDexOffset(NULL);
art::llvm::IntrinsicHelper::IntrinsicId id;
id = art::llvm::IntrinsicHelper::MethodInfo;
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Instruction* inst = irb_->CreateCall(intr);
::llvm::SmallVector< ::llvm::Value*, 2> reg_info;
reg_info.push_back(irb_->getInt32(cu_->num_ins));
reg_info.push_back(irb_->getInt32(cu_->num_regs));
reg_info.push_back(irb_->getInt32(cu_->num_outs));
reg_info.push_back(irb_->getInt32(cu_->num_compiler_temps));
reg_info.push_back(irb_->getInt32(mir_graph_->GetNumSSARegs()));
::llvm::MDNode* reg_info_node = ::llvm::MDNode::get(*context_, reg_info);
inst->setMetadata("RegInfo", reg_info_node);
SetDexOffset(current_dalvik_offset_);
}
void MirConverter::HandlePhiNodes(BasicBlock* bb, ::llvm::BasicBlock* llvm_bb) {
SetDexOffset(bb->start_offset);
for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
int opcode = mir->dalvikInsn.opcode;
if (opcode < kMirOpFirst) {
// Stop after first non-pseudo MIR op.
continue;
}
if (opcode != kMirOpPhi) {
// Skip other mir Pseudos.
continue;
}
RegLocation rl_dest = mir_graph_->reg_location_[mir->ssa_rep->defs[0]];
/*
* The Art compiler's Phi nodes only handle 32-bit operands,
* representing wide values using a matched set of Phi nodes
* for the lower and upper halves. In the llvm world, we only
* want a single Phi for wides. Here we will simply discard
* the Phi node representing the high word.
*/
if (rl_dest.high_word) {
continue; // No Phi node - handled via low word
}
int* incoming = reinterpret_cast<int*>(mir->dalvikInsn.vB);
::llvm::Type* phi_type =
LlvmTypeFromLocRec(rl_dest);
::llvm::PHINode* phi = irb_->CreatePHI(phi_type, mir->ssa_rep->num_uses);
for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
RegLocation loc;
// Don't check width here.
loc = mir_graph_->GetRawSrc(mir, i);
DCHECK_EQ(rl_dest.wide, loc.wide);
DCHECK_EQ(rl_dest.wide & rl_dest.high_word, loc.wide & loc.high_word);
DCHECK_EQ(rl_dest.fp, loc.fp);
DCHECK_EQ(rl_dest.core, loc.core);
DCHECK_EQ(rl_dest.ref, loc.ref);
SafeMap<unsigned int, unsigned int>::iterator it;
it = mir_graph_->block_id_map_.find(incoming[i]);
DCHECK(it != mir_graph_->block_id_map_.end());
DCHECK(GetLLVMValue(loc.orig_sreg) != NULL);
DCHECK(GetLLVMBlock(it->second) != NULL);
phi->addIncoming(GetLLVMValue(loc.orig_sreg),
GetLLVMBlock(it->second));
}
DefineValueOnly(phi, rl_dest.orig_sreg);
}
}
/* Extended MIR instructions like PHI */
void MirConverter::ConvertExtendedMIR(BasicBlock* bb, MIR* mir,
::llvm::BasicBlock* llvm_bb) {
switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
case kMirOpPhi: {
// The llvm Phi node already emitted - just DefineValue() here.
RegLocation rl_dest = mir_graph_->reg_location_[mir->ssa_rep->defs[0]];
if (!rl_dest.high_word) {
// Only consider low word of pairs.
DCHECK(GetLLVMValue(rl_dest.orig_sreg) != NULL);
::llvm::Value* phi = GetLLVMValue(rl_dest.orig_sreg);
if (1) SetVregOnValue(phi, rl_dest.orig_sreg);
}
break;
}
case kMirOpCopy: {
UNIMPLEMENTED(WARNING) << "unimp kMirOpPhi";
break;
}
case kMirOpNop:
if ((mir == bb->last_mir_insn) && (bb->taken == NULL) &&
(bb->fall_through == NULL)) {
irb_->CreateUnreachable();
}
break;
// TODO: need GBC intrinsic to take advantage of fused operations
case kMirOpFusedCmplFloat:
UNIMPLEMENTED(FATAL) << "kMirOpFusedCmpFloat unsupported";
break;
case kMirOpFusedCmpgFloat:
UNIMPLEMENTED(FATAL) << "kMirOpFusedCmgFloat unsupported";
break;
case kMirOpFusedCmplDouble:
UNIMPLEMENTED(FATAL) << "kMirOpFusedCmplDouble unsupported";
break;
case kMirOpFusedCmpgDouble:
UNIMPLEMENTED(FATAL) << "kMirOpFusedCmpgDouble unsupported";
break;
case kMirOpFusedCmpLong:
UNIMPLEMENTED(FATAL) << "kMirOpLongCmpBranch unsupported";
break;
default:
break;
}
}
/* Handle the content in each basic block */
bool MirConverter::BlockBitcodeConversion(BasicBlock* bb) {
if (bb->block_type == kDead) return false;
::llvm::BasicBlock* llvm_bb = GetLLVMBlock(bb->id);
if (llvm_bb == NULL) {
CHECK(bb->block_type == kExitBlock);
} else {
irb_->SetInsertPoint(llvm_bb);
SetDexOffset(bb->start_offset);
}
if (cu_->verbose) {
LOG(INFO) << "................................";
LOG(INFO) << "Block id " << bb->id;
if (llvm_bb != NULL) {
LOG(INFO) << "label " << llvm_bb->getName().str().c_str();
} else {
LOG(INFO) << "llvm_bb is NULL";
}
}
if (bb->block_type == kEntryBlock) {
SetMethodInfo();
{ // Allocate shadowframe.
art::llvm::IntrinsicHelper::IntrinsicId id =
art::llvm::IntrinsicHelper::AllocaShadowFrame;
::llvm::Function* func = intrinsic_helper_->GetIntrinsicFunction(id);
::llvm::Value* entries = irb_->getInt32(cu_->num_dalvik_registers);
irb_->CreateCall(func, entries);
}
{ // Store arguments to vregs.
uint16_t arg_reg = cu_->num_regs;
::llvm::Function::arg_iterator arg_iter(func_->arg_begin());
::llvm::Function::arg_iterator arg_end(func_->arg_end());
const char* shorty = cu_->shorty;
uint32_t shorty_size = strlen(shorty);
CHECK_GE(shorty_size, 1u);
++arg_iter; // skip method object
if ((cu_->access_flags & kAccStatic) == 0) {
SetVregOnValue(arg_iter, arg_reg);
++arg_iter;
++arg_reg;
}
for (uint32_t i = 1; i < shorty_size; ++i, ++arg_iter) {
SetVregOnValue(arg_iter, arg_reg);
++arg_reg;
if (shorty[i] == 'J' || shorty[i] == 'D') {
// Wide types, such as long and double, are using a pair of registers
// to store the value, so we have to increase arg_reg again.
++arg_reg;
}
}
}
} else if (bb->block_type == kExitBlock) {
/*
* Because of the differences between how MIR/LIR and llvm handle exit
* blocks, we won't explicitly covert them. On the llvm-to-lir
* path, it will need to be regenereated.
*/
return false;
} else if (bb->block_type == kExceptionHandling) {
/*
* Because we're deferring null checking, delete the associated empty
* exception block.
*/
llvm_bb->eraseFromParent();
return false;
}
HandlePhiNodes(bb, llvm_bb);
for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
SetDexOffset(mir->offset);
int opcode = mir->dalvikInsn.opcode;
Instruction::Format dalvik_format =
Instruction::FormatOf(mir->dalvikInsn.opcode);
if (opcode == kMirOpCheck) {
// Combine check and work halves of throwing instruction.
MIR* work_half = mir->meta.throw_insn;
mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode;
opcode = mir->dalvikInsn.opcode;
SSARepresentation* ssa_rep = work_half->ssa_rep;
work_half->ssa_rep = mir->ssa_rep;
mir->ssa_rep = ssa_rep;
work_half->meta.original_opcode = work_half->dalvikInsn.opcode;
work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
if (bb->successor_block_list.block_list_type == kCatch) {
::llvm::Function* intr = intrinsic_helper_->GetIntrinsicFunction(
art::llvm::IntrinsicHelper::CatchTargets);
::llvm::Value* switch_key =
irb_->CreateCall(intr, irb_->getInt32(mir->offset));
GrowableArray<SuccessorBlockInfo*>::Iterator iter(bb->successor_block_list.blocks);
// New basic block to use for work half
::llvm::BasicBlock* work_bb =
::llvm::BasicBlock::Create(*context_, "", func_);
::llvm::SwitchInst* sw =
irb_->CreateSwitch(switch_key, work_bb,
bb->successor_block_list.blocks->Size());
while (true) {
SuccessorBlockInfo *successor_block_info = iter.Next();
if (successor_block_info == NULL) break;
::llvm::BasicBlock *target =
GetLLVMBlock(successor_block_info->block->id);
int type_index = successor_block_info->key;
sw->addCase(irb_->getInt32(type_index), target);
}
llvm_bb = work_bb;
irb_->SetInsertPoint(llvm_bb);
}
}
if (opcode >= kMirOpFirst) {
ConvertExtendedMIR(bb, mir, llvm_bb);
continue;
}
bool not_handled = ConvertMIRNode(mir, bb, llvm_bb);
if (not_handled) {
Instruction::Code dalvik_opcode = static_cast<Instruction::Code>(opcode);
LOG(WARNING) << StringPrintf("%#06x: Op %#x (%s) / Fmt %d not handled",
mir->offset, opcode,
Instruction::Name(dalvik_opcode),
dalvik_format);
}
}
if (bb->block_type == kEntryBlock) {
entry_target_bb_ = GetLLVMBlock(bb->fall_through->id);
} else if ((bb->fall_through != NULL) && !bb->terminated_by_return) {
irb_->CreateBr(GetLLVMBlock(bb->fall_through->id));
}
return false;
}
char RemapShorty(char shorty_type) {
/*
* TODO: might want to revisit this. Dalvik registers are 32-bits wide,
* and longs/doubles are represented as a pair of registers. When sub-word
* arguments (and method results) are passed, they are extended to Dalvik
* virtual register containers. Because llvm is picky about type consistency,
* we must either cast the "real" type to 32-bit container multiple Dalvik
* register types, or always use the expanded values.
* Here, we're doing the latter. We map the shorty signature to container
* types (which is valid so long as we always do a real expansion of passed
* arguments and field loads).
*/
switch (shorty_type) {
case 'Z' : shorty_type = 'I'; break;
case 'B' : shorty_type = 'I'; break;
case 'S' : shorty_type = 'I'; break;
case 'C' : shorty_type = 'I'; break;
default: break;
}
return shorty_type;
}
::llvm::FunctionType* MirConverter::GetFunctionType() {
// Get return type
::llvm::Type* ret_type = irb_->getJType(RemapShorty(cu_->shorty[0]));
// Get argument type
std::vector< ::llvm::Type*> args_type;
// method object
args_type.push_back(irb_->getJMethodTy());
// Do we have a "this"?
if ((cu_->access_flags & kAccStatic) == 0) {
args_type.push_back(irb_->getJObjectTy());
}
for (uint32_t i = 1; i < strlen(cu_->shorty); ++i) {
args_type.push_back(irb_->getJType(RemapShorty(cu_->shorty[i])));
}
return ::llvm::FunctionType::get(ret_type, args_type, false);
}
bool MirConverter::CreateFunction() {
::llvm::FunctionType* func_type = GetFunctionType();
if (func_type == NULL) {
return false;
}
func_ = ::llvm::Function::Create(func_type,
::llvm::Function::InternalLinkage,
symbol_, module_);
::llvm::Function::arg_iterator arg_iter(func_->arg_begin());
::llvm::Function::arg_iterator arg_end(func_->arg_end());
arg_iter->setName("method");
++arg_iter;
int start_sreg = cu_->num_regs;
for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) {
arg_iter->setName(StringPrintf("v%i_0", start_sreg));
start_sreg += mir_graph_->reg_location_[start_sreg].wide ? 2 : 1;
}
return true;
}
bool MirConverter::CreateLLVMBasicBlock(BasicBlock* bb) {
// Skip the exit block
if ((bb->block_type == kDead) ||(bb->block_type == kExitBlock)) {
id_to_block_map_.Put(bb->id, NULL);
} else {
int offset = bb->start_offset;
bool entry_block = (bb->block_type == kEntryBlock);
::llvm::BasicBlock* llvm_bb =
::llvm::BasicBlock::Create(*context_, entry_block ? "entry" :
StringPrintf(kLabelFormat, bb->catch_entry ? kCatchBlock :
kNormalBlock, offset, bb->id), func_);
if (entry_block) {
entry_bb_ = llvm_bb;
placeholder_bb_ =
::llvm::BasicBlock::Create(*context_, "placeholder",
func_);
}
id_to_block_map_.Put(bb->id, llvm_bb);
}
return false;
}
/*
* Convert MIR to LLVM_IR
* o For each ssa name, create LLVM named value. Type these
* appropriately, and ignore high half of wide and double operands.
* o For each MIR basic block, create an LLVM basic block.
* o Iterate through the MIR a basic block at a time, setting arguments
* to recovered ssa name.
*/
void MirConverter::MethodMIR2Bitcode() {
InitIR();
// Create the function
CreateFunction();
// Create an LLVM basic block for each MIR block in dfs preorder
PreOrderDfsIterator iter(mir_graph_, false /* not iterative */);
for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
CreateLLVMBasicBlock(bb);
}
/*
* Create an llvm named value for each MIR SSA name. Note: we'll use
* placeholders for all non-argument values (because we haven't seen
* the definition yet).
*/
irb_->SetInsertPoint(placeholder_bb_);
::llvm::Function::arg_iterator arg_iter(func_->arg_begin());
arg_iter++; /* Skip path method */
for (int i = 0; i < mir_graph_->GetNumSSARegs(); i++) {
::llvm::Value* val;
RegLocation rl_temp = mir_graph_->reg_location_[i];
if ((mir_graph_->SRegToVReg(i) < 0) || rl_temp.high_word) {
llvm_values_.Insert(0);
} else if ((i < cu_->num_regs) ||
(i >= (cu_->num_regs + cu_->num_ins))) {
::llvm::Constant* imm_value = mir_graph_->reg_location_[i].wide ?
irb_->getJLong(0) : irb_->getJInt(0);
val = EmitConst(imm_value, mir_graph_->reg_location_[i]);
val->setName(mir_graph_->GetSSAName(i));
llvm_values_.Insert(val);
} else {
// Recover previously-created argument values
::llvm::Value* arg_val = arg_iter++;
llvm_values_.Insert(arg_val);
}
}
PreOrderDfsIterator iter2(mir_graph_, false /* not iterative */);
for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
BlockBitcodeConversion(bb);
}
/*
* In a few rare cases of verification failure, the verifier will
* replace one or more Dalvik opcodes with the special
* throw-verification-failure opcode. This can leave the SSA graph
* in an invalid state, as definitions may be lost, while uses retained.
* To work around this problem, we insert placeholder definitions for
* all Dalvik SSA regs in the "placeholder" block. Here, after
* bitcode conversion is complete, we examine those placeholder definitions
* and delete any with no references (which normally is all of them).
*
* If any definitions remain, we link the placeholder block into the
* CFG. Otherwise, it is deleted.
*/
for (::llvm::BasicBlock::iterator it = placeholder_bb_->begin(),
it_end = placeholder_bb_->end(); it != it_end;) {
::llvm::Instruction* inst = ::llvm::dyn_cast< ::llvm::Instruction>(it++);
DCHECK(inst != NULL);
::llvm::Value* val = ::llvm::dyn_cast< ::llvm::Value>(inst);
DCHECK(val != NULL);
if (val->getNumUses() == 0) {
inst->eraseFromParent();
}
}
SetDexOffset(0);
if (placeholder_bb_->empty()) {
placeholder_bb_->eraseFromParent();
} else {
irb_->SetInsertPoint(placeholder_bb_);
irb_->CreateBr(entry_target_bb_);
entry_target_bb_ = placeholder_bb_;
}
irb_->SetInsertPoint(entry_bb_);
irb_->CreateBr(entry_target_bb_);
if (cu_->enable_debug & (1 << kDebugVerifyBitcode)) {
if (::llvm::verifyFunction(*func_, ::llvm::PrintMessageAction)) {
LOG(INFO) << "Bitcode verification FAILED for "
<< PrettyMethod(cu_->method_idx, *cu_->dex_file)
<< " of size " << cu_->code_item->insns_size_in_code_units_;
cu_->enable_debug |= (1 << kDebugDumpBitcodeFile);
}
}
if (cu_->enable_debug & (1 << kDebugDumpBitcodeFile)) {
// Write bitcode to file
std::string errmsg;
std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file));
mir_graph_->ReplaceSpecialChars(fname);
// TODO: make configurable change naming mechanism to avoid fname length issues.
fname = StringPrintf("/sdcard/Bitcode/%s.bc", fname.c_str());
if (fname.size() > 240) {
LOG(INFO) << "Warning: bitcode filename too long. Truncated.";
fname.resize(240);
}
::llvm::OwningPtr< ::llvm::tool_output_file> out_file(
new ::llvm::tool_output_file(fname.c_str(), errmsg,
::llvm::raw_fd_ostream::F_Binary));
if (!errmsg.empty()) {
LOG(ERROR) << "Failed to create bitcode output file: " << errmsg;
}
::llvm::WriteBitcodeToFile(module_, out_file->os());
out_file->keep();
}
}
Backend* PortableCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena,
llvm::LlvmCompilationUnit* const llvm_compilation_unit) {
return new MirConverter(cu, mir_graph, arena, llvm_compilation_unit);
}
} // namespace art