blob: e97d2cbd92016768d2efcdc2a680e55d7c8059fb [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "instruction_set_features_arm.h"
#if defined(ART_TARGET_ANDROID) && defined(__arm__)
#include <asm/hwcap.h>
#include <sys/auxv.h>
#endif
#include "signal.h"
#include <fstream>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#if defined(__arm__)
extern "C" bool artCheckForArmSdivInstruction();
extern "C" bool artCheckForArmv8AInstructions();
#endif
namespace art {
using android::base::StringPrintf;
ArmFeaturesUniquePtr ArmInstructionSetFeatures::FromVariant(
const std::string& variant, std::string* error_msg) {
static const char* arm_variants_with_armv8a[] = {
"cortex-a32",
"cortex-a35",
"cortex-a53",
"cortex-a53.a57",
"cortex-a53.a72",
"cortex-a55",
"cortex-a57",
"cortex-a72",
"cortex-a73",
"cortex-a75",
"cortex-a76",
"exynos-m1",
"denver",
"kryo"
};
bool has_armv8a = FindVariantInArray(arm_variants_with_armv8a,
arraysize(arm_variants_with_armv8a),
variant);
// Look for variants that have divide support.
static const char* arm_variants_with_div[] = {
"cortex-a7",
"cortex-a12",
"cortex-a15",
"cortex-a17",
"krait",
};
bool has_div = has_armv8a || FindVariantInArray(arm_variants_with_div,
arraysize(arm_variants_with_div),
variant);
// Look for variants that have LPAE support.
static const char* arm_variants_with_lpae[] = {
"cortex-a7",
"cortex-a12",
"cortex-a15",
"cortex-a17",
"krait",
};
bool has_atomic_ldrd_strd = has_armv8a || FindVariantInArray(arm_variants_with_lpae,
arraysize(arm_variants_with_lpae),
variant);
if (has_armv8a == false && has_div == false && has_atomic_ldrd_strd == false) {
static const char* arm_variants_with_default_features[] = {
"cortex-a5",
"cortex-a8",
"cortex-a9",
"cortex-a9-mp",
"default",
"generic"
};
if (!FindVariantInArray(arm_variants_with_default_features,
arraysize(arm_variants_with_default_features),
variant)) {
*error_msg = StringPrintf("Attempt to use unsupported ARM variant: %s", variant.c_str());
return nullptr;
} else {
// Warn if we use the default features.
LOG(WARNING) << "Using default instruction set features for ARM CPU variant (" << variant
<< ") using conservative defaults";
}
}
return ArmFeaturesUniquePtr(new ArmInstructionSetFeatures(has_div,
has_atomic_ldrd_strd,
has_armv8a));
}
ArmFeaturesUniquePtr ArmInstructionSetFeatures::FromBitmap(uint32_t bitmap) {
bool has_div = (bitmap & kDivBitfield) != 0;
bool has_atomic_ldrd_strd = (bitmap & kAtomicLdrdStrdBitfield) != 0;
bool has_armv8a = (bitmap & kARMv8A) != 0;
return ArmFeaturesUniquePtr(new ArmInstructionSetFeatures(has_div,
has_atomic_ldrd_strd,
has_armv8a));
}
ArmFeaturesUniquePtr ArmInstructionSetFeatures::FromCppDefines() {
// Note: This will not work for now since we still build the 32-bit as __ARCH_ARM_7A__.
#if defined(__ARM_ARCH_8A__)
const bool has_armv8a = true;
#else
const bool has_armv8a = false;
#endif
#if defined (__ARM_ARCH_8A__) || defined(__ARM_ARCH_EXT_IDIV__)
const bool has_div = true;
#else
const bool has_div = false;
#endif
#if defined (__ARM_ARCH_8A__) || defined(__ARM_FEATURE_LPAE)
const bool has_atomic_ldrd_strd = true;
#else
const bool has_atomic_ldrd_strd = false;
#endif
return ArmFeaturesUniquePtr(new ArmInstructionSetFeatures(has_div,
has_atomic_ldrd_strd,
has_armv8a));
}
ArmFeaturesUniquePtr ArmInstructionSetFeatures::FromCpuInfo() {
// Look in /proc/cpuinfo for features we need. Only use this when we can guarantee that
// the kernel puts the appropriate feature flags in here. Sometimes it doesn't.
bool has_atomic_ldrd_strd = false;
bool has_div = false;
bool has_armv8a = false;
std::ifstream in("/proc/cpuinfo");
if (!in.fail()) {
while (!in.eof()) {
std::string line;
std::getline(in, line);
if (!in.eof()) {
LOG(INFO) << "cpuinfo line: " << line;
if (line.find("Features") != std::string::npos) {
LOG(INFO) << "found features";
if (line.find("idivt") != std::string::npos) {
// We always expect both ARM and Thumb divide instructions to be available or not
// available.
CHECK_NE(line.find("idiva"), std::string::npos);
has_div = true;
}
if (line.find("lpae") != std::string::npos) {
has_atomic_ldrd_strd = true;
}
}
if (line.find("architecture") != std::string::npos
&& line.find(": 8") != std::string::npos) {
LOG(INFO) << "found architecture ARMv8";
// Android is only run on A cores, so ARMv8 implies ARMv8-A.
has_armv8a = true;
// ARMv8 CPUs have LPAE and div support.
has_div = true;
has_atomic_ldrd_strd = true;
}
}
}
in.close();
} else {
LOG(ERROR) << "Failed to open /proc/cpuinfo";
}
return ArmFeaturesUniquePtr(new ArmInstructionSetFeatures(has_div,
has_atomic_ldrd_strd,
has_armv8a));
}
ArmFeaturesUniquePtr ArmInstructionSetFeatures::FromHwcap() {
bool has_div = false;
bool has_atomic_ldrd_strd = false;
bool has_armv8a = false;
#if defined(ART_TARGET_ANDROID) && defined(__arm__)
uint64_t hwcaps = getauxval(AT_HWCAP);
LOG(INFO) << "hwcaps=" << hwcaps;
if ((hwcaps & HWCAP_IDIVT) != 0) {
// We always expect both ARM and Thumb divide instructions to be available or not
// available.
CHECK_NE(hwcaps & HWCAP_IDIVA, 0U);
has_div = true;
}
if ((hwcaps & HWCAP_LPAE) != 0) {
has_atomic_ldrd_strd = true;
}
// TODO: Fix this once FPMISC makes it upstream.
// For now we detect if we run on an ARMv8 CPU by looking for CRC32 and SHA1
// (only available on ARMv8 CPUs).
if ((hwcaps & HWCAP2_CRC32) != 0 && (hwcaps & HWCAP2_SHA1) != 0) {
has_armv8a = true;
}
#endif
return ArmFeaturesUniquePtr(new ArmInstructionSetFeatures(has_div,
has_atomic_ldrd_strd,
has_armv8a));
}
// A signal handler called by a fault for an illegal instruction. We record the fact in r0
// and then increment the PC in the signal context to return to the next instruction. We know the
// instruction is 4 bytes long.
static void bad_instr_handle(int signo ATTRIBUTE_UNUSED,
siginfo_t* si ATTRIBUTE_UNUSED,
void* data) {
#if defined(__arm__)
struct ucontext *uc = (struct ucontext *)data;
struct sigcontext *sc = &uc->uc_mcontext;
sc->arm_r0 = 0; // Set R0 to #0 to signal error.
sc->arm_pc += 4; // Skip offending instruction.
#else
UNUSED(data);
#endif
}
ArmFeaturesUniquePtr ArmInstructionSetFeatures::FromAssembly() {
// See if have a sdiv instruction. Register a signal handler and try to execute an sdiv
// instruction. If we get a SIGILL then it's not supported.
struct sigaction sa, osa;
sa.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO;
sa.sa_sigaction = bad_instr_handle;
sigemptyset(&sa.sa_mask);
sigaction(SIGILL, &sa, &osa);
bool has_div = false;
bool has_armv8a = false;
#if defined(__arm__)
if (artCheckForArmSdivInstruction()) {
has_div = true;
}
if (artCheckForArmv8AInstructions()) {
has_armv8a = true;
}
#endif
// Restore the signal handler.
sigaction(SIGILL, &osa, nullptr);
// Use compile time features to "detect" LPAE support.
// TODO: write an assembly LPAE support test.
#if defined(__ARM_FEATURE_LPAE)
const bool has_atomic_ldrd_strd = true;
#else
const bool has_atomic_ldrd_strd = false;
#endif
return ArmFeaturesUniquePtr(new ArmInstructionSetFeatures(has_div,
has_atomic_ldrd_strd,
has_armv8a));
}
bool ArmInstructionSetFeatures::Equals(const InstructionSetFeatures* other) const {
if (InstructionSet::kArm != other->GetInstructionSet()) {
return false;
}
const ArmInstructionSetFeatures* other_as_arm = other->AsArmInstructionSetFeatures();
return has_div_ == other_as_arm->has_div_
&& has_atomic_ldrd_strd_ == other_as_arm->has_atomic_ldrd_strd_
&& has_armv8a_ == other_as_arm->has_armv8a_;
}
bool ArmInstructionSetFeatures::HasAtLeast(const InstructionSetFeatures* other) const {
if (InstructionSet::kArm != other->GetInstructionSet()) {
return false;
}
const ArmInstructionSetFeatures* other_as_arm = other->AsArmInstructionSetFeatures();
return (has_div_ || !other_as_arm->has_div_)
&& (has_atomic_ldrd_strd_ || !other_as_arm->has_atomic_ldrd_strd_)
&& (has_armv8a_ || !other_as_arm->has_armv8a_);
}
uint32_t ArmInstructionSetFeatures::AsBitmap() const {
return (has_div_ ? kDivBitfield : 0)
| (has_atomic_ldrd_strd_ ? kAtomicLdrdStrdBitfield : 0)
| (has_armv8a_ ? kARMv8A : 0);
}
std::string ArmInstructionSetFeatures::GetFeatureString() const {
std::string result;
if (has_div_) {
result += "div";
} else {
result += "-div";
}
if (has_atomic_ldrd_strd_) {
result += ",atomic_ldrd_strd";
} else {
result += ",-atomic_ldrd_strd";
}
if (has_armv8a_) {
result += ",armv8a";
} else {
result += ",-armv8a";
}
return result;
}
std::unique_ptr<const InstructionSetFeatures>
ArmInstructionSetFeatures::AddFeaturesFromSplitString(
const std::vector<std::string>& features, std::string* error_msg) const {
bool has_atomic_ldrd_strd = has_atomic_ldrd_strd_;
bool has_div = has_div_;
bool has_armv8a = has_armv8a_;
for (auto i = features.begin(); i != features.end(); i++) {
std::string feature = android::base::Trim(*i);
if (feature == "div") {
has_div = true;
} else if (feature == "-div") {
has_div = false;
} else if (feature == "atomic_ldrd_strd") {
has_atomic_ldrd_strd = true;
} else if (feature == "-atomic_ldrd_strd") {
has_atomic_ldrd_strd = false;
} else if (feature == "armv8a") {
has_armv8a = true;
} else if (feature == "-armv8a") {
has_armv8a = false;
} else {
*error_msg = StringPrintf("Unknown instruction set feature: '%s'", feature.c_str());
return nullptr;
}
}
return std::unique_ptr<const InstructionSetFeatures>(
new ArmInstructionSetFeatures(has_div, has_atomic_ldrd_strd, has_armv8a));
}
} // namespace art