blob: fe332d1e3b5ffff4631d6541f3cab3d22cb5e99f [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_BASE_VARIANT_MAP_H_
#define ART_RUNTIME_BASE_VARIANT_MAP_H_
#include <memory.h>
#include <map>
#include <type_traits>
#include <utility>
#include "android-base/logging.h"
#include "base/stl_util_identity.h"
namespace art {
//
// A variant map is a heterogenous, type safe key->value map. It allows
// for multiple different value types to be stored dynamically in the same map.
//
// It provides the following interface in a nutshell:
//
// struct VariantMap {
// template <typename TValue>
// TValue* Get(Key<T> key); // null if the value was never set, otherwise the value.
//
// template <typename TValue>
// void Set(Key<T> key, TValue value);
// };
//
// Since the key is strongly typed at compile-time, it is impossible to accidentally
// read/write a value with a different type than the key at either compile-time or run-time.
//
// Do not use VariantMap/VariantMapKey directly. Instead subclass each of them and use
// the subclass, for example:
//
// template <typename TValue>
// struct FruitMapKey : VariantMapKey<TValue> {
// FruitMapKey() {}
// };
//
// struct FruitMap : VariantMap<FruitMap, FruitMapKey> {
// // This 'using' line is necessary to inherit the variadic constructor.
// using VariantMap<FruitMap, FruitMapKey>::VariantMap;
//
// // Make the next '4' usages of Key slightly shorter to type.
// template <typename TValue>
// using Key = FruitMapKey<TValue>;
//
// static const Key<int> Apple;
// static const Key<double> Orange;
// static const Key<std::string> Banana;
// };
//
// const FruitMap::Key<int> FruitMap::Apple;
// const FruitMap::Key<double> FruitMap::Orange;
// const FruitMap::Key<std::string> Banana;
//
// See variant_map_test.cc for more examples.
//
// Implementation details for VariantMap.
namespace detail {
// Allocate a unique counter value each time it's called.
struct VariantMapKeyCounterAllocator {
static size_t AllocateCounter() {
static size_t counter = 0;
counter++;
return counter;
}
};
// Type-erased version of VariantMapKey<T>
struct VariantMapKeyRaw {
// TODO: this may need to call a virtual function to support string comparisons
bool operator<(const VariantMapKeyRaw& other) const {
return key_counter_ < other.key_counter_;
}
// The following functions need to be virtual since we don't know the compile-time type anymore:
// Clone the key, creating a copy of the contents.
virtual VariantMapKeyRaw* Clone() const = 0;
// Delete a value whose runtime type is that of the non-erased key's TValue.
virtual void ValueDelete(void* value) const = 0;
// Clone a value whose runtime type is that of the non-erased key's TValue.
virtual void* ValueClone(void* value) const = 0;
// Compare one key to another (same as operator<).
virtual bool Compare(const VariantMapKeyRaw* other) const {
if (other == nullptr) {
return false;
}
return key_counter_ < other->key_counter_;
}
virtual ~VariantMapKeyRaw() {}
protected:
VariantMapKeyRaw()
: key_counter_(VariantMapKeyCounterAllocator::AllocateCounter()) {}
// explicit VariantMapKeyRaw(size_t counter)
// : key_counter_(counter) {}
size_t GetCounter() const {
return key_counter_;
}
protected:
// Avoid the object slicing problem; use Clone() instead.
VariantMapKeyRaw(const VariantMapKeyRaw&) = default;
VariantMapKeyRaw(VariantMapKeyRaw&&) = default;
private:
size_t key_counter_; // Runtime type ID. Unique each time a new type is reified.
};
} // namespace detail
// The base type for keys used by the VariantMap. Users must subclass this type.
template <typename TValue>
struct VariantMapKey : detail::VariantMapKeyRaw {
// Instantiate a default value for this key. If an explicit default value was provided
// then that is used. Otherwise, the default value for the type TValue{} is returned.
TValue CreateDefaultValue() const {
if (default_value_ == nullptr) {
return TValue{}; // NOLINT [readability/braces] [4]
} else {
return TValue(*default_value_);
}
}
protected:
// explicit VariantMapKey(size_t counter) : detail::VariantMapKeyRaw(counter) {}
explicit VariantMapKey(const TValue& default_value)
: default_value_(std::make_shared<TValue>(default_value)) {}
explicit VariantMapKey(TValue&& default_value)
: default_value_(std::make_shared<TValue>(default_value)) {}
VariantMapKey() {}
virtual ~VariantMapKey() {}
private:
virtual VariantMapKeyRaw* Clone() const {
return new VariantMapKey<TValue>(*this);
}
virtual void* ValueClone(void* value) const {
if (value == nullptr) {
return nullptr;
}
TValue* strong_value = reinterpret_cast<TValue*>(value);
return new TValue(*strong_value);
}
virtual void ValueDelete(void* value) const {
if (value == nullptr) {
return;
}
// Smartly invoke the proper delete/delete[]/etc
const std::default_delete<TValue> deleter = std::default_delete<TValue>();
deleter(reinterpret_cast<TValue*>(value));
}
VariantMapKey(const VariantMapKey&) = default;
VariantMapKey(VariantMapKey&&) = default;
template <typename Base, template <typename TV> class TKey> friend struct VariantMap;
// Store a prototype of the key's default value, for usage with VariantMap::GetOrDefault
std::shared_ptr<TValue> default_value_;
};
// Implementation details for a stringified VariantMapStringKey.
namespace detail {
struct VariantMapStringKeyRegistry {
// TODO
};
} // namespace detail
// Alternative base type for all keys used by VariantMap, supports runtime strings as the name.
template <typename TValue>
struct VariantMapStringKey : VariantMapKey<TValue> {
explicit VariantMapStringKey(const char* name)
: // VariantMapKey(/*std::hash<std::string>()(name)*/),
name_(name) {
}
private:
const char* name_;
};
// A variant map allows type-safe heteregeneous key->value mappings.
// All possible key types must be specified at compile-time. Values may be added/removed
// at runtime.
template <typename Base, template <typename TV> class TKey>
struct VariantMap {
// Allow users of this static interface to use the key type.
template <typename TValue>
using Key = TKey<TValue>;
// Look up the value from the key. The pointer becomes invalid if this key is overwritten/removed.
// A null value is returned only when the key does not exist in this map.
template <typename TValue>
const TValue* Get(const TKey<TValue>& key) const {
return GetValuePtr(key);
}
// Look up the value from the key. The pointer becomes invalid if this key is overwritten/removed.
// A null value is returned only when the key does not exist in this map.
template <typename TValue>
TValue* Get(const TKey<TValue>& key) {
return GetValuePtr(key);
}
// Lookup the value from the key. If it was not set in the map, return the default value.
// The default value is either the key's default, or TValue{} if the key doesn't have a default.
template <typename TValue>
TValue GetOrDefault(const TKey<TValue>& key) const {
auto* ptr = Get(key);
return (ptr == nullptr) ? key.CreateDefaultValue() : *ptr;
}
template <typename T, typename U>
void AssignIfExists(const TKey<T>& key, U* out) {
DCHECK(out != nullptr);
if (Exists(key)) {
*out = std::move(*Get(key));
}
}
private:
// TODO: move to detail, or make it more generic like a ScopeGuard(function)
template <typename TValue>
struct ScopedRemove {
ScopedRemove(VariantMap& map, const TKey<TValue>& key) : map_(map), key_(key) {}
~ScopedRemove() {
map_.Remove(key_);
}
VariantMap& map_;
const TKey<TValue>& key_;
};
public:
// Release the value from the key. If it was not set in the map, returns the default value.
// If the key was set, it is removed as a side effect.
template <typename TValue>
TValue ReleaseOrDefault(const TKey<TValue>& key) {
ScopedRemove<TValue> remove_on_return(*this, key);
TValue* ptr = Get(key);
if (ptr != nullptr) {
return std::move(*ptr);
} else {
return key.CreateDefaultValue();
}
}
// See if a value is stored for this key.
template <typename TValue>
bool Exists(const TKey<TValue>& key) const {
return GetKeyValueIterator(key) != storage_map_.end();
}
// Set a value for a given key, overwriting the previous value if any.
// Note: Omit the `value` from TValue type deduction, deduce only from the `key` argument.
template <typename TValue>
void Set(const TKey<TValue>& key, const typename Identity<TValue>::type& value) {
// Clone the value first, to protect against &value == GetValuePtr(key).
auto* new_value = new TValue(value);
Remove(key);
bool inserted = storage_map_.insert({key.Clone(), new_value}).second;
DCHECK(inserted); // ensure key.Clone() does not leak memory.
}
// Set a value for a given key, only if there was no previous value before.
// Returns true if the value was set, false if a previous value existed.
// Note: Omit the `value` from TValue type deduction, deduce only from the `key` argument.
template <typename TValue>
bool SetIfMissing(const TKey<TValue>& key, const typename Identity<TValue>::type& value) {
TValue* ptr = Get(key);
if (ptr == nullptr) {
Set(key, value);
return true;
}
return false;
}
// Remove the value for a given key, or a no-op if there was no previously set value.
template <typename TValue>
void Remove(const TKey<TValue>& key) {
StaticAssertKeyType<TValue>();
auto&& it = GetKeyValueIterator(key);
if (it != storage_map_.end()) {
key.ValueDelete(it->second);
delete it->first;
storage_map_.erase(it);
}
}
// Remove all key/value pairs.
void Clear() {
DeleteStoredValues();
storage_map_.clear();
}
// How many key/value pairs are stored in this map.
size_t Size() const {
return storage_map_.size();
}
// Construct an empty map.
VariantMap() {}
template <typename ... TKeyValue>
explicit VariantMap(const TKeyValue& ... key_value_list) {
static_assert(sizeof...(TKeyValue) % 2 == 0, "Must be an even number of key/value elements");
InitializeParameters(key_value_list...);
}
// Create a new map from an existing map, copying all the key/value pairs.
VariantMap(const VariantMap& other) {
operator=(other);
}
// Copy the key/value pairs from the other map into this one. Existing key/values are cleared.
VariantMap& operator=(const VariantMap& other) {
if (this == &other) {
return *this;
}
Clear();
for (auto&& kv_pair : other.storage_map_) {
const detail::VariantMapKeyRaw* raw_key_other = kv_pair.first;
void* value = kv_pair.second;
detail::VariantMapKeyRaw* cloned_raw_key = raw_key_other->Clone();
void* cloned_value = raw_key_other->ValueClone(value);
storage_map_.insert({{ cloned_raw_key, cloned_value }});
}
return *this;
}
// Create a new map by moving an existing map into this one. The other map becomes empty.
VariantMap(VariantMap&& other) {
operator=(std::forward<VariantMap>(other));
}
// Move the existing map's key/value pairs into this one. The other map becomes empty.
VariantMap& operator=(VariantMap&& other) {
if (this != &other) {
Clear();
storage_map_.swap(other.storage_map_);
other.storage_map_.clear();
}
return *this;
}
~VariantMap() {
DeleteStoredValues();
}
private:
void InitializeParameters() {}
template <typename TK, typename TValue, typename ... Rest>
void InitializeParameters(const TK& key, const TValue& value, const Rest& ... rest) {
static_assert(
std::is_same<TK, TKey<TValue>>::value, "The 0th/2nd/4th/etc parameters must be a key");
const TKey<TValue>& key_refined = key;
Set(key_refined, value);
InitializeParameters(rest...);
}
// Custom key comparator for std::map, needed since we are storing raw pointers as the keys.
struct KeyComparator {
bool operator()(const detail::VariantMapKeyRaw* lhs,
const detail::VariantMapKeyRaw* rhs) const {
if (lhs == nullptr) {
return lhs != rhs;
}
return lhs->Compare(rhs);
}
};
// Map of key pointers to value pointers. Pointers are never null.
using StorageMap = std::map<const detail::VariantMapKeyRaw*, void*, KeyComparator>;
template <typename TValue>
typename StorageMap::iterator GetKeyValueIterator(const TKey<TValue>& key) {
StaticAssertKeyType<TValue>();
const TKey<TValue>* key_ptr = &key;
const detail::VariantMapKeyRaw* raw_ptr = key_ptr;
return storage_map_.find(raw_ptr);
}
template <typename TValue>
typename StorageMap::const_iterator GetKeyValueIterator(const TKey<TValue>& key) const {
StaticAssertKeyType<TValue>();
const TKey<TValue>* key_ptr = &key;
const detail::VariantMapKeyRaw* raw_ptr = key_ptr;
return storage_map_.find(raw_ptr);
}
template <typename TValue>
TValue* GetValuePtr(const TKey<TValue>& key) {
return const_cast<TValue*>(GetValueConstPtr(key));
}
template <typename TValue>
const TValue* GetValuePtr(const TKey<TValue>& key) const {
return GetValueConstPtr(key);
}
template <typename TValue>
const TValue* GetValueConstPtr(const TKey<TValue>& key) const {
auto&& it = GetKeyValueIterator(key);
if (it == storage_map_.end()) {
return nullptr;
}
return reinterpret_cast<const TValue*>(it->second);
}
template <typename TValue>
static void StaticAssertKeyType() {
static_assert(std::is_base_of<VariantMapKey<TValue>, TKey<TValue>>::value,
"The provided key type (TKey) must be a subclass of VariantMapKey");
}
void DeleteStoredValues() {
for (auto&& kv_pair : storage_map_) {
kv_pair.first->ValueDelete(kv_pair.second);
delete kv_pair.first;
}
}
StorageMap storage_map_;
};
} // namespace art
#endif // ART_RUNTIME_BASE_VARIANT_MAP_H_