| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "load_store_elimination.h" |
| #include "side_effects_analysis.h" |
| |
| #include <iostream> |
| |
| namespace art { |
| |
| class ReferenceInfo; |
| |
| // A cap for the number of heap locations to prevent pathological time/space consumption. |
| // The number of heap locations for most of the methods stays below this threshold. |
| constexpr size_t kMaxNumberOfHeapLocations = 32; |
| |
| // A ReferenceInfo contains additional info about a reference such as |
| // whether it's a singleton, returned, etc. |
| class ReferenceInfo : public ArenaObject<kArenaAllocMisc> { |
| public: |
| ReferenceInfo(HInstruction* reference, size_t pos) : reference_(reference), position_(pos) { |
| is_singleton_ = true; |
| is_singleton_and_not_returned_ = true; |
| if (!reference_->IsNewInstance() && !reference_->IsNewArray()) { |
| // For references not allocated in the method, don't assume anything. |
| is_singleton_ = false; |
| is_singleton_and_not_returned_ = false; |
| return; |
| } |
| |
| // Visit all uses to determine if this reference can spread into the heap, |
| // a method call, etc. |
| for (const HUseListNode<HInstruction*>& use : reference_->GetUses()) { |
| HInstruction* user = use.GetUser(); |
| DCHECK(!user->IsNullCheck()) << "NullCheck should have been eliminated"; |
| if (user->IsBoundType()) { |
| // BoundType shouldn't normally be necessary for a NewInstance. |
| // Just be conservative for the uncommon cases. |
| is_singleton_ = false; |
| is_singleton_and_not_returned_ = false; |
| return; |
| } |
| if (user->IsPhi() || user->IsSelect() || user->IsInvoke() || |
| (user->IsInstanceFieldSet() && (reference_ == user->InputAt(1))) || |
| (user->IsUnresolvedInstanceFieldSet() && (reference_ == user->InputAt(1))) || |
| (user->IsStaticFieldSet() && (reference_ == user->InputAt(1))) || |
| (user->IsUnresolvedStaticFieldSet() && (reference_ == user->InputAt(0))) || |
| (user->IsArraySet() && (reference_ == user->InputAt(2)))) { |
| // reference_ is merged to HPhi/HSelect, passed to a callee, or stored to heap. |
| // reference_ isn't the only name that can refer to its value anymore. |
| is_singleton_ = false; |
| is_singleton_and_not_returned_ = false; |
| return; |
| } |
| if ((user->IsUnresolvedInstanceFieldGet() && (reference_ == user->InputAt(0))) || |
| (user->IsUnresolvedInstanceFieldSet() && (reference_ == user->InputAt(0)))) { |
| // The field is accessed in an unresolved way. We mark the object as a singleton to |
| // disable load/store optimizations on it. |
| // Note that we could optimize this case and still perform some optimizations until |
| // we hit the unresolved access, but disabling is the simplest. |
| is_singleton_ = false; |
| is_singleton_and_not_returned_ = false; |
| return; |
| } |
| if (user->IsReturn()) { |
| is_singleton_and_not_returned_ = false; |
| } |
| } |
| } |
| |
| HInstruction* GetReference() const { |
| return reference_; |
| } |
| |
| size_t GetPosition() const { |
| return position_; |
| } |
| |
| // Returns true if reference_ is the only name that can refer to its value during |
| // the lifetime of the method. So it's guaranteed to not have any alias in |
| // the method (including its callees). |
| bool IsSingleton() const { |
| return is_singleton_; |
| } |
| |
| // Returns true if reference_ is a singleton and not returned to the caller. |
| // The allocation and stores into reference_ may be eliminated for such cases. |
| bool IsSingletonAndNotReturned() const { |
| return is_singleton_and_not_returned_; |
| } |
| |
| private: |
| HInstruction* const reference_; |
| const size_t position_; // position in HeapLocationCollector's ref_info_array_. |
| bool is_singleton_; // can only be referred to by a single name in the method. |
| bool is_singleton_and_not_returned_; // reference_ is singleton and not returned to caller. |
| |
| DISALLOW_COPY_AND_ASSIGN(ReferenceInfo); |
| }; |
| |
| // A heap location is a reference-offset/index pair that a value can be loaded from |
| // or stored to. |
| class HeapLocation : public ArenaObject<kArenaAllocMisc> { |
| public: |
| static constexpr size_t kInvalidFieldOffset = -1; |
| |
| // TODO: more fine-grained array types. |
| static constexpr int16_t kDeclaringClassDefIndexForArrays = -1; |
| |
| HeapLocation(ReferenceInfo* ref_info, |
| size_t offset, |
| HInstruction* index, |
| int16_t declaring_class_def_index) |
| : ref_info_(ref_info), |
| offset_(offset), |
| index_(index), |
| declaring_class_def_index_(declaring_class_def_index), |
| value_killed_by_loop_side_effects_(true) { |
| DCHECK(ref_info != nullptr); |
| DCHECK((offset == kInvalidFieldOffset && index != nullptr) || |
| (offset != kInvalidFieldOffset && index == nullptr)); |
| if (ref_info->IsSingleton() && !IsArrayElement()) { |
| // Assume this location's value cannot be killed by loop side effects |
| // until proven otherwise. |
| value_killed_by_loop_side_effects_ = false; |
| } |
| } |
| |
| ReferenceInfo* GetReferenceInfo() const { return ref_info_; } |
| size_t GetOffset() const { return offset_; } |
| HInstruction* GetIndex() const { return index_; } |
| |
| // Returns the definition of declaring class' dex index. |
| // It's kDeclaringClassDefIndexForArrays for an array element. |
| int16_t GetDeclaringClassDefIndex() const { |
| return declaring_class_def_index_; |
| } |
| |
| bool IsArrayElement() const { |
| return index_ != nullptr; |
| } |
| |
| bool IsValueKilledByLoopSideEffects() const { |
| return value_killed_by_loop_side_effects_; |
| } |
| |
| void SetValueKilledByLoopSideEffects(bool val) { |
| value_killed_by_loop_side_effects_ = val; |
| } |
| |
| private: |
| ReferenceInfo* const ref_info_; // reference for instance/static field or array access. |
| const size_t offset_; // offset of static/instance field. |
| HInstruction* const index_; // index of an array element. |
| const int16_t declaring_class_def_index_; // declaring class's def's dex index. |
| bool value_killed_by_loop_side_effects_; // value of this location may be killed by loop |
| // side effects because this location is stored |
| // into inside a loop. This gives |
| // better info on whether a singleton's location |
| // value may be killed by loop side effects. |
| |
| DISALLOW_COPY_AND_ASSIGN(HeapLocation); |
| }; |
| |
| static HInstruction* HuntForOriginalReference(HInstruction* ref) { |
| DCHECK(ref != nullptr); |
| while (ref->IsNullCheck() || ref->IsBoundType()) { |
| ref = ref->InputAt(0); |
| } |
| return ref; |
| } |
| |
| // A HeapLocationCollector collects all relevant heap locations and keeps |
| // an aliasing matrix for all locations. |
| class HeapLocationCollector : public HGraphVisitor { |
| public: |
| static constexpr size_t kHeapLocationNotFound = -1; |
| // Start with a single uint32_t word. That's enough bits for pair-wise |
| // aliasing matrix of 8 heap locations. |
| static constexpr uint32_t kInitialAliasingMatrixBitVectorSize = 32; |
| |
| explicit HeapLocationCollector(HGraph* graph) |
| : HGraphVisitor(graph), |
| ref_info_array_(graph->GetArena()->Adapter(kArenaAllocLSE)), |
| heap_locations_(graph->GetArena()->Adapter(kArenaAllocLSE)), |
| aliasing_matrix_(graph->GetArena(), |
| kInitialAliasingMatrixBitVectorSize, |
| true, |
| kArenaAllocLSE), |
| has_heap_stores_(false), |
| has_volatile_(false), |
| has_monitor_operations_(false), |
| may_deoptimize_(false) {} |
| |
| size_t GetNumberOfHeapLocations() const { |
| return heap_locations_.size(); |
| } |
| |
| HeapLocation* GetHeapLocation(size_t index) const { |
| return heap_locations_[index]; |
| } |
| |
| ReferenceInfo* FindReferenceInfoOf(HInstruction* ref) const { |
| for (size_t i = 0; i < ref_info_array_.size(); i++) { |
| ReferenceInfo* ref_info = ref_info_array_[i]; |
| if (ref_info->GetReference() == ref) { |
| DCHECK_EQ(i, ref_info->GetPosition()); |
| return ref_info; |
| } |
| } |
| return nullptr; |
| } |
| |
| bool HasHeapStores() const { |
| return has_heap_stores_; |
| } |
| |
| bool HasVolatile() const { |
| return has_volatile_; |
| } |
| |
| bool HasMonitorOps() const { |
| return has_monitor_operations_; |
| } |
| |
| // Returns whether this method may be deoptimized. |
| // Currently we don't have meta data support for deoptimizing |
| // a method that eliminates allocations/stores. |
| bool MayDeoptimize() const { |
| return may_deoptimize_; |
| } |
| |
| // Find and return the heap location index in heap_locations_. |
| size_t FindHeapLocationIndex(ReferenceInfo* ref_info, |
| size_t offset, |
| HInstruction* index, |
| int16_t declaring_class_def_index) const { |
| for (size_t i = 0; i < heap_locations_.size(); i++) { |
| HeapLocation* loc = heap_locations_[i]; |
| if (loc->GetReferenceInfo() == ref_info && |
| loc->GetOffset() == offset && |
| loc->GetIndex() == index && |
| loc->GetDeclaringClassDefIndex() == declaring_class_def_index) { |
| return i; |
| } |
| } |
| return kHeapLocationNotFound; |
| } |
| |
| // Returns true if heap_locations_[index1] and heap_locations_[index2] may alias. |
| bool MayAlias(size_t index1, size_t index2) const { |
| if (index1 < index2) { |
| return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index1, index2)); |
| } else if (index1 > index2) { |
| return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index2, index1)); |
| } else { |
| DCHECK(false) << "index1 and index2 are expected to be different"; |
| return true; |
| } |
| } |
| |
| void BuildAliasingMatrix() { |
| const size_t number_of_locations = heap_locations_.size(); |
| if (number_of_locations == 0) { |
| return; |
| } |
| size_t pos = 0; |
| // Compute aliasing info between every pair of different heap locations. |
| // Save the result in a matrix represented as a BitVector. |
| for (size_t i = 0; i < number_of_locations - 1; i++) { |
| for (size_t j = i + 1; j < number_of_locations; j++) { |
| if (ComputeMayAlias(i, j)) { |
| aliasing_matrix_.SetBit(CheckedAliasingMatrixPosition(i, j, pos)); |
| } |
| pos++; |
| } |
| } |
| } |
| |
| private: |
| // An allocation cannot alias with a name which already exists at the point |
| // of the allocation, such as a parameter or a load happening before the allocation. |
| bool MayAliasWithPreexistenceChecking(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const { |
| if (ref_info1->GetReference()->IsNewInstance() || ref_info1->GetReference()->IsNewArray()) { |
| // Any reference that can alias with the allocation must appear after it in the block/in |
| // the block's successors. In reverse post order, those instructions will be visited after |
| // the allocation. |
| return ref_info2->GetPosition() >= ref_info1->GetPosition(); |
| } |
| return true; |
| } |
| |
| bool CanReferencesAlias(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const { |
| if (ref_info1 == ref_info2) { |
| return true; |
| } else if (ref_info1->IsSingleton()) { |
| return false; |
| } else if (ref_info2->IsSingleton()) { |
| return false; |
| } else if (!MayAliasWithPreexistenceChecking(ref_info1, ref_info2) || |
| !MayAliasWithPreexistenceChecking(ref_info2, ref_info1)) { |
| return false; |
| } |
| return true; |
| } |
| |
| // `index1` and `index2` are indices in the array of collected heap locations. |
| // Returns the position in the bit vector that tracks whether the two heap |
| // locations may alias. |
| size_t AliasingMatrixPosition(size_t index1, size_t index2) const { |
| DCHECK(index2 > index1); |
| const size_t number_of_locations = heap_locations_.size(); |
| // It's (num_of_locations - 1) + ... + (num_of_locations - index1) + (index2 - index1 - 1). |
| return (number_of_locations * index1 - (1 + index1) * index1 / 2 + (index2 - index1 - 1)); |
| } |
| |
| // An additional position is passed in to make sure the calculated position is correct. |
| size_t CheckedAliasingMatrixPosition(size_t index1, size_t index2, size_t position) { |
| size_t calculated_position = AliasingMatrixPosition(index1, index2); |
| DCHECK_EQ(calculated_position, position); |
| return calculated_position; |
| } |
| |
| // Compute if two locations may alias to each other. |
| bool ComputeMayAlias(size_t index1, size_t index2) const { |
| HeapLocation* loc1 = heap_locations_[index1]; |
| HeapLocation* loc2 = heap_locations_[index2]; |
| if (loc1->GetOffset() != loc2->GetOffset()) { |
| // Either two different instance fields, or one is an instance |
| // field and the other is an array element. |
| return false; |
| } |
| if (loc1->GetDeclaringClassDefIndex() != loc2->GetDeclaringClassDefIndex()) { |
| // Different types. |
| return false; |
| } |
| if (!CanReferencesAlias(loc1->GetReferenceInfo(), loc2->GetReferenceInfo())) { |
| return false; |
| } |
| if (loc1->IsArrayElement() && loc2->IsArrayElement()) { |
| HInstruction* array_index1 = loc1->GetIndex(); |
| HInstruction* array_index2 = loc2->GetIndex(); |
| DCHECK(array_index1 != nullptr); |
| DCHECK(array_index2 != nullptr); |
| if (array_index1->IsIntConstant() && |
| array_index2->IsIntConstant() && |
| array_index1->AsIntConstant()->GetValue() != array_index2->AsIntConstant()->GetValue()) { |
| // Different constant indices do not alias. |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| ReferenceInfo* GetOrCreateReferenceInfo(HInstruction* instruction) { |
| ReferenceInfo* ref_info = FindReferenceInfoOf(instruction); |
| if (ref_info == nullptr) { |
| size_t pos = ref_info_array_.size(); |
| ref_info = new (GetGraph()->GetArena()) ReferenceInfo(instruction, pos); |
| ref_info_array_.push_back(ref_info); |
| } |
| return ref_info; |
| } |
| |
| void CreateReferenceInfoForReferenceType(HInstruction* instruction) { |
| if (instruction->GetType() != Primitive::kPrimNot) { |
| return; |
| } |
| DCHECK(FindReferenceInfoOf(instruction) == nullptr); |
| GetOrCreateReferenceInfo(instruction); |
| } |
| |
| HeapLocation* GetOrCreateHeapLocation(HInstruction* ref, |
| size_t offset, |
| HInstruction* index, |
| int16_t declaring_class_def_index) { |
| HInstruction* original_ref = HuntForOriginalReference(ref); |
| ReferenceInfo* ref_info = GetOrCreateReferenceInfo(original_ref); |
| size_t heap_location_idx = FindHeapLocationIndex( |
| ref_info, offset, index, declaring_class_def_index); |
| if (heap_location_idx == kHeapLocationNotFound) { |
| HeapLocation* heap_loc = new (GetGraph()->GetArena()) |
| HeapLocation(ref_info, offset, index, declaring_class_def_index); |
| heap_locations_.push_back(heap_loc); |
| return heap_loc; |
| } |
| return heap_locations_[heap_location_idx]; |
| } |
| |
| HeapLocation* VisitFieldAccess(HInstruction* ref, const FieldInfo& field_info) { |
| if (field_info.IsVolatile()) { |
| has_volatile_ = true; |
| } |
| const uint16_t declaring_class_def_index = field_info.GetDeclaringClassDefIndex(); |
| const size_t offset = field_info.GetFieldOffset().SizeValue(); |
| return GetOrCreateHeapLocation(ref, offset, nullptr, declaring_class_def_index); |
| } |
| |
| void VisitArrayAccess(HInstruction* array, HInstruction* index) { |
| GetOrCreateHeapLocation(array, HeapLocation::kInvalidFieldOffset, |
| index, HeapLocation::kDeclaringClassDefIndexForArrays); |
| } |
| |
| void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE { |
| VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE { |
| HeapLocation* location = VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); |
| has_heap_stores_ = true; |
| if (location->GetReferenceInfo()->IsSingleton()) { |
| // A singleton's location value may be killed by loop side effects if it's |
| // defined before that loop, and it's stored into inside that loop. |
| HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation(); |
| if (loop_info != nullptr) { |
| HInstruction* ref = location->GetReferenceInfo()->GetReference(); |
| DCHECK(ref->IsNewInstance()); |
| if (loop_info->IsDefinedOutOfTheLoop(ref)) { |
| // ref's location value may be killed by this loop's side effects. |
| location->SetValueKilledByLoopSideEffects(true); |
| } else { |
| // ref is defined inside this loop so this loop's side effects cannot |
| // kill its location value at the loop header since ref/its location doesn't |
| // exist yet at the loop header. |
| } |
| } |
| } else { |
| // For non-singletons, value_killed_by_loop_side_effects_ is inited to |
| // true. |
| DCHECK_EQ(location->IsValueKilledByLoopSideEffects(), true); |
| } |
| } |
| |
| void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE { |
| VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE { |
| VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); |
| has_heap_stores_ = true; |
| } |
| |
| // We intentionally don't collect HUnresolvedInstanceField/HUnresolvedStaticField accesses |
| // since we cannot accurately track the fields. |
| |
| void VisitArrayGet(HArrayGet* instruction) OVERRIDE { |
| VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1)); |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitArraySet(HArraySet* instruction) OVERRIDE { |
| VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1)); |
| has_heap_stores_ = true; |
| } |
| |
| void VisitNewInstance(HNewInstance* new_instance) OVERRIDE { |
| // Any references appearing in the ref_info_array_ so far cannot alias with new_instance. |
| CreateReferenceInfoForReferenceType(new_instance); |
| } |
| |
| void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* instruction) OVERRIDE { |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitInvokeVirtual(HInvokeVirtual* instruction) OVERRIDE { |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitInvokeInterface(HInvokeInterface* instruction) OVERRIDE { |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitParameterValue(HParameterValue* instruction) OVERRIDE { |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitSelect(HSelect* instruction) OVERRIDE { |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitDeoptimize(HDeoptimize* instruction ATTRIBUTE_UNUSED) OVERRIDE { |
| may_deoptimize_ = true; |
| } |
| |
| void VisitMonitorOperation(HMonitorOperation* monitor ATTRIBUTE_UNUSED) OVERRIDE { |
| has_monitor_operations_ = true; |
| } |
| |
| ArenaVector<ReferenceInfo*> ref_info_array_; // All references used for heap accesses. |
| ArenaVector<HeapLocation*> heap_locations_; // All heap locations. |
| ArenaBitVector aliasing_matrix_; // aliasing info between each pair of locations. |
| bool has_heap_stores_; // If there is no heap stores, LSE acts as GVN with better |
| // alias analysis and won't be as effective. |
| bool has_volatile_; // If there are volatile field accesses. |
| bool has_monitor_operations_; // If there are monitor operations. |
| bool may_deoptimize_; // Only true for HDeoptimize with single-frame deoptimization. |
| |
| DISALLOW_COPY_AND_ASSIGN(HeapLocationCollector); |
| }; |
| |
| // An unknown heap value. Loads with such a value in the heap location cannot be eliminated. |
| // A heap location can be set to kUnknownHeapValue when: |
| // - initially set a value. |
| // - killed due to aliasing, merging, invocation, or loop side effects. |
| static HInstruction* const kUnknownHeapValue = |
| reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1)); |
| |
| // Default heap value after an allocation. |
| // A heap location can be set to that value right after an allocation. |
| static HInstruction* const kDefaultHeapValue = |
| reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2)); |
| |
| class LSEVisitor : public HGraphVisitor { |
| public: |
| LSEVisitor(HGraph* graph, |
| const HeapLocationCollector& heap_locations_collector, |
| const SideEffectsAnalysis& side_effects) |
| : HGraphVisitor(graph), |
| heap_location_collector_(heap_locations_collector), |
| side_effects_(side_effects), |
| heap_values_for_(graph->GetBlocks().size(), |
| ArenaVector<HInstruction*>(heap_locations_collector. |
| GetNumberOfHeapLocations(), |
| kUnknownHeapValue, |
| graph->GetArena()->Adapter(kArenaAllocLSE)), |
| graph->GetArena()->Adapter(kArenaAllocLSE)), |
| removed_loads_(graph->GetArena()->Adapter(kArenaAllocLSE)), |
| substitute_instructions_for_loads_(graph->GetArena()->Adapter(kArenaAllocLSE)), |
| possibly_removed_stores_(graph->GetArena()->Adapter(kArenaAllocLSE)), |
| singleton_new_instances_(graph->GetArena()->Adapter(kArenaAllocLSE)) { |
| } |
| |
| void VisitBasicBlock(HBasicBlock* block) OVERRIDE { |
| // Populate the heap_values array for this block. |
| // TODO: try to reuse the heap_values array from one predecessor if possible. |
| if (block->IsLoopHeader()) { |
| HandleLoopSideEffects(block); |
| } else { |
| MergePredecessorValues(block); |
| } |
| HGraphVisitor::VisitBasicBlock(block); |
| } |
| |
| // Remove recorded instructions that should be eliminated. |
| void RemoveInstructions() { |
| size_t size = removed_loads_.size(); |
| DCHECK_EQ(size, substitute_instructions_for_loads_.size()); |
| for (size_t i = 0; i < size; i++) { |
| HInstruction* load = removed_loads_[i]; |
| DCHECK(load != nullptr); |
| DCHECK(load->IsInstanceFieldGet() || |
| load->IsStaticFieldGet() || |
| load->IsArrayGet()); |
| HInstruction* substitute = substitute_instructions_for_loads_[i]; |
| DCHECK(substitute != nullptr); |
| // Keep tracing substitute till one that's not removed. |
| HInstruction* sub_sub = FindSubstitute(substitute); |
| while (sub_sub != substitute) { |
| substitute = sub_sub; |
| sub_sub = FindSubstitute(substitute); |
| } |
| load->ReplaceWith(substitute); |
| load->GetBlock()->RemoveInstruction(load); |
| } |
| |
| // At this point, stores in possibly_removed_stores_ can be safely removed. |
| for (size_t i = 0, e = possibly_removed_stores_.size(); i < e; i++) { |
| HInstruction* store = possibly_removed_stores_[i]; |
| DCHECK(store->IsInstanceFieldSet() || store->IsStaticFieldSet() || store->IsArraySet()); |
| store->GetBlock()->RemoveInstruction(store); |
| } |
| |
| // Eliminate allocations that are not used. |
| for (size_t i = 0, e = singleton_new_instances_.size(); i < e; i++) { |
| HInstruction* new_instance = singleton_new_instances_[i]; |
| if (!new_instance->HasNonEnvironmentUses()) { |
| new_instance->RemoveEnvironmentUsers(); |
| new_instance->GetBlock()->RemoveInstruction(new_instance); |
| } |
| } |
| } |
| |
| private: |
| // If heap_values[index] is an instance field store, need to keep the store. |
| // This is necessary if a heap value is killed due to merging, or loop side |
| // effects (which is essentially merging also), since a load later from the |
| // location won't be eliminated. |
| void KeepIfIsStore(HInstruction* heap_value) { |
| if (heap_value == kDefaultHeapValue || |
| heap_value == kUnknownHeapValue || |
| !heap_value->IsInstanceFieldSet()) { |
| return; |
| } |
| auto idx = std::find(possibly_removed_stores_.begin(), |
| possibly_removed_stores_.end(), heap_value); |
| if (idx != possibly_removed_stores_.end()) { |
| // Make sure the store is kept. |
| possibly_removed_stores_.erase(idx); |
| } |
| } |
| |
| void HandleLoopSideEffects(HBasicBlock* block) { |
| DCHECK(block->IsLoopHeader()); |
| int block_id = block->GetBlockId(); |
| ArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id]; |
| |
| // Don't eliminate loads in irreducible loops. This is safe for singletons, because |
| // they are always used by the non-eliminated loop-phi. |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| if (kIsDebugBuild) { |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| DCHECK_EQ(heap_values[i], kUnknownHeapValue); |
| } |
| } |
| return; |
| } |
| |
| HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader(); |
| ArenaVector<HInstruction*>& pre_header_heap_values = |
| heap_values_for_[pre_header->GetBlockId()]; |
| |
| // Inherit the values from pre-header. |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| heap_values[i] = pre_header_heap_values[i]; |
| } |
| |
| // We do a single pass in reverse post order. For loops, use the side effects as a hint |
| // to see if the heap values should be killed. |
| if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) { |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| HeapLocation* location = heap_location_collector_.GetHeapLocation(i); |
| ReferenceInfo* ref_info = location->GetReferenceInfo(); |
| if (!ref_info->IsSingleton() || location->IsValueKilledByLoopSideEffects()) { |
| // heap value is killed by loop side effects (stored into directly, or due to |
| // aliasing). |
| KeepIfIsStore(pre_header_heap_values[i]); |
| heap_values[i] = kUnknownHeapValue; |
| } else { |
| // A singleton's field that's not stored into inside a loop is invariant throughout |
| // the loop. |
| } |
| } |
| } |
| } |
| |
| void MergePredecessorValues(HBasicBlock* block) { |
| const ArenaVector<HBasicBlock*>& predecessors = block->GetPredecessors(); |
| if (predecessors.size() == 0) { |
| return; |
| } |
| ArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| HInstruction* pred0_value = heap_values_for_[predecessors[0]->GetBlockId()][i]; |
| heap_values[i] = pred0_value; |
| if (pred0_value != kUnknownHeapValue) { |
| for (size_t j = 1; j < predecessors.size(); j++) { |
| HInstruction* pred_value = heap_values_for_[predecessors[j]->GetBlockId()][i]; |
| if (pred_value != pred0_value) { |
| heap_values[i] = kUnknownHeapValue; |
| break; |
| } |
| } |
| } |
| |
| if (heap_values[i] == kUnknownHeapValue) { |
| // Keep the last store in each predecessor since future loads cannot be eliminated. |
| for (size_t j = 0; j < predecessors.size(); j++) { |
| ArenaVector<HInstruction*>& pred_values = heap_values_for_[predecessors[j]->GetBlockId()]; |
| KeepIfIsStore(pred_values[i]); |
| } |
| } |
| } |
| } |
| |
| // `instruction` is being removed. Try to see if the null check on it |
| // can be removed. This can happen if the same value is set in two branches |
| // but not in dominators. Such as: |
| // int[] a = foo(); |
| // if () { |
| // a[0] = 2; |
| // } else { |
| // a[0] = 2; |
| // } |
| // // a[0] can now be replaced with constant 2, and the null check on it can be removed. |
| void TryRemovingNullCheck(HInstruction* instruction) { |
| HInstruction* prev = instruction->GetPrevious(); |
| if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) { |
| // Previous instruction is a null check for this instruction. Remove the null check. |
| prev->ReplaceWith(prev->InputAt(0)); |
| prev->GetBlock()->RemoveInstruction(prev); |
| } |
| } |
| |
| HInstruction* GetDefaultValue(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimNot: |
| return GetGraph()->GetNullConstant(); |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| return GetGraph()->GetIntConstant(0); |
| case Primitive::kPrimLong: |
| return GetGraph()->GetLongConstant(0); |
| case Primitive::kPrimFloat: |
| return GetGraph()->GetFloatConstant(0); |
| case Primitive::kPrimDouble: |
| return GetGraph()->GetDoubleConstant(0); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void VisitGetLocation(HInstruction* instruction, |
| HInstruction* ref, |
| size_t offset, |
| HInstruction* index, |
| int16_t declaring_class_def_index) { |
| HInstruction* original_ref = HuntForOriginalReference(ref); |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref); |
| size_t idx = heap_location_collector_.FindHeapLocationIndex( |
| ref_info, offset, index, declaring_class_def_index); |
| DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| ArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| HInstruction* heap_value = heap_values[idx]; |
| if (heap_value == kDefaultHeapValue) { |
| HInstruction* constant = GetDefaultValue(instruction->GetType()); |
| removed_loads_.push_back(instruction); |
| substitute_instructions_for_loads_.push_back(constant); |
| heap_values[idx] = constant; |
| return; |
| } |
| if (heap_value != kUnknownHeapValue && heap_value->IsInstanceFieldSet()) { |
| HInstruction* store = heap_value; |
| // This load must be from a singleton since it's from the same field |
| // that a "removed" store puts the value. That store must be to a singleton's field. |
| DCHECK(ref_info->IsSingleton()); |
| // Get the real heap value of the store. |
| heap_value = store->InputAt(1); |
| } |
| if (heap_value == kUnknownHeapValue) { |
| // Load isn't eliminated. Put the load as the value into the HeapLocation. |
| // This acts like GVN but with better aliasing analysis. |
| heap_values[idx] = instruction; |
| } else { |
| if (Primitive::PrimitiveKind(heap_value->GetType()) |
| != Primitive::PrimitiveKind(instruction->GetType())) { |
| // The only situation where the same heap location has different type is when |
| // we do an array get on an instruction that originates from the null constant |
| // (the null could be behind a field access, an array access, a null check or |
| // a bound type). |
| // In order to stay properly typed on primitive types, we do not eliminate |
| // the array gets. |
| if (kIsDebugBuild) { |
| DCHECK(heap_value->IsArrayGet()) << heap_value->DebugName(); |
| DCHECK(instruction->IsArrayGet()) << instruction->DebugName(); |
| } |
| return; |
| } |
| removed_loads_.push_back(instruction); |
| substitute_instructions_for_loads_.push_back(heap_value); |
| TryRemovingNullCheck(instruction); |
| } |
| } |
| |
| bool Equal(HInstruction* heap_value, HInstruction* value) { |
| if (heap_value == value) { |
| return true; |
| } |
| if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) { |
| return true; |
| } |
| return false; |
| } |
| |
| void VisitSetLocation(HInstruction* instruction, |
| HInstruction* ref, |
| size_t offset, |
| HInstruction* index, |
| int16_t declaring_class_def_index, |
| HInstruction* value) { |
| HInstruction* original_ref = HuntForOriginalReference(ref); |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref); |
| size_t idx = heap_location_collector_.FindHeapLocationIndex( |
| ref_info, offset, index, declaring_class_def_index); |
| DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| ArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| HInstruction* heap_value = heap_values[idx]; |
| bool same_value = false; |
| bool possibly_redundant = false; |
| if (Equal(heap_value, value)) { |
| // Store into the heap location with the same value. |
| same_value = true; |
| } else if (index != nullptr) { |
| // For array element, don't eliminate stores since it can be easily aliased |
| // with non-constant index. |
| } else if (!heap_location_collector_.MayDeoptimize() && |
| ref_info->IsSingletonAndNotReturned()) { |
| // Store into a field of a singleton that's not returned. The value cannot be |
| // killed due to aliasing/invocation. It can be redundant since future loads can |
| // directly get the value set by this instruction. The value can still be killed due to |
| // merging or loop side effects. Stores whose values are killed due to merging/loop side |
| // effects later will be removed from possibly_removed_stores_ when that is detected. |
| possibly_redundant = true; |
| HNewInstance* new_instance = ref_info->GetReference()->AsNewInstance(); |
| DCHECK(new_instance != nullptr); |
| if (new_instance->IsFinalizable()) { |
| // Finalizable objects escape globally. Need to keep the store. |
| possibly_redundant = false; |
| } else { |
| HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation(); |
| if (loop_info != nullptr) { |
| // instruction is a store in the loop so the loop must does write. |
| DCHECK(side_effects_.GetLoopEffects(loop_info->GetHeader()).DoesAnyWrite()); |
| |
| if (loop_info->IsDefinedOutOfTheLoop(original_ref)) { |
| DCHECK(original_ref->GetBlock()->Dominates(loop_info->GetPreHeader())); |
| // Keep the store since its value may be needed at the loop header. |
| possibly_redundant = false; |
| } else { |
| // The singleton is created inside the loop. Value stored to it isn't needed at |
| // the loop header. This is true for outer loops also. |
| } |
| } |
| } |
| } |
| if (same_value || possibly_redundant) { |
| possibly_removed_stores_.push_back(instruction); |
| } |
| |
| if (!same_value) { |
| if (possibly_redundant) { |
| DCHECK(instruction->IsInstanceFieldSet()); |
| // Put the store as the heap value. If the value is loaded from heap |
| // by a load later, this store isn't really redundant. |
| heap_values[idx] = instruction; |
| } else { |
| heap_values[idx] = value; |
| } |
| } |
| // This store may kill values in other heap locations due to aliasing. |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| if (i == idx) { |
| continue; |
| } |
| if (heap_values[i] == value) { |
| // Same value should be kept even if aliasing happens. |
| continue; |
| } |
| if (heap_values[i] == kUnknownHeapValue) { |
| // Value is already unknown, no need for aliasing check. |
| continue; |
| } |
| if (heap_location_collector_.MayAlias(i, idx)) { |
| // Kill heap locations that may alias. |
| heap_values[i] = kUnknownHeapValue; |
| } |
| } |
| } |
| |
| void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE { |
| HInstruction* obj = instruction->InputAt(0); |
| size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); |
| int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); |
| VisitGetLocation(instruction, obj, offset, nullptr, declaring_class_def_index); |
| } |
| |
| void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE { |
| HInstruction* obj = instruction->InputAt(0); |
| size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); |
| int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); |
| HInstruction* value = instruction->InputAt(1); |
| VisitSetLocation(instruction, obj, offset, nullptr, declaring_class_def_index, value); |
| } |
| |
| void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE { |
| HInstruction* cls = instruction->InputAt(0); |
| size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); |
| int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); |
| VisitGetLocation(instruction, cls, offset, nullptr, declaring_class_def_index); |
| } |
| |
| void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE { |
| HInstruction* cls = instruction->InputAt(0); |
| size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); |
| int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); |
| HInstruction* value = instruction->InputAt(1); |
| VisitSetLocation(instruction, cls, offset, nullptr, declaring_class_def_index, value); |
| } |
| |
| void VisitArrayGet(HArrayGet* instruction) OVERRIDE { |
| HInstruction* array = instruction->InputAt(0); |
| HInstruction* index = instruction->InputAt(1); |
| VisitGetLocation(instruction, |
| array, |
| HeapLocation::kInvalidFieldOffset, |
| index, |
| HeapLocation::kDeclaringClassDefIndexForArrays); |
| } |
| |
| void VisitArraySet(HArraySet* instruction) OVERRIDE { |
| HInstruction* array = instruction->InputAt(0); |
| HInstruction* index = instruction->InputAt(1); |
| HInstruction* value = instruction->InputAt(2); |
| VisitSetLocation(instruction, |
| array, |
| HeapLocation::kInvalidFieldOffset, |
| index, |
| HeapLocation::kDeclaringClassDefIndexForArrays, |
| value); |
| } |
| |
| void HandleInvoke(HInstruction* invoke) { |
| ArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[invoke->GetBlock()->GetBlockId()]; |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (ref_info->IsSingleton()) { |
| // Singleton references cannot be seen by the callee. |
| } else { |
| heap_values[i] = kUnknownHeapValue; |
| } |
| } |
| } |
| |
| void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) OVERRIDE { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitInvokeVirtual(HInvokeVirtual* invoke) OVERRIDE { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitInvokeInterface(HInvokeInterface* invoke) OVERRIDE { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitInvokeUnresolved(HInvokeUnresolved* invoke) OVERRIDE { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitClinitCheck(HClinitCheck* clinit) OVERRIDE { |
| HandleInvoke(clinit); |
| } |
| |
| void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) OVERRIDE { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) OVERRIDE { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) OVERRIDE { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) OVERRIDE { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitNewInstance(HNewInstance* new_instance) OVERRIDE { |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance); |
| if (ref_info == nullptr) { |
| // new_instance isn't used for field accesses. No need to process it. |
| return; |
| } |
| if (!heap_location_collector_.MayDeoptimize() && |
| ref_info->IsSingletonAndNotReturned() && |
| !new_instance->IsFinalizable() && |
| !new_instance->NeedsAccessCheck()) { |
| singleton_new_instances_.push_back(new_instance); |
| } |
| ArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[new_instance->GetBlock()->GetBlockId()]; |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| HInstruction* ref = |
| heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference(); |
| size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset(); |
| if (ref == new_instance && offset >= mirror::kObjectHeaderSize) { |
| // Instance fields except the header fields are set to default heap values. |
| heap_values[i] = kDefaultHeapValue; |
| } |
| } |
| } |
| |
| // Find an instruction's substitute if it should be removed. |
| // Return the same instruction if it should not be removed. |
| HInstruction* FindSubstitute(HInstruction* instruction) { |
| size_t size = removed_loads_.size(); |
| for (size_t i = 0; i < size; i++) { |
| if (removed_loads_[i] == instruction) { |
| return substitute_instructions_for_loads_[i]; |
| } |
| } |
| return instruction; |
| } |
| |
| const HeapLocationCollector& heap_location_collector_; |
| const SideEffectsAnalysis& side_effects_; |
| |
| // One array of heap values for each block. |
| ArenaVector<ArenaVector<HInstruction*>> heap_values_for_; |
| |
| // We record the instructions that should be eliminated but may be |
| // used by heap locations. They'll be removed in the end. |
| ArenaVector<HInstruction*> removed_loads_; |
| ArenaVector<HInstruction*> substitute_instructions_for_loads_; |
| |
| // Stores in this list may be removed from the list later when it's |
| // found that the store cannot be eliminated. |
| ArenaVector<HInstruction*> possibly_removed_stores_; |
| |
| ArenaVector<HInstruction*> singleton_new_instances_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LSEVisitor); |
| }; |
| |
| void LoadStoreElimination::Run() { |
| if (graph_->IsDebuggable() || graph_->HasTryCatch()) { |
| // Debugger may set heap values or trigger deoptimization of callers. |
| // Try/catch support not implemented yet. |
| // Skip this optimization. |
| return; |
| } |
| HeapLocationCollector heap_location_collector(graph_); |
| for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| heap_location_collector.VisitBasicBlock(it.Current()); |
| } |
| if (heap_location_collector.GetNumberOfHeapLocations() > kMaxNumberOfHeapLocations) { |
| // Bail out if there are too many heap locations to deal with. |
| return; |
| } |
| if (!heap_location_collector.HasHeapStores()) { |
| // Without heap stores, this pass would act mostly as GVN on heap accesses. |
| return; |
| } |
| if (heap_location_collector.HasVolatile() || heap_location_collector.HasMonitorOps()) { |
| // Don't do load/store elimination if the method has volatile field accesses or |
| // monitor operations, for now. |
| // TODO: do it right. |
| return; |
| } |
| heap_location_collector.BuildAliasingMatrix(); |
| LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_); |
| for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| lse_visitor.VisitBasicBlock(it.Current()); |
| } |
| lse_visitor.RemoveInstructions(); |
| } |
| |
| } // namespace art |