blob: 8e597b2b3a5b6cdcfb101c450f1eda3291c55ff8 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_SRC_STACK_H_
#define ART_SRC_STACK_H_
#include "dex_file.h"
#include "instrumentation.h"
#include "base/macros.h"
#include "oat/runtime/context.h"
#include <stdint.h>
#include <string>
namespace art {
namespace mirror {
class AbstractMethod;
class Object;
} // namespace mirror
class Context;
class ShadowFrame;
class StackIndirectReferenceTable;
class ScopedObjectAccess;
class Thread;
// The kind of vreg being accessed in calls to Set/GetVReg.
enum VRegKind {
kReferenceVReg,
kIntVReg,
kFloatVReg,
kLongLoVReg,
kLongHiVReg,
kDoubleLoVReg,
kDoubleHiVReg,
kConstant,
kImpreciseConstant,
kUndefined,
};
// ShadowFrame has 3 possible layouts:
// - portable - a unified array of VRegs and references. Precise references need GC maps.
// - interpreter - separate VRegs and reference arrays. References are in the reference array.
// - JNI - just VRegs, but where every VReg holds a reference.
class ShadowFrame {
public:
// Create ShadowFrame for interpreter.
static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link,
mirror::AbstractMethod* method, uint32_t dex_pc) {
size_t sz = sizeof(ShadowFrame) +
(sizeof(uint32_t) * num_vregs) +
(sizeof(mirror::Object*) * num_vregs);
uint8_t* memory = new uint8_t[sz];
ShadowFrame* sf = new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true);
return sf;
}
~ShadowFrame() {}
bool HasReferenceArray() const {
#if defined(ART_USE_PORTABLE_COMPILER)
return (number_of_vregs_ & kHasReferenceArray) != 0;
#else
return true;
#endif
}
uint32_t NumberOfVRegs() const {
#if defined(ART_USE_PORTABLE_COMPILER)
return number_of_vregs_ & ~kHasReferenceArray;
#else
return number_of_vregs_;
#endif
}
void SetNumberOfVRegs(uint32_t number_of_vregs) {
#if defined(ART_USE_PORTABLE_COMPILER)
number_of_vregs_ = number_of_vregs | (number_of_vregs_ & kHasReferenceArray);
#else
UNUSED(number_of_vregs);
UNIMPLEMENTED(FATAL) << "Should only be called when portable is enabled";
#endif
}
uint32_t GetDexPC() const {
return dex_pc_;
}
void SetDexPC(uint32_t dex_pc) {
dex_pc_ = dex_pc;
}
ShadowFrame* GetLink() const {
return link_;
}
void SetLink(ShadowFrame* frame) {
DCHECK_NE(this, frame);
link_ = frame;
}
int32_t GetVReg(size_t i) const {
DCHECK_LT(i, NumberOfVRegs());
const uint32_t* vreg = &vregs_[i];
return *reinterpret_cast<const int32_t*>(vreg);
}
float GetVRegFloat(size_t i) const {
DCHECK_LT(i, NumberOfVRegs());
// NOTE: Strict-aliasing?
const uint32_t* vreg = &vregs_[i];
return *reinterpret_cast<const float*>(vreg);
}
int64_t GetVRegLong(size_t i) const {
const uint32_t* vreg = &vregs_[i];
return *reinterpret_cast<const int64_t*>(vreg);
}
double GetVRegDouble(size_t i) const {
const uint32_t* vreg = &vregs_[i];
return *reinterpret_cast<const double*>(vreg);
}
mirror::Object* GetVRegReference(size_t i) const {
DCHECK_LT(i, NumberOfVRegs());
if (HasReferenceArray()) {
return References()[i];
} else {
const uint32_t* vreg = &vregs_[i];
return *reinterpret_cast<mirror::Object* const*>(vreg);
}
}
// Get view of vregs as range of consecutive arguments starting at i.
uint32_t* GetVRegArgs(size_t i) {
return &vregs_[i];
}
void SetVReg(size_t i, int32_t val) {
DCHECK_LT(i, NumberOfVRegs());
uint32_t* vreg = &vregs_[i];
*reinterpret_cast<int32_t*>(vreg) = val;
}
void SetVRegFloat(size_t i, float val) {
DCHECK_LT(i, NumberOfVRegs());
uint32_t* vreg = &vregs_[i];
*reinterpret_cast<float*>(vreg) = val;
}
void SetVRegLong(size_t i, int64_t val) {
uint32_t* vreg = &vregs_[i];
*reinterpret_cast<int64_t*>(vreg) = val;
}
void SetVRegDouble(size_t i, double val) {
uint32_t* vreg = &vregs_[i];
*reinterpret_cast<double*>(vreg) = val;
}
void SetVRegReference(size_t i, mirror::Object* val) {
DCHECK_LT(i, NumberOfVRegs());
uint32_t* vreg = &vregs_[i];
*reinterpret_cast<mirror::Object**>(vreg) = val;
if (HasReferenceArray()) {
References()[i] = val;
}
}
mirror::AbstractMethod* GetMethod() const {
DCHECK_NE(method_, static_cast<void*>(NULL));
return method_;
}
mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ThrowLocation GetCurrentLocationForThrow() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetMethod(mirror::AbstractMethod* method) {
#if defined(ART_USE_PORTABLE_COMPILER)
DCHECK_NE(method, static_cast<void*>(NULL));
method_ = method;
#else
UNUSED(method);
UNIMPLEMENTED(FATAL) << "Should only be called when portable is enabled";
#endif
}
bool Contains(mirror::Object** shadow_frame_entry_obj) const {
if (HasReferenceArray()) {
return ((&References()[0] <= shadow_frame_entry_obj) &&
(shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1])));
} else {
uint32_t* shadow_frame_entry = reinterpret_cast<uint32_t*>(shadow_frame_entry_obj);
return ((&vregs_[0] <= shadow_frame_entry) &&
(shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1])));
}
}
static size_t LinkOffset() {
return OFFSETOF_MEMBER(ShadowFrame, link_);
}
static size_t MethodOffset() {
return OFFSETOF_MEMBER(ShadowFrame, method_);
}
static size_t DexPCOffset() {
return OFFSETOF_MEMBER(ShadowFrame, dex_pc_);
}
static size_t NumberOfVRegsOffset() {
return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_);
}
static size_t VRegsOffset() {
return OFFSETOF_MEMBER(ShadowFrame, vregs_);
}
private:
ShadowFrame(uint32_t num_vregs, ShadowFrame* link, mirror::AbstractMethod* method,
uint32_t dex_pc, bool has_reference_array)
: number_of_vregs_(num_vregs), link_(link), method_(method), dex_pc_(dex_pc) {
if (has_reference_array) {
#if defined(ART_USE_PORTABLE_COMPILER)
CHECK_LT(num_vregs, static_cast<uint32_t>(kHasReferenceArray));
number_of_vregs_ |= kHasReferenceArray;
#endif
for (size_t i = 0; i < num_vregs; ++i) {
SetVRegReference(i, NULL);
}
} else {
for (size_t i = 0; i < num_vregs; ++i) {
SetVReg(i, 0);
}
}
}
mirror::Object* const* References() const {
DCHECK(HasReferenceArray());
const uint32_t* vreg_end = &vregs_[NumberOfVRegs()];
return reinterpret_cast<mirror::Object* const*>(vreg_end);
}
mirror::Object** References() {
return const_cast<mirror::Object**>(const_cast<const ShadowFrame*>(this)->References());
}
#if defined(ART_USE_PORTABLE_COMPILER)
enum ShadowFrameFlag {
kHasReferenceArray = 1ul << 31
};
// TODO: make const in the portable case.
uint32_t number_of_vregs_;
#else
const uint32_t number_of_vregs_;
#endif
// Link to previous shadow frame or NULL.
ShadowFrame* link_;
#if defined(ART_USE_PORTABLE_COMPILER)
// TODO: make const in the portable case.
mirror::AbstractMethod* method_;
#else
mirror::AbstractMethod* const method_;
#endif
uint32_t dex_pc_;
uint32_t vregs_[0];
DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame);
};
// The managed stack is used to record fragments of managed code stacks. Managed code stacks
// may either be shadow frames or lists of frames using fixed frame sizes. Transition records are
// necessary for transitions between code using different frame layouts and transitions into native
// code.
class PACKED(4) ManagedStack {
public:
ManagedStack()
: link_(NULL), top_shadow_frame_(NULL), top_quick_frame_(NULL), top_quick_frame_pc_(0) {}
void PushManagedStackFragment(ManagedStack* fragment) {
// Copy this top fragment into given fragment.
memcpy(fragment, this, sizeof(ManagedStack));
// Clear this fragment, which has become the top.
memset(this, 0, sizeof(ManagedStack));
// Link our top fragment onto the given fragment.
link_ = fragment;
}
void PopManagedStackFragment(const ManagedStack& fragment) {
DCHECK(&fragment == link_);
// Copy this given fragment back to the top.
memcpy(this, &fragment, sizeof(ManagedStack));
}
ManagedStack* GetLink() const {
return link_;
}
mirror::AbstractMethod** GetTopQuickFrame() const {
return top_quick_frame_;
}
void SetTopQuickFrame(mirror::AbstractMethod** top) {
DCHECK(top_shadow_frame_ == NULL);
top_quick_frame_ = top;
}
uintptr_t GetTopQuickFramePc() const {
return top_quick_frame_pc_;
}
void SetTopQuickFramePc(uintptr_t pc) {
DCHECK(top_shadow_frame_ == NULL);
top_quick_frame_pc_ = pc;
}
static size_t TopQuickFrameOffset() {
return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_);
}
static size_t TopQuickFramePcOffset() {
return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_pc_);
}
ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) {
DCHECK(top_quick_frame_ == NULL);
ShadowFrame* old_frame = top_shadow_frame_;
top_shadow_frame_ = new_top_frame;
new_top_frame->SetLink(old_frame);
return old_frame;
}
ShadowFrame* PopShadowFrame() {
DCHECK(top_quick_frame_ == NULL);
CHECK(top_shadow_frame_ != NULL);
ShadowFrame* frame = top_shadow_frame_;
top_shadow_frame_ = frame->GetLink();
return frame;
}
ShadowFrame* GetTopShadowFrame() const {
return top_shadow_frame_;
}
void SetTopShadowFrame(ShadowFrame* top) {
DCHECK(top_quick_frame_ == NULL);
top_shadow_frame_ = top;
}
static size_t TopShadowFrameOffset() {
return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_);
}
size_t NumJniShadowFrameReferences() const;
bool ShadowFramesContain(mirror::Object** shadow_frame_entry) const;
private:
ManagedStack* link_;
ShadowFrame* top_shadow_frame_;
mirror::AbstractMethod** top_quick_frame_;
uintptr_t top_quick_frame_pc_;
};
class StackVisitor {
protected:
StackVisitor(Thread* thread, Context* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
public:
virtual ~StackVisitor() {}
// Return 'true' if we should continue to visit more frames, 'false' to stop.
virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) = 0;
void WalkStack(bool include_transitions = false)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
mirror::AbstractMethod* GetMethod() const {
if (cur_shadow_frame_ != NULL) {
return cur_shadow_frame_->GetMethod();
} else if (cur_quick_frame_ != NULL) {
return *cur_quick_frame_;
} else {
return NULL;
}
}
bool IsShadowFrame() const {
return cur_shadow_frame_ != NULL;
}
uint32_t GetDexPc() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
size_t GetNativePcOffset() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uintptr_t* CalleeSaveAddress(int num, size_t frame_size) const {
// Callee saves are held at the top of the frame
DCHECK(GetMethod() != NULL);
byte* save_addr =
reinterpret_cast<byte*>(cur_quick_frame_) + frame_size - ((num + 1) * kPointerSize);
#if defined(__i386__)
save_addr -= kPointerSize; // account for return address
#endif
return reinterpret_cast<uintptr_t*>(save_addr);
}
// Returns the height of the stack in the managed stack frames, including transitions.
size_t GetFrameHeight() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetNumFrames() - cur_depth_ - 1;
}
// Returns a frame ID for JDWP use, starting from 1.
size_t GetFrameId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFrameHeight() + 1;
}
size_t GetNumFrames() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (num_frames_ == 0) {
num_frames_ = ComputeNumFrames(thread_);
}
return num_frames_;
}
uint32_t GetVReg(mirror::AbstractMethod* m, uint16_t vreg, VRegKind kind) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVReg(mirror::AbstractMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uintptr_t GetGPR(uint32_t reg) const;
void SetGPR(uint32_t reg, uintptr_t value);
uint32_t GetVReg(mirror::AbstractMethod** cur_quick_frame, const DexFile::CodeItem* code_item,
uint32_t core_spills, uint32_t fp_spills, size_t frame_size,
uint16_t vreg) const {
int offset = GetVRegOffset(code_item, core_spills, fp_spills, frame_size, vreg);
DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame());
byte* vreg_addr = reinterpret_cast<byte*>(cur_quick_frame) + offset;
return *reinterpret_cast<uint32_t*>(vreg_addr);
}
uintptr_t GetReturnPc() const;
void SetReturnPc(uintptr_t new_ret_pc);
/*
* Return sp-relative offset for a Dalvik virtual register, compiler
* spill or Method* in bytes using Method*.
* Note that (reg >= 0) refers to a Dalvik register, (reg == -2)
* denotes Method* and (reg <= -3) denotes a compiler temp.
*
* +------------------------+
* | IN[ins-1] | {Note: resides in caller's frame}
* | . |
* | IN[0] |
* | caller's Method* |
* +========================+ {Note: start of callee's frame}
* | core callee-save spill | {variable sized}
* +------------------------+
* | fp callee-save spill |
* +------------------------+
* | filler word | {For compatibility, if V[locals-1] used as wide
* +------------------------+
* | V[locals-1] |
* | V[locals-2] |
* | . |
* | . | ... (reg == 2)
* | V[1] | ... (reg == 1)
* | V[0] | ... (reg == 0) <---- "locals_start"
* +------------------------+
* | Compiler temps | ... (reg == -2)
* | | ... (reg == -3)
* | | ... (reg == -4)
* +------------------------+
* | stack alignment padding| {0 to (kStackAlignWords-1) of padding}
* +------------------------+
* | OUT[outs-1] |
* | OUT[outs-2] |
* | . |
* | OUT[0] |
* | curMethod* | ... (reg == -1) <<== sp, 16-byte aligned
* +========================+
*/
static int GetVRegOffset(const DexFile::CodeItem* code_item,
uint32_t core_spills, uint32_t fp_spills,
size_t frame_size, int reg) {
DCHECK_EQ(frame_size & (kStackAlignment - 1), 0U);
int num_spills = __builtin_popcount(core_spills) + __builtin_popcount(fp_spills) + 1; // Filler.
int num_ins = code_item->ins_size_;
int num_regs = code_item->registers_size_ - num_ins;
int locals_start = frame_size - ((num_spills + num_regs) * sizeof(uint32_t));
if (reg == -2) {
return 0; // Method*
} else if (reg <= -3) {
return locals_start - ((reg + 1) * sizeof(uint32_t)); // Compiler temp.
} else if (reg < num_regs) {
return locals_start + (reg * sizeof(uint32_t)); // Dalvik local reg.
} else {
return frame_size + ((reg - num_regs) * sizeof(uint32_t)) + sizeof(uint32_t); // Dalvik in.
}
}
uintptr_t GetCurrentQuickFramePc() const {
return cur_quick_frame_pc_;
}
mirror::AbstractMethod** GetCurrentQuickFrame() const {
return cur_quick_frame_;
}
ShadowFrame* GetCurrentShadowFrame() const {
return cur_shadow_frame_;
}
StackIndirectReferenceTable* GetCurrentSirt() const {
mirror::AbstractMethod** sp = GetCurrentQuickFrame();
++sp; // Skip Method*; SIRT comes next;
return reinterpret_cast<StackIndirectReferenceTable*>(sp);
}
std::string DescribeLocation() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static size_t ComputeNumFrames(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void DescribeStack(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
private:
instrumentation::InstrumentationStackFrame GetInstrumentationStackFrame(uint32_t depth) const;
void SanityCheckFrame() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Thread* const thread_;
ShadowFrame* cur_shadow_frame_;
mirror::AbstractMethod** cur_quick_frame_;
uintptr_t cur_quick_frame_pc_;
// Lazily computed, number of frames in the stack.
size_t num_frames_;
// Depth of the frame we're currently at.
size_t cur_depth_;
protected:
Context* const context_;
};
class VmapTable {
public:
explicit VmapTable(const uint16_t* table) : table_(table) {
}
uint16_t operator[](size_t i) const {
return table_[i + 1];
}
size_t size() const {
return table_[0];
}
// Is the dex register 'vreg' in the context or on the stack? Should not be called when the
// 'kind' is unknown or constant.
bool IsInContext(size_t vreg, uint32_t& vmap_offset, VRegKind kind) const {
DCHECK(kind == kReferenceVReg || kind == kIntVReg || kind == kFloatVReg ||
kind == kLongLoVReg || kind == kLongHiVReg || kind == kDoubleLoVReg ||
kind == kDoubleHiVReg || kind == kImpreciseConstant);
vmap_offset = 0xEBAD0FF5;
// TODO: take advantage of the registers being ordered
// TODO: we treat kImpreciseConstant as an integer below, need to ensure that such values
// are never promoted to floating point registers.
bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg);
bool in_floats = false;
for (size_t i = 0; i < size(); ++i) {
// Stop if we find what we are are looking for.
if ((table_[i + 1] == vreg) && (in_floats == is_float)) {
vmap_offset = i;
return true;
}
// 0xffff is the marker for LR (return PC on x86), following it are spilled float registers.
if (table_[i + 1] == 0xffff) {
in_floats = true;
}
}
return false;
}
// Compute the register number that corresponds to the entry in the vmap (vmap_offset, computed
// by IsInContext above). If the kind is floating point then the result will be a floating point
// register number, otherwise it will be an integer register number.
uint32_t ComputeRegister(uint32_t spill_mask, uint32_t vmap_offset, VRegKind kind) const {
// Compute the register we need to load from the context.
DCHECK(kind == kReferenceVReg || kind == kIntVReg || kind == kFloatVReg ||
kind == kLongLoVReg || kind == kLongHiVReg || kind == kDoubleLoVReg ||
kind == kDoubleHiVReg || kind == kImpreciseConstant);
// TODO: we treat kImpreciseConstant as an integer below, need to ensure that such values
// are never promoted to floating point registers.
bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg);
uint32_t matches = 0;
if (is_float) {
while (table_[matches] != 0xffff) {
matches++;
}
}
CHECK_LT(vmap_offset - matches, static_cast<uint32_t>(__builtin_popcount(spill_mask)));
uint32_t spill_shifts = 0;
while (matches != (vmap_offset + 1)) {
DCHECK_NE(spill_mask, 0u);
matches += spill_mask & 1; // Add 1 if the low bit is set
spill_mask >>= 1;
spill_shifts++;
}
spill_shifts--; // wind back one as we want the last match
return spill_shifts;
}
private:
const uint16_t* table_;
};
} // namespace art
#endif // ART_SRC_STACK_H_