blob: a228d7016613dc214383d5626ef26d4b2005c16f [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "indirect_reference_table-inl.h"
#include "base/bit_utils.h"
#include "base/globals.h"
#include "base/mutator_locked_dumpable.h"
#include "base/systrace.h"
#include "base/utils.h"
#include "indirect_reference_table.h"
#include "jni/java_vm_ext.h"
#include "jni/jni_internal.h"
#include "mirror/object-inl.h"
#include "nth_caller_visitor.h"
#include "object_callbacks.h"
#include "reference_table.h"
#include "runtime-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include <cstdlib>
namespace art {
static constexpr bool kDumpStackOnNonLocalReference = false;
static constexpr bool kDebugIRT = false;
// Maximum table size we allow.
static constexpr size_t kMaxTableSizeInBytes = 128 * MB;
const char* GetIndirectRefKindString(IndirectRefKind kind) {
switch (kind) {
case kJniTransition:
return "JniTransition";
case kLocal:
return "Local";
case kGlobal:
return "Global";
case kWeakGlobal:
return "WeakGlobal";
}
return "IndirectRefKind Error";
}
void IndirectReferenceTable::AbortIfNoCheckJNI(const std::string& msg) {
// If -Xcheck:jni is on, it'll give a more detailed error before aborting.
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
if (!vm->IsCheckJniEnabled()) {
// Otherwise, we want to abort rather than hand back a bad reference.
LOG(FATAL) << msg;
} else {
LOG(ERROR) << msg;
}
}
// Mmap an "indirect ref table region. Table_bytes is a multiple of a page size.
static inline MemMap NewIRTMap(size_t table_bytes, std::string* error_msg) {
MemMap result = MemMap::MapAnonymous("indirect ref table",
table_bytes,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ false,
error_msg);
if (!result.IsValid() && error_msg->empty()) {
*error_msg = "Unable to map memory for indirect ref table";
}
return result;
}
SmallIrtAllocator::SmallIrtAllocator()
: small_irt_freelist_(nullptr), lock_("Small IRT table lock", LockLevel::kGenericBottomLock) {
}
// Allocate an IRT table for kSmallIrtEntries.
IrtEntry* SmallIrtAllocator::Allocate(std::string* error_msg) {
MutexLock lock(Thread::Current(), lock_);
if (small_irt_freelist_ == nullptr) {
// Refill.
MemMap map = NewIRTMap(kPageSize, error_msg);
if (map.IsValid()) {
small_irt_freelist_ = reinterpret_cast<IrtEntry*>(map.Begin());
for (uint8_t* p = map.Begin(); p + kInitialIrtBytes < map.End(); p += kInitialIrtBytes) {
*reinterpret_cast<IrtEntry**>(p) = reinterpret_cast<IrtEntry*>(p + kInitialIrtBytes);
}
shared_irt_maps_.emplace_back(std::move(map));
}
}
if (small_irt_freelist_ == nullptr) {
return nullptr;
}
IrtEntry* result = small_irt_freelist_;
small_irt_freelist_ = *reinterpret_cast<IrtEntry**>(small_irt_freelist_);
// Clear pointer in first entry.
new(result) IrtEntry();
return result;
}
void SmallIrtAllocator::Deallocate(IrtEntry* unneeded) {
MutexLock lock(Thread::Current(), lock_);
*reinterpret_cast<IrtEntry**>(unneeded) = small_irt_freelist_;
small_irt_freelist_ = unneeded;
}
IndirectReferenceTable::IndirectReferenceTable(IndirectRefKind kind, ResizableCapacity resizable)
: segment_state_(kIRTFirstSegment),
table_(nullptr),
kind_(kind),
max_entries_(0u),
current_num_holes_(0),
resizable_(resizable) {
CHECK_NE(kind, kJniTransition);
}
bool IndirectReferenceTable::Initialize(size_t max_count, std::string* error_msg) {
CHECK(error_msg != nullptr);
// Overflow and maximum check.
CHECK_LE(max_count, kMaxTableSizeInBytes / sizeof(IrtEntry));
if (max_count <= kSmallIrtEntries) {
table_ = Runtime::Current()->GetSmallIrtAllocator()->Allocate(error_msg);
if (table_ != nullptr) {
max_entries_ = kSmallIrtEntries;
// table_mem_map_ remains invalid.
}
}
if (table_ == nullptr) {
const size_t table_bytes = RoundUp(max_count * sizeof(IrtEntry), kPageSize);
table_mem_map_ = NewIRTMap(table_bytes, error_msg);
if (!table_mem_map_.IsValid()) {
DCHECK(!error_msg->empty());
return false;
}
table_ = reinterpret_cast<IrtEntry*>(table_mem_map_.Begin());
// Take into account the actual length.
max_entries_ = table_bytes / sizeof(IrtEntry);
}
segment_state_ = kIRTFirstSegment;
last_known_previous_state_ = kIRTFirstSegment;
return true;
}
IndirectReferenceTable::~IndirectReferenceTable() {
if (table_ != nullptr && !table_mem_map_.IsValid()) {
Runtime::Current()->GetSmallIrtAllocator()->Deallocate(table_);
}
}
void IndirectReferenceTable::ConstexprChecks() {
// Use this for some assertions. They can't be put into the header as C++ wants the class
// to be complete.
// Check kind.
static_assert((EncodeIndirectRefKind(kLocal) & (~kKindMask)) == 0, "Kind encoding error");
static_assert((EncodeIndirectRefKind(kGlobal) & (~kKindMask)) == 0, "Kind encoding error");
static_assert((EncodeIndirectRefKind(kWeakGlobal) & (~kKindMask)) == 0, "Kind encoding error");
static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kLocal)) == kLocal,
"Kind encoding error");
static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kGlobal)) == kGlobal,
"Kind encoding error");
static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kWeakGlobal)) == kWeakGlobal,
"Kind encoding error");
// Check serial.
static_assert(DecodeSerial(EncodeSerial(0u)) == 0u, "Serial encoding error");
static_assert(DecodeSerial(EncodeSerial(1u)) == 1u, "Serial encoding error");
static_assert(DecodeSerial(EncodeSerial(2u)) == 2u, "Serial encoding error");
static_assert(DecodeSerial(EncodeSerial(3u)) == 3u, "Serial encoding error");
// Table index.
static_assert(DecodeIndex(EncodeIndex(0u)) == 0u, "Index encoding error");
static_assert(DecodeIndex(EncodeIndex(1u)) == 1u, "Index encoding error");
static_assert(DecodeIndex(EncodeIndex(2u)) == 2u, "Index encoding error");
static_assert(DecodeIndex(EncodeIndex(3u)) == 3u, "Index encoding error");
}
bool IndirectReferenceTable::IsValid() const {
return table_ != nullptr;
}
// Holes:
//
// To keep the IRT compact, we want to fill "holes" created by non-stack-discipline Add & Remove
// operation sequences. For simplicity and lower memory overhead, we do not use a free list or
// similar. Instead, we scan for holes, with the expectation that we will find holes fast as they
// are usually near the end of the table (see the header, TODO: verify this assumption). To avoid
// scans when there are no holes, the number of known holes should be tracked.
//
// A previous implementation stored the top index and the number of holes as the segment state.
// This constraints the maximum number of references to 16-bit. We want to relax this, as it
// is easy to require more references (e.g., to list all classes in large applications). Thus,
// the implicitly stack-stored state, the IRTSegmentState, is only the top index.
//
// Thus, hole count is a local property of the current segment, and needs to be recovered when
// (or after) a frame is pushed or popped. To keep JNI transitions simple (and inlineable), we
// cannot do work when the segment changes. Thus, Add and Remove need to ensure the current
// hole count is correct.
//
// To be able to detect segment changes, we require an additional local field that can describe
// the known segment. This is last_known_previous_state_. The requirement will become clear with
// the following (some non-trivial) cases that have to be supported:
//
// 1) Segment with holes (current_num_holes_ > 0), push new segment, add/remove reference
// 2) Segment with holes (current_num_holes_ > 0), pop segment, add/remove reference
// 3) Segment with holes (current_num_holes_ > 0), push new segment, pop segment, add/remove
// reference
// 4) Empty segment, push new segment, create a hole, pop a segment, add/remove a reference
// 5) Base segment, push new segment, create a hole, pop a segment, push new segment, add/remove
// reference
//
// Storing the last known *previous* state (bottom index) allows conservatively detecting all the
// segment changes above. The condition is simply that the last known state is greater than or
// equal to the current previous state, and smaller than the current state (top index). The
// condition is conservative as it adds O(1) overhead to operations on an empty segment.
static size_t CountNullEntries(const IrtEntry* table, size_t from, size_t to) {
size_t count = 0;
for (size_t index = from; index != to; ++index) {
if (table[index].GetReference()->IsNull()) {
count++;
}
}
return count;
}
void IndirectReferenceTable::RecoverHoles(IRTSegmentState prev_state) {
if (last_known_previous_state_.top_index >= segment_state_.top_index ||
last_known_previous_state_.top_index < prev_state.top_index) {
const size_t top_index = segment_state_.top_index;
size_t count = CountNullEntries(table_, prev_state.top_index, top_index);
if (kDebugIRT) {
LOG(INFO) << "+++ Recovered holes: "
<< " Current prev=" << prev_state.top_index
<< " Current top_index=" << top_index
<< " Old num_holes=" << current_num_holes_
<< " New num_holes=" << count;
}
current_num_holes_ = count;
last_known_previous_state_ = prev_state;
} else if (kDebugIRT) {
LOG(INFO) << "No need to recover holes";
}
}
ALWAYS_INLINE
static inline void CheckHoleCount(IrtEntry* table,
size_t exp_num_holes,
IRTSegmentState prev_state,
IRTSegmentState cur_state) {
if (kIsDebugBuild) {
size_t count = CountNullEntries(table, prev_state.top_index, cur_state.top_index);
CHECK_EQ(exp_num_holes, count) << "prevState=" << prev_state.top_index
<< " topIndex=" << cur_state.top_index;
}
}
bool IndirectReferenceTable::Resize(size_t new_size, std::string* error_msg) {
CHECK_GT(new_size, max_entries_);
constexpr size_t kMaxEntries = kMaxTableSizeInBytes / sizeof(IrtEntry);
if (new_size > kMaxEntries) {
*error_msg = android::base::StringPrintf("Requested size exceeds maximum: %zu", new_size);
return false;
}
// Note: the above check also ensures that there is no overflow below.
const size_t table_bytes = RoundUp(new_size * sizeof(IrtEntry), kPageSize);
MemMap new_map = NewIRTMap(table_bytes, error_msg);
if (!new_map.IsValid()) {
return false;
}
memcpy(new_map.Begin(), table_, max_entries_ * sizeof(IrtEntry));
if (!table_mem_map_.IsValid()) {
// Didn't have its own map; deallocate old table.
Runtime::Current()->GetSmallIrtAllocator()->Deallocate(table_);
}
table_mem_map_ = std::move(new_map);
table_ = reinterpret_cast<IrtEntry*>(table_mem_map_.Begin());
const size_t real_new_size = table_bytes / sizeof(IrtEntry);
DCHECK_GE(real_new_size, new_size);
max_entries_ = real_new_size;
return true;
}
IndirectRef IndirectReferenceTable::Add(IRTSegmentState previous_state,
ObjPtr<mirror::Object> obj,
std::string* error_msg) {
if (kDebugIRT) {
LOG(INFO) << "+++ Add: previous_state=" << previous_state.top_index
<< " top_index=" << segment_state_.top_index
<< " last_known_prev_top_index=" << last_known_previous_state_.top_index
<< " holes=" << current_num_holes_;
}
size_t top_index = segment_state_.top_index;
CHECK(obj != nullptr);
VerifyObject(obj);
DCHECK(table_ != nullptr);
if (top_index == max_entries_) {
if (resizable_ == ResizableCapacity::kNo) {
std::ostringstream oss;
oss << "JNI ERROR (app bug): " << kind_ << " table overflow "
<< "(max=" << max_entries_ << ")"
<< MutatorLockedDumpable<IndirectReferenceTable>(*this);
*error_msg = oss.str();
return nullptr;
}
// Try to double space.
if (std::numeric_limits<size_t>::max() / 2 < max_entries_) {
std::ostringstream oss;
oss << "JNI ERROR (app bug): " << kind_ << " table overflow "
<< "(max=" << max_entries_ << ")" << std::endl
<< MutatorLockedDumpable<IndirectReferenceTable>(*this)
<< " Resizing failed: exceeds size_t";
*error_msg = oss.str();
return nullptr;
}
std::string inner_error_msg;
if (!Resize(max_entries_ * 2, &inner_error_msg)) {
std::ostringstream oss;
oss << "JNI ERROR (app bug): " << kind_ << " table overflow "
<< "(max=" << max_entries_ << ")" << std::endl
<< MutatorLockedDumpable<IndirectReferenceTable>(*this)
<< " Resizing failed: " << inner_error_msg;
*error_msg = oss.str();
return nullptr;
}
}
RecoverHoles(previous_state);
CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_);
// We know there's enough room in the table. Now we just need to find
// the right spot. If there's a hole, find it and fill it; otherwise,
// add to the end of the list.
IndirectRef result;
size_t index;
if (current_num_holes_ > 0) {
DCHECK_GT(top_index, 1U);
// Find the first hole; likely to be near the end of the list.
IrtEntry* p_scan = &table_[top_index - 1];
DCHECK(!p_scan->GetReference()->IsNull());
--p_scan;
while (!p_scan->GetReference()->IsNull()) {
DCHECK_GE(p_scan, table_ + previous_state.top_index);
--p_scan;
}
index = p_scan - table_;
current_num_holes_--;
} else {
// Add to the end.
index = top_index++;
segment_state_.top_index = top_index;
}
table_[index].Add(obj);
result = ToIndirectRef(index);
if (kDebugIRT) {
LOG(INFO) << "+++ added at " << ExtractIndex(result) << " top=" << segment_state_.top_index
<< " holes=" << current_num_holes_;
}
DCHECK(result != nullptr);
return result;
}
void IndirectReferenceTable::AssertEmpty() {
for (size_t i = 0; i < Capacity(); ++i) {
if (!table_[i].GetReference()->IsNull()) {
LOG(FATAL) << "Internal Error: non-empty local reference table\n"
<< MutatorLockedDumpable<IndirectReferenceTable>(*this);
UNREACHABLE();
}
}
}
// Removes an object. We extract the table offset bits from "iref"
// and zap the corresponding entry, leaving a hole if it's not at the top.
// If the entry is not between the current top index and the bottom index
// specified by the cookie, we don't remove anything. This is the behavior
// required by JNI's DeleteLocalRef function.
// This method is not called when a local frame is popped; this is only used
// for explicit single removals.
// Returns "false" if nothing was removed.
bool IndirectReferenceTable::Remove(IRTSegmentState previous_state, IndirectRef iref) {
if (kDebugIRT) {
LOG(INFO) << "+++ Remove: previous_state=" << previous_state.top_index
<< " top_index=" << segment_state_.top_index
<< " last_known_prev_top_index=" << last_known_previous_state_.top_index
<< " holes=" << current_num_holes_;
}
const uint32_t top_index = segment_state_.top_index;
const uint32_t bottom_index = previous_state.top_index;
DCHECK(table_ != nullptr);
// TODO: We should eagerly check the ref kind against the `kind_` instead of
// relying on this weak check and postponing the rest until `CheckEntry()` below.
// Passing the wrong kind shall currently result in misleading warnings.
if (GetIndirectRefKind(iref) == kJniTransition) {
auto* self = Thread::Current();
ScopedObjectAccess soa(self);
if (self->IsJniTransitionReference(reinterpret_cast<jobject>(iref))) {
auto* env = self->GetJniEnv();
DCHECK(env != nullptr);
if (env->IsCheckJniEnabled()) {
LOG(WARNING) << "Attempt to remove non-JNI local reference, dumping thread";
if (kDumpStackOnNonLocalReference) {
self->Dump(LOG_STREAM(WARNING));
}
}
return true;
}
}
const uint32_t idx = ExtractIndex(iref);
if (idx < bottom_index) {
// Wrong segment.
LOG(WARNING) << "Attempt to remove index outside index area (" << idx
<< " vs " << bottom_index << "-" << top_index << ")";
return false;
}
if (idx >= top_index) {
// Bad --- stale reference?
LOG(WARNING) << "Attempt to remove invalid index " << idx
<< " (bottom=" << bottom_index << " top=" << top_index << ")";
return false;
}
RecoverHoles(previous_state);
CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_);
if (idx == top_index - 1) {
// Top-most entry. Scan up and consume holes.
if (!CheckEntry("remove", iref, idx)) {
return false;
}
*table_[idx].GetReference() = GcRoot<mirror::Object>(nullptr);
if (current_num_holes_ != 0) {
uint32_t collapse_top_index = top_index;
while (--collapse_top_index > bottom_index && current_num_holes_ != 0) {
if (kDebugIRT) {
ScopedObjectAccess soa(Thread::Current());
LOG(INFO) << "+++ checking for hole at " << collapse_top_index - 1
<< " (previous_state=" << bottom_index << ") val="
<< table_[collapse_top_index - 1].GetReference()->Read<kWithoutReadBarrier>();
}
if (!table_[collapse_top_index - 1].GetReference()->IsNull()) {
break;
}
if (kDebugIRT) {
LOG(INFO) << "+++ ate hole at " << (collapse_top_index - 1);
}
current_num_holes_--;
}
segment_state_.top_index = collapse_top_index;
CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_);
} else {
segment_state_.top_index = top_index - 1;
if (kDebugIRT) {
LOG(INFO) << "+++ ate last entry " << top_index - 1;
}
}
} else {
// Not the top-most entry. This creates a hole. We null out the entry to prevent somebody
// from deleting it twice and screwing up the hole count.
if (table_[idx].GetReference()->IsNull()) {
LOG(INFO) << "--- WEIRD: removing null entry " << idx;
return false;
}
if (!CheckEntry("remove", iref, idx)) {
return false;
}
*table_[idx].GetReference() = GcRoot<mirror::Object>(nullptr);
current_num_holes_++;
CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_);
if (kDebugIRT) {
LOG(INFO) << "+++ left hole at " << idx << ", holes=" << current_num_holes_;
}
}
return true;
}
void IndirectReferenceTable::Trim() {
ScopedTrace trace(__PRETTY_FUNCTION__);
if (!table_mem_map_.IsValid()) {
// Small table; nothing to do here.
return;
}
const size_t top_index = Capacity();
uint8_t* release_start = AlignUp(reinterpret_cast<uint8_t*>(&table_[top_index]), kPageSize);
uint8_t* release_end = static_cast<uint8_t*>(table_mem_map_.BaseEnd());
DCHECK_GE(reinterpret_cast<uintptr_t>(release_end), reinterpret_cast<uintptr_t>(release_start));
DCHECK_ALIGNED(release_end, kPageSize);
DCHECK_ALIGNED(release_end - release_start, kPageSize);
if (release_start != release_end) {
madvise(release_start, release_end - release_start, MADV_DONTNEED);
}
}
void IndirectReferenceTable::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
BufferedRootVisitor<kDefaultBufferedRootCount> root_visitor(visitor, root_info);
for (size_t i = 0, capacity = Capacity(); i != capacity; ++i) {
GcRoot<mirror::Object>* ref = table_[i].GetReference();
if (!ref->IsNull()) {
root_visitor.VisitRoot(*ref);
DCHECK(!ref->IsNull());
}
}
}
void IndirectReferenceTable::SweepJniWeakGlobals(IsMarkedVisitor* visitor) {
CHECK_EQ(kind_, kWeakGlobal);
MutexLock mu(Thread::Current(), *Locks::jni_weak_globals_lock_);
Runtime* const runtime = Runtime::Current();
for (size_t i = 0, capacity = Capacity(); i != capacity; ++i) {
GcRoot<mirror::Object>* entry = table_[i].GetReference();
// Need to skip null here to distinguish between null entries and cleared weak ref entries.
if (!entry->IsNull()) {
mirror::Object* obj = entry->Read<kWithoutReadBarrier>();
mirror::Object* new_obj = visitor->IsMarked(obj);
if (new_obj == nullptr) {
new_obj = runtime->GetClearedJniWeakGlobal();
}
*entry = GcRoot<mirror::Object>(new_obj);
}
}
}
void IndirectReferenceTable::Dump(std::ostream& os) const {
os << kind_ << " table dump:\n";
ReferenceTable::Table entries;
for (size_t i = 0; i < Capacity(); ++i) {
ObjPtr<mirror::Object> obj = table_[i].GetReference()->Read<kWithoutReadBarrier>();
if (obj != nullptr) {
obj = table_[i].GetReference()->Read();
entries.push_back(GcRoot<mirror::Object>(obj));
}
}
ReferenceTable::Dump(os, entries);
}
void IndirectReferenceTable::SetSegmentState(IRTSegmentState new_state) {
if (kDebugIRT) {
LOG(INFO) << "Setting segment state: "
<< segment_state_.top_index
<< " -> "
<< new_state.top_index;
}
segment_state_ = new_state;
}
bool IndirectReferenceTable::EnsureFreeCapacity(size_t free_capacity, std::string* error_msg) {
DCHECK_GE(free_capacity, static_cast<size_t>(1));
if (free_capacity > kMaxTableSizeInBytes) {
// Arithmetic might even overflow.
*error_msg = "Requested table size implausibly large";
return false;
}
size_t top_index = segment_state_.top_index;
if (top_index + free_capacity <= max_entries_) {
return true;
}
// We're only gonna do a simple best-effort here, ensuring the asked-for capacity at the end.
if (resizable_ == ResizableCapacity::kNo) {
*error_msg = "Table is not resizable";
return false;
}
// Try to increase the table size.
if (!Resize(top_index + free_capacity, error_msg)) {
LOG(WARNING) << "JNI ERROR: Unable to reserve space in EnsureFreeCapacity (" << free_capacity
<< "): " << std::endl
<< MutatorLockedDumpable<IndirectReferenceTable>(*this)
<< " Resizing failed: " << *error_msg;
return false;
}
return true;
}
size_t IndirectReferenceTable::FreeCapacity() const {
return max_entries_ - segment_state_.top_index;
}
} // namespace art