blob: a0d712ecbbdec4cdfec6eb297d6154b5deb5de06 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "interpreter_common.h"
#include <cmath>
#include "base/enums.h"
#include "debugger.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "jit/jit.h"
#include "jvalue.h"
#include "method_handles.h"
#include "method_handles-inl.h"
#include "mirror/array-inl.h"
#include "mirror/class.h"
#include "mirror/method_handle_impl.h"
#include "reflection.h"
#include "reflection-inl.h"
#include "stack.h"
#include "unstarted_runtime.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"
namespace art {
namespace interpreter {
void ThrowNullPointerExceptionFromInterpreter() {
ThrowNullPointerExceptionFromDexPC();
}
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) {
const bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead);
const uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f =
FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
ObjPtr<Object> obj;
if (is_static) {
obj = f->GetDeclaringClass();
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(f, true);
return false;
}
}
f->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self);
// Report this field access to instrumentation if needed.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldReadListeners())) {
StackHandleScope<1> hs(self);
// Wrap in handle wrapper in case the listener does thread suspension.
HandleWrapperObjPtr<mirror::Object> h(hs.NewHandleWrapper(&obj));
ObjPtr<Object> this_object;
if (!f->IsStatic()) {
this_object = obj;
}
instrumentation->FieldReadEvent(self,
this_object.Ptr(),
shadow_frame.GetMethod(),
shadow_frame.GetDexPC(),
f);
}
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, f->GetBoolean(obj));
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, f->GetByte(obj));
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, f->GetChar(obj));
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, f->GetShort(obj));
break;
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, f->GetInt(obj));
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, f->GetLong(obj));
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, f->GetObject(obj).Ptr());
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoFieldGet functions.
#define EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, _do_check) \
template bool DoFieldGet<_find_type, _field_type, _do_check>(Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data)
#define EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(_find_type, _field_type) \
EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, false); \
EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, true);
// iget-XXX
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstanceObjectRead, Primitive::kPrimNot)
// sget-XXX
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticObjectRead, Primitive::kPrimNot)
#undef EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL
// Handles iget-quick, iget-wide-quick and iget-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type>
bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) {
Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC();
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
// Report this field access to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldReadListeners())) {
ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
field_offset.Uint32Value());
DCHECK(f != nullptr);
DCHECK(!f->IsStatic());
instrumentation->FieldReadEvent(Thread::Current(), obj, shadow_frame.GetMethod(),
shadow_frame.GetDexPC(), f);
}
// Note: iget-x-quick instructions are only for non-volatile fields.
const uint32_t vregA = inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset)));
break;
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldBoolean(field_offset)));
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldByte(field_offset)));
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldChar(field_offset)));
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldShort(field_offset)));
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset)));
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object>(field_offset));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoIGetQuick functions.
#define EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(_field_type) \
template bool DoIGetQuick<_field_type>(ShadowFrame& shadow_frame, const Instruction* inst, \
uint16_t inst_data)
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimInt); // iget-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimBoolean); // iget-boolean-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimByte); // iget-byte-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimChar); // iget-char-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimShort); // iget-short-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimLong); // iget-wide-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimNot); // iget-object-quick.
#undef EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL
template<Primitive::Type field_type>
static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg)
REQUIRES_SHARED(Locks::mutator_lock_) {
JValue field_value;
switch (field_type) {
case Primitive::kPrimBoolean:
field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimByte:
field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimChar:
field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimShort:
field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimInt:
field_value.SetI(shadow_frame.GetVReg(vreg));
break;
case Primitive::kPrimLong:
field_value.SetJ(shadow_frame.GetVRegLong(vreg));
break;
case Primitive::kPrimNot:
field_value.SetL(shadow_frame.GetVRegReference(vreg));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return field_value;
}
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active>
bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) {
bool do_assignability_check = do_access_check;
bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite);
uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f =
FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
ObjPtr<Object> obj;
if (is_static) {
obj = f->GetDeclaringClass();
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(f, false);
return false;
}
}
f->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self);
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
// Report this field access to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldWriteListeners())) {
StackHandleScope<1> hs(self);
// Wrap in handle wrapper in case the listener does thread suspension.
HandleWrapperObjPtr<mirror::Object> h(hs.NewHandleWrapper(&obj));
JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA);
ObjPtr<Object> this_object = f->IsStatic() ? nullptr : obj;
instrumentation->FieldWriteEvent(self, this_object.Ptr(),
shadow_frame.GetMethod(),
shadow_frame.GetDexPC(),
f,
field_value);
}
switch (field_type) {
case Primitive::kPrimBoolean:
f->SetBoolean<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimByte:
f->SetByte<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimChar:
f->SetChar<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimShort:
f->SetShort<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimInt:
f->SetInt<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimLong:
f->SetLong<transaction_active>(obj, shadow_frame.GetVRegLong(vregA));
break;
case Primitive::kPrimNot: {
Object* reg = shadow_frame.GetVRegReference(vregA);
if (do_assignability_check && reg != nullptr) {
// FieldHelper::GetType can resolve classes, use a handle wrapper which will restore the
// object in the destructor.
ObjPtr<Class> field_class;
{
StackHandleScope<2> hs(self);
HandleWrapper<mirror::Object> h_reg(hs.NewHandleWrapper(&reg));
HandleWrapperObjPtr<mirror::Object> h_obj(hs.NewHandleWrapper(&obj));
field_class = f->GetType<true>();
}
if (!reg->VerifierInstanceOf(field_class.Ptr())) {
// This should never happen.
std::string temp1, temp2, temp3;
self->ThrowNewExceptionF("Ljava/lang/VirtualMachineError;",
"Put '%s' that is not instance of field '%s' in '%s'",
reg->GetClass()->GetDescriptor(&temp1),
field_class->GetDescriptor(&temp2),
f->GetDeclaringClass()->GetDescriptor(&temp3));
return false;
}
}
f->SetObj<transaction_active>(obj, reg);
break;
}
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoFieldPut functions.
#define EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, _do_check, _transaction_active) \
template bool DoFieldPut<_find_type, _field_type, _do_check, _transaction_active>(Thread* self, \
const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data)
#define EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(_find_type, _field_type) \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, false); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, false); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, true); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, true);
// iput-XXX
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstanceObjectWrite, Primitive::kPrimNot)
// sput-XXX
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticObjectWrite, Primitive::kPrimNot)
#undef EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL
template<Primitive::Type field_type, bool transaction_active>
bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) {
Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC();
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
const uint32_t vregA = inst->VRegA_22c(inst_data);
// Report this field modification to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldWriteListeners())) {
ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
field_offset.Uint32Value());
DCHECK(f != nullptr);
DCHECK(!f->IsStatic());
JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA);
instrumentation->FieldWriteEvent(Thread::Current(), obj, shadow_frame.GetMethod(),
shadow_frame.GetDexPC(), f, field_value);
}
// Note: iput-x-quick instructions are only for non-volatile fields.
switch (field_type) {
case Primitive::kPrimBoolean:
obj->SetFieldBoolean<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimByte:
obj->SetFieldByte<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimChar:
obj->SetFieldChar<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimShort:
obj->SetFieldShort<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimInt:
obj->SetField32<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimLong:
obj->SetField64<transaction_active>(field_offset, shadow_frame.GetVRegLong(vregA));
break;
case Primitive::kPrimNot:
obj->SetFieldObject<transaction_active>(field_offset, shadow_frame.GetVRegReference(vregA));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoIPutQuick functions.
#define EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, _transaction_active) \
template bool DoIPutQuick<_field_type, _transaction_active>(const ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data)
#define EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(_field_type) \
EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, false); \
EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, true);
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimInt) // iput-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimBoolean) // iput-boolean-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimByte) // iput-byte-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimChar) // iput-char-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimShort) // iput-short-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimLong) // iput-wide-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimNot) // iput-object-quick.
#undef EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL
// We accept a null Instrumentation* meaning we must not report anything to the instrumentation.
uint32_t FindNextInstructionFollowingException(
Thread* self, ShadowFrame& shadow_frame, uint32_t dex_pc,
const instrumentation::Instrumentation* instrumentation) {
self->VerifyStack();
StackHandleScope<2> hs(self);
Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException()));
if (instrumentation != nullptr && instrumentation->HasExceptionCaughtListeners()
&& self->IsExceptionThrownByCurrentMethod(exception.Get())) {
instrumentation->ExceptionCaughtEvent(self, exception.Get());
}
bool clear_exception = false;
uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock(
hs.NewHandle(exception->GetClass()), dex_pc, &clear_exception);
if (found_dex_pc == DexFile::kDexNoIndex && instrumentation != nullptr) {
// Exception is not caught by the current method. We will unwind to the
// caller. Notify any instrumentation listener.
instrumentation->MethodUnwindEvent(self, shadow_frame.GetThisObject(),
shadow_frame.GetMethod(), dex_pc);
} else {
// Exception is caught in the current method. We will jump to the found_dex_pc.
if (clear_exception) {
self->ClearException();
}
}
return found_dex_pc;
}
void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) {
LOG(FATAL) << "Unexpected instruction: "
<< inst->DumpString(shadow_frame.GetMethod()->GetDexFile());
UNREACHABLE();
}
void AbortTransactionF(Thread* self, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
AbortTransactionV(self, fmt, args);
va_end(args);
}
void AbortTransactionV(Thread* self, const char* fmt, va_list args) {
CHECK(Runtime::Current()->IsActiveTransaction());
// Constructs abort message.
std::string abort_msg;
StringAppendV(&abort_msg, fmt, args);
// Throws an exception so we can abort the transaction and rollback every change.
Runtime::Current()->AbortTransactionAndThrowAbortError(self, abort_msg);
}
// START DECLARATIONS :
//
// These additional declarations are required because clang complains
// about ALWAYS_INLINE (-Werror, -Wgcc-compat) in definitions.
//
template <bool is_range, bool do_assignability_check>
REQUIRES_SHARED(Locks::mutator_lock_)
static inline bool DoCallCommon(ArtMethod* called_method,
Thread* self,
ShadowFrame& shadow_frame,
JValue* result,
uint16_t number_of_inputs,
uint32_t (&arg)[Instruction::kMaxVarArgRegs],
uint32_t vregC) ALWAYS_INLINE;
template <bool is_range> REQUIRES_SHARED(Locks::mutator_lock_)
static inline bool DoCallPolymorphic(ArtMethod* called_method,
Handle<mirror::MethodType> callsite_type,
Handle<mirror::MethodType> target_type,
Thread* self,
ShadowFrame& shadow_frame,
JValue* result,
uint32_t (&arg)[Instruction::kMaxVarArgRegs],
uint32_t vregC) ALWAYS_INLINE;
REQUIRES_SHARED(Locks::mutator_lock_)
static inline bool DoCallTransform(ArtMethod* called_method,
Handle<mirror::MethodType> callsite_type,
Thread* self,
ShadowFrame& shadow_frame,
Handle<mirror::MethodHandleImpl> receiver,
JValue* result) ALWAYS_INLINE;
REQUIRES_SHARED(Locks::mutator_lock_)
inline void PerformCall(Thread* self,
const DexFile::CodeItem* code_item,
ArtMethod* caller_method,
const size_t first_dest_reg,
ShadowFrame* callee_frame,
JValue* result) ALWAYS_INLINE;
template <bool is_range>
REQUIRES_SHARED(Locks::mutator_lock_)
inline void CopyRegisters(ShadowFrame& caller_frame,
ShadowFrame* callee_frame,
const uint32_t (&arg)[Instruction::kMaxVarArgRegs],
const size_t first_src_reg,
const size_t first_dest_reg,
const size_t num_regs) ALWAYS_INLINE;
// END DECLARATIONS.
void ArtInterpreterToCompiledCodeBridge(Thread* self,
ArtMethod* caller,
const DexFile::CodeItem* code_item,
ShadowFrame* shadow_frame,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* method = shadow_frame->GetMethod();
// Ensure static methods are initialized.
if (method->IsStatic()) {
mirror::Class* declaringClass = method->GetDeclaringClass();
if (UNLIKELY(!declaringClass->IsInitialized())) {
self->PushShadowFrame(shadow_frame);
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(declaringClass));
if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true,
true))) {
self->PopShadowFrame();
DCHECK(self->IsExceptionPending());
return;
}
self->PopShadowFrame();
CHECK(h_class->IsInitializing());
// Reload from shadow frame in case the method moved, this is faster than adding a handle.
method = shadow_frame->GetMethod();
}
}
uint16_t arg_offset = (code_item == nullptr)
? 0
: code_item->registers_size_ - code_item->ins_size_;
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr && caller != nullptr) {
jit->NotifyInterpreterToCompiledCodeTransition(self, caller);
}
method->Invoke(self, shadow_frame->GetVRegArgs(arg_offset),
(shadow_frame->NumberOfVRegs() - arg_offset) * sizeof(uint32_t),
result, method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty());
}
void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame,
uint16_t this_obj_vreg,
JValue result)
REQUIRES_SHARED(Locks::mutator_lock_) {
Object* existing = shadow_frame->GetVRegReference(this_obj_vreg);
if (existing == nullptr) {
// If it's null, we come from compiled code that was deoptimized. Nothing to do,
// as the compiler verified there was no alias.
// Set the new string result of the StringFactory.
shadow_frame->SetVRegReference(this_obj_vreg, result.GetL());
return;
}
// Set the string init result into all aliases.
for (uint32_t i = 0, e = shadow_frame->NumberOfVRegs(); i < e; ++i) {
if (shadow_frame->GetVRegReference(i) == existing) {
DCHECK_EQ(shadow_frame->GetVRegReference(i),
reinterpret_cast<mirror::Object*>(shadow_frame->GetVReg(i)));
shadow_frame->SetVRegReference(i, result.GetL());
DCHECK_EQ(shadow_frame->GetVRegReference(i),
reinterpret_cast<mirror::Object*>(shadow_frame->GetVReg(i)));
}
}
}
template<bool is_range, bool do_access_check>
REQUIRES_SHARED(Locks::mutator_lock_)
inline bool DoInvokePolymorphic(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data,
JValue* result) {
// Invoke-polymorphic instructions always take a receiver. i.e, they are never static.
const uint32_t vRegC = (is_range) ? inst->VRegC_4rcc() : inst->VRegC_45cc();
// The method_idx here is the name of the signature polymorphic method that
// was symbolically invoked in bytecode (say MethodHandle.invoke or MethodHandle.invokeExact)
// and not the method that we'll dispatch to in the end.
//
// TODO(narayan) We'll have to check in the verifier that this is in fact a
// signature polymorphic method so that we disallow calls via invoke-polymorphic
// to non sig-poly methods. This would also have the side effect of verifying
// that vRegC really is a reference type.
StackHandleScope<6> hs(self);
Handle<mirror::MethodHandleImpl> method_handle(hs.NewHandle(
reinterpret_cast<mirror::MethodHandleImpl*>(shadow_frame.GetVRegReference(vRegC))));
if (UNLIKELY(method_handle.Get() == nullptr)) {
const int method_idx = (is_range) ? inst->VRegB_4rcc() : inst->VRegB_45cc();
// Note that the invoke type is kVirtual here because a call to a signature
// polymorphic method is shaped like a virtual call at the bytecode level.
ThrowNullPointerExceptionForMethodAccess(method_idx, InvokeType::kVirtual);
result->SetJ(0);
return false;
}
// The vRegH value gives the index of the proto_id associated with this
// signature polymorphic callsite.
const uint32_t callsite_proto_id = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
// Call through to the classlinker and ask it to resolve the static type associated
// with the callsite. This information is stored in the dex cache so it's
// guaranteed to be fast after the first resolution.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Handle<mirror::Class> caller_class(hs.NewHandle(shadow_frame.GetMethod()->GetDeclaringClass()));
Handle<mirror::MethodType> callsite_type(hs.NewHandle(class_linker->ResolveMethodType(
caller_class->GetDexFile(), callsite_proto_id,
hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
// This implies we couldn't resolve one or more types in this method handle.
if (UNLIKELY(callsite_type.Get() == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
}
// Get the method we're actually invoking along with the kind of
// invoke that is desired. We don't need to perform access checks at this
// point because they would have been performed on our behalf at the point
// of creation of the method handle.
ArtMethod* called_method = method_handle->GetTargetMethod();
const MethodHandleKind handle_kind = method_handle->GetHandleKind();
Handle<mirror::MethodType> handle_type(hs.NewHandle(method_handle->GetMethodType()));
CHECK(called_method != nullptr);
CHECK(handle_type.Get() != nullptr);
uint32_t arg[Instruction::kMaxVarArgRegs] = {};
uint32_t receiver_vregC = 0;
if (is_range) {
receiver_vregC = (inst->VRegC_4rcc() + 1);
} else {
inst->GetVarArgs(arg, inst_data);
arg[0] = arg[1];
arg[1] = arg[2];
arg[2] = arg[3];
arg[3] = arg[4];
arg[4] = 0;
receiver_vregC = arg[0];
}
if (IsInvoke(handle_kind)) {
if (handle_kind == kInvokeVirtual || handle_kind == kInvokeInterface) {
mirror::Object* receiver = shadow_frame.GetVRegReference(receiver_vregC);
mirror::Class* declaring_class = called_method->GetDeclaringClass();
// Verify that _vRegC is an object reference and of the type expected by
// the receiver.
called_method = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(
called_method, kRuntimePointerSize);
if (!VerifyObjectIsClass(receiver, declaring_class)) {
return false;
}
} else if (handle_kind == kInvokeDirect) {
if (called_method->IsConstructor()) {
// TODO(narayan) : We need to handle the case where the target method is a
// constructor here.
UNIMPLEMENTED(FATAL) << "Direct invokes for constructors are not implemented yet.";
return false;
}
// Nothing special to do in the case where we're not dealing with a
// constructor. It's a private method, and we've already access checked at
// the point of creating the handle.
} else if (handle_kind == kInvokeSuper) {
mirror::Class* declaring_class = called_method->GetDeclaringClass();
// Note that we're not dynamically dispatching on the type of the receiver
// here. We use the static type of the "receiver" object that we've
// recorded in the method handle's type, which will be the same as the
// special caller that was specified at the point of lookup.
mirror::Class* referrer_class = handle_type->GetPTypes()->Get(0);
if (!declaring_class->IsInterface()) {
mirror::Class* super_class = referrer_class->GetSuperClass();
uint16_t vtable_index = called_method->GetMethodIndex();
DCHECK(super_class != nullptr);
DCHECK(super_class->HasVTable());
// Note that super_class is a super of referrer_class and called_method
// will always be declared by super_class (or one of its super classes).
DCHECK_LT(vtable_index, super_class->GetVTableLength());
called_method = super_class->GetVTableEntry(vtable_index, kRuntimePointerSize);
} else {
called_method = referrer_class->FindVirtualMethodForInterfaceSuper(
called_method, kRuntimePointerSize);
}
CHECK(called_method != nullptr);
}
if (handle_kind == kInvokeTransform) {
return DoCallTransform(called_method,
callsite_type,
self,
shadow_frame,
method_handle /* receiver */,
result);
} else {
return DoCallPolymorphic<is_range>(called_method,
callsite_type,
handle_type,
self,
shadow_frame,
result,
arg,
receiver_vregC);
}
} else {
// TODO(narayan): Implement field getters and setters.
UNIMPLEMENTED(FATAL) << "Field references in method handles are not implemented yet.";
return false;
}
}
// Calculate the number of ins for a proxy or native method, where we
// can't just look at the code item.
static inline size_t GetInsForProxyOrNativeMethod(ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(method->IsNative() || method->IsProxyMethod());
method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
size_t num_ins = 0;
// Separate accounting for the receiver, which isn't a part of the
// shorty.
if (!method->IsStatic()) {
++num_ins;
}
uint32_t shorty_len = 0;
const char* shorty = method->GetShorty(&shorty_len);
for (size_t i = 1; i < shorty_len; ++i) {
const char c = shorty[i];
++num_ins;
if (c == 'J' || c == 'D') {
++num_ins;
}
}
return num_ins;
}
inline void PerformCall(Thread* self,
const DexFile::CodeItem* code_item,
ArtMethod* caller_method,
const size_t first_dest_reg,
ShadowFrame* callee_frame,
JValue* result) {
if (LIKELY(Runtime::Current()->IsStarted())) {
ArtMethod* target = callee_frame->GetMethod();
if (ClassLinker::ShouldUseInterpreterEntrypoint(
target,
target->GetEntryPointFromQuickCompiledCode())) {
ArtInterpreterToInterpreterBridge(self, code_item, callee_frame, result);
} else {
ArtInterpreterToCompiledCodeBridge(
self, caller_method, code_item, callee_frame, result);
}
} else {
UnstartedRuntime::Invoke(self, code_item, callee_frame, result, first_dest_reg);
}
}
template <bool is_range>
inline void CopyRegisters(ShadowFrame& caller_frame,
ShadowFrame* callee_frame,
const uint32_t (&arg)[Instruction::kMaxVarArgRegs],
const size_t first_src_reg,
const size_t first_dest_reg,
const size_t num_regs) {
if (is_range) {
const size_t dest_reg_bound = first_dest_reg + num_regs;
for (size_t src_reg = first_src_reg, dest_reg = first_dest_reg; dest_reg < dest_reg_bound;
++dest_reg, ++src_reg) {
AssignRegister(callee_frame, caller_frame, dest_reg, src_reg);
}
} else {
DCHECK_LE(num_regs, arraysize(arg));
for (size_t arg_index = 0; arg_index < num_regs; ++arg_index) {
AssignRegister(callee_frame, caller_frame, first_dest_reg + arg_index, arg[arg_index]);
}
}
}
// Returns true iff. the callsite type for a polymorphic invoke is transformer
// like, i.e that it has a single input argument whose type is
// dalvik.system.EmulatedStackFrame.
static inline bool IsCallerTransformer(Handle<mirror::MethodType> callsite_type)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::ObjectArray<mirror::Class>> param_types(callsite_type->GetPTypes());
if (param_types->GetLength() == 1) {
ObjPtr<mirror::Class> param(param_types->GetWithoutChecks(0));
return param == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_EmulatedStackFrame);
}
return false;
}
template <bool is_range>
static inline bool DoCallPolymorphic(ArtMethod* called_method,
Handle<mirror::MethodType> callsite_type,
Handle<mirror::MethodType> target_type,
Thread* self,
ShadowFrame& shadow_frame,
JValue* result,
uint32_t (&arg)[Instruction::kMaxVarArgRegs],
uint32_t first_src_reg) {
// TODO(narayan): Wire in the String.init hacks.
// Compute method information.
const DexFile::CodeItem* code_item = called_method->GetCodeItem();
// Number of registers for the callee's call frame. Note that for non-exact
// invokes, we always derive this information from the callee method. We
// cannot guarantee during verification that the number of registers encoded
// in the invoke is equal to the number of ins for the callee. This is because
// some transformations (such as boxing a long -> Long or wideining an
// int -> long will change that number.
uint16_t num_regs;
size_t num_input_regs;
size_t first_dest_reg;
if (LIKELY(code_item != nullptr)) {
num_regs = code_item->registers_size_;
first_dest_reg = num_regs - code_item->ins_size_;
num_input_regs = code_item->ins_size_;
// Parameter registers go at the end of the shadow frame.
DCHECK_NE(first_dest_reg, (size_t)-1);
} else {
// No local regs for proxy and native methods.
DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
num_regs = num_input_regs = GetInsForProxyOrNativeMethod(called_method);
first_dest_reg = 0;
}
// Allocate shadow frame on the stack.
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0);
ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
// Thread might be suspended during PerformArgumentConversions due to the
// allocations performed during boxing.
{
ScopedStackedShadowFramePusher pusher(
self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
if (callsite_type->IsExactMatch(target_type.Get())) {
// This is an exact invoke, we can take the fast path of just copying all
// registers without performing any argument conversions.
CopyRegisters<is_range>(shadow_frame,
new_shadow_frame,
arg,
first_src_reg,
first_dest_reg,
num_input_regs);
} else {
// This includes the case where we're entering this invoke-polymorphic
// from a transformer method. In that case, the callsite_type will contain
// a single argument of type dalvik.system.EmulatedStackFrame. In that
// case, we'll have to unmarshal the EmulatedStackFrame into the
// new_shadow_frame and perform argument conversions on it.
if (IsCallerTransformer(callsite_type)) {
// The emulated stack frame will be the first ahnd only argument
// when we're coming through from a transformer.
//
// TODO(narayan): This should be a mirror::EmulatedStackFrame after that
// type is introduced.
ObjPtr<mirror::Object> emulated_stack_frame(
shadow_frame.GetVRegReference(first_src_reg));
if (!ConvertAndCopyArgumentsFromEmulatedStackFrame<is_range>(self,
emulated_stack_frame,
target_type,
first_dest_reg,
new_shadow_frame)) {
DCHECK(self->IsExceptionPending());
result->SetL(0);
return false;
}
} else if (!ConvertAndCopyArgumentsFromCallerFrame<is_range>(self,
callsite_type,
target_type,
shadow_frame,
first_src_reg,
first_dest_reg,
arg,
new_shadow_frame)) {
DCHECK(self->IsExceptionPending());
result->SetL(0);
return false;
}
}
}
PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result);
// TODO(narayan): Perform return value conversions.
return !self->IsExceptionPending();
}
static inline bool DoCallTransform(ArtMethod* called_method,
Handle<mirror::MethodType> callsite_type,
Thread* self,
ShadowFrame& shadow_frame,
Handle<mirror::MethodHandleImpl> receiver,
JValue* result) {
// This can be fixed, because the method we're calling here
// (MethodHandle.transformInternal) doesn't have any locals and the signature
// is known :
//
// private MethodHandle.transformInternal(EmulatedStackFrame sf);
//
// This means we need only two vregs :
// - One for the receiver object.
// - One for the only method argument (an EmulatedStackFrame).
static constexpr size_t kNumRegsForTransform = 2;
const DexFile::CodeItem* code_item = called_method->GetCodeItem();
DCHECK(code_item != nullptr);
DCHECK_EQ(kNumRegsForTransform, code_item->registers_size_);
DCHECK_EQ(kNumRegsForTransform, code_item->ins_size_);
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(kNumRegsForTransform, &shadow_frame, called_method, /* dex pc */ 0);
ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
// TODO(narayan): Perform argument conversions first (if this is an inexact invoke), and
// then construct an argument list object that's passed through to the
// method. Note that the ArgumentList reference is currently a nullptr.
//
// NOTE(narayan): If the caller is a transformer method (i.e, there is only
// one argument and its type is EmulatedStackFrame), we can directly pass that
// through without having to do any additional work.
UNUSED(callsite_type);
new_shadow_frame->SetVRegReference(0, receiver.Get());
// TODO(narayan): This is the EmulatedStackFrame, currently nullptr.
new_shadow_frame->SetVRegReference(1, nullptr);
PerformCall(self,
code_item,
shadow_frame.GetMethod(),
0 /* first dest reg */,
new_shadow_frame,
result);
return !self->IsExceptionPending();
}
template <bool is_range,
bool do_assignability_check>
static inline bool DoCallCommon(ArtMethod* called_method,
Thread* self,
ShadowFrame& shadow_frame,
JValue* result,
uint16_t number_of_inputs,
uint32_t (&arg)[Instruction::kMaxVarArgRegs],
uint32_t vregC) {
bool string_init = false;
// Replace calls to String.<init> with equivalent StringFactory call.
if (UNLIKELY(called_method->GetDeclaringClass()->IsStringClass()
&& called_method->IsConstructor())) {
called_method = WellKnownClasses::StringInitToStringFactory(called_method);
string_init = true;
}
// Compute method information.
const DexFile::CodeItem* code_item = called_method->GetCodeItem();
// Number of registers for the callee's call frame.
uint16_t num_regs;
if (LIKELY(code_item != nullptr)) {
num_regs = code_item->registers_size_;
DCHECK_EQ(string_init ? number_of_inputs - 1 : number_of_inputs, code_item->ins_size_);
} else {
DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
num_regs = number_of_inputs;
}
// Hack for String init:
//
// Rewrite invoke-x java.lang.String.<init>(this, a, b, c, ...) into:
// invoke-x StringFactory(a, b, c, ...)
// by effectively dropping the first virtual register from the invoke.
//
// (at this point the ArtMethod has already been replaced,
// so we just need to fix-up the arguments)
//
// Note that FindMethodFromCode in entrypoint_utils-inl.h was also special-cased
// to handle the compiler optimization of replacing `this` with null without
// throwing NullPointerException.
uint32_t string_init_vreg_this = is_range ? vregC : arg[0];
if (UNLIKELY(string_init)) {
DCHECK_GT(num_regs, 0u); // As the method is an instance method, there should be at least 1.
// The new StringFactory call is static and has one fewer argument.
if (code_item == nullptr) {
DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
num_regs--;
} // else ... don't need to change num_regs since it comes up from the string_init's code item
number_of_inputs--;
// Rewrite the var-args, dropping the 0th argument ("this")
for (uint32_t i = 1; i < arraysize(arg); ++i) {
arg[i - 1] = arg[i];
}
arg[arraysize(arg) - 1] = 0;
// Rewrite the non-var-arg case
vregC++; // Skips the 0th vreg in the range ("this").
}
// Parameter registers go at the end of the shadow frame.
DCHECK_GE(num_regs, number_of_inputs);
size_t first_dest_reg = num_regs - number_of_inputs;
DCHECK_NE(first_dest_reg, (size_t)-1);
// Allocate shadow frame on the stack.
const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon");
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0);
ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
// Initialize new shadow frame by copying the registers from the callee shadow frame.
if (do_assignability_check) {
// Slow path.
// We might need to do class loading, which incurs a thread state change to kNative. So
// register the shadow frame as under construction and allow suspension again.
ScopedStackedShadowFramePusher pusher(
self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
self->EndAssertNoThreadSuspension(old_cause);
// ArtMethod here is needed to check type information of the call site against the callee.
// Type information is retrieved from a DexFile/DexCache for that respective declared method.
//
// As a special case for proxy methods, which are not dex-backed,
// we have to retrieve type information from the proxy's method
// interface method instead (which is dex backed since proxies are never interfaces).
ArtMethod* method =
new_shadow_frame->GetMethod()->GetInterfaceMethodIfProxy(kRuntimePointerSize);
// We need to do runtime check on reference assignment. We need to load the shorty
// to get the exact type of each reference argument.
const DexFile::TypeList* params = method->GetParameterTypeList();
uint32_t shorty_len = 0;
const char* shorty = method->GetShorty(&shorty_len);
// Handle receiver apart since it's not part of the shorty.
size_t dest_reg = first_dest_reg;
size_t arg_offset = 0;
if (!method->IsStatic()) {
size_t receiver_reg = is_range ? vregC : arg[0];
new_shadow_frame->SetVRegReference(dest_reg, shadow_frame.GetVRegReference(receiver_reg));
++dest_reg;
++arg_offset;
DCHECK(!string_init); // All StringFactory methods are static.
}
// Copy the caller's invoke-* arguments into the callee's parameter registers.
for (uint32_t shorty_pos = 0; dest_reg < num_regs; ++shorty_pos, ++dest_reg, ++arg_offset) {
// Skip the 0th 'shorty' type since it represents the return type.
DCHECK_LT(shorty_pos + 1, shorty_len) << "for shorty '" << shorty << "'";
const size_t src_reg = (is_range) ? vregC + arg_offset : arg[arg_offset];
switch (shorty[shorty_pos + 1]) {
// Handle Object references. 1 virtual register slot.
case 'L': {
Object* o = shadow_frame.GetVRegReference(src_reg);
if (do_assignability_check && o != nullptr) {
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
Class* arg_type =
method->GetClassFromTypeIndex(
params->GetTypeItem(shorty_pos).type_idx_, true /* resolve */, pointer_size);
if (arg_type == nullptr) {
CHECK(self->IsExceptionPending());
return false;
}
if (!o->VerifierInstanceOf(arg_type)) {
// This should never happen.
std::string temp1, temp2;
self->ThrowNewExceptionF("Ljava/lang/VirtualMachineError;",
"Invoking %s with bad arg %d, type '%s' not instance of '%s'",
new_shadow_frame->GetMethod()->GetName(), shorty_pos,
o->GetClass()->GetDescriptor(&temp1),
arg_type->GetDescriptor(&temp2));
return false;
}
}
new_shadow_frame->SetVRegReference(dest_reg, o);
break;
}
// Handle doubles and longs. 2 consecutive virtual register slots.
case 'J': case 'D': {
uint64_t wide_value =
(static_cast<uint64_t>(shadow_frame.GetVReg(src_reg + 1)) << BitSizeOf<uint32_t>()) |
static_cast<uint32_t>(shadow_frame.GetVReg(src_reg));
new_shadow_frame->SetVRegLong(dest_reg, wide_value);
// Skip the next virtual register slot since we already used it.
++dest_reg;
++arg_offset;
break;
}
// Handle all other primitives that are always 1 virtual register slot.
default:
new_shadow_frame->SetVReg(dest_reg, shadow_frame.GetVReg(src_reg));
break;
}
}
} else {
if (is_range) {
DCHECK_EQ(num_regs, first_dest_reg + number_of_inputs);
}
CopyRegisters<is_range>(shadow_frame,
new_shadow_frame,
arg,
vregC,
first_dest_reg,
number_of_inputs);
self->EndAssertNoThreadSuspension(old_cause);
}
PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result);
if (string_init && !self->IsExceptionPending()) {
SetStringInitValueToAllAliases(&shadow_frame, string_init_vreg_this, *result);
}
return !self->IsExceptionPending();
}
template<bool is_range, bool do_assignability_check>
bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data, JValue* result) {
// Argument word count.
const uint16_t number_of_inputs =
(is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data);
// TODO: find a cleaner way to separate non-range and range information without duplicating
// code.
uint32_t arg[Instruction::kMaxVarArgRegs] = {}; // only used in invoke-XXX.
uint32_t vregC = 0;
if (is_range) {
vregC = inst->VRegC_3rc();
} else {
vregC = inst->VRegC_35c();
inst->GetVarArgs(arg, inst_data);
}
return DoCallCommon<is_range, do_assignability_check>(
called_method, self, shadow_frame,
result, number_of_inputs, arg, vregC);
}
template <bool is_range, bool do_access_check, bool transaction_active>
bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame,
Thread* self, JValue* result) {
DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY ||
inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE);
const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c();
if (!is_range) {
// Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments.
CHECK_LE(length, 5);
}
if (UNLIKELY(length < 0)) {
ThrowNegativeArraySizeException(length);
return false;
}
uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
Class* array_class = ResolveVerifyAndClinit(type_idx, shadow_frame.GetMethod(),
self, false, do_access_check);
if (UNLIKELY(array_class == nullptr)) {
DCHECK(self->IsExceptionPending());
return false;
}
CHECK(array_class->IsArrayClass());
Class* component_class = array_class->GetComponentType();
const bool is_primitive_int_component = component_class->IsPrimitiveInt();
if (UNLIKELY(component_class->IsPrimitive() && !is_primitive_int_component)) {
if (component_class->IsPrimitiveLong() || component_class->IsPrimitiveDouble()) {
ThrowRuntimeException("Bad filled array request for type %s",
component_class->PrettyDescriptor().c_str());
} else {
self->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Found type %s; filled-new-array not implemented for anything but 'int'",
component_class->PrettyDescriptor().c_str());
}
return false;
}
Object* new_array = Array::Alloc<true>(self, array_class, length,
array_class->GetComponentSizeShift(),
Runtime::Current()->GetHeap()->GetCurrentAllocator());
if (UNLIKELY(new_array == nullptr)) {
self->AssertPendingOOMException();
return false;
}
uint32_t arg[Instruction::kMaxVarArgRegs]; // only used in filled-new-array.
uint32_t vregC = 0; // only used in filled-new-array-range.
if (is_range) {
vregC = inst->VRegC_3rc();
} else {
inst->GetVarArgs(arg);
}
for (int32_t i = 0; i < length; ++i) {
size_t src_reg = is_range ? vregC + i : arg[i];
if (is_primitive_int_component) {
new_array->AsIntArray()->SetWithoutChecks<transaction_active>(
i, shadow_frame.GetVReg(src_reg));
} else {
new_array->AsObjectArray<Object>()->SetWithoutChecks<transaction_active>(
i, shadow_frame.GetVRegReference(src_reg));
}
}
result->SetL(new_array);
return true;
}
// TODO fix thread analysis: should be REQUIRES_SHARED(Locks::mutator_lock_).
template<typename T>
static void RecordArrayElementsInTransactionImpl(mirror::PrimitiveArray<T>* array, int32_t count)
NO_THREAD_SAFETY_ANALYSIS {
Runtime* runtime = Runtime::Current();
for (int32_t i = 0; i < count; ++i) {
runtime->RecordWriteArray(array, i, array->GetWithoutChecks(i));
}
}
void RecordArrayElementsInTransaction(mirror::Array* array, int32_t count)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(Runtime::Current()->IsActiveTransaction());
DCHECK(array != nullptr);
DCHECK_LE(count, array->GetLength());
Primitive::Type primitive_component_type = array->GetClass()->GetComponentType()->GetPrimitiveType();
switch (primitive_component_type) {
case Primitive::kPrimBoolean:
RecordArrayElementsInTransactionImpl(array->AsBooleanArray(), count);
break;
case Primitive::kPrimByte:
RecordArrayElementsInTransactionImpl(array->AsByteArray(), count);
break;
case Primitive::kPrimChar:
RecordArrayElementsInTransactionImpl(array->AsCharArray(), count);
break;
case Primitive::kPrimShort:
RecordArrayElementsInTransactionImpl(array->AsShortArray(), count);
break;
case Primitive::kPrimInt:
RecordArrayElementsInTransactionImpl(array->AsIntArray(), count);
break;
case Primitive::kPrimFloat:
RecordArrayElementsInTransactionImpl(array->AsFloatArray(), count);
break;
case Primitive::kPrimLong:
RecordArrayElementsInTransactionImpl(array->AsLongArray(), count);
break;
case Primitive::kPrimDouble:
RecordArrayElementsInTransactionImpl(array->AsDoubleArray(), count);
break;
default:
LOG(FATAL) << "Unsupported primitive type " << primitive_component_type
<< " in fill-array-data";
break;
}
}
// Explicit DoCall template function declarations.
#define EXPLICIT_DO_CALL_TEMPLATE_DECL(_is_range, _do_assignability_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoCall<_is_range, _do_assignability_check>(ArtMethod* method, Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, uint16_t inst_data, \
JValue* result)
EXPLICIT_DO_CALL_TEMPLATE_DECL(false, false);
EXPLICIT_DO_CALL_TEMPLATE_DECL(false, true);
EXPLICIT_DO_CALL_TEMPLATE_DECL(true, false);
EXPLICIT_DO_CALL_TEMPLATE_DECL(true, true);
#undef EXPLICIT_DO_CALL_TEMPLATE_DECL
// Explicit DoInvokePolymorphic template function declarations.
#define EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(_is_range, _do_assignability_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoInvokePolymorphic<_is_range, _do_assignability_check>( \
Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \
uint16_t inst_data, JValue* result)
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false, false);
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false, true);
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true, false);
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true, true);
#undef EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL
// Explicit DoFilledNewArray template function declarations.
#define EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(_is_range_, _check, _transaction_active) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoFilledNewArray<_is_range_, _check, _transaction_active>(const Instruction* inst, \
const ShadowFrame& shadow_frame, \
Thread* self, JValue* result)
#define EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(_transaction_active) \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, false, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, true, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, false, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, true, _transaction_active)
EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(false);
EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(true);
#undef EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL
} // namespace interpreter
} // namespace art