| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "instruction_simplifier.h" |
| |
| #include "art_method-inl.h" |
| #include "class_linker-inl.h" |
| #include "class_root-inl.h" |
| #include "data_type-inl.h" |
| #include "escape.h" |
| #include "intrinsics.h" |
| #include "mirror/class-inl.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "sharpening.h" |
| #include "string_builder_append.h" |
| |
| namespace art { |
| |
| // Whether to run an exhaustive test of individual HInstructions cloning when each instruction |
| // is replaced with its copy if it is clonable. |
| static constexpr bool kTestInstructionClonerExhaustively = false; |
| |
| class InstructionSimplifierVisitor : public HGraphDelegateVisitor { |
| public: |
| InstructionSimplifierVisitor(HGraph* graph, |
| CodeGenerator* codegen, |
| OptimizingCompilerStats* stats, |
| bool be_loop_friendly) |
| : HGraphDelegateVisitor(graph), |
| codegen_(codegen), |
| stats_(stats), |
| be_loop_friendly_(be_loop_friendly) {} |
| |
| bool Run(); |
| |
| private: |
| void RecordSimplification() { |
| simplification_occurred_ = true; |
| simplifications_at_current_position_++; |
| MaybeRecordStat(stats_, MethodCompilationStat::kInstructionSimplifications); |
| } |
| |
| bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl); |
| bool TryReplaceWithRotate(HBinaryOperation* instruction); |
| bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl); |
| bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl); |
| bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl); |
| |
| bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop); |
| // `op` should be either HOr or HAnd. |
| // De Morgan's laws: |
| // ~a & ~b = ~(a | b) and ~a | ~b = ~(a & b) |
| bool TryDeMorganNegationFactoring(HBinaryOperation* op); |
| bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction); |
| bool TrySubtractionChainSimplification(HBinaryOperation* instruction); |
| bool TryCombineVecMultiplyAccumulate(HVecMul* mul); |
| void TryToReuseDiv(HRem* rem); |
| |
| void VisitShift(HBinaryOperation* shift); |
| void VisitEqual(HEqual* equal) override; |
| void VisitNotEqual(HNotEqual* equal) override; |
| void VisitBooleanNot(HBooleanNot* bool_not) override; |
| void VisitInstanceFieldSet(HInstanceFieldSet* equal) override; |
| void VisitStaticFieldSet(HStaticFieldSet* equal) override; |
| void VisitArraySet(HArraySet* equal) override; |
| void VisitTypeConversion(HTypeConversion* instruction) override; |
| void VisitNullCheck(HNullCheck* instruction) override; |
| void VisitArrayLength(HArrayLength* instruction) override; |
| void VisitCheckCast(HCheckCast* instruction) override; |
| void VisitAbs(HAbs* instruction) override; |
| void VisitAdd(HAdd* instruction) override; |
| void VisitAnd(HAnd* instruction) override; |
| void VisitCondition(HCondition* instruction) override; |
| void VisitGreaterThan(HGreaterThan* condition) override; |
| void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) override; |
| void VisitLessThan(HLessThan* condition) override; |
| void VisitLessThanOrEqual(HLessThanOrEqual* condition) override; |
| void VisitBelow(HBelow* condition) override; |
| void VisitBelowOrEqual(HBelowOrEqual* condition) override; |
| void VisitAbove(HAbove* condition) override; |
| void VisitAboveOrEqual(HAboveOrEqual* condition) override; |
| void VisitDiv(HDiv* instruction) override; |
| void VisitRem(HRem* instruction) override; |
| void VisitMul(HMul* instruction) override; |
| void VisitNeg(HNeg* instruction) override; |
| void VisitNot(HNot* instruction) override; |
| void VisitOr(HOr* instruction) override; |
| void VisitShl(HShl* instruction) override; |
| void VisitShr(HShr* instruction) override; |
| void VisitSub(HSub* instruction) override; |
| void VisitUShr(HUShr* instruction) override; |
| void VisitXor(HXor* instruction) override; |
| void VisitSelect(HSelect* select) override; |
| void VisitIf(HIf* instruction) override; |
| void VisitInstanceOf(HInstanceOf* instruction) override; |
| void VisitInvoke(HInvoke* invoke) override; |
| void VisitDeoptimize(HDeoptimize* deoptimize) override; |
| void VisitVecMul(HVecMul* instruction) override; |
| |
| bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const; |
| |
| void SimplifySystemArrayCopy(HInvoke* invoke); |
| void SimplifyStringEquals(HInvoke* invoke); |
| void SimplifyFP2Int(HInvoke* invoke); |
| void SimplifyStringCharAt(HInvoke* invoke); |
| void SimplifyStringLength(HInvoke* invoke); |
| void SimplifyStringIndexOf(HInvoke* invoke); |
| void SimplifyNPEOnArgN(HInvoke* invoke, size_t); |
| void SimplifyReturnThis(HInvoke* invoke); |
| void SimplifyAllocationIntrinsic(HInvoke* invoke); |
| |
| CodeGenerator* codegen_; |
| OptimizingCompilerStats* stats_; |
| bool simplification_occurred_ = false; |
| int simplifications_at_current_position_ = 0; |
| // Prohibit optimizations which can affect HInductionVarAnalysis/HLoopOptimization |
| // and prevent loop optimizations: |
| // true - avoid such optimizations. |
| // false - allow such optimizations. |
| // Checked by the following optimizations: |
| // - TryToReuseDiv: simplification of Div+Rem into Div+Mul+Sub. |
| bool be_loop_friendly_; |
| // We ensure we do not loop infinitely. The value should not be too high, since that |
| // would allow looping around the same basic block too many times. The value should |
| // not be too low either, however, since we want to allow revisiting a basic block |
| // with many statements and simplifications at least once. |
| static constexpr int kMaxSamePositionSimplifications = 50; |
| }; |
| |
| bool InstructionSimplifier::Run() { |
| if (kTestInstructionClonerExhaustively) { |
| CloneAndReplaceInstructionVisitor visitor(graph_); |
| visitor.VisitReversePostOrder(); |
| } |
| |
| bool be_loop_friendly = (use_all_optimizations_ == false); |
| |
| InstructionSimplifierVisitor visitor(graph_, codegen_, stats_, be_loop_friendly); |
| return visitor.Run(); |
| } |
| |
| bool InstructionSimplifierVisitor::Run() { |
| bool didSimplify = false; |
| // Iterate in reverse post order to open up more simplifications to users |
| // of instructions that got simplified. |
| for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) { |
| // The simplification of an instruction to another instruction may yield |
| // possibilities for other simplifications. So although we perform a reverse |
| // post order visit, we sometimes need to revisit an instruction index. |
| do { |
| simplification_occurred_ = false; |
| VisitBasicBlock(block); |
| if (simplification_occurred_) { |
| didSimplify = true; |
| } |
| } while (simplification_occurred_ && |
| (simplifications_at_current_position_ < kMaxSamePositionSimplifications)); |
| simplifications_at_current_position_ = 0; |
| } |
| return didSimplify; |
| } |
| |
| namespace { |
| |
| bool AreAllBitsSet(HConstant* constant) { |
| return Int64FromConstant(constant) == -1; |
| } |
| |
| } // namespace |
| |
| // Returns true if the code was simplified to use only one negation operation |
| // after the binary operation instead of one on each of the inputs. |
| bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) { |
| DCHECK(binop->IsAdd() || binop->IsSub()); |
| DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg()); |
| HNeg* left_neg = binop->GetLeft()->AsNeg(); |
| HNeg* right_neg = binop->GetRight()->AsNeg(); |
| if (!left_neg->HasOnlyOneNonEnvironmentUse() || |
| !right_neg->HasOnlyOneNonEnvironmentUse()) { |
| return false; |
| } |
| // Replace code looking like |
| // NEG tmp1, a |
| // NEG tmp2, b |
| // ADD dst, tmp1, tmp2 |
| // with |
| // ADD tmp, a, b |
| // NEG dst, tmp |
| // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point. |
| // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`, |
| // while the later yields `-0.0`. |
| if (!DataType::IsIntegralType(binop->GetType())) { |
| return false; |
| } |
| binop->ReplaceInput(left_neg->GetInput(), 0); |
| binop->ReplaceInput(right_neg->GetInput(), 1); |
| left_neg->GetBlock()->RemoveInstruction(left_neg); |
| right_neg->GetBlock()->RemoveInstruction(right_neg); |
| HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(binop->GetType(), binop); |
| binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext()); |
| binop->ReplaceWithExceptInReplacementAtIndex(neg, 0); |
| RecordSimplification(); |
| return true; |
| } |
| |
| bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) { |
| DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName(); |
| DataType::Type type = op->GetType(); |
| HInstruction* left = op->GetLeft(); |
| HInstruction* right = op->GetRight(); |
| |
| // We can apply De Morgan's laws if both inputs are Not's and are only used |
| // by `op`. |
| if (((left->IsNot() && right->IsNot()) || |
| (left->IsBooleanNot() && right->IsBooleanNot())) && |
| left->HasOnlyOneNonEnvironmentUse() && |
| right->HasOnlyOneNonEnvironmentUse()) { |
| // Replace code looking like |
| // NOT nota, a |
| // NOT notb, b |
| // AND dst, nota, notb (respectively OR) |
| // with |
| // OR or, a, b (respectively AND) |
| // NOT dest, or |
| HInstruction* src_left = left->InputAt(0); |
| HInstruction* src_right = right->InputAt(0); |
| uint32_t dex_pc = op->GetDexPc(); |
| |
| // Remove the negations on the inputs. |
| left->ReplaceWith(src_left); |
| right->ReplaceWith(src_right); |
| left->GetBlock()->RemoveInstruction(left); |
| right->GetBlock()->RemoveInstruction(right); |
| |
| // Replace the `HAnd` or `HOr`. |
| HBinaryOperation* hbin; |
| if (op->IsAnd()) { |
| hbin = new (GetGraph()->GetAllocator()) HOr(type, src_left, src_right, dex_pc); |
| } else { |
| hbin = new (GetGraph()->GetAllocator()) HAnd(type, src_left, src_right, dex_pc); |
| } |
| HInstruction* hnot; |
| if (left->IsBooleanNot()) { |
| hnot = new (GetGraph()->GetAllocator()) HBooleanNot(hbin, dex_pc); |
| } else { |
| hnot = new (GetGraph()->GetAllocator()) HNot(type, hbin, dex_pc); |
| } |
| |
| op->GetBlock()->InsertInstructionBefore(hbin, op); |
| op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot); |
| |
| RecordSimplification(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool InstructionSimplifierVisitor::TryCombineVecMultiplyAccumulate(HVecMul* mul) { |
| DataType::Type type = mul->GetPackedType(); |
| InstructionSet isa = codegen_->GetInstructionSet(); |
| switch (isa) { |
| case InstructionSet::kArm64: |
| if (!(type == DataType::Type::kUint8 || |
| type == DataType::Type::kInt8 || |
| type == DataType::Type::kUint16 || |
| type == DataType::Type::kInt16 || |
| type == DataType::Type::kInt32)) { |
| return false; |
| } |
| break; |
| default: |
| return false; |
| } |
| |
| ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator(); |
| |
| if (mul->HasOnlyOneNonEnvironmentUse()) { |
| HInstruction* use = mul->GetUses().front().GetUser(); |
| if (use->IsVecAdd() || use->IsVecSub()) { |
| // Replace code looking like |
| // VECMUL tmp, x, y |
| // VECADD/SUB dst, acc, tmp |
| // with |
| // VECMULACC dst, acc, x, y |
| // Note that we do not want to (unconditionally) perform the merge when the |
| // multiplication has multiple uses and it can be merged in all of them. |
| // Multiple uses could happen on the same control-flow path, and we would |
| // then increase the amount of work. In the future we could try to evaluate |
| // whether all uses are on different control-flow paths (using dominance and |
| // reverse-dominance information) and only perform the merge when they are. |
| HInstruction* accumulator = nullptr; |
| HVecBinaryOperation* binop = use->AsVecBinaryOperation(); |
| HInstruction* binop_left = binop->GetLeft(); |
| HInstruction* binop_right = binop->GetRight(); |
| // This is always true since the `HVecMul` has only one use (which is checked above). |
| DCHECK_NE(binop_left, binop_right); |
| if (binop_right == mul) { |
| accumulator = binop_left; |
| } else if (use->IsVecAdd()) { |
| DCHECK_EQ(binop_left, mul); |
| accumulator = binop_right; |
| } |
| |
| HInstruction::InstructionKind kind = |
| use->IsVecAdd() ? HInstruction::kAdd : HInstruction::kSub; |
| if (accumulator != nullptr) { |
| HVecMultiplyAccumulate* mulacc = |
| new (allocator) HVecMultiplyAccumulate(allocator, |
| kind, |
| accumulator, |
| mul->GetLeft(), |
| mul->GetRight(), |
| binop->GetPackedType(), |
| binop->GetVectorLength(), |
| binop->GetDexPc()); |
| |
| binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc); |
| DCHECK(!mul->HasUses()); |
| mul->GetBlock()->RemoveInstruction(mul); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()); |
| HInstruction* shift_amount = instruction->GetRight(); |
| HInstruction* value = instruction->GetLeft(); |
| |
| int64_t implicit_mask = (value->GetType() == DataType::Type::kInt64) |
| ? kMaxLongShiftDistance |
| : kMaxIntShiftDistance; |
| |
| if (shift_amount->IsConstant()) { |
| int64_t cst = Int64FromConstant(shift_amount->AsConstant()); |
| int64_t masked_cst = cst & implicit_mask; |
| if (masked_cst == 0) { |
| // Replace code looking like |
| // SHL dst, value, 0 |
| // with |
| // value |
| instruction->ReplaceWith(value); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } else if (masked_cst != cst) { |
| // Replace code looking like |
| // SHL dst, value, cst |
| // where cst exceeds maximum distance with the equivalent |
| // SHL dst, value, cst & implicit_mask |
| // (as defined by shift semantics). This ensures other |
| // optimizations do not need to special case for such situations. |
| DCHECK_EQ(shift_amount->GetType(), DataType::Type::kInt32); |
| instruction->ReplaceInput(GetGraph()->GetIntConstant(masked_cst), /* index= */ 1); |
| RecordSimplification(); |
| return; |
| } |
| } |
| |
| // Shift operations implicitly mask the shift amount according to the type width. Get rid of |
| // unnecessary And/Or/Xor/Add/Sub/TypeConversion operations on the shift amount that do not |
| // affect the relevant bits. |
| // Replace code looking like |
| // AND adjusted_shift, shift, <superset of implicit mask> |
| // [OR/XOR/ADD/SUB adjusted_shift, shift, <value not overlapping with implicit mask>] |
| // [<conversion-from-integral-non-64-bit-type> adjusted_shift, shift] |
| // SHL dst, value, adjusted_shift |
| // with |
| // SHL dst, value, shift |
| if (shift_amount->IsAnd() || |
| shift_amount->IsOr() || |
| shift_amount->IsXor() || |
| shift_amount->IsAdd() || |
| shift_amount->IsSub()) { |
| int64_t required_result = shift_amount->IsAnd() ? implicit_mask : 0; |
| HBinaryOperation* bin_op = shift_amount->AsBinaryOperation(); |
| HConstant* mask = bin_op->GetConstantRight(); |
| if (mask != nullptr && (Int64FromConstant(mask) & implicit_mask) == required_result) { |
| instruction->ReplaceInput(bin_op->GetLeastConstantLeft(), 1); |
| RecordSimplification(); |
| return; |
| } |
| } else if (shift_amount->IsTypeConversion()) { |
| DCHECK_NE(shift_amount->GetType(), DataType::Type::kBool); // We never convert to bool. |
| DataType::Type source_type = shift_amount->InputAt(0)->GetType(); |
| // Non-integral and 64-bit source types require an explicit type conversion. |
| if (DataType::IsIntegralType(source_type) && !DataType::Is64BitType(source_type)) { |
| instruction->ReplaceInput(shift_amount->AsTypeConversion()->GetInput(), 1); |
| RecordSimplification(); |
| return; |
| } |
| } |
| } |
| |
| static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) { |
| return (sub->GetRight() == other && |
| sub->GetLeft()->IsConstant() && |
| (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0); |
| } |
| |
| bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op, |
| HUShr* ushr, |
| HShl* shl) { |
| DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName(); |
| HRor* ror = |
| new (GetGraph()->GetAllocator()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight()); |
| op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror); |
| if (!ushr->HasUses()) { |
| ushr->GetBlock()->RemoveInstruction(ushr); |
| } |
| if (!ushr->GetRight()->HasUses()) { |
| ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight()); |
| } |
| if (!shl->HasUses()) { |
| shl->GetBlock()->RemoveInstruction(shl); |
| } |
| if (!shl->GetRight()->HasUses()) { |
| shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight()); |
| } |
| RecordSimplification(); |
| return true; |
| } |
| |
| // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation. |
| bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) { |
| DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()); |
| HInstruction* left = op->GetLeft(); |
| HInstruction* right = op->GetRight(); |
| // If we have an UShr and a Shl (in either order). |
| if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) { |
| HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr(); |
| HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl(); |
| DCHECK(DataType::IsIntOrLongType(ushr->GetType())); |
| if (ushr->GetType() == shl->GetType() && |
| ushr->GetLeft() == shl->GetLeft()) { |
| if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) { |
| // Shift distances are both constant, try replacing with Ror if they |
| // add up to the register size. |
| return TryReplaceWithRotateConstantPattern(op, ushr, shl); |
| } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) { |
| // Shift distances are potentially of the form x and (reg_size - x). |
| return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl); |
| } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) { |
| // Shift distances are potentially of the form d and -d. |
| return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl); |
| } |
| } |
| } |
| return false; |
| } |
| |
| // Try replacing code looking like (x >>> #rdist OP x << #ldist): |
| // UShr dst, x, #rdist |
| // Shl tmp, x, #ldist |
| // OP dst, dst, tmp |
| // or like (x >>> #rdist OP x << #-ldist): |
| // UShr dst, x, #rdist |
| // Shl tmp, x, #-ldist |
| // OP dst, dst, tmp |
| // with |
| // Ror dst, x, #rdist |
| bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op, |
| HUShr* ushr, |
| HShl* shl) { |
| DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()); |
| size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte; |
| size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant()); |
| size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant()); |
| if (((ldist + rdist) & (reg_bits - 1)) == 0) { |
| ReplaceRotateWithRor(op, ushr, shl); |
| return true; |
| } |
| return false; |
| } |
| |
| // Replace code looking like (x >>> -d OP x << d): |
| // Neg neg, d |
| // UShr dst, x, neg |
| // Shl tmp, x, d |
| // OP dst, dst, tmp |
| // with |
| // Neg neg, d |
| // Ror dst, x, neg |
| // *** OR *** |
| // Replace code looking like (x >>> d OP x << -d): |
| // UShr dst, x, d |
| // Neg neg, d |
| // Shl tmp, x, neg |
| // OP dst, dst, tmp |
| // with |
| // Ror dst, x, d |
| bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, |
| HUShr* ushr, |
| HShl* shl) { |
| DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()); |
| DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()); |
| bool neg_is_left = shl->GetRight()->IsNeg(); |
| HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg(); |
| // And the shift distance being negated is the distance being shifted the other way. |
| if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) { |
| ReplaceRotateWithRor(op, ushr, shl); |
| } |
| return false; |
| } |
| |
| // Try replacing code looking like (x >>> d OP x << (#bits - d)): |
| // UShr dst, x, d |
| // Sub ld, #bits, d |
| // Shl tmp, x, ld |
| // OP dst, dst, tmp |
| // with |
| // Ror dst, x, d |
| // *** OR *** |
| // Replace code looking like (x >>> (#bits - d) OP x << d): |
| // Sub rd, #bits, d |
| // UShr dst, x, rd |
| // Shl tmp, x, d |
| // OP dst, dst, tmp |
| // with |
| // Neg neg, d |
| // Ror dst, x, neg |
| bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, |
| HUShr* ushr, |
| HShl* shl) { |
| DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()); |
| DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()); |
| size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte; |
| HInstruction* shl_shift = shl->GetRight(); |
| HInstruction* ushr_shift = ushr->GetRight(); |
| if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) || |
| (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) { |
| return ReplaceRotateWithRor(op, ushr, shl); |
| } |
| return false; |
| } |
| |
| void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) { |
| HInstruction* obj = null_check->InputAt(0); |
| if (!obj->CanBeNull()) { |
| null_check->ReplaceWith(obj); |
| null_check->GetBlock()->RemoveInstruction(null_check); |
| if (stats_ != nullptr) { |
| stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck); |
| } |
| } |
| } |
| |
| bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const { |
| if (!input->CanBeNull()) { |
| return true; |
| } |
| |
| for (const HUseListNode<HInstruction*>& use : input->GetUses()) { |
| HInstruction* user = use.GetUser(); |
| if (user->IsNullCheck() && user->StrictlyDominates(at)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Returns whether doing a type test between the class of `object` against `klass` has |
| // a statically known outcome. The result of the test is stored in `outcome`. |
| static bool TypeCheckHasKnownOutcome(ReferenceTypeInfo class_rti, |
| HInstruction* object, |
| /*out*/bool* outcome) { |
| DCHECK(!object->IsNullConstant()) << "Null constants should be special cased"; |
| ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo(); |
| ScopedObjectAccess soa(Thread::Current()); |
| if (!obj_rti.IsValid()) { |
| // We run the simplifier before the reference type propagation so type info might not be |
| // available. |
| return false; |
| } |
| |
| if (!class_rti.IsValid()) { |
| // Happens when the loaded class is unresolved. |
| return false; |
| } |
| DCHECK(class_rti.IsExact()); |
| if (class_rti.IsSupertypeOf(obj_rti)) { |
| *outcome = true; |
| return true; |
| } else if (obj_rti.IsExact()) { |
| // The test failed at compile time so will also fail at runtime. |
| *outcome = false; |
| return true; |
| } else if (!class_rti.IsInterface() |
| && !obj_rti.IsInterface() |
| && !obj_rti.IsSupertypeOf(class_rti)) { |
| // Different type hierarchy. The test will fail. |
| *outcome = false; |
| return true; |
| } |
| return false; |
| } |
| |
| void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) { |
| HInstruction* object = check_cast->InputAt(0); |
| if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck && |
| check_cast->GetTargetClass()->NeedsAccessCheck()) { |
| // If we need to perform an access check we cannot remove the instruction. |
| return; |
| } |
| |
| if (CanEnsureNotNullAt(object, check_cast)) { |
| check_cast->ClearMustDoNullCheck(); |
| } |
| |
| if (object->IsNullConstant()) { |
| check_cast->GetBlock()->RemoveInstruction(check_cast); |
| MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast); |
| return; |
| } |
| |
| // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder |
| // the return value check with the `outcome` check, b/27651442. |
| bool outcome = false; |
| if (TypeCheckHasKnownOutcome(check_cast->GetTargetClassRTI(), object, &outcome)) { |
| if (outcome) { |
| check_cast->GetBlock()->RemoveInstruction(check_cast); |
| MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast); |
| if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) { |
| HLoadClass* load_class = check_cast->GetTargetClass(); |
| if (!load_class->HasUses()) { |
| // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw. |
| // However, here we know that it cannot because the checkcast was successfull, hence |
| // the class was already loaded. |
| load_class->GetBlock()->RemoveInstruction(load_class); |
| } |
| } |
| } else { |
| // Don't do anything for exceptional cases for now. Ideally we should remove |
| // all instructions and blocks this instruction dominates. |
| } |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) { |
| HInstruction* object = instruction->InputAt(0); |
| if (instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck && |
| instruction->GetTargetClass()->NeedsAccessCheck()) { |
| // If we need to perform an access check we cannot remove the instruction. |
| return; |
| } |
| |
| bool can_be_null = true; |
| if (CanEnsureNotNullAt(object, instruction)) { |
| can_be_null = false; |
| instruction->ClearMustDoNullCheck(); |
| } |
| |
| HGraph* graph = GetGraph(); |
| if (object->IsNullConstant()) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf); |
| instruction->ReplaceWith(graph->GetIntConstant(0)); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder |
| // the return value check with the `outcome` check, b/27651442. |
| bool outcome = false; |
| if (TypeCheckHasKnownOutcome(instruction->GetTargetClassRTI(), object, &outcome)) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf); |
| if (outcome && can_be_null) { |
| // Type test will succeed, we just need a null test. |
| HNotEqual* test = new (graph->GetAllocator()) HNotEqual(graph->GetNullConstant(), object); |
| instruction->GetBlock()->InsertInstructionBefore(test, instruction); |
| instruction->ReplaceWith(test); |
| } else { |
| // We've statically determined the result of the instanceof. |
| instruction->ReplaceWith(graph->GetIntConstant(outcome)); |
| } |
| RecordSimplification(); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| if (outcome && instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) { |
| HLoadClass* load_class = instruction->GetTargetClass(); |
| if (!load_class->HasUses()) { |
| // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw. |
| // However, here we know that it cannot because the instanceof check was successfull, hence |
| // the class was already loaded. |
| load_class->GetBlock()->RemoveInstruction(load_class); |
| } |
| } |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| if ((instruction->GetValue()->GetType() == DataType::Type::kReference) |
| && CanEnsureNotNullAt(instruction->GetValue(), instruction)) { |
| instruction->ClearValueCanBeNull(); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| if ((instruction->GetValue()->GetType() == DataType::Type::kReference) |
| && CanEnsureNotNullAt(instruction->GetValue(), instruction)) { |
| instruction->ClearValueCanBeNull(); |
| } |
| } |
| |
| static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* allocator, HInstruction* cond) { |
| HInstruction *lhs = cond->InputAt(0); |
| HInstruction *rhs = cond->InputAt(1); |
| switch (cond->GetKind()) { |
| case HInstruction::kEqual: |
| return new (allocator) HEqual(rhs, lhs); |
| case HInstruction::kNotEqual: |
| return new (allocator) HNotEqual(rhs, lhs); |
| case HInstruction::kLessThan: |
| return new (allocator) HGreaterThan(rhs, lhs); |
| case HInstruction::kLessThanOrEqual: |
| return new (allocator) HGreaterThanOrEqual(rhs, lhs); |
| case HInstruction::kGreaterThan: |
| return new (allocator) HLessThan(rhs, lhs); |
| case HInstruction::kGreaterThanOrEqual: |
| return new (allocator) HLessThanOrEqual(rhs, lhs); |
| case HInstruction::kBelow: |
| return new (allocator) HAbove(rhs, lhs); |
| case HInstruction::kBelowOrEqual: |
| return new (allocator) HAboveOrEqual(rhs, lhs); |
| case HInstruction::kAbove: |
| return new (allocator) HBelow(rhs, lhs); |
| case HInstruction::kAboveOrEqual: |
| return new (allocator) HBelowOrEqual(rhs, lhs); |
| default: |
| LOG(FATAL) << "Unknown ConditionType " << cond->GetKind(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) { |
| HInstruction* input_const = equal->GetConstantRight(); |
| if (input_const != nullptr) { |
| HInstruction* input_value = equal->GetLeastConstantLeft(); |
| if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) { |
| HBasicBlock* block = equal->GetBlock(); |
| // We are comparing the boolean to a constant which is of type int and can |
| // be any constant. |
| if (input_const->AsIntConstant()->IsTrue()) { |
| // Replace (bool_value == true) with bool_value |
| equal->ReplaceWith(input_value); |
| block->RemoveInstruction(equal); |
| RecordSimplification(); |
| } else if (input_const->AsIntConstant()->IsFalse()) { |
| // Replace (bool_value == false) with !bool_value |
| equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal)); |
| block->RemoveInstruction(equal); |
| RecordSimplification(); |
| } else { |
| // Replace (bool_value == integer_not_zero_nor_one_constant) with false |
| equal->ReplaceWith(GetGraph()->GetIntConstant(0)); |
| block->RemoveInstruction(equal); |
| RecordSimplification(); |
| } |
| } else { |
| VisitCondition(equal); |
| } |
| } else { |
| VisitCondition(equal); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) { |
| HInstruction* input_const = not_equal->GetConstantRight(); |
| if (input_const != nullptr) { |
| HInstruction* input_value = not_equal->GetLeastConstantLeft(); |
| if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) { |
| HBasicBlock* block = not_equal->GetBlock(); |
| // We are comparing the boolean to a constant which is of type int and can |
| // be any constant. |
| if (input_const->AsIntConstant()->IsTrue()) { |
| // Replace (bool_value != true) with !bool_value |
| not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal)); |
| block->RemoveInstruction(not_equal); |
| RecordSimplification(); |
| } else if (input_const->AsIntConstant()->IsFalse()) { |
| // Replace (bool_value != false) with bool_value |
| not_equal->ReplaceWith(input_value); |
| block->RemoveInstruction(not_equal); |
| RecordSimplification(); |
| } else { |
| // Replace (bool_value != integer_not_zero_nor_one_constant) with true |
| not_equal->ReplaceWith(GetGraph()->GetIntConstant(1)); |
| block->RemoveInstruction(not_equal); |
| RecordSimplification(); |
| } |
| } else { |
| VisitCondition(not_equal); |
| } |
| } else { |
| VisitCondition(not_equal); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) { |
| HInstruction* input = bool_not->InputAt(0); |
| HInstruction* replace_with = nullptr; |
| |
| if (input->IsIntConstant()) { |
| // Replace !(true/false) with false/true. |
| if (input->AsIntConstant()->IsTrue()) { |
| replace_with = GetGraph()->GetIntConstant(0); |
| } else { |
| DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue(); |
| replace_with = GetGraph()->GetIntConstant(1); |
| } |
| } else if (input->IsBooleanNot()) { |
| // Replace (!(!bool_value)) with bool_value. |
| replace_with = input->InputAt(0); |
| } else if (input->IsCondition() && |
| // Don't change FP compares. The definition of compares involving |
| // NaNs forces the compares to be done as written by the user. |
| !DataType::IsFloatingPointType(input->InputAt(0)->GetType())) { |
| // Replace condition with its opposite. |
| replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not); |
| } |
| |
| if (replace_with != nullptr) { |
| bool_not->ReplaceWith(replace_with); |
| bool_not->GetBlock()->RemoveInstruction(bool_not); |
| RecordSimplification(); |
| } |
| } |
| |
| // Constructs a new ABS(x) node in the HIR. |
| static HInstruction* NewIntegralAbs(ArenaAllocator* allocator, |
| HInstruction* x, |
| HInstruction* cursor) { |
| DataType::Type type = DataType::Kind(x->GetType()); |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| HAbs* abs = new (allocator) HAbs(type, x, cursor->GetDexPc()); |
| cursor->GetBlock()->InsertInstructionBefore(abs, cursor); |
| return abs; |
| } |
| |
| // Constructs a new MIN/MAX(x, y) node in the HIR. |
| static HInstruction* NewIntegralMinMax(ArenaAllocator* allocator, |
| HInstruction* x, |
| HInstruction* y, |
| HInstruction* cursor, |
| bool is_min) { |
| DataType::Type type = DataType::Kind(x->GetType()); |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| HBinaryOperation* minmax = nullptr; |
| if (is_min) { |
| minmax = new (allocator) HMin(type, x, y, cursor->GetDexPc()); |
| } else { |
| minmax = new (allocator) HMax(type, x, y, cursor->GetDexPc()); |
| } |
| cursor->GetBlock()->InsertInstructionBefore(minmax, cursor); |
| return minmax; |
| } |
| |
| // Returns true if operands a and b consists of widening type conversions |
| // (either explicit or implicit) to the given to_type. |
| static bool AreLowerPrecisionArgs(DataType::Type to_type, HInstruction* a, HInstruction* b) { |
| if (a->IsTypeConversion() && a->GetType() == to_type) { |
| a = a->InputAt(0); |
| } |
| if (b->IsTypeConversion() && b->GetType() == to_type) { |
| b = b->InputAt(0); |
| } |
| DataType::Type type1 = a->GetType(); |
| DataType::Type type2 = b->GetType(); |
| return (type1 == DataType::Type::kUint8 && type2 == DataType::Type::kUint8) || |
| (type1 == DataType::Type::kInt8 && type2 == DataType::Type::kInt8) || |
| (type1 == DataType::Type::kInt16 && type2 == DataType::Type::kInt16) || |
| (type1 == DataType::Type::kUint16 && type2 == DataType::Type::kUint16) || |
| (type1 == DataType::Type::kInt32 && type2 == DataType::Type::kInt32 && |
| to_type == DataType::Type::kInt64); |
| } |
| |
| // Returns an acceptable substitution for "a" on the select |
| // construct "a <cmp> b ? c : .." during MIN/MAX recognition. |
| static HInstruction* AllowInMinMax(IfCondition cmp, |
| HInstruction* a, |
| HInstruction* b, |
| HInstruction* c) { |
| int64_t value = 0; |
| if (IsInt64AndGet(b, /*out*/ &value) && |
| (((cmp == kCondLT || cmp == kCondLE) && c->IsMax()) || |
| ((cmp == kCondGT || cmp == kCondGE) && c->IsMin()))) { |
| HConstant* other = c->AsBinaryOperation()->GetConstantRight(); |
| if (other != nullptr && a == c->AsBinaryOperation()->GetLeastConstantLeft()) { |
| int64_t other_value = Int64FromConstant(other); |
| bool is_max = (cmp == kCondLT || cmp == kCondLE); |
| // Allow the max for a < 100 ? max(a, -100) : .. |
| // or the min for a > -100 ? min(a, 100) : .. |
| if (is_max ? (value >= other_value) : (value <= other_value)) { |
| return c; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| void InstructionSimplifierVisitor::VisitSelect(HSelect* select) { |
| HInstruction* replace_with = nullptr; |
| HInstruction* condition = select->GetCondition(); |
| HInstruction* true_value = select->GetTrueValue(); |
| HInstruction* false_value = select->GetFalseValue(); |
| |
| if (condition->IsBooleanNot()) { |
| // Change ((!cond) ? x : y) to (cond ? y : x). |
| condition = condition->InputAt(0); |
| std::swap(true_value, false_value); |
| select->ReplaceInput(false_value, 0); |
| select->ReplaceInput(true_value, 1); |
| select->ReplaceInput(condition, 2); |
| RecordSimplification(); |
| } |
| |
| if (true_value == false_value) { |
| // Replace (cond ? x : x) with (x). |
| replace_with = true_value; |
| } else if (condition->IsIntConstant()) { |
| if (condition->AsIntConstant()->IsTrue()) { |
| // Replace (true ? x : y) with (x). |
| replace_with = true_value; |
| } else { |
| // Replace (false ? x : y) with (y). |
| DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue(); |
| replace_with = false_value; |
| } |
| } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) { |
| if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) { |
| // Replace (cond ? true : false) with (cond). |
| replace_with = condition; |
| } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) { |
| // Replace (cond ? false : true) with (!cond). |
| replace_with = GetGraph()->InsertOppositeCondition(condition, select); |
| } |
| } else if (condition->IsCondition()) { |
| IfCondition cmp = condition->AsCondition()->GetCondition(); |
| HInstruction* a = condition->InputAt(0); |
| HInstruction* b = condition->InputAt(1); |
| DataType::Type t_type = true_value->GetType(); |
| DataType::Type f_type = false_value->GetType(); |
| // Here we have a <cmp> b ? true_value : false_value. |
| // Test if both values are compatible integral types (resulting MIN/MAX/ABS |
| // type will be int or long, like the condition). Replacements are general, |
| // but assume conditions prefer constants on the right. |
| if (DataType::IsIntegralType(t_type) && DataType::Kind(t_type) == DataType::Kind(f_type)) { |
| // Allow a < 100 ? max(a, -100) : .. |
| // or a > -100 ? min(a, 100) : .. |
| // to use min/max instead of a to detect nested min/max expressions. |
| HInstruction* new_a = AllowInMinMax(cmp, a, b, true_value); |
| if (new_a != nullptr) { |
| a = new_a; |
| } |
| // Try to replace typical integral MIN/MAX/ABS constructs. |
| if ((cmp == kCondLT || cmp == kCondLE || cmp == kCondGT || cmp == kCondGE) && |
| ((a == true_value && b == false_value) || |
| (b == true_value && a == false_value))) { |
| // Found a < b ? a : b (MIN) or a < b ? b : a (MAX) |
| // or a > b ? a : b (MAX) or a > b ? b : a (MIN). |
| bool is_min = (cmp == kCondLT || cmp == kCondLE) == (a == true_value); |
| replace_with = NewIntegralMinMax(GetGraph()->GetAllocator(), a, b, select, is_min); |
| } else if (((cmp == kCondLT || cmp == kCondLE) && true_value->IsNeg()) || |
| ((cmp == kCondGT || cmp == kCondGE) && false_value->IsNeg())) { |
| bool negLeft = (cmp == kCondLT || cmp == kCondLE); |
| HInstruction* the_negated = negLeft ? true_value->InputAt(0) : false_value->InputAt(0); |
| HInstruction* not_negated = negLeft ? false_value : true_value; |
| if (a == the_negated && a == not_negated && IsInt64Value(b, 0)) { |
| // Found a < 0 ? -a : a |
| // or a > 0 ? a : -a |
| // which can be replaced by ABS(a). |
| replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), a, select); |
| } |
| } else if (true_value->IsSub() && false_value->IsSub()) { |
| HInstruction* true_sub1 = true_value->InputAt(0); |
| HInstruction* true_sub2 = true_value->InputAt(1); |
| HInstruction* false_sub1 = false_value->InputAt(0); |
| HInstruction* false_sub2 = false_value->InputAt(1); |
| if ((((cmp == kCondGT || cmp == kCondGE) && |
| (a == true_sub1 && b == true_sub2 && a == false_sub2 && b == false_sub1)) || |
| ((cmp == kCondLT || cmp == kCondLE) && |
| (a == true_sub2 && b == true_sub1 && a == false_sub1 && b == false_sub2))) && |
| AreLowerPrecisionArgs(t_type, a, b)) { |
| // Found a > b ? a - b : b - a |
| // or a < b ? b - a : a - b |
| // which can be replaced by ABS(a - b) for lower precision operands a, b. |
| replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select); |
| } |
| } |
| } |
| } |
| |
| if (replace_with != nullptr) { |
| select->ReplaceWith(replace_with); |
| select->GetBlock()->RemoveInstruction(select); |
| RecordSimplification(); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitIf(HIf* instruction) { |
| HInstruction* condition = instruction->InputAt(0); |
| if (condition->IsBooleanNot()) { |
| // Swap successors if input is negated. |
| instruction->ReplaceInput(condition->InputAt(0), 0); |
| instruction->GetBlock()->SwapSuccessors(); |
| RecordSimplification(); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) { |
| HInstruction* input = instruction->InputAt(0); |
| // If the array is a NewArray with constant size, replace the array length |
| // with the constant instruction. This helps the bounds check elimination phase. |
| if (input->IsNewArray()) { |
| input = input->AsNewArray()->GetLength(); |
| if (input->IsIntConstant()) { |
| instruction->ReplaceWith(input); |
| } |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) { |
| HInstruction* value = instruction->GetValue(); |
| if (value->GetType() != DataType::Type::kReference) { |
| return; |
| } |
| |
| if (CanEnsureNotNullAt(value, instruction)) { |
| instruction->ClearValueCanBeNull(); |
| } |
| |
| if (value->IsArrayGet()) { |
| if (value->AsArrayGet()->GetArray() == instruction->GetArray()) { |
| // If the code is just swapping elements in the array, no need for a type check. |
| instruction->ClearNeedsTypeCheck(); |
| return; |
| } |
| } |
| |
| if (value->IsNullConstant()) { |
| instruction->ClearNeedsTypeCheck(); |
| return; |
| } |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo(); |
| ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo(); |
| if (!array_rti.IsValid()) { |
| return; |
| } |
| |
| if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) { |
| instruction->ClearNeedsTypeCheck(); |
| return; |
| } |
| |
| if (array_rti.IsObjectArray()) { |
| if (array_rti.IsExact()) { |
| instruction->ClearNeedsTypeCheck(); |
| return; |
| } |
| instruction->SetStaticTypeOfArrayIsObjectArray(); |
| } |
| } |
| |
| static bool IsTypeConversionLossless(DataType::Type input_type, DataType::Type result_type) { |
| // Make sure all implicit conversions have been simplified and no new ones have been introduced. |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << "," << result_type; |
| // The conversion to a larger type is loss-less with the exception of two cases, |
| // - conversion to the unsigned type Uint16, where we may lose some bits, and |
| // - conversion from float to long, the only FP to integral conversion with smaller FP type. |
| // For integral to FP conversions this holds because the FP mantissa is large enough. |
| // Note: The size check excludes Uint8 as the result type. |
| return DataType::Size(result_type) > DataType::Size(input_type) && |
| result_type != DataType::Type::kUint16 && |
| !(result_type == DataType::Type::kInt64 && input_type == DataType::Type::kFloat32); |
| } |
| |
| static inline bool TryReplaceFieldOrArrayGetType(HInstruction* maybe_get, DataType::Type new_type) { |
| if (maybe_get->IsInstanceFieldGet()) { |
| maybe_get->AsInstanceFieldGet()->SetType(new_type); |
| return true; |
| } else if (maybe_get->IsStaticFieldGet()) { |
| maybe_get->AsStaticFieldGet()->SetType(new_type); |
| return true; |
| } else if (maybe_get->IsArrayGet() && !maybe_get->AsArrayGet()->IsStringCharAt()) { |
| maybe_get->AsArrayGet()->SetType(new_type); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| // The type conversion is only used for storing into a field/element of the |
| // same/narrower size. |
| static bool IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion* type_conversion) { |
| if (type_conversion->HasEnvironmentUses()) { |
| return false; |
| } |
| DataType::Type input_type = type_conversion->GetInputType(); |
| DataType::Type result_type = type_conversion->GetResultType(); |
| if (!DataType::IsIntegralType(input_type) || |
| !DataType::IsIntegralType(result_type) || |
| input_type == DataType::Type::kInt64 || |
| result_type == DataType::Type::kInt64) { |
| // Type conversion is needed if non-integer types are involved, or 64-bit |
| // types are involved, which may use different number of registers. |
| return false; |
| } |
| if (DataType::Size(input_type) >= DataType::Size(result_type)) { |
| // Type conversion is not necessary when storing to a field/element of the |
| // same/smaller size. |
| } else { |
| // We do not handle this case here. |
| return false; |
| } |
| |
| // Check if the converted value is only used for storing into heap. |
| for (const HUseListNode<HInstruction*>& use : type_conversion->GetUses()) { |
| HInstruction* instruction = use.GetUser(); |
| if (instruction->IsInstanceFieldSet() && |
| instruction->AsInstanceFieldSet()->GetFieldType() == result_type) { |
| DCHECK_EQ(instruction->AsInstanceFieldSet()->GetValue(), type_conversion); |
| continue; |
| } |
| if (instruction->IsStaticFieldSet() && |
| instruction->AsStaticFieldSet()->GetFieldType() == result_type) { |
| DCHECK_EQ(instruction->AsStaticFieldSet()->GetValue(), type_conversion); |
| continue; |
| } |
| if (instruction->IsArraySet() && |
| instruction->AsArraySet()->GetComponentType() == result_type && |
| // not index use. |
| instruction->AsArraySet()->GetIndex() != type_conversion) { |
| DCHECK_EQ(instruction->AsArraySet()->GetValue(), type_conversion); |
| continue; |
| } |
| // The use is not as a store value, or the field/element type is not the |
| // same as the result_type, keep the type conversion. |
| return false; |
| } |
| // Codegen automatically handles the type conversion during the store. |
| return true; |
| } |
| |
| void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) { |
| HInstruction* input = instruction->GetInput(); |
| DataType::Type input_type = input->GetType(); |
| DataType::Type result_type = instruction->GetResultType(); |
| if (instruction->IsImplicitConversion()) { |
| instruction->ReplaceWith(input); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| if (input->IsTypeConversion()) { |
| HTypeConversion* input_conversion = input->AsTypeConversion(); |
| HInstruction* original_input = input_conversion->GetInput(); |
| DataType::Type original_type = original_input->GetType(); |
| |
| // When the first conversion is lossless, a direct conversion from the original type |
| // to the final type yields the same result, even for a lossy second conversion, for |
| // example float->double->int or int->double->float. |
| bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type); |
| |
| // For integral conversions, see if the first conversion loses only bits that the second |
| // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct |
| // conversion yields the same result, for example long->int->short or int->char->short. |
| bool integral_conversions_with_non_widening_second = |
| DataType::IsIntegralType(input_type) && |
| DataType::IsIntegralType(original_type) && |
| DataType::IsIntegralType(result_type) && |
| DataType::Size(result_type) <= DataType::Size(input_type); |
| |
| if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) { |
| // If the merged conversion is implicit, do the simplification unconditionally. |
| if (DataType::IsTypeConversionImplicit(original_type, result_type)) { |
| instruction->ReplaceWith(original_input); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| if (!input_conversion->HasUses()) { |
| // Don't wait for DCE. |
| input_conversion->GetBlock()->RemoveInstruction(input_conversion); |
| } |
| RecordSimplification(); |
| return; |
| } |
| // Otherwise simplify only if the first conversion has no other use. |
| if (input_conversion->HasOnlyOneNonEnvironmentUse()) { |
| input_conversion->ReplaceWith(original_input); |
| input_conversion->GetBlock()->RemoveInstruction(input_conversion); |
| RecordSimplification(); |
| return; |
| } |
| } |
| } else if (input->IsAnd() && DataType::IsIntegralType(result_type)) { |
| DCHECK(DataType::IsIntegralType(input_type)); |
| HAnd* input_and = input->AsAnd(); |
| HConstant* constant = input_and->GetConstantRight(); |
| if (constant != nullptr) { |
| int64_t value = Int64FromConstant(constant); |
| DCHECK_NE(value, -1); // "& -1" would have been optimized away in VisitAnd(). |
| size_t trailing_ones = CTZ(~static_cast<uint64_t>(value)); |
| if (trailing_ones >= kBitsPerByte * DataType::Size(result_type)) { |
| // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it. |
| HInstruction* original_input = input_and->GetLeastConstantLeft(); |
| if (DataType::IsTypeConversionImplicit(original_input->GetType(), result_type)) { |
| instruction->ReplaceWith(original_input); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } else if (input->HasOnlyOneNonEnvironmentUse()) { |
| input_and->ReplaceWith(original_input); |
| input_and->GetBlock()->RemoveInstruction(input_and); |
| RecordSimplification(); |
| return; |
| } |
| } |
| } |
| } else if (input->HasOnlyOneNonEnvironmentUse() && |
| ((input_type == DataType::Type::kInt8 && result_type == DataType::Type::kUint8) || |
| (input_type == DataType::Type::kUint8 && result_type == DataType::Type::kInt8) || |
| (input_type == DataType::Type::kInt16 && result_type == DataType::Type::kUint16) || |
| (input_type == DataType::Type::kUint16 && result_type == DataType::Type::kInt16))) { |
| // Try to modify the type of the load to `result_type` and remove the explicit type conversion. |
| if (TryReplaceFieldOrArrayGetType(input, result_type)) { |
| instruction->ReplaceWith(input); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| } |
| |
| if (IsTypeConversionForStoringIntoNoWiderFieldOnly(instruction)) { |
| instruction->ReplaceWith(input); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitAbs(HAbs* instruction) { |
| HInstruction* input = instruction->GetInput(); |
| if (DataType::IsZeroExtension(input->GetType(), instruction->GetResultType())) { |
| // Zero extension from narrow to wide can never set sign bit in the wider |
| // operand, making the subsequent Abs redundant (e.g., abs(b & 0xff) for byte b). |
| instruction->ReplaceWith(input); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) { |
| HConstant* input_cst = instruction->GetConstantRight(); |
| HInstruction* input_other = instruction->GetLeastConstantLeft(); |
| bool integral_type = DataType::IsIntegralType(instruction->GetType()); |
| if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) { |
| // Replace code looking like |
| // ADD dst, src, 0 |
| // with |
| // src |
| // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When |
| // `x` is `-0.0`, the former expression yields `0.0`, while the later |
| // yields `-0.0`. |
| if (integral_type) { |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| } |
| |
| HInstruction* left = instruction->GetLeft(); |
| HInstruction* right = instruction->GetRight(); |
| bool left_is_neg = left->IsNeg(); |
| bool right_is_neg = right->IsNeg(); |
| |
| if (left_is_neg && right_is_neg) { |
| if (TryMoveNegOnInputsAfterBinop(instruction)) { |
| return; |
| } |
| } |
| |
| HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg(); |
| if (left_is_neg != right_is_neg && neg->HasOnlyOneNonEnvironmentUse()) { |
| // Replace code looking like |
| // NEG tmp, b |
| // ADD dst, a, tmp |
| // with |
| // SUB dst, a, b |
| // We do not perform the optimization if the input negation has environment |
| // uses or multiple non-environment uses as it could lead to worse code. In |
| // particular, we do not want the live range of `b` to be extended if we are |
| // not sure the initial 'NEG' instruction can be removed. |
| HInstruction* other = left_is_neg ? right : left; |
| HSub* sub = |
| new(GetGraph()->GetAllocator()) HSub(instruction->GetType(), other, neg->GetInput()); |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub); |
| RecordSimplification(); |
| neg->GetBlock()->RemoveInstruction(neg); |
| return; |
| } |
| |
| if (TryReplaceWithRotate(instruction)) { |
| return; |
| } |
| |
| // TryHandleAssociativeAndCommutativeOperation() does not remove its input, |
| // so no need to return. |
| TryHandleAssociativeAndCommutativeOperation(instruction); |
| |
| if ((left->IsSub() || right->IsSub()) && |
| TrySubtractionChainSimplification(instruction)) { |
| return; |
| } |
| |
| if (integral_type) { |
| // Replace code patterns looking like |
| // SUB dst1, x, y SUB dst1, x, y |
| // ADD dst2, dst1, y ADD dst2, y, dst1 |
| // with |
| // SUB dst1, x, y |
| // ADD instruction is not needed in this case, we may use |
| // one of inputs of SUB instead. |
| if (left->IsSub() && left->InputAt(1) == right) { |
| instruction->ReplaceWith(left->InputAt(0)); |
| RecordSimplification(); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| return; |
| } else if (right->IsSub() && right->InputAt(1) == left) { |
| instruction->ReplaceWith(right->InputAt(0)); |
| RecordSimplification(); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| return; |
| } |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) { |
| DCHECK(DataType::IsIntegralType(instruction->GetType())); |
| HConstant* input_cst = instruction->GetConstantRight(); |
| HInstruction* input_other = instruction->GetLeastConstantLeft(); |
| |
| if (input_cst != nullptr) { |
| int64_t value = Int64FromConstant(input_cst); |
| if (value == -1 || |
| // Similar cases under zero extension. |
| (DataType::IsUnsignedType(input_other->GetType()) && |
| ((DataType::MaxValueOfIntegralType(input_other->GetType()) & ~value) == 0))) { |
| // Replace code looking like |
| // AND dst, src, 0xFFF...FF |
| // with |
| // src |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| if (input_other->IsTypeConversion() && |
| input_other->GetType() == DataType::Type::kInt64 && |
| DataType::IsIntegralType(input_other->InputAt(0)->GetType()) && |
| IsInt<32>(value) && |
| input_other->HasOnlyOneNonEnvironmentUse()) { |
| // The AND can be reordered before the TypeConversion. Replace |
| // LongConstant cst, <32-bit-constant-sign-extended-to-64-bits> |
| // TypeConversion<Int64> tmp, src |
| // AND dst, tmp, cst |
| // with |
| // IntConstant cst, <32-bit-constant> |
| // AND tmp, src, cst |
| // TypeConversion<Int64> dst, tmp |
| // This helps 32-bit targets and does not hurt 64-bit targets. |
| // This also simplifies detection of other patterns, such as Uint8 loads. |
| HInstruction* new_and_input = input_other->InputAt(0); |
| // Implicit conversion Int64->Int64 would have been removed previously. |
| DCHECK_NE(new_and_input->GetType(), DataType::Type::kInt64); |
| HConstant* new_const = GetGraph()->GetConstant(DataType::Type::kInt32, value); |
| HAnd* new_and = |
| new (GetGraph()->GetAllocator()) HAnd(DataType::Type::kInt32, new_and_input, new_const); |
| instruction->GetBlock()->InsertInstructionBefore(new_and, instruction); |
| HTypeConversion* new_conversion = |
| new (GetGraph()->GetAllocator()) HTypeConversion(DataType::Type::kInt64, new_and); |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_conversion); |
| input_other->GetBlock()->RemoveInstruction(input_other); |
| RecordSimplification(); |
| // Try to process the new And now, do not wait for the next round of simplifications. |
| instruction = new_and; |
| input_other = new_and_input; |
| } |
| // Eliminate And from UShr+And if the And-mask contains all the bits that |
| // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask |
| // precisely clears the shifted-in sign bits. |
| if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) { |
| size_t reg_bits = (instruction->GetResultType() == DataType::Type::kInt64) ? 64 : 32; |
| size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1); |
| size_t num_tail_bits_set = CTZ(value + 1); |
| if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) { |
| // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff". |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) && |
| input_other->HasOnlyOneNonEnvironmentUse()) { |
| DCHECK(input_other->IsShr()); // For UShr, we would have taken the branch above. |
| // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24". |
| HUShr* ushr = new (GetGraph()->GetAllocator()) HUShr(instruction->GetType(), |
| input_other->InputAt(0), |
| input_other->InputAt(1), |
| input_other->GetDexPc()); |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr); |
| input_other->GetBlock()->RemoveInstruction(input_other); |
| RecordSimplification(); |
| return; |
| } |
| } |
| if ((value == 0xff || value == 0xffff) && instruction->GetType() != DataType::Type::kInt64) { |
| // Transform AND to a type conversion to Uint8/Uint16. If `input_other` is a field |
| // or array Get with only a single use, short-circuit the subsequent simplification |
| // of the Get+TypeConversion and change the Get's type to `new_type` instead. |
| DataType::Type new_type = (value == 0xff) ? DataType::Type::kUint8 : DataType::Type::kUint16; |
| DataType::Type find_type = (value == 0xff) ? DataType::Type::kInt8 : DataType::Type::kInt16; |
| if (input_other->GetType() == find_type && |
| input_other->HasOnlyOneNonEnvironmentUse() && |
| TryReplaceFieldOrArrayGetType(input_other, new_type)) { |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| } else if (DataType::IsTypeConversionImplicit(input_other->GetType(), new_type)) { |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| } else { |
| HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion( |
| new_type, input_other, instruction->GetDexPc()); |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, type_conversion); |
| } |
| RecordSimplification(); |
| return; |
| } |
| } |
| |
| // We assume that GVN has run before, so we only perform a pointer comparison. |
| // If for some reason the values are equal but the pointers are different, we |
| // are still correct and only miss an optimization opportunity. |
| if (instruction->GetLeft() == instruction->GetRight()) { |
| // Replace code looking like |
| // AND dst, src, src |
| // with |
| // src |
| instruction->ReplaceWith(instruction->GetLeft()); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| if (TryDeMorganNegationFactoring(instruction)) { |
| return; |
| } |
| |
| // TryHandleAssociativeAndCommutativeOperation() does not remove its input, |
| // so no need to return. |
| TryHandleAssociativeAndCommutativeOperation(instruction); |
| } |
| |
| void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) { |
| VisitCondition(condition); |
| } |
| |
| void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) { |
| VisitCondition(condition); |
| } |
| |
| void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) { |
| VisitCondition(condition); |
| } |
| |
| void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) { |
| VisitCondition(condition); |
| } |
| |
| void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) { |
| VisitCondition(condition); |
| } |
| |
| void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) { |
| VisitCondition(condition); |
| } |
| |
| void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) { |
| VisitCondition(condition); |
| } |
| |
| void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) { |
| VisitCondition(condition); |
| } |
| |
| // Recognize the following pattern: |
| // obj.getClass() ==/!= Foo.class |
| // And replace it with a constant value if the type of `obj` is statically known. |
| static bool RecognizeAndSimplifyClassCheck(HCondition* condition) { |
| HInstruction* input_one = condition->InputAt(0); |
| HInstruction* input_two = condition->InputAt(1); |
| HLoadClass* load_class = input_one->IsLoadClass() |
| ? input_one->AsLoadClass() |
| : input_two->AsLoadClass(); |
| if (load_class == nullptr) { |
| return false; |
| } |
| |
| ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI(); |
| if (!class_rti.IsValid()) { |
| // Unresolved class. |
| return false; |
| } |
| |
| HInstanceFieldGet* field_get = (load_class == input_one) |
| ? input_two->AsInstanceFieldGet() |
| : input_one->AsInstanceFieldGet(); |
| if (field_get == nullptr) { |
| return false; |
| } |
| |
| HInstruction* receiver = field_get->InputAt(0); |
| ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo(); |
| if (!receiver_type.IsExact()) { |
| return false; |
| } |
| |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0); |
| DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); |
| if (field_get->GetFieldInfo().GetField() != field) { |
| return false; |
| } |
| |
| // We can replace the compare. |
| int value = 0; |
| if (receiver_type.IsEqual(class_rti)) { |
| value = condition->IsEqual() ? 1 : 0; |
| } else { |
| value = condition->IsNotEqual() ? 1 : 0; |
| } |
| condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value)); |
| return true; |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) { |
| if (condition->IsEqual() || condition->IsNotEqual()) { |
| if (RecognizeAndSimplifyClassCheck(condition)) { |
| return; |
| } |
| } |
| |
| // Reverse condition if left is constant. Our code generators prefer constant |
| // on the right hand side. |
| if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) { |
| HBasicBlock* block = condition->GetBlock(); |
| HCondition* replacement = |
| GetOppositeConditionSwapOps(block->GetGraph()->GetAllocator(), condition); |
| // If it is a fp we must set the opposite bias. |
| if (replacement != nullptr) { |
| if (condition->IsLtBias()) { |
| replacement->SetBias(ComparisonBias::kGtBias); |
| } else if (condition->IsGtBias()) { |
| replacement->SetBias(ComparisonBias::kLtBias); |
| } |
| block->ReplaceAndRemoveInstructionWith(condition, replacement); |
| RecordSimplification(); |
| |
| condition = replacement; |
| } |
| } |
| |
| HInstruction* left = condition->GetLeft(); |
| HInstruction* right = condition->GetRight(); |
| |
| // Try to fold an HCompare into this HCondition. |
| |
| // We can only replace an HCondition which compares a Compare to 0. |
| // Both 'dx' and 'jack' generate a compare to 0 when compiling a |
| // condition with a long, float or double comparison as input. |
| if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) { |
| // Conversion is not possible. |
| return; |
| } |
| |
| // Is the Compare only used for this purpose? |
| if (!left->GetUses().HasExactlyOneElement()) { |
| // Someone else also wants the result of the compare. |
| return; |
| } |
| |
| if (!left->GetEnvUses().empty()) { |
| // There is a reference to the compare result in an environment. Do we really need it? |
| if (GetGraph()->IsDebuggable()) { |
| return; |
| } |
| |
| // We have to ensure that there are no deopt points in the sequence. |
| if (left->HasAnyEnvironmentUseBefore(condition)) { |
| return; |
| } |
| } |
| |
| // Clean up any environment uses from the HCompare, if any. |
| left->RemoveEnvironmentUsers(); |
| |
| // We have decided to fold the HCompare into the HCondition. Transfer the information. |
| condition->SetBias(left->AsCompare()->GetBias()); |
| |
| // Replace the operands of the HCondition. |
| condition->ReplaceInput(left->InputAt(0), 0); |
| condition->ReplaceInput(left->InputAt(1), 1); |
| |
| // Remove the HCompare. |
| left->GetBlock()->RemoveInstruction(left); |
| |
| RecordSimplification(); |
| } |
| |
| // Return whether x / divisor == x * (1.0f / divisor), for every float x. |
| static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) { |
| // True, if the most significant bits of divisor are 0. |
| return ((divisor & 0x7fffff) == 0); |
| } |
| |
| // Return whether x / divisor == x * (1.0 / divisor), for every double x. |
| static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) { |
| // True, if the most significant bits of divisor are 0. |
| return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0); |
| } |
| |
| void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) { |
| HConstant* input_cst = instruction->GetConstantRight(); |
| HInstruction* input_other = instruction->GetLeastConstantLeft(); |
| DataType::Type type = instruction->GetType(); |
| |
| if ((input_cst != nullptr) && input_cst->IsOne()) { |
| // Replace code looking like |
| // DIV dst, src, 1 |
| // with |
| // src |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| if ((input_cst != nullptr) && input_cst->IsMinusOne()) { |
| // Replace code looking like |
| // DIV dst, src, -1 |
| // with |
| // NEG dst, src |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith( |
| instruction, new (GetGraph()->GetAllocator()) HNeg(type, input_other)); |
| RecordSimplification(); |
| return; |
| } |
| |
| if ((input_cst != nullptr) && DataType::IsFloatingPointType(type)) { |
| // Try replacing code looking like |
| // DIV dst, src, constant |
| // with |
| // MUL dst, src, 1 / constant |
| HConstant* reciprocal = nullptr; |
| if (type == DataType::Type::kFloat64) { |
| double value = input_cst->AsDoubleConstant()->GetValue(); |
| if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) { |
| reciprocal = GetGraph()->GetDoubleConstant(1.0 / value); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| float value = input_cst->AsFloatConstant()->GetValue(); |
| if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) { |
| reciprocal = GetGraph()->GetFloatConstant(1.0f / value); |
| } |
| } |
| |
| if (reciprocal != nullptr) { |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith( |
| instruction, new (GetGraph()->GetAllocator()) HMul(type, input_other, reciprocal)); |
| RecordSimplification(); |
| return; |
| } |
| } |
| } |
| |
| |
| // Search HDiv having the specified dividend and divisor which is in the specified basic block. |
| // Return nullptr if nothing has been found. |
| static HInstruction* FindDivWithInputsInBasicBlock(HInstruction* dividend, |
| HInstruction* divisor, |
| HBasicBlock* basic_block) { |
| for (const HUseListNode<HInstruction*>& use : dividend->GetUses()) { |
| HInstruction* user = use.GetUser(); |
| if (user->GetBlock() == basic_block && user->IsDiv() && user->InputAt(1) == divisor) { |
| return user; |
| } |
| } |
| return nullptr; |
| } |
| |
| // If there is Div with the same inputs as Rem and in the same basic block, it can be reused. |
| // Rem is replaced with Mul+Sub which use the found Div. |
| void InstructionSimplifierVisitor::TryToReuseDiv(HRem* rem) { |
| // As the optimization replaces Rem with Mul+Sub they prevent some loop optimizations |
| // if the Rem is in a loop. |
| // Check if it is allowed to optimize such Rems. |
| if (rem->IsInLoop() && be_loop_friendly_) { |
| return; |
| } |
| DataType::Type type = rem->GetResultType(); |
| if (!DataType::IsIntOrLongType(type)) { |
| return; |
| } |
| |
| HBasicBlock* basic_block = rem->GetBlock(); |
| HInstruction* dividend = rem->GetLeft(); |
| HInstruction* divisor = rem->GetRight(); |
| |
| if (divisor->IsConstant()) { |
| HConstant* input_cst = rem->GetConstantRight(); |
| DCHECK(input_cst->IsIntConstant() || input_cst->IsLongConstant()); |
| int64_t cst_value = Int64FromConstant(input_cst); |
| if (cst_value == std::numeric_limits<int64_t>::min() || IsPowerOfTwo(std::abs(cst_value))) { |
| // Such cases are usually handled in the code generator because they don't need Div at all. |
| return; |
| } |
| } |
| |
| HInstruction* quotient = FindDivWithInputsInBasicBlock(dividend, divisor, basic_block); |
| if (quotient == nullptr) { |
| return; |
| } |
| if (!quotient->StrictlyDominates(rem)) { |
| quotient->MoveBefore(rem); |
| } |
| |
| ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| HInstruction* mul = new (allocator) HMul(type, quotient, divisor); |
| basic_block->InsertInstructionBefore(mul, rem); |
| HInstruction* sub = new (allocator) HSub(type, dividend, mul); |
| basic_block->InsertInstructionBefore(sub, rem); |
| rem->ReplaceWith(sub); |
| basic_block->RemoveInstruction(rem); |
| RecordSimplification(); |
| } |
| |
| void InstructionSimplifierVisitor::VisitRem(HRem* rem) { |
| TryToReuseDiv(rem); |
| } |
| |
| void InstructionSimplifierVisitor::VisitMul(HMul* instruction) { |
| HConstant* input_cst = instruction->GetConstantRight(); |
| HInstruction* input_other = instruction->GetLeastConstantLeft(); |
| DataType::Type type = instruction->GetType(); |
| HBasicBlock* block = instruction->GetBlock(); |
| ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| |
| if (input_cst == nullptr) { |
| return; |
| } |
| |
| if (input_cst->IsOne()) { |
| // Replace code looking like |
| // MUL dst, src, 1 |
| // with |
| // src |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| if (input_cst->IsMinusOne() && |
| (DataType::IsFloatingPointType(type) || DataType::IsIntOrLongType(type))) { |
| // Replace code looking like |
| // MUL dst, src, -1 |
| // with |
| // NEG dst, src |
| HNeg* neg = new (allocator) HNeg(type, input_other); |
| block->ReplaceAndRemoveInstructionWith(instruction, neg); |
| RecordSimplification(); |
| return; |
| } |
| |
| if (DataType::IsFloatingPointType(type) && |
| ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) || |
| (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) { |
| // Replace code looking like |
| // FP_MUL dst, src, 2.0 |
| // with |
| // FP_ADD dst, src, src |
| // The 'int' and 'long' cases are handled below. |
| block->ReplaceAndRemoveInstructionWith(instruction, |
| new (allocator) HAdd(type, input_other, input_other)); |
| RecordSimplification(); |
| return; |
| } |
| |
| if (DataType::IsIntOrLongType(type)) { |
| int64_t factor = Int64FromConstant(input_cst); |
| // Even though constant propagation also takes care of the zero case, other |
| // optimizations can lead to having a zero multiplication. |
| if (factor == 0) { |
| // Replace code looking like |
| // MUL dst, src, 0 |
| // with |
| // 0 |
| instruction->ReplaceWith(input_cst); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } else if (IsPowerOfTwo(factor)) { |
| // Replace code looking like |
| // MUL dst, src, pow_of_2 |
| // with |
| // SHL dst, src, log2(pow_of_2) |
| HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor)); |
| HShl* shl = new (allocator) HShl(type, input_other, shift); |
| block->ReplaceAndRemoveInstructionWith(instruction, shl); |
| RecordSimplification(); |
| return; |
| } else if (IsPowerOfTwo(factor - 1)) { |
| // Transform code looking like |
| // MUL dst, src, (2^n + 1) |
| // into |
| // SHL tmp, src, n |
| // ADD dst, src, tmp |
| HShl* shl = new (allocator) HShl(type, |
| input_other, |
| GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1))); |
| HAdd* add = new (allocator) HAdd(type, input_other, shl); |
| |
| block->InsertInstructionBefore(shl, instruction); |
| block->ReplaceAndRemoveInstructionWith(instruction, add); |
| RecordSimplification(); |
| return; |
| } else if (IsPowerOfTwo(factor + 1)) { |
| // Transform code looking like |
| // MUL dst, src, (2^n - 1) |
| // into |
| // SHL tmp, src, n |
| // SUB dst, tmp, src |
| HShl* shl = new (allocator) HShl(type, |
| input_other, |
| GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1))); |
| HSub* sub = new (allocator) HSub(type, shl, input_other); |
| |
| block->InsertInstructionBefore(shl, instruction); |
| block->ReplaceAndRemoveInstructionWith(instruction, sub); |
| RecordSimplification(); |
| return; |
| } |
| } |
| |
| // TryHandleAssociativeAndCommutativeOperation() does not remove its input, |
| // so no need to return. |
| TryHandleAssociativeAndCommutativeOperation(instruction); |
| } |
| |
| void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) { |
| HInstruction* input = instruction->GetInput(); |
| if (input->IsNeg()) { |
| // Replace code looking like |
| // NEG tmp, src |
| // NEG dst, tmp |
| // with |
| // src |
| HNeg* previous_neg = input->AsNeg(); |
| instruction->ReplaceWith(previous_neg->GetInput()); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| // We perform the optimization even if the input negation has environment |
| // uses since it allows removing the current instruction. But we only delete |
| // the input negation only if it is does not have any uses left. |
| if (!previous_neg->HasUses()) { |
| previous_neg->GetBlock()->RemoveInstruction(previous_neg); |
| } |
| RecordSimplification(); |
| return; |
| } |
| |
| if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() && |
| !DataType::IsFloatingPointType(input->GetType())) { |
| // Replace code looking like |
| // SUB tmp, a, b |
| // NEG dst, tmp |
| // with |
| // SUB dst, b, a |
| // We do not perform the optimization if the input subtraction has |
| // environment uses or multiple non-environment uses as it could lead to |
| // worse code. In particular, we do not want the live ranges of `a` and `b` |
| // to be extended if we are not sure the initial 'SUB' instruction can be |
| // removed. |
| // We do not perform optimization for fp because we could lose the sign of zero. |
| HSub* sub = input->AsSub(); |
| HSub* new_sub = new (GetGraph()->GetAllocator()) HSub( |
| instruction->GetType(), sub->GetRight(), sub->GetLeft()); |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub); |
| if (!sub->HasUses()) { |
| sub->GetBlock()->RemoveInstruction(sub); |
| } |
| RecordSimplification(); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitNot(HNot* instruction) { |
| HInstruction* input = instruction->GetInput(); |
| if (input->IsNot()) { |
| // Replace code looking like |
| // NOT tmp, src |
| // NOT dst, tmp |
| // with |
| // src |
| // We perform the optimization even if the input negation has environment |
| // uses since it allows removing the current instruction. But we only delete |
| // the input negation only if it is does not have any uses left. |
| HNot* previous_not = input->AsNot(); |
| instruction->ReplaceWith(previous_not->GetInput()); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| if (!previous_not->HasUses()) { |
| previous_not->GetBlock()->RemoveInstruction(previous_not); |
| } |
| RecordSimplification(); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitOr(HOr* instruction) { |
| HConstant* input_cst = instruction->GetConstantRight(); |
| HInstruction* input_other = instruction->GetLeastConstantLeft(); |
| |
| if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) { |
| // Replace code looking like |
| // OR dst, src, 0 |
| // with |
| // src |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| // We assume that GVN has run before, so we only perform a pointer comparison. |
| // If for some reason the values are equal but the pointers are different, we |
| // are still correct and only miss an optimization opportunity. |
| if (instruction->GetLeft() == instruction->GetRight()) { |
| // Replace code looking like |
| // OR dst, src, src |
| // with |
| // src |
| instruction->ReplaceWith(instruction->GetLeft()); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| if (TryDeMorganNegationFactoring(instruction)) return; |
| |
| if (TryReplaceWithRotate(instruction)) { |
| return; |
| } |
| |
| // TryHandleAssociativeAndCommutativeOperation() does not remove its input, |
| // so no need to return. |
| TryHandleAssociativeAndCommutativeOperation(instruction); |
| } |
| |
| void InstructionSimplifierVisitor::VisitShl(HShl* instruction) { |
| VisitShift(instruction); |
| } |
| |
| void InstructionSimplifierVisitor::VisitShr(HShr* instruction) { |
| VisitShift(instruction); |
| } |
| |
| void InstructionSimplifierVisitor::VisitSub(HSub* instruction) { |
| HConstant* input_cst = instruction->GetConstantRight(); |
| HInstruction* input_other = instruction->GetLeastConstantLeft(); |
| |
| DataType::Type type = instruction->GetType(); |
| if (DataType::IsFloatingPointType(type)) { |
| return; |
| } |
| |
| if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) { |
| // Replace code looking like |
| // SUB dst, src, 0 |
| // with |
| // src |
| // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When |
| // `x` is `-0.0`, the former expression yields `0.0`, while the later |
| // yields `-0.0`. |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| HBasicBlock* block = instruction->GetBlock(); |
| ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| |
| HInstruction* left = instruction->GetLeft(); |
| HInstruction* right = instruction->GetRight(); |
| if (left->IsConstant()) { |
| if (Int64FromConstant(left->AsConstant()) == 0) { |
| // Replace code looking like |
| // SUB dst, 0, src |
| // with |
| // NEG dst, src |
| // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When |
| // `x` is `0.0`, the former expression yields `0.0`, while the later |
| // yields `-0.0`. |
| HNeg* neg = new (allocator) HNeg(type, right); |
| block->ReplaceAndRemoveInstructionWith(instruction, neg); |
| RecordSimplification(); |
| return; |
| } |
| } |
| |
| if (left->IsNeg() && right->IsNeg()) { |
| if (TryMoveNegOnInputsAfterBinop(instruction)) { |
| return; |
| } |
| } |
| |
| if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) { |
| // Replace code looking like |
| // NEG tmp, b |
| // SUB dst, a, tmp |
| // with |
| // ADD dst, a, b |
| HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left, right->AsNeg()->GetInput()); |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add); |
| RecordSimplification(); |
| right->GetBlock()->RemoveInstruction(right); |
| return; |
| } |
| |
| if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) { |
| // Replace code looking like |
| // NEG tmp, a |
| // SUB dst, tmp, b |
| // with |
| // ADD tmp, a, b |
| // NEG dst, tmp |
| // The second version is not intrinsically better, but enables more |
| // transformations. |
| HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left->AsNeg()->GetInput(), right); |
| instruction->GetBlock()->InsertInstructionBefore(add, instruction); |
| HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(instruction->GetType(), add); |
| instruction->GetBlock()->InsertInstructionBefore(neg, instruction); |
| instruction->ReplaceWith(neg); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| left->GetBlock()->RemoveInstruction(left); |
| return; |
| } |
| |
| if (TrySubtractionChainSimplification(instruction)) { |
| return; |
| } |
| |
| if (left->IsAdd()) { |
| // Replace code patterns looking like |
| // ADD dst1, x, y ADD dst1, x, y |
| // SUB dst2, dst1, y SUB dst2, dst1, x |
| // with |
| // ADD dst1, x, y |
| // SUB instruction is not needed in this case, we may use |
| // one of inputs of ADD instead. |
| // It is applicable to integral types only. |
| DCHECK(DataType::IsIntegralType(type)); |
| if (left->InputAt(1) == right) { |
| instruction->ReplaceWith(left->InputAt(0)); |
| RecordSimplification(); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| return; |
| } else if (left->InputAt(0) == right) { |
| instruction->ReplaceWith(left->InputAt(1)); |
| RecordSimplification(); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| return; |
| } |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) { |
| VisitShift(instruction); |
| } |
| |
| void InstructionSimplifierVisitor::VisitXor(HXor* instruction) { |
| HConstant* input_cst = instruction->GetConstantRight(); |
| HInstruction* input_other = instruction->GetLeastConstantLeft(); |
| |
| if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) { |
| // Replace code looking like |
| // XOR dst, src, 0 |
| // with |
| // src |
| instruction->ReplaceWith(input_other); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| RecordSimplification(); |
| return; |
| } |
| |
| if ((input_cst != nullptr) && input_cst->IsOne() |
| && input_other->GetType() == DataType::Type::kBool) { |
| // Replace code looking like |
| // XOR dst, src, 1 |
| // with |
| // BOOLEAN_NOT dst, src |
| HBooleanNot* boolean_not = new (GetGraph()->GetAllocator()) HBooleanNot(input_other); |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not); |
| RecordSimplification(); |
| return; |
| } |
| |
| if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) { |
| // Replace code looking like |
| // XOR dst, src, 0xFFF...FF |
| // with |
| // NOT dst, src |
| HNot* bitwise_not = new (GetGraph()->GetAllocator()) HNot(instruction->GetType(), input_other); |
| instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not); |
| RecordSimplification(); |
| return; |
| } |
| |
| HInstruction* left = instruction->GetLeft(); |
| HInstruction* right = instruction->GetRight(); |
| if (((left->IsNot() && right->IsNot()) || |
| (left->IsBooleanNot() && right->IsBooleanNot())) && |
| left->HasOnlyOneNonEnvironmentUse() && |
| right->HasOnlyOneNonEnvironmentUse()) { |
| // Replace code looking like |
| // NOT nota, a |
| // NOT notb, b |
| // XOR dst, nota, notb |
| // with |
| // XOR dst, a, b |
| instruction->ReplaceInput(left->InputAt(0), 0); |
| instruction->ReplaceInput(right->InputAt(0), 1); |
| left->GetBlock()->RemoveInstruction(left); |
| right->GetBlock()->RemoveInstruction(right); |
| RecordSimplification(); |
| return; |
| } |
| |
| if (TryReplaceWithRotate(instruction)) { |
| return; |
| } |
| |
| // TryHandleAssociativeAndCommutativeOperation() does not remove its input, |
| // so no need to return. |
| TryHandleAssociativeAndCommutativeOperation(instruction); |
| } |
| |
| void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) { |
| HInstruction* argument = instruction->InputAt(1); |
| HInstruction* receiver = instruction->InputAt(0); |
| if (receiver == argument) { |
| // Because String.equals is an instance call, the receiver is |
| // a null check if we don't know it's null. The argument however, will |
| // be the actual object. So we cannot end up in a situation where both |
| // are equal but could be null. |
| DCHECK(CanEnsureNotNullAt(argument, instruction)); |
| instruction->ReplaceWith(GetGraph()->GetIntConstant(1)); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| } else { |
| StringEqualsOptimizations optimizations(instruction); |
| if (CanEnsureNotNullAt(argument, instruction)) { |
| optimizations.SetArgumentNotNull(); |
| } |
| ScopedObjectAccess soa(Thread::Current()); |
| ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo(); |
| if (argument_rti.IsValid() && argument_rti.IsStringClass()) { |
| optimizations.SetArgumentIsString(); |
| } |
| } |
| } |
| |
| static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) { |
| if (potential_length->IsArrayLength()) { |
| return potential_length->InputAt(0) == potential_array; |
| } |
| |
| if (potential_array->IsNewArray()) { |
| return potential_array->AsNewArray()->GetLength() == potential_length; |
| } |
| |
| return false; |
| } |
| |
| void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) { |
| HInstruction* source = instruction->InputAt(0); |
| HInstruction* destination = instruction->InputAt(2); |
| HInstruction* count = instruction->InputAt(4); |
| SystemArrayCopyOptimizations optimizations(instruction); |
| if (CanEnsureNotNullAt(source, instruction)) { |
| optimizations.SetSourceIsNotNull(); |
| } |
| if (CanEnsureNotNullAt(destination, instruction)) { |
| optimizations.SetDestinationIsNotNull(); |
| } |
| if (destination == source) { |
| optimizations.SetDestinationIsSource(); |
| } |
| |
| if (IsArrayLengthOf(count, source)) { |
| optimizations.SetCountIsSourceLength(); |
| } |
| |
| if (IsArrayLengthOf(count, destination)) { |
| optimizations.SetCountIsDestinationLength(); |
| } |
| |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| DataType::Type source_component_type = DataType::Type::kVoid; |
| DataType::Type destination_component_type = DataType::Type::kVoid; |
| ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo(); |
| if (destination_rti.IsValid()) { |
| if (destination_rti.IsObjectArray()) { |
| if (destination_rti.IsExact()) { |
| optimizations.SetDoesNotNeedTypeCheck(); |
| } |
| optimizations.SetDestinationIsTypedObjectArray(); |
| } |
| if (destination_rti.IsPrimitiveArrayClass()) { |
| destination_component_type = DataTypeFromPrimitive( |
| destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType()); |
| optimizations.SetDestinationIsPrimitiveArray(); |
| } else if (destination_rti.IsNonPrimitiveArrayClass()) { |
| optimizations.SetDestinationIsNonPrimitiveArray(); |
| } |
| } |
| ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo(); |
| if (source_rti.IsValid()) { |
| if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) { |
| optimizations.SetDoesNotNeedTypeCheck(); |
| } |
| if (source_rti.IsPrimitiveArrayClass()) { |
| optimizations.SetSourceIsPrimitiveArray(); |
| source_component_type = DataTypeFromPrimitive( |
| source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType()); |
| } else if (source_rti.IsNonPrimitiveArrayClass()) { |
| optimizations.SetSourceIsNonPrimitiveArray(); |
| } |
| } |
| // For primitive arrays, use their optimized ArtMethod implementations. |
| if ((source_component_type != DataType::Type::kVoid) && |
| (source_component_type == destination_component_type)) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| PointerSize image_size = class_linker->GetImagePointerSize(); |
| HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect(); |
| ObjPtr<mirror::Class> system = invoke->GetResolvedMethod()->GetDeclaringClass(); |
| ArtMethod* method = nullptr; |
| switch (source_component_type) { |
| case DataType::Type::kBool: |
| method = system->FindClassMethod("arraycopy", "([ZI[ZII)V", image_size); |
| break; |
| case DataType::Type::kInt8: |
| method = system->FindClassMethod("arraycopy", "([BI[BII)V", image_size); |
| break; |
| case DataType::Type::kUint16: |
| method = system->FindClassMethod("arraycopy", "([CI[CII)V", image_size); |
| break; |
| case DataType::Type::kInt16: |
| method = system->FindClassMethod("arraycopy", "([SI[SII)V", image_size); |
| break; |
| case DataType::Type::kInt32: |
| method = system->FindClassMethod("arraycopy", "([II[III)V", image_size); |
| break; |
| case DataType::Type::kFloat32: |
| method = system->FindClassMethod("arraycopy", "([FI[FII)V", image_size); |
| break; |
| case DataType::Type::kInt64: |
| method = system->FindClassMethod("arraycopy", "([JI[JII)V", image_size); |
| break; |
| case DataType::Type::kFloat64: |
| method = system->FindClassMethod("arraycopy", "([DI[DII)V", image_size); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| } |
| DCHECK(method != nullptr); |
| DCHECK(method->IsStatic()); |
| DCHECK(method->GetDeclaringClass() == system); |
| invoke->SetResolvedMethod(method); |
| // Sharpen the new invoke. Note that we do not update the dex method index of |
| // the invoke, as we would need to look it up in the current dex file, and it |
| // is unlikely that it exists. The most usual situation for such typed |
| // arraycopy methods is a direct pointer to the boot image. |
| invoke->SetDispatchInfo(HSharpening::SharpenInvokeStaticOrDirect(method, codegen_)); |
| } |
| } |
| } |
| |
| void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) { |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| uint32_t dex_pc = invoke->GetDexPc(); |
| HInstruction* x = invoke->InputAt(0); |
| DataType::Type type = x->GetType(); |
| // Set proper bit pattern for NaN and replace intrinsic with raw version. |
| HInstruction* nan; |
| if (type == DataType::Type::kFloat64) { |
| nan = GetGraph()->GetLongConstant(0x7ff8000000000000L); |
| invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits, |
| kNeedsEnvironmentOrCache, |
| kNoSideEffects, |
| kNoThrow); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| nan = GetGraph()->GetIntConstant(0x7fc00000); |
| invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits, |
| kNeedsEnvironmentOrCache, |
| kNoSideEffects, |
| kNoThrow); |
| } |
| // Test IsNaN(x), which is the same as x != x. |
| HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc); |
| condition->SetBias(ComparisonBias::kLtBias); |
| invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext()); |
| // Select between the two. |
| HInstruction* select = new (GetGraph()->GetAllocator()) HSelect(condition, nan, invoke, dex_pc); |
| invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext()); |
| invoke->ReplaceWithExceptInReplacementAtIndex(select, 0); // false at index 0 |
| } |
| |
| void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) { |
| HInstruction* str = invoke->InputAt(0); |
| HInstruction* index = invoke->InputAt(1); |
| uint32_t dex_pc = invoke->GetDexPc(); |
| ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| // We treat String as an array to allow DCE and BCE to seamlessly work on strings, |
| // so create the HArrayLength, HBoundsCheck and HArrayGet. |
| HArrayLength* length = new (allocator) HArrayLength(str, dex_pc, /* is_string_length= */ true); |
| invoke->GetBlock()->InsertInstructionBefore(length, invoke); |
| HBoundsCheck* bounds_check = new (allocator) HBoundsCheck( |
| index, length, dex_pc, /* is_string_char_at= */ true); |
| invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke); |
| HArrayGet* array_get = new (allocator) HArrayGet(str, |
| bounds_check, |
| DataType::Type::kUint16, |
| SideEffects::None(), // Strings are immutable. |
| dex_pc, |
| /* is_string_char_at= */ true); |
| invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get); |
| bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment()); |
| GetGraph()->SetHasBoundsChecks(true); |
| } |
| |
| void InstructionSimplifierVisitor::SimplifyStringLength(HInvoke* invoke) { |
| HInstruction* str = invoke->InputAt(0); |
| uint32_t dex_pc = invoke->GetDexPc(); |
| // We treat String as an array to allow DCE and BCE to seamlessly work on strings, |
| // so create the HArrayLength. |
| HArrayLength* length = |
| new (GetGraph()->GetAllocator()) HArrayLength(str, dex_pc, /* is_string_length= */ true); |
| invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, length); |
| } |
| |
| void InstructionSimplifierVisitor::SimplifyStringIndexOf(HInvoke* invoke) { |
| DCHECK(invoke->GetIntrinsic() == Intrinsics::kStringIndexOf || |
| invoke->GetIntrinsic() == Intrinsics::kStringIndexOfAfter); |
| if (invoke->InputAt(0)->IsLoadString()) { |
| HLoadString* load_string = invoke->InputAt(0)->AsLoadString(); |
| const DexFile& dex_file = load_string->GetDexFile(); |
| uint32_t utf16_length; |
| const char* data = |
| dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), &utf16_length); |
| if (utf16_length == 0) { |
| invoke->ReplaceWith(GetGraph()->GetIntConstant(-1)); |
| invoke->GetBlock()->RemoveInstruction(invoke); |
| RecordSimplification(); |
| return; |
| } |
| if (utf16_length == 1 && invoke->GetIntrinsic() == Intrinsics::kStringIndexOf) { |
| // Simplify to HSelect(HEquals(., load_string.charAt(0)), 0, -1). |
| // If the sought character is supplementary, this gives the correct result, i.e. -1. |
| uint32_t c = GetUtf16FromUtf8(&data); |
| DCHECK_EQ(GetTrailingUtf16Char(c), 0u); |
| DCHECK_EQ(GetLeadingUtf16Char(c), c); |
| uint32_t dex_pc = invoke->GetDexPc(); |
| ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| HEqual* equal = |
| new (allocator) HEqual(invoke->InputAt(1), GetGraph()->GetIntConstant(c), dex_pc); |
| invoke->GetBlock()->InsertInstructionBefore(equal, invoke); |
| HSelect* result = new (allocator) HSelect(equal, |
| GetGraph()->GetIntConstant(0), |
| GetGraph()->GetIntConstant(-1), |
| dex_pc); |
| invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, result); |
| RecordSimplification(); |
| return; |
| } |
| } |
| } |
| |
| // This method should only be used on intrinsics whose sole way of throwing an |
| // exception is raising a NPE when the nth argument is null. If that argument |
| // is provably non-null, we can clear the flag. |
| void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) { |
| HInstruction* arg = invoke->InputAt(n); |
| if (invoke->CanThrow() && !arg->CanBeNull()) { |
| invoke->SetCanThrow(false); |
| } |
| } |
| |
| // Methods that return "this" can replace the returned value with the receiver. |
| void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) { |
| if (invoke->HasUses()) { |
| HInstruction* receiver = invoke->InputAt(0); |
| invoke->ReplaceWith(receiver); |
| RecordSimplification(); |
| } |
| } |
| |
| // Helper method for StringBuffer escape analysis. |
| static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) { |
| if (user->IsInvokeStaticOrDirect()) { |
| // Any constructor on StringBuffer is okay. |
| return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr && |
| user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() && |
| user->InputAt(0) == reference; |
| } else if (user->IsInvokeVirtual()) { |
| switch (user->AsInvokeVirtual()->GetIntrinsic()) { |
| case Intrinsics::kStringBufferLength: |
| case Intrinsics::kStringBufferToString: |
| DCHECK_EQ(user->InputAt(0), reference); |
| return true; |
| case Intrinsics::kStringBufferAppend: |
| // Returns "this", so only okay if no further uses. |
| DCHECK_EQ(user->InputAt(0), reference); |
| DCHECK_NE(user->InputAt(1), reference); |
| return !user->HasUses(); |
| default: |
| break; |
| } |
| } |
| return false; |
| } |
| |
| static bool TryReplaceStringBuilderAppend(HInvoke* invoke) { |
| DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringBuilderToString); |
| if (invoke->CanThrowIntoCatchBlock()) { |
| return false; |
| } |
| |
| HBasicBlock* block = invoke->GetBlock(); |
| HInstruction* sb = invoke->InputAt(0); |
| |
| // We support only a new StringBuilder, otherwise we cannot ensure that |
| // the StringBuilder data does not need to be populated for other users. |
| if (!sb->IsNewInstance()) { |
| return false; |
| } |
| |
| // For now, we support only single-block recognition. |
| // (Ternary operators feeding the append could be implemented.) |
| for (const HUseListNode<HInstruction*>& use : sb->GetUses()) { |
| if (use.GetUser()->GetBlock() != block) { |
| return false; |
| } |
| // The append pattern uses the StringBuilder only as the first argument. |
| if (use.GetIndex() != 0u) { |
| return false; |
| } |
| } |
| |
| // Collect args and check for unexpected uses. |
| // We expect one call to a constructor with no arguments, one constructor fence (unless |
| // eliminated), some number of append calls and one call to StringBuilder.toString(). |
| bool seen_constructor = false; |
| bool seen_constructor_fence = false; |
| bool seen_to_string = false; |
| uint32_t format = 0u; |
| uint32_t num_args = 0u; |
| HInstruction* args[StringBuilderAppend::kMaxArgs]; // Added in reverse order. |
| for (HBackwardInstructionIterator iter(block->GetInstructions()); !iter.Done(); iter.Advance()) { |
| HInstruction* user = iter.Current(); |
| // Instructions of interest apply to `sb`, skip those that do not involve `sb`. |
| if (user->InputCount() == 0u || user->InputAt(0u) != sb) { |
| continue; |
| } |
| // We visit the uses in reverse order, so the StringBuilder.toString() must come first. |
| if (!seen_to_string) { |
| if (user == invoke) { |
| seen_to_string = true; |
| continue; |
| } else { |
| return false; |
| } |
| } |
| // Then we should see the arguments. |
| if (user->IsInvokeVirtual()) { |
| HInvokeVirtual* as_invoke_virtual = user->AsInvokeVirtual(); |
| DCHECK(!seen_constructor); |
| DCHECK(!seen_constructor_fence); |
| StringBuilderAppend::Argument arg; |
| switch (as_invoke_virtual->GetIntrinsic()) { |
| case Intrinsics::kStringBuilderAppendObject: |
| // TODO: Unimplemented, needs to call String.valueOf(). |
| return false; |
| case Intrinsics::kStringBuilderAppendString: |
| arg = StringBuilderAppend::Argument::kString; |
| break; |
| case Intrinsics::kStringBuilderAppendCharArray: |
| // TODO: Unimplemented, StringBuilder.append(char[]) can throw NPE and we would |
| // not have the correct stack trace for it. |
| return false; |
| case Intrinsics::kStringBuilderAppendBoolean: |
| arg = StringBuilderAppend::Argument::kBoolean; |
| break; |
| case Intrinsics::kStringBuilderAppendChar: |
| arg = StringBuilderAppend::Argument::kChar; |
| break; |
| case Intrinsics::kStringBuilderAppendInt: |
| arg = StringBuilderAppend::Argument::kInt; |
| break; |
| case Intrinsics::kStringBuilderAppendLong: |
| arg = StringBuilderAppend::Argument::kLong; |
| break; |
| case Intrinsics::kStringBuilderAppendCharSequence: { |
| ReferenceTypeInfo rti = user->AsInvokeVirtual()->InputAt(1)->GetReferenceTypeInfo(); |
| if (!rti.IsValid()) { |
| return false; |
| } |
| ScopedObjectAccess soa(Thread::Current()); |
| Handle<mirror::Class> input_type = rti.GetTypeHandle(); |
| DCHECK(input_type != nullptr); |
| if (input_type.Get() == GetClassRoot<mirror::String>()) { |
| arg = StringBuilderAppend::Argument::kString; |
| } else { |
| // TODO: Check and implement for StringBuilder. We could find the StringBuilder's |
| // internal char[] inconsistent with the length, or the string compression |
| // of the result could be compromised with a concurrent modification, and |
| // we would need to throw appropriate exceptions. |
| return false; |
| } |
| break; |
| } |
| case Intrinsics::kStringBuilderAppendFloat: |
| case Intrinsics::kStringBuilderAppendDouble: |
| // TODO: Unimplemented, needs to call FloatingDecimal.getBinaryToASCIIConverter(). |
| return false; |
| default: { |
| return false; |
| } |
| } |
| // Uses of the append return value should have been replaced with the first input. |
| DCHECK(!as_invoke_virtual->HasUses()); |
| DCHECK(!as_invoke_virtual->HasEnvironmentUses()); |
| if (num_args == StringBuilderAppend::kMaxArgs) { |
| return false; |
| } |
| format = (format << StringBuilderAppend::kBitsPerArg) | static_cast<uint32_t>(arg); |
| args[num_args] = as_invoke_virtual->InputAt(1u); |
| ++num_args; |
| } else if (user->IsInvokeStaticOrDirect() && |
| user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr && |
| user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() && |
| user->AsInvokeStaticOrDirect()->GetNumberOfArguments() == 1u) { |
| // After arguments, we should see the constructor. |
| // We accept only the constructor with no extra arguments. |
| DCHECK(!seen_constructor); |
| DCHECK(!seen_constructor_fence); |
| seen_constructor = true; |
| } else if (user->IsConstructorFence()) { |
| // The last use we see is the constructor fence. |
| DCHECK(seen_constructor); |
| DCHECK(!seen_constructor_fence); |
| seen_constructor_fence = true; |
| } else { |
| return false; |
| } |
| } |
| |
| if (num_args == 0u) { |
| return false; |
| } |
| |
| // Check environment uses. |
| for (const HUseListNode<HEnvironment*>& use : sb->GetEnvUses()) { |
| HInstruction* holder = use.GetUser()->GetHolder(); |
| if (holder->GetBlock() != block) { |
| return false; |
| } |
| // Accept only calls on the StringBuilder (which shall all be removed). |
| // TODO: Carve-out for const-string? Or rely on environment pruning (to be implemented)? |
| if (holder->InputCount() == 0 || holder->InputAt(0) != sb) { |
| return false; |
| } |
| } |
| |
| // Create replacement instruction. |
| HIntConstant* fmt = block->GetGraph()->GetIntConstant(static_cast<int32_t>(format)); |
| ArenaAllocator* allocator = block->GetGraph()->GetAllocator(); |
| HStringBuilderAppend* append = |
| new (allocator) HStringBuilderAppend(fmt, num_args, allocator, invoke->GetDexPc()); |
| append->SetReferenceTypeInfo(invoke->GetReferenceTypeInfo()); |
| for (size_t i = 0; i != num_args; ++i) { |
| append->SetArgumentAt(i, args[num_args - 1u - i]); |
| } |
| block->InsertInstructionBefore(append, invoke); |
| DCHECK(!invoke->CanBeNull()); |
| DCHECK(!append->CanBeNull()); |
| invoke->ReplaceWith(append); |
| // Copy environment, except for the StringBuilder uses. |
| for (HEnvironment* env = invoke->GetEnvironment(); env != nullptr; env = env->GetParent()) { |
| for (size_t i = 0, size = env->Size(); i != size; ++i) { |
| if (env->GetInstructionAt(i) == sb) { |
| env->RemoveAsUserOfInput(i); |
| env->SetRawEnvAt(i, /*instruction=*/ nullptr); |
| } |
| } |
| } |
| append->CopyEnvironmentFrom(invoke->GetEnvironment()); |
| // Remove the old instruction. |
| block->RemoveInstruction(invoke); |
| // Remove the StringBuilder's uses and StringBuilder. |
| while (sb->HasNonEnvironmentUses()) { |
| block->RemoveInstruction(sb->GetUses().front().GetUser()); |
| } |
| DCHECK(!sb->HasEnvironmentUses()); |
| block->RemoveInstruction(sb); |
| return true; |
| } |
| |
| // Certain allocation intrinsics are not removed by dead code elimination |
| // because of potentially throwing an OOM exception or other side effects. |
| // This method removes such intrinsics when special circumstances allow. |
| void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) { |
| if (!invoke->HasUses()) { |
| // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring |
| // the potential OOM of course. Otherwise, we must ensure the receiver object of this |
| // call does not escape since only thread-local synchronization may be removed. |
| bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString; |
| HInstruction* receiver = invoke->InputAt(0); |
| if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) { |
| invoke->GetBlock()->RemoveInstruction(invoke); |
| RecordSimplification(); |
| } |
| } else if (invoke->GetIntrinsic() == Intrinsics::kStringBuilderToString && |
| TryReplaceStringBuilderAppend(invoke)) { |
| RecordSimplification(); |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) { |
| switch (instruction->GetIntrinsic()) { |
| case Intrinsics::kStringEquals: |
| SimplifyStringEquals(instruction); |
| break; |
| case Intrinsics::kSystemArrayCopy: |
| SimplifySystemArrayCopy(instruction); |
| break; |
| case Intrinsics::kFloatFloatToIntBits: |
| case Intrinsics::kDoubleDoubleToLongBits: |
| SimplifyFP2Int(instruction); |
| break; |
| case Intrinsics::kStringCharAt: |
| // Instruction builder creates intermediate representation directly |
| // but the inliner can sharpen CharSequence.charAt() to String.charAt(). |
| SimplifyStringCharAt(instruction); |
| break; |
| case Intrinsics::kStringLength: |
| // Instruction builder creates intermediate representation directly |
| // but the inliner can sharpen CharSequence.length() to String.length(). |
| SimplifyStringLength(instruction); |
| break; |
| case Intrinsics::kStringIndexOf: |
| case Intrinsics::kStringIndexOfAfter: |
| SimplifyStringIndexOf(instruction); |
| break; |
| case Intrinsics::kStringStringIndexOf: |
| case Intrinsics::kStringStringIndexOfAfter: |
| SimplifyNPEOnArgN(instruction, 1); // 0th has own NullCheck |
| break; |
| case Intrinsics::kStringBufferAppend: |
| case Intrinsics::kStringBuilderAppendObject: |
| case Intrinsics::kStringBuilderAppendString: |
| case Intrinsics::kStringBuilderAppendCharSequence: |
| case Intrinsics::kStringBuilderAppendCharArray: |
| case Intrinsics::kStringBuilderAppendBoolean: |
| case Intrinsics::kStringBuilderAppendChar: |
| case Intrinsics::kStringBuilderAppendInt: |
| case Intrinsics::kStringBuilderAppendLong: |
| case Intrinsics::kStringBuilderAppendFloat: |
| case Intrinsics::kStringBuilderAppendDouble: |
| SimplifyReturnThis(instruction); |
| break; |
| case Intrinsics::kStringBufferToString: |
| case Intrinsics::kStringBuilderToString: |
| SimplifyAllocationIntrinsic(instruction); |
| break; |
| case Intrinsics::kIntegerRotateRight: |
| case Intrinsics::kLongRotateRight: |
| case Intrinsics::kIntegerRotateLeft: |
| case Intrinsics::kLongRotateLeft: |
| case Intrinsics::kIntegerCompare: |
| case Intrinsics::kLongCompare: |
| case Intrinsics::kIntegerSignum: |
| case Intrinsics::kLongSignum: |
| case Intrinsics::kFloatIsNaN: |
| case Intrinsics::kDoubleIsNaN: |
| case Intrinsics::kStringIsEmpty: |
| case Intrinsics::kUnsafeLoadFence: |
| case Intrinsics::kUnsafeStoreFence: |
| case Intrinsics::kUnsafeFullFence: |
| case Intrinsics::kVarHandleFullFence: |
| case Intrinsics::kVarHandleAcquireFence: |
| case Intrinsics::kVarHandleReleaseFence: |
| case Intrinsics::kVarHandleLoadLoadFence: |
| case Intrinsics::kVarHandleStoreStoreFence: |
| case Intrinsics::kMathMinIntInt: |
| case Intrinsics::kMathMinLongLong: |
| case Intrinsics::kMathMinFloatFloat: |
| case Intrinsics::kMathMinDoubleDouble: |
| case Intrinsics::kMathMaxIntInt: |
| case Intrinsics::kMathMaxLongLong: |
| case Intrinsics::kMathMaxFloatFloat: |
| case Intrinsics::kMathMaxDoubleDouble: |
| case Intrinsics::kMathAbsInt: |
| case Intrinsics::kMathAbsLong: |
| case Intrinsics::kMathAbsFloat: |
| case Intrinsics::kMathAbsDouble: |
| // These are replaced by intermediate representation in the instruction builder. |
| LOG(FATAL) << "Unexpected " << static_cast<Intrinsics>(instruction->GetIntrinsic()); |
| UNREACHABLE(); |
| default: |
| break; |
| } |
| } |
| |
| void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) { |
| HInstruction* cond = deoptimize->InputAt(0); |
| if (cond->IsConstant()) { |
| if (cond->AsIntConstant()->IsFalse()) { |
| // Never deopt: instruction can be removed. |
| if (deoptimize->GuardsAnInput()) { |
| deoptimize->ReplaceWith(deoptimize->GuardedInput()); |
| } |
| deoptimize->GetBlock()->RemoveInstruction(deoptimize); |
| } else { |
| // Always deopt. |
| } |
| } |
| } |
| |
| // Replace code looking like |
| // OP y, x, const1 |
| // OP z, y, const2 |
| // with |
| // OP z, x, const3 |
| // where OP is both an associative and a commutative operation. |
| bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation( |
| HBinaryOperation* instruction) { |
| DCHECK(instruction->IsCommutative()); |
| |
| if (!DataType::IsIntegralType(instruction->GetType())) { |
| return false; |
| } |
| |
| HInstruction* left = instruction->GetLeft(); |
| HInstruction* right = instruction->GetRight(); |
| // Variable names as described above. |
| HConstant* const2; |
| HBinaryOperation* y; |
| |
| if (instruction->GetKind() == left->GetKind() && right->IsConstant()) { |
| const2 = right->AsConstant(); |
| y = left->AsBinaryOperation(); |
| } else if (left->IsConstant() && instruction->GetKind() == right->GetKind()) { |
| const2 = left->AsConstant(); |
| y = right->AsBinaryOperation(); |
| } else { |
| // The node does not match the pattern. |
| return false; |
| } |
| |
| // If `y` has more than one use, we do not perform the optimization |
| // because it might increase code size (e.g. if the new constant is |
| // no longer encodable as an immediate operand in the target ISA). |
| if (!y->HasOnlyOneNonEnvironmentUse()) { |
| return false; |
| } |
| |
| // GetConstantRight() can return both left and right constants |
| // for commutative operations. |
| HConstant* const1 = y->GetConstantRight(); |
| if (const1 == nullptr) { |
| return false; |
| } |
| |
| instruction->ReplaceInput(const1, 0); |
| instruction->ReplaceInput(const2, 1); |
| HConstant* const3 = instruction->TryStaticEvaluation(); |
| DCHECK(const3 != nullptr); |
| instruction->ReplaceInput(y->GetLeastConstantLeft(), 0); |
| instruction->ReplaceInput(const3, 1); |
| RecordSimplification(); |
| return true; |
| } |
| |
| static HBinaryOperation* AsAddOrSub(HInstruction* binop) { |
| return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr; |
| } |
| |
| // Helper function that performs addition statically, considering the result type. |
| static int64_t ComputeAddition(DataType::Type type, int64_t x, int64_t y) { |
| // Use the Compute() method for consistency with TryStaticEvaluation(). |
| if (type == DataType::Type::kInt32) { |
| return HAdd::Compute<int32_t>(x, y); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt64); |
| return HAdd::Compute<int64_t>(x, y); |
| } |
| } |
| |
| // Helper function that handles the child classes of HConstant |
| // and returns an integer with the appropriate sign. |
| static int64_t GetValue(HConstant* constant, bool is_negated) { |
| int64_t ret = Int64FromConstant(constant); |
| return is_negated ? -ret : ret; |
| } |
| |
| // Replace code looking like |
| // OP1 y, x, const1 |
| // OP2 z, y, const2 |
| // with |
| // OP3 z, x, const3 |
| // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB. |
| bool InstructionSimplifierVisitor::TrySubtractionChainSimplification( |
| HBinaryOperation* instruction) { |
| DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName(); |
| |
| DataType::Type type = instruction->GetType(); |
| if (!DataType::IsIntegralType(type)) { |
| return false; |
| } |
| |
| HInstruction* left = instruction->GetLeft(); |
| HInstruction* right = instruction->GetRight(); |
| // Variable names as described above. |
| HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant(); |
| if (const2 == nullptr) { |
| return false; |
| } |
| |
| HBinaryOperation* y = (AsAddOrSub(left) != nullptr) |
| ? left->AsBinaryOperation() |
| : AsAddOrSub(right); |
| // If y has more than one use, we do not perform the optimization because |
| // it might increase code size (e.g. if the new constant is no longer |
| // encodable as an immediate operand in the target ISA). |
| if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) { |
| return false; |
| } |
| |
| left = y->GetLeft(); |
| HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant(); |
| if (const1 == nullptr) { |
| return false; |
| } |
| |
| HInstruction* x = (const1 == left) ? y->GetRight() : left; |
| // If both inputs are constants, let the constant folding pass deal with it. |
| if (x->IsConstant()) { |
| return false; |
| } |
| |
| bool is_const2_negated = (const2 == right) && instruction->IsSub(); |
| int64_t const2_val = GetValue(const2, is_const2_negated); |
| bool is_y_negated = (y == right) && instruction->IsSub(); |
| right = y->GetRight(); |
| bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub()); |
| int64_t const1_val = GetValue(const1, is_const1_negated); |
| bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub()); |
| int64_t const3_val = ComputeAddition(type, const1_val, const2_val); |
| HBasicBlock* block = instruction->GetBlock(); |
| HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val); |
| ArenaAllocator* allocator = instruction->GetAllocator(); |
| HInstruction* z; |
| |
| if (is_x_negated) { |
| z = new (allocator) HSub(type, const3, x, instruction->GetDexPc()); |
| } else { |
| z = new (allocator) HAdd(type, x, const3, instruction->GetDexPc()); |
| } |
| |
| block->ReplaceAndRemoveInstructionWith(instruction, z); |
| RecordSimplification(); |
| return true; |
| } |
| |
| void InstructionSimplifierVisitor::VisitVecMul(HVecMul* instruction) { |
| if (TryCombineVecMultiplyAccumulate(instruction)) { |
| RecordSimplification(); |
| } |
| } |
| |
| } // namespace art |