blob: 0c0f6d9a6868c3354d39d190911c35903be1ebe9 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "profile_compilation_info.h"
#include <fcntl.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <zlib.h>
#include <algorithm>
#include <cerrno>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <random>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "android-base/file.h"
#include "android-base/properties.h"
#include "android-base/scopeguard.h"
#include "android-base/strings.h"
#include "android-base/unique_fd.h"
#include "base/arena_allocator.h"
#include "base/bit_utils.h"
#include "base/dumpable.h"
#include "base/file_utils.h"
#include "base/globals.h"
#include "base/logging.h" // For VLOG.
#include "base/malloc_arena_pool.h"
#include "base/os.h"
#include "base/safe_map.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/unix_file/fd_file.h"
#include "base/utils.h"
#include "base/zip_archive.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file_loader.h"
#ifdef ART_TARGET_ANDROID
#include "android-modules-utils/sdk_level.h"
#endif
namespace art {
const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' };
// Last profile version: New extensible profile format.
const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '1', '5', '\0' };
const uint8_t ProfileCompilationInfo::kProfileVersionForBootImage[] = { '0', '1', '6', '\0' };
static_assert(sizeof(ProfileCompilationInfo::kProfileVersion) == 4,
"Invalid profile version size");
static_assert(sizeof(ProfileCompilationInfo::kProfileVersionForBootImage) == 4,
"Invalid profile version size");
// The name of the profile entry in the dex metadata file.
// DO NOT CHANGE THIS! (it's similar to classes.dex in the apk files).
const char ProfileCompilationInfo::kDexMetadataProfileEntry[] = "primary.prof";
// A synthetic annotations that can be used to denote that no annotation should
// be associated with the profile samples. We use the empty string for the package name
// because that's an invalid package name and should never occur in practice.
const ProfileCompilationInfo::ProfileSampleAnnotation
ProfileCompilationInfo::ProfileSampleAnnotation::kNone =
ProfileCompilationInfo::ProfileSampleAnnotation("");
static constexpr char kSampleMetadataSeparator = ':';
// Note: This used to be PATH_MAX (usually 4096) but that seems excessive
// and we do not want to rely on that external constant anyway.
static constexpr uint16_t kMaxDexFileKeyLength = 1024;
// Extra descriptors are serialized with a `uint16_t` prefix. This defines the length limit.
static constexpr size_t kMaxExtraDescriptorLength = std::numeric_limits<uint16_t>::max();
// According to dex file specification, there can be more than 2^16 valid method indexes
// but bytecode uses only 16 bits, so higher method indexes are not very useful (though
// such methods could be reached through virtual or interface dispatch). Consequently,
// dex files with more than 2^16 method indexes are not really used and the profile file
// format does not support higher method indexes.
static constexpr uint32_t kMaxSupportedMethodIndex = 0xffffu;
// Debug flag to ignore checksums when testing if a method or a class is present in the profile.
// Used to facilitate testing profile guided compilation across a large number of apps
// using the same test profile.
static constexpr bool kDebugIgnoreChecksum = false;
static constexpr uint8_t kIsMissingTypesEncoding = 6;
static constexpr uint8_t kIsMegamorphicEncoding = 7;
static_assert(sizeof(ProfileCompilationInfo::kIndividualInlineCacheSize) == sizeof(uint8_t),
"InlineCache::kIndividualInlineCacheSize does not have the expect type size");
static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMegamorphicEncoding,
"InlineCache::kIndividualInlineCacheSize is larger than expected");
static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMissingTypesEncoding,
"InlineCache::kIndividualInlineCacheSize is larger than expected");
static constexpr uint32_t kSizeWarningThresholdBytes = 500000U;
static constexpr uint32_t kSizeErrorThresholdBytes = 1500000U;
static constexpr uint32_t kSizeWarningThresholdBootBytes = 25000000U;
static constexpr uint32_t kSizeErrorThresholdBootBytes = 100000000U;
static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) {
return kDebugIgnoreChecksum || dex_file_checksum == checksum;
}
namespace {
// Deflate the input buffer `in_buffer`. It returns a buffer of
// compressed data for the input buffer of `*compressed_data_size` size.
std::unique_ptr<uint8_t[]> DeflateBuffer(ArrayRef<const uint8_t> in_buffer,
/*out*/ uint32_t* compressed_data_size) {
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
int init_ret = deflateInit(&strm, 1);
if (init_ret != Z_OK) {
return nullptr;
}
uint32_t out_size = dchecked_integral_cast<uint32_t>(deflateBound(&strm, in_buffer.size()));
std::unique_ptr<uint8_t[]> compressed_buffer(new uint8_t[out_size]);
strm.avail_in = in_buffer.size();
strm.next_in = const_cast<uint8_t*>(in_buffer.data());
strm.avail_out = out_size;
strm.next_out = &compressed_buffer[0];
int ret = deflate(&strm, Z_FINISH);
if (ret == Z_STREAM_ERROR) {
return nullptr;
}
*compressed_data_size = out_size - strm.avail_out;
int end_ret = deflateEnd(&strm);
if (end_ret != Z_OK) {
return nullptr;
}
return compressed_buffer;
}
// Inflate the data from `in_buffer` into `out_buffer`. The `out_buffer.size()`
// is the expected output size of the buffer. It returns Z_STREAM_END on success.
// On error, it returns Z_STREAM_ERROR if the compressed data is inconsistent
// and Z_DATA_ERROR if the stream ended prematurely or the stream has extra data.
int InflateBuffer(ArrayRef<const uint8_t> in_buffer, /*out*/ ArrayRef<uint8_t> out_buffer) {
/* allocate inflate state */
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = in_buffer.size();
strm.next_in = const_cast<uint8_t*>(in_buffer.data());
strm.avail_out = out_buffer.size();
strm.next_out = out_buffer.data();
int init_ret = inflateInit(&strm);
if (init_ret != Z_OK) {
return init_ret;
}
int ret = inflate(&strm, Z_NO_FLUSH);
if (strm.avail_in != 0 || strm.avail_out != 0) {
return Z_DATA_ERROR;
}
int end_ret = inflateEnd(&strm);
if (end_ret != Z_OK) {
return end_ret;
}
return ret;
}
} // anonymous namespace
enum class ProfileCompilationInfo::ProfileLoadStatus : uint32_t {
kSuccess,
kIOError,
kBadMagic,
kVersionMismatch,
kBadData,
kMergeError, // Merging failed. There are too many extra descriptors
// or classes without TypeId referenced by a dex file.
};
enum class ProfileCompilationInfo::FileSectionType : uint32_t {
// The values of section enumerators and data format for individual sections
// must not be changed without changing the profile file version. New sections
// can be added at the end and they shall be ignored by old versions of ART.
// The list of the dex files included in the profile.
// There must be exactly one dex file section and it must be first.
kDexFiles = 0,
// Extra descriptors for referencing classes that do not have a `dex::TypeId`
// in the referencing dex file, such as classes from a different dex file
// (even outside of the dex files in the profile) or array classes that were
// used from other dex files or created through reflection.
kExtraDescriptors = 1,
// Classes included in the profile.
kClasses = 2,
// Methods included in the profile, their hotness flags and inline caches.
kMethods = 3,
// The aggregation counts of the profile, classes and methods. This section is
// an optional reserved section not implemented on client yet.
kAggregationCounts = 4,
// The number of known sections.
kNumberOfSections = 5
};
class ProfileCompilationInfo::FileSectionInfo {
public:
// Constructor for reading from a `ProfileSource`. Data shall be filled from the source.
FileSectionInfo() {}
// Constructor for writing to a file.
FileSectionInfo(FileSectionType type,
uint32_t file_offset,
uint32_t file_size,
uint32_t inflated_size)
: type_(type),
file_offset_(file_offset),
file_size_(file_size),
inflated_size_(inflated_size) {}
void SetFileOffset(uint32_t file_offset) {
DCHECK_EQ(file_offset_, 0u);
DCHECK_NE(file_offset, 0u);
file_offset_ = file_offset;
}
FileSectionType GetType() const {
return type_;
}
uint32_t GetFileOffset() const {
return file_offset_;
}
uint32_t GetFileSize() const {
return file_size_;
}
uint32_t GetInflatedSize() const {
return inflated_size_;
}
uint32_t GetMemSize() const {
return inflated_size_ != 0u ? inflated_size_ : file_size_;
}
private:
FileSectionType type_;
uint32_t file_offset_;
uint32_t file_size_;
uint32_t inflated_size_; // If 0, do not inflate and use data from file directly.
};
// The file header.
class ProfileCompilationInfo::FileHeader {
public:
// Constructor for reading from a `ProfileSource`. Data shall be filled from the source.
FileHeader() {
DCHECK(!IsValid());
}
// Constructor for writing to a file.
FileHeader(const uint8_t* version, uint32_t file_section_count)
: file_section_count_(file_section_count) {
static_assert(sizeof(magic_) == sizeof(kProfileMagic));
static_assert(sizeof(version_) == sizeof(kProfileVersion));
static_assert(sizeof(version_) == sizeof(kProfileVersionForBootImage));
memcpy(magic_, kProfileMagic, sizeof(kProfileMagic));
memcpy(version_, version, sizeof(version_));
DCHECK_LE(file_section_count, kMaxFileSectionCount);
DCHECK(IsValid());
}
bool IsValid() const {
return memcmp(magic_, kProfileMagic, sizeof(kProfileMagic)) == 0 &&
(memcmp(version_, kProfileVersion, kProfileVersionSize) == 0 ||
memcmp(version_, kProfileVersionForBootImage, kProfileVersionSize) == 0) &&
file_section_count_ != 0u && // The dex files section is mandatory.
file_section_count_ <= kMaxFileSectionCount;
}
const uint8_t* GetVersion() const {
DCHECK(IsValid());
return version_;
}
ProfileLoadStatus InvalidHeaderMessage(/*out*/ std::string* error_msg) const;
uint32_t GetFileSectionCount() const {
DCHECK(IsValid());
return file_section_count_;
}
private:
// The upper bound for file section count is used to ensure that there
// shall be no arithmetic overflow when calculating size of the header
// with section information.
static const uint32_t kMaxFileSectionCount;
uint8_t magic_[4] = {0, 0, 0, 0};
uint8_t version_[4] = {0, 0, 0, 0};
uint32_t file_section_count_ = 0u;
};
const uint32_t ProfileCompilationInfo::FileHeader::kMaxFileSectionCount =
(std::numeric_limits<uint32_t>::max() - sizeof(FileHeader)) / sizeof(FileSectionInfo);
ProfileCompilationInfo::ProfileLoadStatus
ProfileCompilationInfo::FileHeader::InvalidHeaderMessage(/*out*/ std::string* error_msg) const {
if (memcmp(magic_, kProfileMagic, sizeof(kProfileMagic)) != 0) {
*error_msg = "Profile missing magic.";
return ProfileLoadStatus::kBadMagic;
}
if (memcmp(version_, kProfileVersion, sizeof(kProfileVersion)) != 0 &&
memcmp(version_, kProfileVersion, sizeof(kProfileVersionForBootImage)) != 0) {
*error_msg = "Profile version mismatch.";
return ProfileLoadStatus::kVersionMismatch;
}
if (file_section_count_ == 0u) {
*error_msg = "Missing mandatory dex files section.";
return ProfileLoadStatus::kBadData;
}
DCHECK_GT(file_section_count_, kMaxFileSectionCount);
*error_msg ="Too many sections.";
return ProfileLoadStatus::kBadData;
}
/**
* Encapsulate the source of profile data for loading.
* The source can be either a plain file or a zip file.
* For zip files, the profile entry will be extracted to
* the memory map.
*/
class ProfileCompilationInfo::ProfileSource {
public:
/**
* Create a profile source for the given fd. The ownership of the fd
* remains to the caller; as this class will not attempt to close it at any
* point.
*/
static ProfileSource* Create(int32_t fd) {
DCHECK_GT(fd, -1);
return new ProfileSource(fd, MemMap::Invalid());
}
/**
* Create a profile source backed by a memory map. The map can be null in
* which case it will the treated as an empty source.
*/
static ProfileSource* Create(MemMap&& mem_map) {
return new ProfileSource(/*fd*/ -1, std::move(mem_map));
}
// Seek to the given offset in the source.
bool Seek(off_t offset);
/**
* Read bytes from this source.
* Reading will advance the current source position so subsequent
* invocations will read from the las position.
*/
ProfileLoadStatus Read(void* buffer,
size_t byte_count,
const std::string& debug_stage,
std::string* error);
/** Return true if the source has 0 data. */
bool HasEmptyContent() const;
private:
ProfileSource(int32_t fd, MemMap&& mem_map)
: fd_(fd), mem_map_(std::move(mem_map)), mem_map_cur_(0) {}
bool IsMemMap() const {
return fd_ == -1;
}
int32_t fd_; // The fd is not owned by this class.
MemMap mem_map_;
size_t mem_map_cur_; // Current position in the map to read from.
};
// A helper structure to make sure we don't read past our buffers in the loops.
// Also used for writing but the buffer should be pre-sized correctly for that, so we
// DCHECK() we do not write beyond the end, rather than returning `false` on failure.
class ProfileCompilationInfo::SafeBuffer {
public:
SafeBuffer()
: storage_(nullptr),
ptr_current_(nullptr),
ptr_end_(nullptr) {}
explicit SafeBuffer(size_t size)
: storage_(new uint8_t[size]),
ptr_current_(storage_.get()),
ptr_end_(ptr_current_ + size) {}
// Reads an uint value and advances the current pointer.
template <typename T>
bool ReadUintAndAdvance(/*out*/ T* value) {
static_assert(std::is_unsigned<T>::value, "Type is not unsigned");
if (sizeof(T) > GetAvailableBytes()) {
return false;
}
*value = 0;
for (size_t i = 0; i < sizeof(T); i++) {
*value += ptr_current_[i] << (i * kBitsPerByte);
}
ptr_current_ += sizeof(T);
return true;
}
// Reads a length-prefixed string as `std::string_view` and advances the current pointer.
// The length is `uint16_t`.
bool ReadStringAndAdvance(/*out*/ std::string_view* value) {
uint16_t length;
if (!ReadUintAndAdvance(&length)) {
return false;
}
if (length > GetAvailableBytes()) {
return false;
}
const void* null_char = memchr(GetCurrentPtr(), 0, length);
if (null_char != nullptr) {
// Embedded nulls are invalid.
return false;
}
*value = std::string_view(reinterpret_cast<const char*>(GetCurrentPtr()), length);
Advance(length);
return true;
}
// Compares the given data with the content at the current pointer.
// If the contents are equal it advances the current pointer by data_size.
bool CompareAndAdvance(const uint8_t* data, size_t data_size) {
if (data_size > GetAvailableBytes()) {
return false;
}
if (memcmp(ptr_current_, data, data_size) == 0) {
ptr_current_ += data_size;
return true;
}
return false;
}
void WriteAndAdvance(const void* data, size_t data_size) {
DCHECK_LE(data_size, GetAvailableBytes());
memcpy(ptr_current_, data, data_size);
ptr_current_ += data_size;
}
template <typename T>
void WriteUintAndAdvance(T value) {
static_assert(std::is_integral_v<T>);
WriteAndAdvance(&value, sizeof(value));
}
// Deflate a filled buffer. Replaces the internal buffer with a new one, also filled.
bool Deflate() {
DCHECK_EQ(GetAvailableBytes(), 0u);
DCHECK_NE(Size(), 0u);
ArrayRef<const uint8_t> in_buffer(Get(), Size());
uint32_t output_size = 0;
std::unique_ptr<uint8_t[]> compressed_buffer = DeflateBuffer(in_buffer, &output_size);
if (compressed_buffer == nullptr) {
return false;
}
storage_ = std::move(compressed_buffer);
ptr_current_ = storage_.get() + output_size;
ptr_end_ = ptr_current_;
return true;
}
// Inflate an unread buffer. Replaces the internal buffer with a new one, also unread.
bool Inflate(size_t uncompressed_data_size) {
DCHECK(ptr_current_ == storage_.get());
DCHECK_NE(Size(), 0u);
ArrayRef<const uint8_t> in_buffer(Get(), Size());
SafeBuffer uncompressed_buffer(uncompressed_data_size);
ArrayRef<uint8_t> out_buffer(uncompressed_buffer.Get(), uncompressed_data_size);
int ret = InflateBuffer(in_buffer, out_buffer);
if (ret != Z_STREAM_END) {
return false;
}
Swap(uncompressed_buffer);
DCHECK(ptr_current_ == storage_.get());
return true;
}
// Advances current pointer by data_size.
void Advance(size_t data_size) {
DCHECK_LE(data_size, GetAvailableBytes());
ptr_current_ += data_size;
}
// Returns the count of unread bytes.
size_t GetAvailableBytes() const {
DCHECK_LE(static_cast<void*>(ptr_current_), static_cast<void*>(ptr_end_));
return (ptr_end_ - ptr_current_) * sizeof(*ptr_current_);
}
// Returns the current pointer.
uint8_t* GetCurrentPtr() {
return ptr_current_;
}
// Get the underlying raw buffer.
uint8_t* Get() {
return storage_.get();
}
// Get the size of the raw buffer.
size_t Size() const {
return ptr_end_ - storage_.get();
}
void Swap(SafeBuffer& other) {
std::swap(storage_, other.storage_);
std::swap(ptr_current_, other.ptr_current_);
std::swap(ptr_end_, other.ptr_end_);
}
private:
std::unique_ptr<uint8_t[]> storage_;
uint8_t* ptr_current_;
uint8_t* ptr_end_;
};
ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool, bool for_boot_image)
: default_arena_pool_(),
allocator_(custom_arena_pool),
info_(allocator_.Adapter(kArenaAllocProfile)),
profile_key_map_(std::less<const std::string_view>(), allocator_.Adapter(kArenaAllocProfile)),
extra_descriptors_(),
extra_descriptors_indexes_(ExtraDescriptorHash(&extra_descriptors_),
ExtraDescriptorEquals(&extra_descriptors_)) {
memcpy(version_,
for_boot_image ? kProfileVersionForBootImage : kProfileVersion,
kProfileVersionSize);
}
ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool)
: ProfileCompilationInfo(custom_arena_pool, /*for_boot_image=*/ false) { }
ProfileCompilationInfo::ProfileCompilationInfo()
: ProfileCompilationInfo(/*for_boot_image=*/ false) { }
ProfileCompilationInfo::ProfileCompilationInfo(bool for_boot_image)
: ProfileCompilationInfo(&default_arena_pool_, for_boot_image) { }
ProfileCompilationInfo::~ProfileCompilationInfo() {
VLOG(profiler) << Dumpable<MemStats>(allocator_.GetMemStats());
}
void ProfileCompilationInfo::DexPcData::AddClass(const dex::TypeIndex& type_idx) {
if (is_megamorphic || is_missing_types) {
return;
}
// Perform an explicit lookup for the type instead of directly emplacing the
// element. We do this because emplace() allocates the node before doing the
// lookup and if it then finds an identical element, it shall deallocate the
// node. For Arena allocations, that's essentially a leak.
auto lb = classes.lower_bound(type_idx);
if (lb != classes.end() && *lb == type_idx) {
// The type index exists.
return;
}
// Check if the adding the type will cause the cache to become megamorphic.
if (classes.size() + 1 >= ProfileCompilationInfo::kIndividualInlineCacheSize) {
is_megamorphic = true;
classes.clear();
return;
}
// The type does not exist and the inline cache will not be megamorphic.
classes.emplace_hint(lb, type_idx);
}
// Transform the actual dex location into a key used to index the dex file in the profile.
// See ProfileCompilationInfo#GetProfileDexFileBaseKey as well.
std::string ProfileCompilationInfo::GetProfileDexFileAugmentedKey(
const std::string& dex_location,
const ProfileSampleAnnotation& annotation) {
std::string base_key = GetProfileDexFileBaseKey(dex_location);
return annotation == ProfileSampleAnnotation::kNone
? base_key
: base_key + kSampleMetadataSeparator + annotation.GetOriginPackageName();;
}
// Transform the actual dex location into a base profile key (represented as relative paths).
// Note: this is OK because we don't store profiles of different apps into the same file.
// Apps with split apks don't cause trouble because each split has a different name and will not
// collide with other entries.
std::string_view ProfileCompilationInfo::GetProfileDexFileBaseKeyView(
std::string_view dex_location) {
DCHECK(!dex_location.empty());
size_t last_sep_index = dex_location.find_last_of('/');
if (last_sep_index == std::string::npos) {
return dex_location;
} else {
DCHECK(last_sep_index < dex_location.size());
return dex_location.substr(last_sep_index + 1);
}
}
std::string ProfileCompilationInfo::GetProfileDexFileBaseKey(const std::string& dex_location) {
// Note: Conversions between std::string and std::string_view.
return std::string(GetProfileDexFileBaseKeyView(dex_location));
}
std::string_view ProfileCompilationInfo::GetBaseKeyViewFromAugmentedKey(
std::string_view profile_key) {
size_t pos = profile_key.rfind(kSampleMetadataSeparator);
return (pos == std::string::npos) ? profile_key : profile_key.substr(0, pos);
}
std::string ProfileCompilationInfo::GetBaseKeyFromAugmentedKey(
const std::string& profile_key) {
// Note: Conversions between std::string and std::string_view.
return std::string(GetBaseKeyViewFromAugmentedKey(profile_key));
}
std::string ProfileCompilationInfo::MigrateAnnotationInfo(
const std::string& base_key,
const std::string& augmented_key) {
size_t pos = augmented_key.rfind(kSampleMetadataSeparator);
return (pos == std::string::npos)
? base_key
: base_key + augmented_key.substr(pos);
}
ProfileCompilationInfo::ProfileSampleAnnotation ProfileCompilationInfo::GetAnnotationFromKey(
const std::string& augmented_key) {
size_t pos = augmented_key.rfind(kSampleMetadataSeparator);
return (pos == std::string::npos)
? ProfileSampleAnnotation::kNone
: ProfileSampleAnnotation(augmented_key.substr(pos + 1));
}
bool ProfileCompilationInfo::AddMethods(const std::vector<ProfileMethodInfo>& methods,
MethodHotness::Flag flags,
const ProfileSampleAnnotation& annotation) {
for (const ProfileMethodInfo& method : methods) {
if (!AddMethod(method, flags, annotation)) {
return false;
}
}
return true;
}
dex::TypeIndex ProfileCompilationInfo::FindOrCreateTypeIndex(const DexFile& dex_file,
TypeReference class_ref) {
DCHECK(class_ref.dex_file != nullptr);
DCHECK_LT(class_ref.TypeIndex().index_, class_ref.dex_file->NumTypeIds());
if (class_ref.dex_file == &dex_file) {
// We can use the type index from the `class_ref` as it's a valid index in the `dex_file`.
return class_ref.TypeIndex();
}
// Try to find a `TypeId` in the method's dex file.
const char* descriptor = class_ref.dex_file->StringByTypeIdx(class_ref.TypeIndex());
return FindOrCreateTypeIndex(dex_file, descriptor);
}
dex::TypeIndex ProfileCompilationInfo::FindOrCreateTypeIndex(const DexFile& dex_file,
const char* descriptor) {
const dex::TypeId* type_id = dex_file.FindTypeId(descriptor);
if (type_id != nullptr) {
return dex_file.GetIndexForTypeId(*type_id);
}
// Try to find an existing extra descriptor.
uint32_t num_type_ids = dex_file.NumTypeIds();
uint32_t max_artificial_ids = DexFile::kDexNoIndex16 - num_type_ids;
std::string_view descriptor_view(descriptor);
// Check descriptor length for "extra descriptor". We are using `uint16_t` as prefix.
if (UNLIKELY(descriptor_view.size() > kMaxExtraDescriptorLength)) {
return dex::TypeIndex(); // Invalid.
}
auto it = extra_descriptors_indexes_.find(descriptor_view);
if (it != extra_descriptors_indexes_.end()) {
return (*it < max_artificial_ids) ? dex::TypeIndex(num_type_ids + *it) : dex::TypeIndex();
}
// Check if inserting the extra descriptor yields a valid artificial type index.
if (UNLIKELY(extra_descriptors_.size() >= max_artificial_ids)) {
return dex::TypeIndex(); // Invalid.
}
// Add the descriptor to extra descriptors and return the artificial type index.
ExtraDescriptorIndex new_extra_descriptor_index = AddExtraDescriptor(descriptor_view);
DCHECK_LT(new_extra_descriptor_index, max_artificial_ids);
return dex::TypeIndex(num_type_ids + new_extra_descriptor_index);
}
bool ProfileCompilationInfo::AddClass(const DexFile& dex_file,
const char* descriptor,
const ProfileSampleAnnotation& annotation) {
DexFileData* const data = GetOrAddDexFileData(&dex_file, annotation);
if (data == nullptr) { // checksum mismatch
return false;
}
dex::TypeIndex type_index = FindOrCreateTypeIndex(dex_file, descriptor);
if (!type_index.IsValid()) {
return false;
}
data->class_set.insert(type_index);
return true;
}
bool ProfileCompilationInfo::MergeWith(const std::string& filename) {
std::string error;
#ifdef _WIN32
int flags = O_RDONLY;
#else
int flags = O_RDONLY | O_NOFOLLOW | O_CLOEXEC;
#endif
ScopedFlock profile_file =
LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
if (profile_file.get() == nullptr) {
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = profile_file->Fd();
ProfileLoadStatus status = LoadInternal(fd, &error);
if (status == ProfileLoadStatus::kSuccess) {
return true;
}
LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
return false;
}
bool ProfileCompilationInfo::Load(const std::string& filename, bool clear_if_invalid) {
ScopedTrace trace(__PRETTY_FUNCTION__);
std::string error;
if (!IsEmpty()) {
return false;
}
#ifdef _WIN32
int flags = O_RDWR;
#else
int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC;
#endif
// There's no need to fsync profile data right away. We get many chances
// to write it again in case something goes wrong. We can rely on a simple
// close(), no sync, and let to the kernel decide when to write to disk.
ScopedFlock profile_file =
LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
if (profile_file.get() == nullptr) {
if (clear_if_invalid && errno == ENOENT) {
return true;
}
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = profile_file->Fd();
ProfileLoadStatus status = LoadInternal(fd, &error);
if (status == ProfileLoadStatus::kSuccess) {
return true;
}
if (clear_if_invalid &&
((status == ProfileLoadStatus::kBadMagic) ||
(status == ProfileLoadStatus::kVersionMismatch) ||
(status == ProfileLoadStatus::kBadData))) {
LOG(WARNING) << "Clearing bad or obsolete profile data from file "
<< filename << ": " << error;
// When ART Service is enabled, this is the only place where we mutate a profile in place.
// TODO(jiakaiz): Get rid of this.
if (profile_file->ClearContent()) {
return true;
} else {
PLOG(WARNING) << "Could not clear profile file: " << filename;
return false;
}
}
LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
return false;
}
bool ProfileCompilationInfo::Save(const std::string& filename, uint64_t* bytes_written) {
ScopedTrace trace(__PRETTY_FUNCTION__);
#ifndef ART_TARGET_ANDROID
return SaveFallback(filename, bytes_written);
#else
// Prior to U, SELinux policy doesn't allow apps to create profile files.
// Additionally, when installd is being used for dexopt, it acquires a flock when working on a
// profile. It's unclear to us whether the flock means that the file at the fd shouldn't change or
// that the file at the path shouldn't change, especially when the installd code is modified by
// partners. Therefore, we fall back to using a flock as well just to be safe.
if (!android::modules::sdklevel::IsAtLeastU() ||
!android::base::GetBoolProperty("dalvik.vm.useartservice", /*default_value=*/false)) {
return SaveFallback(filename, bytes_written);
}
std::string tmp_filename = filename + ".XXXXXX.tmp";
// mkstemps creates the file with permissions 0600, which is the desired permissions, so there's
// no need to chmod.
android::base::unique_fd fd(mkostemps(tmp_filename.data(), /*suffixlen=*/4, O_CLOEXEC));
if (fd.get() < 0) {
PLOG(WARNING) << "Failed to create temp profile file for " << filename;
return false;
}
// In case anything goes wrong.
auto remove_tmp_file = android::base::make_scope_guard([&]() {
if (unlink(tmp_filename.c_str()) != 0) {
PLOG(WARNING) << "Failed to remove temp profile file " << tmp_filename;
}
});
bool result = Save(fd.get());
if (!result) {
VLOG(profiler) << "Failed to save profile info to temp profile file " << tmp_filename;
return false;
}
fd.reset();
// Move the temp profile file to the final location.
if (rename(tmp_filename.c_str(), filename.c_str()) != 0) {
PLOG(WARNING) << "Failed to commit profile file " << filename;
return false;
}
remove_tmp_file.Disable();
int64_t size = OS::GetFileSizeBytes(filename.c_str());
if (size != -1) {
VLOG(profiler) << "Successfully saved profile info to " << filename << " Size: " << size;
if (bytes_written != nullptr) {
*bytes_written = static_cast<uint64_t>(size);
}
} else {
VLOG(profiler) << "Saved profile info to " << filename
<< " but failed to get size: " << strerror(errno);
}
return true;
#endif
}
bool ProfileCompilationInfo::SaveFallback(const std::string& filename, uint64_t* bytes_written) {
std::string error;
#ifdef _WIN32
int flags = O_WRONLY | O_CREAT;
#else
int flags = O_WRONLY | O_NOFOLLOW | O_CLOEXEC | O_CREAT;
#endif
// There's no need to fsync profile data right away. We get many chances
// to write it again in case something goes wrong. We can rely on a simple
// close(), no sync, and let to the kernel decide when to write to disk.
ScopedFlock profile_file =
LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
if (profile_file.get() == nullptr) {
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = profile_file->Fd();
// We need to clear the data because we don't support appending to the profiles yet.
if (!profile_file->ClearContent()) {
PLOG(WARNING) << "Could not clear profile file: " << filename;
return false;
}
// This doesn't need locking because we are trying to lock the file for exclusive
// access and fail immediately if we can't.
bool result = Save(fd);
if (result) {
int64_t size = OS::GetFileSizeBytes(filename.c_str());
if (size != -1) {
VLOG(profiler)
<< "Successfully saved profile info to " << filename << " Size: "
<< size;
if (bytes_written != nullptr) {
*bytes_written = static_cast<uint64_t>(size);
}
} else {
VLOG(profiler) << "Saved profile info to " << filename
<< " but failed to get size: " << strerror(errno);
}
} else {
VLOG(profiler) << "Failed to save profile info to " << filename;
}
return result;
}
// Returns true if all the bytes were successfully written to the file descriptor.
static bool WriteBuffer(int fd, const void* buffer, size_t byte_count) {
while (byte_count > 0) {
int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count));
if (bytes_written == -1) {
return false;
}
byte_count -= bytes_written; // Reduce the number of remaining bytes.
reinterpret_cast<const uint8_t*&>(buffer) += bytes_written; // Move the buffer forward.
}
return true;
}
/**
* Serialization format:
*
* The file starts with a header and section information:
* FileHeader
* FileSectionInfo[]
* The first FileSectionInfo must be for the DexFiles section.
*
* The rest of the file is allowed to contain different sections in any order,
* at arbitrary offsets, with any gaps betweeen them and each section can be
* either plaintext or separately zipped. However, we're writing sections
* without any gaps with the following order and compression:
* DexFiles - mandatory, plaintext
* ExtraDescriptors - optional, zipped
* Classes - optional, zipped
* Methods - optional, zipped
* AggregationCounts - optional, zipped, server-side
*
* DexFiles:
* number_of_dex_files
* (checksum,num_type_ids,num_method_ids,profile_key)[number_of_dex_files]
* where `profile_key` is a length-prefixed string, the length is `uint16_t`.
*
* ExtraDescriptors:
* number_of_extra_descriptors
* (extra_descriptor)[number_of_extra_descriptors]
* where `extra_descriptor` is a length-prefixed string, the length is `uint16_t`.
*
* Classes contains records for any number of dex files, each consisting of:
* profile_index // Index of the dex file in DexFiles section.
* number_of_classes
* type_index_diff[number_of_classes]
* where instead of storing plain sorted type indexes, we store their differences
* as smaller numbers are likely to compress better.
*
* Methods contains records for any number of dex files, each consisting of:
* profile_index // Index of the dex file in DexFiles section.
* following_data_size // For easy skipping of remaining data when dex file is filtered out.
* method_flags
* bitmap_data
* method_encoding[] // Until the size indicated by `following_data_size`.
* where `method_flags` is a union of flags recorded for methods in the referenced dex file,
* `bitmap_data` contains `num_method_ids` bits for each bit set in `method_flags` other
* than "hot" (the size of `bitmap_data` is rounded up to whole bytes) and `method_encoding[]`
* contains data for hot methods. The `method_encoding` is:
* method_index_diff
* number_of_inline_caches
* inline_cache_encoding[number_of_inline_caches]
* where differences in method indexes are used for better compression,
* and the `inline_cache_encoding` is
* dex_pc
* (M|dex_map_size)
* type_index_diff[dex_map_size]
* where `M` stands for special encodings indicating missing types (kIsMissingTypesEncoding)
* or memamorphic call (kIsMegamorphicEncoding) which both imply `dex_map_size == 0`.
**/
bool ProfileCompilationInfo::Save(int fd) {
uint64_t start = NanoTime();
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
// Collect uncompressed section sizes.
// Use `uint64_t` and assume this cannot overflow as we would have run out of memory.
uint64_t extra_descriptors_section_size = 0u;
if (!extra_descriptors_.empty()) {
extra_descriptors_section_size += sizeof(uint16_t); // Number of descriptors.
for (const std::string& descriptor : extra_descriptors_) {
// Length-prefixed string, the length is `uint16_t`.
extra_descriptors_section_size += sizeof(uint16_t) + descriptor.size();
}
}
uint64_t dex_files_section_size = sizeof(ProfileIndexType); // Number of dex files.
uint64_t classes_section_size = 0u;
uint64_t methods_section_size = 0u;
DCHECK_LE(info_.size(), MaxProfileIndex());
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
if (dex_data->profile_key.size() > kMaxDexFileKeyLength) {
LOG(WARNING) << "DexFileKey exceeds allocated limit";
return false;
}
dex_files_section_size +=
3 * sizeof(uint32_t) + // Checksum, num_type_ids, num_method_ids.
// Length-prefixed string, the length is `uint16_t`.
sizeof(uint16_t) + dex_data->profile_key.size();
classes_section_size += dex_data->ClassesDataSize();
methods_section_size += dex_data->MethodsDataSize();
}
const uint32_t file_section_count =
/* dex files */ 1u +
/* extra descriptors */ (extra_descriptors_section_size != 0u ? 1u : 0u) +
/* classes */ (classes_section_size != 0u ? 1u : 0u) +
/* methods */ (methods_section_size != 0u ? 1u : 0u);
uint64_t header_and_infos_size =
sizeof(FileHeader) + file_section_count * sizeof(FileSectionInfo);
// Check size limit. Allow large profiles for non target builds for the case
// where we are merging many profiles to generate a boot image profile.
uint64_t total_uncompressed_size =
header_and_infos_size +
dex_files_section_size +
extra_descriptors_section_size +
classes_section_size +
methods_section_size;
VLOG(profiler) << "Required capacity: " << total_uncompressed_size << " bytes.";
if (total_uncompressed_size > GetSizeErrorThresholdBytes()) {
LOG(WARNING) << "Profile data size exceeds "
<< GetSizeErrorThresholdBytes()
<< " bytes. Profile will not be written to disk."
<< " It requires " << total_uncompressed_size << " bytes.";
return false;
}
// Start with an invalid file header and section infos.
DCHECK_EQ(lseek(fd, 0, SEEK_CUR), 0);
constexpr uint32_t kMaxNumberOfSections = enum_cast<uint32_t>(FileSectionType::kNumberOfSections);
constexpr uint64_t kMaxHeaderAndInfosSize =
sizeof(FileHeader) + kMaxNumberOfSections * sizeof(FileSectionInfo);
DCHECK_LE(header_and_infos_size, kMaxHeaderAndInfosSize);
std::array<uint8_t, kMaxHeaderAndInfosSize> placeholder;
memset(placeholder.data(), 0, header_and_infos_size);
if (!WriteBuffer(fd, placeholder.data(), header_and_infos_size)) {
return false;
}
std::array<FileSectionInfo, kMaxNumberOfSections> section_infos;
size_t section_index = 0u;
uint32_t file_offset = header_and_infos_size;
auto add_section_info = [&](FileSectionType type, uint32_t file_size, uint32_t inflated_size) {
DCHECK_LT(section_index, section_infos.size());
section_infos[section_index] = FileSectionInfo(type, file_offset, file_size, inflated_size);
file_offset += file_size;
section_index += 1u;
};
// Write the dex files section.
{
SafeBuffer buffer(dex_files_section_size);
buffer.WriteUintAndAdvance(dchecked_integral_cast<ProfileIndexType>(info_.size()));
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
buffer.WriteUintAndAdvance(dex_data->checksum);
buffer.WriteUintAndAdvance(dex_data->num_type_ids);
buffer.WriteUintAndAdvance(dex_data->num_method_ids);
buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(dex_data->profile_key.size()));
buffer.WriteAndAdvance(dex_data->profile_key.c_str(), dex_data->profile_key.size());
}
DCHECK_EQ(buffer.GetAvailableBytes(), 0u);
// Write the dex files section uncompressed.
if (!WriteBuffer(fd, buffer.Get(), dex_files_section_size)) {
return false;
}
add_section_info(FileSectionType::kDexFiles, dex_files_section_size, /*inflated_size=*/ 0u);
}
// Write the extra descriptors section.
if (extra_descriptors_section_size != 0u) {
SafeBuffer buffer(extra_descriptors_section_size);
buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(extra_descriptors_.size()));
for (const std::string& descriptor : extra_descriptors_) {
buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(descriptor.size()));
buffer.WriteAndAdvance(descriptor.c_str(), descriptor.size());
}
if (!buffer.Deflate()) {
return false;
}
if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
return false;
}
add_section_info(
FileSectionType::kExtraDescriptors, buffer.Size(), extra_descriptors_section_size);
}
// Write the classes section.
if (classes_section_size != 0u) {
SafeBuffer buffer(classes_section_size);
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
dex_data->WriteClasses(buffer);
}
if (!buffer.Deflate()) {
return false;
}
if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
return false;
}
add_section_info(FileSectionType::kClasses, buffer.Size(), classes_section_size);
}
// Write the methods section.
if (methods_section_size != 0u) {
SafeBuffer buffer(methods_section_size);
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
dex_data->WriteMethods(buffer);
}
if (!buffer.Deflate()) {
return false;
}
if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
return false;
}
add_section_info(FileSectionType::kMethods, buffer.Size(), methods_section_size);
}
if (file_offset > GetSizeWarningThresholdBytes()) {
LOG(WARNING) << "Profile data size exceeds "
<< GetSizeWarningThresholdBytes()
<< " It has " << file_offset << " bytes";
}
// Write section infos.
if (lseek64(fd, sizeof(FileHeader), SEEK_SET) != sizeof(FileHeader)) {
return false;
}
SafeBuffer section_infos_buffer(section_index * 4u * sizeof(uint32_t));
for (size_t i = 0; i != section_index; ++i) {
const FileSectionInfo& info = section_infos[i];
section_infos_buffer.WriteUintAndAdvance(enum_cast<uint32_t>(info.GetType()));
section_infos_buffer.WriteUintAndAdvance(info.GetFileOffset());
section_infos_buffer.WriteUintAndAdvance(info.GetFileSize());
section_infos_buffer.WriteUintAndAdvance(info.GetInflatedSize());
}
DCHECK_EQ(section_infos_buffer.GetAvailableBytes(), 0u);
if (!WriteBuffer(fd, section_infos_buffer.Get(), section_infos_buffer.Size())) {
return false;
}
// Write header.
FileHeader header(version_, section_index);
if (lseek(fd, 0, SEEK_SET) != 0) {
return false;
}
if (!WriteBuffer(fd, &header, sizeof(FileHeader))) {
return false;
}
uint64_t total_time = NanoTime() - start;
VLOG(profiler) << "Compressed from "
<< std::to_string(total_uncompressed_size)
<< " to "
<< std::to_string(file_offset);
VLOG(profiler) << "Time to save profile: " << std::to_string(total_time);
return true;
}
ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData(
const std::string& profile_key,
uint32_t checksum,
uint32_t num_type_ids,
uint32_t num_method_ids) {
DCHECK_EQ(profile_key_map_.size(), info_.size());
auto profile_index_it = profile_key_map_.lower_bound(profile_key);
if (profile_index_it == profile_key_map_.end() || profile_index_it->first != profile_key) {
// We did not find the key. Create a new DexFileData if we did not reach the limit.
DCHECK_LE(profile_key_map_.size(), MaxProfileIndex());
if (profile_key_map_.size() == MaxProfileIndex()) {
// Allow only a limited number dex files to be profiled. This allows us to save bytes
// when encoding. For regular profiles this 2^8, and for boot profiles is 2^16
// (well above what we expect for normal applications).
LOG(ERROR) << "Exceeded the maximum number of dex file. Something went wrong";
return nullptr;
}
ProfileIndexType new_profile_index = dchecked_integral_cast<ProfileIndexType>(info_.size());
std::unique_ptr<DexFileData> dex_file_data(new (&allocator_) DexFileData(
&allocator_,
profile_key,
checksum,
new_profile_index,
num_type_ids,
num_method_ids,
IsForBootImage()));
// Record the new data in `profile_key_map_` and `info_`.
std::string_view new_key(dex_file_data->profile_key);
profile_index_it = profile_key_map_.PutBefore(profile_index_it, new_key, new_profile_index);
info_.push_back(std::move(dex_file_data));
DCHECK_EQ(profile_key_map_.size(), info_.size());
}
ProfileIndexType profile_index = profile_index_it->second;
DexFileData* result = info_[profile_index].get();
// Check that the checksum matches.
// This may different if for example the dex file was updated and we had a record of the old one.
if (result->checksum != checksum) {
LOG(WARNING) << "Checksum mismatch for dex " << profile_key;
return nullptr;
}
// DCHECK that profile info map key is consistent with the one stored in the dex file data.
// This should always be the case since since the cache map is managed by ProfileCompilationInfo.
DCHECK_EQ(profile_key, result->profile_key);
DCHECK_EQ(profile_index, result->profile_index);
if (num_type_ids != result->num_type_ids || num_method_ids != result->num_method_ids) {
// This should not happen... added to help investigating b/65812889.
LOG(ERROR) << "num_type_ids or num_method_ids mismatch for dex " << profile_key
<< ", types: expected=" << num_type_ids << " v. actual=" << result->num_type_ids
<< ", methods: expected=" << num_method_ids << " actual=" << result->num_method_ids;
return nullptr;
}
return result;
}
const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData(
const std::string& profile_key,
uint32_t checksum,
bool verify_checksum) const {
const auto profile_index_it = profile_key_map_.find(profile_key);
if (profile_index_it == profile_key_map_.end()) {
return nullptr;
}
ProfileIndexType profile_index = profile_index_it->second;
const DexFileData* result = info_[profile_index].get();
if (verify_checksum && !ChecksumMatch(result->checksum, checksum)) {
return nullptr;
}
DCHECK_EQ(profile_key, result->profile_key);
DCHECK_EQ(profile_index, result->profile_index);
return result;
}
const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexDataUsingAnnotations(
const DexFile* dex_file,
const ProfileSampleAnnotation& annotation) const {
if (annotation == ProfileSampleAnnotation::kNone) {
std::string_view profile_key = GetProfileDexFileBaseKeyView(dex_file->GetLocation());
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
if (profile_key == GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)) {
if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
return nullptr;
}
return dex_data.get();
}
}
} else {
std::string profile_key = GetProfileDexFileAugmentedKey(dex_file->GetLocation(), annotation);
return FindDexData(profile_key, dex_file->GetLocationChecksum());
}
return nullptr;
}
void ProfileCompilationInfo::FindAllDexData(
const DexFile* dex_file,
/*out*/ std::vector<const ProfileCompilationInfo::DexFileData*>* result) const {
std::string_view profile_key = GetProfileDexFileBaseKeyView(dex_file->GetLocation());
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
if (profile_key == GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)) {
if (ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
result->push_back(dex_data.get());
}
}
}
}
ProfileCompilationInfo::ExtraDescriptorIndex ProfileCompilationInfo::AddExtraDescriptor(
std::string_view extra_descriptor) {
DCHECK_LE(extra_descriptor.size(), kMaxExtraDescriptorLength);
DCHECK(extra_descriptors_indexes_.find(extra_descriptor) == extra_descriptors_indexes_.end());
ExtraDescriptorIndex new_extra_descriptor_index = extra_descriptors_.size();
DCHECK_LE(new_extra_descriptor_index, kMaxExtraDescriptors);
if (UNLIKELY(new_extra_descriptor_index == kMaxExtraDescriptors)) {
return kMaxExtraDescriptors; // Cannot add another extra descriptor.
}
// Add the extra descriptor and record the new index.
extra_descriptors_.emplace_back(extra_descriptor);
extra_descriptors_indexes_.insert(new_extra_descriptor_index);
return new_extra_descriptor_index;
}
bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi,
MethodHotness::Flag flags,
const ProfileSampleAnnotation& annotation) {
DexFileData* const data = GetOrAddDexFileData(pmi.ref.dex_file, annotation);
if (data == nullptr) { // checksum mismatch
return false;
}
if (!data->AddMethod(flags, pmi.ref.index)) {
return false;
}
if ((flags & MethodHotness::kFlagHot) == 0) {
// The method is not hot, do not add inline caches.
return true;
}
// Add inline caches.
InlineCacheMap* inline_cache = data->FindOrAddHotMethod(pmi.ref.index);
DCHECK(inline_cache != nullptr);
for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) {
if (cache.is_missing_types) {
FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMissingTypes();
continue;
}
if (cache.is_megamorphic) {
FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMegamorphic();
continue;
}
for (const TypeReference& class_ref : cache.classes) {
DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, cache.dex_pc);
if (dex_pc_data->is_missing_types || dex_pc_data->is_megamorphic) {
// Don't bother adding classes if we are missing types or already megamorphic.
break;
}
dex::TypeIndex type_index = FindOrCreateTypeIndex(*pmi.ref.dex_file, class_ref);
if (type_index.IsValid()) {
dex_pc_data->AddClass(type_index);
} else {
// Could not create artificial type index.
dex_pc_data->SetIsMissingTypes();
}
}
}
return true;
}
// TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and
// return a unique pointer to a ProfileCompilationInfo upon success.
bool ProfileCompilationInfo::Load(
int fd, bool merge_classes, const ProfileLoadFilterFn& filter_fn) {
std::string error;
ProfileLoadStatus status = LoadInternal(fd, &error, merge_classes, filter_fn);
if (status == ProfileLoadStatus::kSuccess) {
return true;
} else {
LOG(WARNING) << "Error when reading profile: " << error;
return false;
}
}
bool ProfileCompilationInfo::VerifyProfileData(const std::vector<const DexFile*>& dex_files) {
std::unordered_map<std::string_view, const DexFile*> key_to_dex_file;
for (const DexFile* dex_file : dex_files) {
key_to_dex_file.emplace(GetProfileDexFileBaseKeyView(dex_file->GetLocation()), dex_file);
}
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
// We need to remove any annotation from the key during verification.
const auto it = key_to_dex_file.find(GetBaseKeyViewFromAugmentedKey(dex_data->profile_key));
if (it == key_to_dex_file.end()) {
// It is okay if profile contains data for additional dex files.
continue;
}
const DexFile* dex_file = it->second;
const std::string& dex_location = dex_file->GetLocation();
if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
LOG(ERROR) << "Dex checksum mismatch while verifying profile "
<< "dex location " << dex_location << " (checksum="
<< dex_file->GetLocationChecksum() << ", profile checksum="
<< dex_data->checksum;
return false;
}
if (dex_data->num_method_ids != dex_file->NumMethodIds() ||
dex_data->num_type_ids != dex_file->NumTypeIds()) {
LOG(ERROR) << "Number of type or method ids in dex file and profile don't match."
<< "dex location " << dex_location
<< " dex_file.NumTypeIds=" << dex_file->NumTypeIds()
<< " .v dex_data.num_type_ids=" << dex_data->num_type_ids
<< ", dex_file.NumMethodIds=" << dex_file->NumMethodIds()
<< " v. dex_data.num_method_ids=" << dex_data->num_method_ids;
return false;
}
// Class and method data should be valid. Verify only in debug builds.
if (kIsDebugBuild) {
// Verify method_encoding.
for (const auto& method_it : dex_data->method_map) {
CHECK_LT(method_it.first, dex_data->num_method_ids);
// Verify class indices of inline caches.
const InlineCacheMap &inline_cache_map = method_it.second;
for (const auto& inline_cache_it : inline_cache_map) {
const DexPcData& dex_pc_data = inline_cache_it.second;
if (dex_pc_data.is_missing_types || dex_pc_data.is_megamorphic) {
// No class indices to verify.
CHECK(dex_pc_data.classes.empty());
continue;
}
for (const dex::TypeIndex& type_index : dex_pc_data.classes) {
if (type_index.index_ >= dex_data->num_type_ids) {
CHECK_LT(type_index.index_ - dex_data->num_type_ids, extra_descriptors_.size());
}
}
}
}
// Verify class_ids.
for (const dex::TypeIndex& type_index : dex_data->class_set) {
if (type_index.index_ >= dex_data->num_type_ids) {
CHECK_LT(type_index.index_ - dex_data->num_type_ids, extra_descriptors_.size());
}
}
}
}
return true;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::OpenSource(
int32_t fd,
/*out*/ std::unique_ptr<ProfileSource>* source,
/*out*/ std::string* error) {
if (IsProfileFile(fd)) {
source->reset(ProfileSource::Create(fd));
return ProfileLoadStatus::kSuccess;
} else {
std::unique_ptr<ZipArchive> zip_archive(
ZipArchive::OpenFromFd(DupCloexec(fd), "profile", error));
if (zip_archive.get() == nullptr) {
*error = "Could not open the profile zip archive";
return ProfileLoadStatus::kBadData;
}
std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(kDexMetadataProfileEntry, error));
if (zip_entry == nullptr) {
// Allow archives without the profile entry. In this case, create an empty profile.
// This gives more flexible when ure-using archives that may miss the entry.
// (e.g. dex metadata files)
LOG(WARNING) << "Could not find entry " << kDexMetadataProfileEntry
<< " in the zip archive. Creating an empty profile.";
source->reset(ProfileSource::Create(MemMap::Invalid()));
return ProfileLoadStatus::kSuccess;
}
if (zip_entry->GetUncompressedLength() == 0) {
*error = "Empty profile entry in the zip archive.";
return ProfileLoadStatus::kBadData;
}
// TODO(calin) pass along file names to assist with debugging.
MemMap map = zip_entry->MapDirectlyOrExtract(
kDexMetadataProfileEntry, "profile file", error, alignof(ProfileSource));
if (map.IsValid()) {
source->reset(ProfileSource::Create(std::move(map)));
return ProfileLoadStatus::kSuccess;
} else {
return ProfileLoadStatus::kBadData;
}
}
}
bool ProfileCompilationInfo::ProfileSource::Seek(off_t offset) {
DCHECK_GE(offset, 0);
if (IsMemMap()) {
if (offset > static_cast<int64_t>(mem_map_.Size())) {
return false;
}
mem_map_cur_ = offset;
return true;
} else {
if (lseek64(fd_, offset, SEEK_SET) != offset) {
return false;
}
return true;
}
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ProfileSource::Read(
void* buffer,
size_t byte_count,
const std::string& debug_stage,
std::string* error) {
if (IsMemMap()) {
DCHECK_LE(mem_map_cur_, mem_map_.Size());
if (byte_count > mem_map_.Size() - mem_map_cur_) {
return ProfileLoadStatus::kBadData;
}
memcpy(buffer, mem_map_.Begin() + mem_map_cur_, byte_count);
mem_map_cur_ += byte_count;
} else {
while (byte_count > 0) {
int bytes_read = TEMP_FAILURE_RETRY(read(fd_, buffer, byte_count));;
if (bytes_read == 0) {
*error += "Profile EOF reached prematurely for " + debug_stage;
return ProfileLoadStatus::kBadData;
} else if (bytes_read < 0) {
*error += "Profile IO error for " + debug_stage + strerror(errno);
return ProfileLoadStatus::kIOError;
}
byte_count -= bytes_read;
reinterpret_cast<uint8_t*&>(buffer) += bytes_read;
}
}
return ProfileLoadStatus::kSuccess;
}
bool ProfileCompilationInfo::ProfileSource::HasEmptyContent() const {
if (IsMemMap()) {
return !mem_map_.IsValid() || mem_map_.Size() == 0;
} else {
struct stat stat_buffer;
if (fstat(fd_, &stat_buffer) != 0) {
return false;
}
return stat_buffer.st_size == 0;
}
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadSectionData(
ProfileSource& source,
const FileSectionInfo& section_info,
/*out*/ SafeBuffer* buffer,
/*out*/ std::string* error) {
DCHECK_EQ(buffer->Size(), 0u);
if (!source.Seek(section_info.GetFileOffset())) {
*error = "Failed to seek to section data.";
return ProfileLoadStatus::kIOError;
}
SafeBuffer temp_buffer(section_info.GetFileSize());
ProfileLoadStatus status = source.Read(
temp_buffer.GetCurrentPtr(), temp_buffer.GetAvailableBytes(), "ReadSectionData", error);
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
if (section_info.GetInflatedSize() != 0u &&
!temp_buffer.Inflate(section_info.GetInflatedSize())) {
*error += "Error uncompressing section data.";
return ProfileLoadStatus::kBadData;
}
buffer->Swap(temp_buffer);
return ProfileLoadStatus::kSuccess;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadDexFilesSection(
ProfileSource& source,
const FileSectionInfo& section_info,
const ProfileLoadFilterFn& filter_fn,
/*out*/ dchecked_vector<ProfileIndexType>* dex_profile_index_remap,
/*out*/ std::string* error) {
DCHECK(section_info.GetType() == FileSectionType::kDexFiles);
SafeBuffer buffer;
ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
ProfileIndexType num_dex_files;
if (!buffer.ReadUintAndAdvance(&num_dex_files)) {
*error = "Error reading number of dex files.";
return ProfileLoadStatus::kBadData;
}
if (num_dex_files >= MaxProfileIndex()) {
*error = "Too many dex files.";
return ProfileLoadStatus::kBadData;
}
DCHECK(dex_profile_index_remap->empty());
for (ProfileIndexType i = 0u; i != num_dex_files; ++i) {
uint32_t checksum, num_type_ids, num_method_ids;
if (!buffer.ReadUintAndAdvance(&checksum) ||
!buffer.ReadUintAndAdvance(&num_type_ids) ||
!buffer.ReadUintAndAdvance(&num_method_ids)) {
*error = "Error reading dex file data.";
return ProfileLoadStatus::kBadData;
}
std::string_view profile_key_view;
if (!buffer.ReadStringAndAdvance(&profile_key_view)) {
*error += "Missing terminating null character for profile key.";
return ProfileLoadStatus::kBadData;
}
if (profile_key_view.size() == 0u || profile_key_view.size() > kMaxDexFileKeyLength) {
*error = "ProfileKey has an invalid size: " + std::to_string(profile_key_view.size());
return ProfileLoadStatus::kBadData;
}
std::string profile_key(profile_key_view);
if (!filter_fn(profile_key, checksum)) {
// Do not load data for this key. Store invalid index to `dex_profile_index_remap`.
VLOG(compiler) << "Profile: Filtered out " << profile_key << " 0x" << std::hex << checksum;
dex_profile_index_remap->push_back(MaxProfileIndex());
continue;
}
DexFileData* data = GetOrAddDexFileData(profile_key, checksum, num_type_ids, num_method_ids);
if (data == nullptr) {
if (UNLIKELY(profile_key_map_.size() == MaxProfileIndex()) &&
profile_key_map_.find(profile_key) == profile_key_map_.end()) {
*error = "Too many dex files.";
} else {
*error = "Checksum, NumTypeIds, or NumMethodIds mismatch for " + profile_key;
}
return ProfileLoadStatus::kBadData;
}
dex_profile_index_remap->push_back(data->profile_index);
}
if (buffer.GetAvailableBytes() != 0u) {
*error = "Unexpected data at end of dex files section.";
return ProfileLoadStatus::kBadData;
}
return ProfileLoadStatus::kSuccess;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadExtraDescriptorsSection(
ProfileSource& source,
const FileSectionInfo& section_info,
/*out*/ dchecked_vector<ExtraDescriptorIndex>* extra_descriptors_remap,
/*out*/ std::string* error) {
DCHECK(section_info.GetType() == FileSectionType::kExtraDescriptors);
SafeBuffer buffer;
ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
uint16_t num_extra_descriptors;
if (!buffer.ReadUintAndAdvance(&num_extra_descriptors)) {
*error = "Error reading number of extra descriptors.";
return ProfileLoadStatus::kBadData;
}
// Note: We allow multiple extra descriptors sections in a single profile file
// but that can lead to `kMergeError` if there are too many extra descriptors.
// Other sections can reference only extra descriptors from preceding sections.
extra_descriptors_remap->reserve(
std::min<size_t>(extra_descriptors_remap->size() + num_extra_descriptors,
std::numeric_limits<uint16_t>::max()));
for (uint16_t i = 0; i != num_extra_descriptors; ++i) {
std::string_view extra_descriptor;
if (!buffer.ReadStringAndAdvance(&extra_descriptor)) {
*error += "Missing terminating null character for extra descriptor.";
return ProfileLoadStatus::kBadData;
}
if (!IsValidDescriptor(std::string(extra_descriptor).c_str())) {
*error += "Invalid extra descriptor.";
return ProfileLoadStatus::kBadData;
}
// Try to match an existing extra descriptor.
auto it = extra_descriptors_indexes_.find(extra_descriptor);
if (it != extra_descriptors_indexes_.end()) {
extra_descriptors_remap->push_back(*it);
continue;
}
// Try to insert a new extra descriptor.
ExtraDescriptorIndex extra_descriptor_index = AddExtraDescriptor(extra_descriptor);
if (extra_descriptor_index == kMaxExtraDescriptors) {
*error = "Too many extra descriptors.";
return ProfileLoadStatus::kMergeError;
}
extra_descriptors_remap->push_back(extra_descriptor_index);
}
return ProfileLoadStatus::kSuccess;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadClassesSection(
ProfileSource& source,
const FileSectionInfo& section_info,
const dchecked_vector<ProfileIndexType>& dex_profile_index_remap,
const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
/*out*/ std::string* error) {
DCHECK(section_info.GetType() == FileSectionType::kClasses);
SafeBuffer buffer;
ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
while (buffer.GetAvailableBytes() != 0u) {
ProfileIndexType profile_index;
if (!buffer.ReadUintAndAdvance(&profile_index)) {
*error = "Error profile index in classes section.";
return ProfileLoadStatus::kBadData;
}
if (profile_index >= dex_profile_index_remap.size()) {
*error = "Invalid profile index in classes section.";
return ProfileLoadStatus::kBadData;
}
profile_index = dex_profile_index_remap[profile_index];
if (profile_index == MaxProfileIndex()) {
status = DexFileData::SkipClasses(buffer, error);
} else {
status = info_[profile_index]->ReadClasses(buffer, extra_descriptors_remap, error);
}
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
}
return ProfileLoadStatus::kSuccess;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadMethodsSection(
ProfileSource& source,
const FileSectionInfo& section_info,
const dchecked_vector<ProfileIndexType>& dex_profile_index_remap,
const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
/*out*/ std::string* error) {
DCHECK(section_info.GetType() == FileSectionType::kMethods);
SafeBuffer buffer;
ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
while (buffer.GetAvailableBytes() != 0u) {
ProfileIndexType profile_index;
if (!buffer.ReadUintAndAdvance(&profile_index)) {
*error = "Error profile index in methods section.";
return ProfileLoadStatus::kBadData;
}
if (profile_index >= dex_profile_index_remap.size()) {
*error = "Invalid profile index in methods section.";
return ProfileLoadStatus::kBadData;
}
profile_index = dex_profile_index_remap[profile_index];
if (profile_index == MaxProfileIndex()) {
status = DexFileData::SkipMethods(buffer, error);
} else {
status = info_[profile_index]->ReadMethods(buffer, extra_descriptors_remap, error);
}
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
}
return ProfileLoadStatus::kSuccess;
}
// TODO(calin): fail fast if the dex checksums don't match.
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::LoadInternal(
int32_t fd,
std::string* error,
bool merge_classes,
const ProfileLoadFilterFn& filter_fn) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
std::unique_ptr<ProfileSource> source;
ProfileLoadStatus status = OpenSource(fd, &source, error);
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
// We allow empty profile files.
// Profiles may be created by ActivityManager or installd before we manage to
// process them in the runtime or profman.
if (source->HasEmptyContent()) {
return ProfileLoadStatus::kSuccess;
}
// Read file header.
FileHeader header;
status = source->Read(&header, sizeof(FileHeader), "ReadProfileHeader", error);
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
if (!header.IsValid()) {
return header.InvalidHeaderMessage(error);
}
if (memcmp(header.GetVersion(), version_, kProfileVersionSize) != 0) {
*error = IsForBootImage() ? "Expected boot profile, got app profile."
: "Expected app profile, got boot profile.";
return ProfileLoadStatus::kVersionMismatch;
}
// Check if there are too many section infos.
uint32_t section_count = header.GetFileSectionCount();
uint32_t uncompressed_data_size = sizeof(FileHeader) + section_count * sizeof(FileSectionInfo);
if (uncompressed_data_size > GetSizeErrorThresholdBytes()) {
LOG(WARNING) << "Profile data size exceeds " << GetSizeErrorThresholdBytes()
<< " bytes. It has " << uncompressed_data_size << " bytes.";
return ProfileLoadStatus::kBadData;
}
// Read section infos.
dchecked_vector<FileSectionInfo> section_infos(section_count);
status = source->Read(
section_infos.data(), section_count * sizeof(FileSectionInfo), "ReadSectionInfos", error);
if (status != ProfileLoadStatus::kSuccess) {
return status;
}
// Finish uncompressed data size calculation.
for (const FileSectionInfo& section_info : section_infos) {
uint32_t mem_size = section_info.GetMemSize();
if (UNLIKELY(mem_size > std::numeric_limits<uint32_t>::max() - uncompressed_data_size)) {
*error = "Total memory size overflow.";
return ProfileLoadStatus::kBadData;
}
uncompressed_data_size += mem_size;
}
// Allow large profiles for non target builds for the case where we are merging many profiles
// to generate a boot image profile.
if (uncompressed_data_size > GetSizeErrorThresholdBytes()) {
LOG(WARNING) << "Profile data size exceeds "
<< GetSizeErrorThresholdBytes()
<< " bytes. It has " << uncompressed_data_size << " bytes.";
return ProfileLoadStatus::kBadData;
}
if (uncompressed_data_size > GetSizeWarningThresholdBytes()) {
LOG(WARNING) << "Profile data size exceeds "
<< GetSizeWarningThresholdBytes()
<< " bytes. It has " << uncompressed_data_size << " bytes.";
}
// Process the mandatory dex files section.
DCHECK_NE(section_count, 0u); // Checked by `header.IsValid()` above.
const FileSectionInfo& dex_files_section_info = section_infos[0];
if (dex_files_section_info.GetType() != FileSectionType::kDexFiles) {
*error = "First section is not dex files section.";
return ProfileLoadStatus::kBadData;
}
dchecked_vector<ProfileIndexType> dex_profile_index_remap;
status = ReadDexFilesSection(
*source, dex_files_section_info, filter_fn, &dex_profile_index_remap, error);
if (status != ProfileLoadStatus::kSuccess) {
DCHECK(!error->empty());
return status;
}
// Process all other sections.
dchecked_vector<ExtraDescriptorIndex> extra_descriptors_remap;
for (uint32_t i = 1u; i != section_count; ++i) {
const FileSectionInfo& section_info = section_infos[i];
DCHECK(status == ProfileLoadStatus::kSuccess);
switch (section_info.GetType()) {
case FileSectionType::kDexFiles:
*error = "Unsupported additional dex files section.";
status = ProfileLoadStatus::kBadData;
break;
case FileSectionType::kExtraDescriptors:
status = ReadExtraDescriptorsSection(
*source, section_info, &extra_descriptors_remap, error);
break;
case FileSectionType::kClasses:
// Skip if all dex files were filtered out.
if (!info_.empty() && merge_classes) {
status = ReadClassesSection(
*source, section_info, dex_profile_index_remap, extra_descriptors_remap, error);
}
break;
case FileSectionType::kMethods:
// Skip if all dex files were filtered out.
if (!info_.empty()) {
status = ReadMethodsSection(
*source, section_info, dex_profile_index_remap, extra_descriptors_remap, error);
}
break;
case FileSectionType::kAggregationCounts:
// This section is only used on server side.
break;
default:
// Unknown section. Skip it. New versions of ART are allowed
// to add sections that shall be ignored by old versions.
break;
}
if (status != ProfileLoadStatus::kSuccess) {
DCHECK(!error->empty());
return status;
}
}
return ProfileLoadStatus::kSuccess;
}
bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other,
bool merge_classes) {
if (!SameVersion(other)) {
LOG(WARNING) << "Cannot merge different profile versions";
return false;
}
// First verify that all checksums match. This will avoid adding garbage to
// the current profile info.
// Note that the number of elements should be very small, so this should not
// be a performance issue.
for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
// verify_checksum is false because we want to differentiate between a missing dex data and
// a mismatched checksum.
const DexFileData* dex_data = FindDexData(other_dex_data->profile_key,
/* checksum= */ 0u,
/* verify_checksum= */ false);
if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) {
LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key;
return false;
}
}
// All checksums match. Import the data.
// The other profile might have a different indexing of dex files.
// That is because each dex files gets a 'dex_profile_index' on a first come first served basis.
// That means that the order in with the methods are added to the profile matters for the
// actual indices.
// The reason we cannot rely on the actual multidex index is that a single profile may store
// data from multiple splits. This means that a profile may contain a classes2.dex from split-A
// and one from split-B.
// First, build a mapping from other_dex_profile_index to this_dex_profile_index.
dchecked_vector<ProfileIndexType> dex_profile_index_remap;
dex_profile_index_remap.reserve(other.info_.size());
for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key,
other_dex_data->checksum,
other_dex_data->num_type_ids,
other_dex_data->num_method_ids);
if (dex_data == nullptr) {
// Could happen if we exceed the number of allowed dex files or there is
// a mismatch in `num_type_ids` or `num_method_ids`.
return false;
}
DCHECK_EQ(other_dex_data->profile_index, dex_profile_index_remap.size());
dex_profile_index_remap.push_back(dex_data->profile_index);
}
// Then merge extra descriptors.
dchecked_vector<ExtraDescriptorIndex> extra_descriptors_remap;
extra_descriptors_remap.reserve(other.extra_descriptors_.size());
for (const std::string& other_extra_descriptor : other.extra_descriptors_) {
auto it = extra_descriptors_indexes_.find(std::string_view(other_extra_descriptor));
if (it != extra_descriptors_indexes_.end()) {
extra_descriptors_remap.push_back(*it);
} else {
ExtraDescriptorIndex extra_descriptor_index = AddExtraDescriptor(other_extra_descriptor);
if (extra_descriptor_index == kMaxExtraDescriptors) {
// Too many extra descriptors.
return false;
}
extra_descriptors_remap.push_back(extra_descriptor_index);
}
}
// Merge the actual profile data.
for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
DexFileData* dex_data = info_[dex_profile_index_remap[other_dex_data->profile_index]].get();
DCHECK_EQ(dex_data, FindDexData(other_dex_data->profile_key, other_dex_data->checksum));
// Merge the classes.
uint32_t num_type_ids = dex_data->num_type_ids;
DCHECK_EQ(num_type_ids, other_dex_data->num_type_ids);
if (merge_classes) {
// Classes are ordered by the `TypeIndex`, so we have the classes with a `TypeId`
// in the dex file first, followed by classes using extra descriptors.
auto it = other_dex_data->class_set.lower_bound(dex::TypeIndex(num_type_ids));
dex_data->class_set.insert(other_dex_data->class_set.begin(), it);
for (auto end = other_dex_data->class_set.end(); it != end; ++it) {
ExtraDescriptorIndex new_extra_descriptor_index =
extra_descriptors_remap[it->index_ - num_type_ids];
if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
// Cannot represent the type with new extra descriptor index.
return false;
}
dex_data->class_set.insert(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
}
}
// Merge the methods and the inline caches.
for (const auto& other_method_it : other_dex_data->method_map) {
uint16_t other_method_index = other_method_it.first;
InlineCacheMap* inline_cache = dex_data->FindOrAddHotMethod(other_method_index);
if (inline_cache == nullptr) {
return false;
}
const auto& other_inline_cache = other_method_it.second;
for (const auto& other_ic_it : other_inline_cache) {
uint16_t other_dex_pc = other_ic_it.first;
const ArenaSet<dex::TypeIndex>& other_class_set = other_ic_it.second.classes;
DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, other_dex_pc);
if (other_ic_it.second.is_missing_types) {
dex_pc_data->SetIsMissingTypes();
} else if (other_ic_it.second.is_megamorphic) {
dex_pc_data->SetIsMegamorphic();
} else {
for (dex::TypeIndex type_index : other_class_set) {
if (type_index.index_ >= num_type_ids) {
ExtraDescriptorIndex new_extra_descriptor_index =
extra_descriptors_remap[type_index.index_ - num_type_ids];
if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
// Cannot represent the type with new extra descriptor index.
return false;
}
type_index = dex::TypeIndex(num_type_ids + new_extra_descriptor_index);
}
dex_pc_data->AddClass(type_index);
}
}
}
}
// Merge the method bitmaps.
dex_data->MergeBitmap(*other_dex_data);
}
return true;
}
ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::GetMethodHotness(
const MethodReference& method_ref,
const ProfileSampleAnnotation& annotation) const {
const DexFileData* dex_data = FindDexDataUsingAnnotations(method_ref.dex_file, annotation);
return dex_data != nullptr
? dex_data->GetHotnessInfo(method_ref.index)
: MethodHotness();
}
bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file,
dex::TypeIndex type_idx,
const ProfileSampleAnnotation& annotation) const {
const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
return (dex_data != nullptr) && dex_data->ContainsClass(type_idx);
}
uint32_t ProfileCompilationInfo::GetNumberOfMethods() const {
uint32_t total = 0;
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
total += dex_data->method_map.size();
}
return total;
}
uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const {
uint32_t total = 0;
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
total += dex_data->class_set.size();
}
return total;
}
std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>& dex_files,
bool print_full_dex_location) const {
std::ostringstream os;
os << "ProfileInfo [";
for (size_t k = 0; k < kProfileVersionSize - 1; k++) {
// Iterate to 'kProfileVersionSize - 1' because the version_ ends with '\0'
// which we don't want to print.
os << static_cast<char>(version_[k]);
}
os << "]\n";
if (info_.empty()) {
os << "-empty-";
return os.str();
}
if (!extra_descriptors_.empty()) {
os << "\nextra descriptors:";
for (const std::string& str : extra_descriptors_) {
os << "\n\t" << str;
}
os << "\n";
}
const std::string kFirstDexFileKeySubstitute = "!classes.dex";
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
os << "\n";
if (print_full_dex_location) {
os << dex_data->profile_key;
} else {
// Replace the (empty) multidex suffix of the first key with a substitute for easier reading.
std::string multidex_suffix = DexFileLoader::GetMultiDexSuffix(
GetBaseKeyFromAugmentedKey(dex_data->profile_key));
os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix);
}
os << " [index=" << static_cast<uint32_t>(dex_data->profile_index) << "]";
os << " [checksum=" << std::hex << dex_data->checksum << "]" << std::dec;
os << " [num_type_ids=" << dex_data->num_type_ids << "]";
os << " [num_method_ids=" << dex_data->num_method_ids << "]";
const DexFile* dex_file = nullptr;
for (const DexFile* current : dex_files) {
if (GetBaseKeyViewFromAugmentedKey(dex_data->profile_key) ==
GetProfileDexFileBaseKeyView(current->GetLocation()) &&
ChecksumMatch(dex_data->checksum, current->GetLocationChecksum())) {
dex_file = current;
break;
}
}
os << "\n\thot methods: ";
for (const auto& method_it : dex_data->method_map) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true);
} else {
os << method_it.first;
}
os << "[";
for (const auto& inline_cache_it : method_it.second) {
os << "{" << std::hex << inline_cache_it.first << std::dec << ":";
if (inline_cache_it.second.is_missing_types) {
os << "MT";
} else if (inline_cache_it.second.is_megamorphic) {
os << "MM";
} else {
const char* separator = "";
for (dex::TypeIndex type_index : inline_cache_it.second.classes) {
os << separator << type_index.index_;
separator = ",";
}
}
os << "}";
}
os << "], ";
}
bool startup = true;
while (true) {
os << "\n\t" << (startup ? "startup methods: " : "post startup methods: ");
for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
MethodHotness hotness_info(dex_data->GetHotnessInfo(method_idx));
if (startup ? hotness_info.IsStartup() : hotness_info.IsPostStartup()) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyMethod(method_idx, true);
} else {
os << method_idx << ", ";
}
}
}
if (startup == false) {
break;
}
startup = false;
}
os << "\n\tclasses: ";
for (dex::TypeIndex type_index : dex_data->class_set) {
if (dex_file != nullptr) {
os << "\n\t\t" << PrettyDescriptor(GetTypeDescriptor(dex_file, type_index));
} else {
os << type_index.index_ << ",";
}
}
}
return os.str();
}
bool ProfileCompilationInfo::GetClassesAndMethods(
const DexFile& dex_file,
/*out*/std::set<dex::TypeIndex>* class_set,
/*out*/std::set<uint16_t>* hot_method_set,
/*out*/std::set<uint16_t>* startup_method_set,
/*out*/std::set<uint16_t>* post_startup_method_method_set,
const ProfileSampleAnnotation& annotation) const {
std::set<std::string> ret;
const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
if (dex_data == nullptr) {
return false;
}
for (const auto& it : dex_data->method_map) {
hot_method_set->insert(it.first);
}
for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
if (hotness.IsStartup()) {
startup_method_set->insert(method_idx);
}
if (hotness.IsPostStartup()) {
post_startup_method_method_set->insert(method_idx);
}
}
for (const dex::TypeIndex& type_index : dex_data->class_set) {
class_set->insert(type_index);
}
return true;
}
const ArenaSet<dex::TypeIndex>* ProfileCompilationInfo::GetClasses(
const DexFile& dex_file,
const ProfileSampleAnnotation& annotation) const {
const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
if (dex_data == nullptr) {
return nullptr;
}
return &dex_data->class_set;
}
bool ProfileCompilationInfo::SameVersion(const ProfileCompilationInfo& other) const {
return memcmp(version_, other.version_, kProfileVersionSize) == 0;
}
bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) {
// No need to compare profile_key_map_. That's only a cache for fast search.
// All the information is already in the info_ vector.
if (!SameVersion(other)) {
return false;
}
if (info_.size() != other.info_.size()) {
return false;
}
for (size_t i = 0; i < info_.size(); i++) {
const DexFileData& dex_data = *info_[i];
const DexFileData& other_dex_data = *other.info_[i];
if (!(dex_data == other_dex_data)) {
return false;
}
}
return true;
}
// Naive implementation to generate a random profile file suitable for testing.
bool ProfileCompilationInfo::GenerateTestProfile(int fd,
uint16_t number_of_dex_files,
uint16_t method_percentage,
uint16_t class_percentage,
uint32_t random_seed) {
const std::string base_dex_location = "base.apk";
ProfileCompilationInfo info;
// The limits are defined by the dex specification.
const uint16_t max_methods = std::numeric_limits<uint16_t>::max();
const uint16_t max_classes = std::numeric_limits<uint16_t>::max();
uint16_t number_of_methods = max_methods * method_percentage / 100;
uint16_t number_of_classes = max_classes * class_percentage / 100;
std::srand(random_seed);
// Make sure we generate more samples with a low index value.
// This makes it more likely to hit valid method/class indices in small apps.
const uint16_t kFavorFirstN = 10000;
const uint16_t kFavorSplit = 2;
for (uint16_t i = 0; i < number_of_dex_files; i++) {
std::string dex_location = DexFileLoader::GetMultiDexLocation(i, base_dex_location.c_str());
std::string profile_key = info.GetProfileDexFileBaseKey(dex_location);
DexFileData* const data =
info.GetOrAddDexFileData(profile_key, /*checksum=*/ 0, max_classes, max_methods);
for (uint16_t m = 0; m < number_of_methods; m++) {
uint16_t method_idx = rand() % max_methods;
if (m < (number_of_methods / kFavorSplit)) {
method_idx %= kFavorFirstN;
}
// Alternate between startup and post startup.
uint32_t flags = MethodHotness::kFlagHot;
flags |= ((m & 1) != 0) ? MethodHotness::kFlagPostStartup : MethodHotness::kFlagStartup;
data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_idx);
}
for (uint16_t c = 0; c < number_of_classes; c++) {
uint16_t type_idx = rand() % max_classes;
if (c < (number_of_classes / kFavorSplit)) {
type_idx %= kFavorFirstN;
}
data->class_set.insert(dex::TypeIndex(type_idx));
}
}
return info.Save(fd);
}
// Naive implementation to generate a random profile file suitable for testing.
// Description of random selection:
// * Select a random starting point S.
// * For every index i, add (S+i) % (N - total number of methods/classes) to profile with the
// probably of 1/(N - i - number of methods/classes needed to add in profile).
bool ProfileCompilationInfo::GenerateTestProfile(
int fd,
std::vector<std::unique_ptr<const DexFile>>& dex_files,
uint16_t method_percentage,
uint16_t class_percentage,
uint32_t random_seed) {
ProfileCompilationInfo info;
std::default_random_engine rng(random_seed);
auto create_shuffled_range = [&rng](uint32_t take, uint32_t out_of) {
CHECK_LE(take, out_of);
std::vector<uint32_t> vec(out_of);
std::iota(vec.begin(), vec.end(), 0u);
std::shuffle(vec.begin(), vec.end(), rng);
vec.erase(vec.begin() + take, vec.end());
std::sort(vec.begin(), vec.end());
return vec;
};
for (std::unique_ptr<const DexFile>& dex_file : dex_files) {
const std::string& dex_location = dex_file->GetLocation();
std::string profile_key = info.GetProfileDexFileBaseKey(dex_location);
uint32_t checksum = dex_file->GetLocationChecksum();
uint32_t number_of_classes = dex_file->NumClassDefs();
uint32_t classes_required_in_profile = (number_of_classes * class_percentage) / 100;
DexFileData* const data = info.GetOrAddDexFileData(
profile_key, checksum, dex_file->NumTypeIds(), dex_file->NumMethodIds());
for (uint32_t class_index : create_shuffled_range(classes_required_in_profile,
number_of_classes)) {
data->class_set.insert(dex_file->GetClassDef(class_index).class_idx_);
}
uint32_t number_of_methods = dex_file->NumMethodIds();
uint32_t methods_required_in_profile = (number_of_methods * method_percentage) / 100;
for (uint32_t method_index : create_shuffled_range(methods_required_in_profile,
number_of_methods)) {
// Alternate between startup and post startup.
uint32_t flags = MethodHotness::kFlagHot;
flags |= ((method_index & 1) != 0)
? MethodHotness::kFlagPostStartup
: MethodHotness::kFlagStartup;
data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_index);
}
}
return info.Save(fd);
}
bool ProfileCompilationInfo::IsEmpty() const {
DCHECK_EQ(info_.size(), profile_key_map_.size());
// Note that this doesn't look at the bitmap region, so we will return true
// when the profile contains only non-hot methods. This is generally ok
// as for speed-profile to be useful we do need hot methods and resolved classes.
return GetNumberOfMethods() == 0 && GetNumberOfResolvedClasses() == 0;
}
ProfileCompilationInfo::InlineCacheMap*
ProfileCompilationInfo::DexFileData::FindOrAddHotMethod(uint16_t method_index) {
if (method_index >= num_method_ids) {
LOG(ERROR) << "Invalid method index " << method_index << ". num_method_ids=" << num_method_ids;
return nullptr;
}
return &(method_map.FindOrAdd(
method_index,
InlineCacheMap(std::less<uint16_t>(), allocator_->Adapter(kArenaAllocProfile)))->second);
}
// Mark a method as executed at least once.
bool ProfileCompilationInfo::DexFileData::AddMethod(MethodHotness::Flag flags, size_t index) {
if (index >= num_method_ids || index > kMaxSupportedMethodIndex) {
LOG(ERROR) << "Invalid method index " << index << ". num_method_ids=" << num_method_ids
<< ", max: " << kMaxSupportedMethodIndex;
return false;
}
SetMethodHotness(index, flags);
if ((flags & MethodHotness::kFlagHot) != 0) {
ProfileCompilationInfo::InlineCacheMap* result = FindOrAddHotMethod(index);
DCHECK(result != nullptr);
}
return true;
}
void ProfileCompilationInfo::DexFileData::SetMethodHotness(size_t index,
MethodHotness::Flag flags) {
DCHECK_LT(index, num_method_ids);
ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
if ((flags & flag) != 0) {
method_bitmap.StoreBit(MethodFlagBitmapIndex(
static_cast<MethodHotness::Flag>(flag), index), /*value=*/ true);
}
return true;
});
}
ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::DexFileData::GetHotnessInfo(
uint32_t dex_method_index) const {
MethodHotness ret;
ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
if (method_bitmap.LoadBit(MethodFlagBitmapIndex(
static_cast<MethodHotness::Flag>(flag), dex_method_index))) {
ret.AddFlag(static_cast<MethodHotness::Flag>(flag));
}
return true;
});
auto it = method_map.find(dex_method_index);
if (it != method_map.end()) {
ret.SetInlineCacheMap(&it->second);
ret.AddFlag(MethodHotness::kFlagHot);
}
return ret;
}
// To simplify the implementation we use the MethodHotness flag values as indexes into the internal
// bitmap representation. As such, they should never change unless the profile version is updated
// and the implementation changed accordingly.
static_assert(ProfileCompilationInfo::MethodHotness::kFlagFirst == 1 << 0);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagHot == 1 << 0);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartup == 1 << 1);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostStartup == 1 << 2);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastRegular == 1 << 2);
static_assert(ProfileCompilationInfo::MethodHotness::kFlag32bit == 1 << 3);
static_assert(ProfileCompilationInfo::MethodHotness::kFlag64bit == 1 << 4);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagSensitiveThread == 1 << 5);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmStartup == 1 << 6);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmPostStartup == 1 << 7);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagBoot == 1 << 8);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostBoot == 1 << 9);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupBin == 1 << 10);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupMaxBin == 1 << 15);
static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastBoot == 1 << 15);
uint16_t ProfileCompilationInfo::DexFileData::GetUsedBitmapFlags() const {
uint32_t used_flags = 0u;
ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
if (method_bitmap.HasSomeBitSet(index * num_method_ids, num_method_ids)) {
used_flags |= flag;
}
return true;
});
return dchecked_integral_cast<uint16_t>(used_flags);
}
ProfileCompilationInfo::DexPcData*
ProfileCompilationInfo::FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc) {
return &(inline_cache->FindOrAdd(dex_pc, DexPcData(inline_cache->get_allocator()))->second);
}
HashSet<std::string> ProfileCompilationInfo::GetClassDescriptors(
const std::vector<const DexFile*>& dex_files,
const ProfileSampleAnnotation& annotation) {
HashSet<std::string> ret;
for (const DexFile* dex_file : dex_files) {
const DexFileData* data = FindDexDataUsingAnnotations(dex_file, annotation);
if (data != nullptr) {
for (dex::TypeIndex type_idx : data->class_set) {
ret.insert(GetTypeDescriptor(dex_file, type_idx));
}
} else {
VLOG(compiler) << "Failed to find profile data for " << dex_file->GetLocation();
}
}
return ret;
}
bool ProfileCompilationInfo::IsProfileFile(int fd) {
// First check if it's an empty file as we allow empty profile files.
// Profiles may be created by ActivityManager or installd before we manage to
// process them in the runtime or profman.
struct stat stat_buffer;
if (fstat(fd, &stat_buffer) != 0) {
return false;
}
if (stat_buffer.st_size == 0) {
return true;
}
// The files is not empty. Check if it contains the profile magic.
size_t byte_count = sizeof(kProfileMagic);
uint8_t buffer[sizeof(kProfileMagic)];
if (!android::base::ReadFullyAtOffset(fd, buffer, byte_count, /*offset=*/ 0)) {
return false;
}
// Reset the offset to prepare the file for reading.
off_t rc = TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET));
if (rc == static_cast<off_t>(-1)) {
PLOG(ERROR) << "Failed to reset the offset";
return false;
}
return memcmp(buffer, kProfileMagic, byte_count) == 0;
}
bool ProfileCompilationInfo::UpdateProfileKeys(
const std::vector<std::unique_ptr<const DexFile>>& dex_files, /*out*/ bool* matched) {
// This check aligns with when dex2oat falls back from "speed-profile" to "verify".
//
// ART Service relies on the exit code of profman, which is determined by the value of `matched`,
// to judge whether it should re-dexopt for "speed-profile". Therefore, a misalignment will cause
// repeated dexopt.
if (IsEmpty()) {
*matched = false;
return true;
}
DCHECK(!info_.empty());
*matched = true;
// A map from the old base key to the new base key.
std::unordered_map<std::string, std::string> old_key_to_new_key;
// A map from the new base key to all matching old base keys (an invert of the map above), for
// detecting duplicate keys.
std::unordered_map<std::string, std::unordered_set<std::string>> new_key_to_old_keys;
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
std::string old_base_key = GetBaseKeyFromAugmentedKey(dex_data->profile_key);
bool found = false;
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
if (dex_data->checksum == dex_file->GetLocationChecksum() &&
dex_data->num_type_ids == dex_file->NumTypeIds() &&
dex_data->num_method_ids == dex_file->NumMethodIds()) {
std::string new_base_key = GetProfileDexFileBaseKey(dex_file->GetLocation());
old_key_to_new_key[old_base_key] = new_base_key;
new_key_to_old_keys[new_base_key].insert(old_base_key);
found = true;
break;
}
}
if (!found) {
*matched = false;
// Keep the old key.
old_key_to_new_key[old_base_key] = old_base_key;
new_key_to_old_keys[old_base_key].insert(old_base_key);
}
}
for (const auto& [new_key, old_keys] : new_key_to_old_keys) {
if (old_keys.size() > 1) {
LOG(ERROR) << "Cannot update multiple profile keys [" << android::base::Join(old_keys, ", ")
<< "] to the same new key '" << new_key << "'";
return false;
}
}
// Check passed. Now perform the actual mutation.
profile_key_map_.clear();
for (const std::unique_ptr<DexFileData>& dex_data : info_) {
std::string old_base_key = GetBaseKeyFromAugmentedKey(dex_data->profile_key);
const std::string& new_base_key = old_key_to_new_key[old_base_key];
DCHECK(!new_base_key.empty());
// Retain the annotation (if any) during the renaming by re-attaching the info from the old key.
dex_data->profile_key = MigrateAnnotationInfo(new_base_key, dex_data->profile_key);
profile_key_map_.Put(dex_data->profile_key, dex_data->profile_index);
}
return true;
}
bool ProfileCompilationInfo::ProfileFilterFnAcceptAll(
[[maybe_unused]] const std::string& dex_location, [[maybe_unused]] uint32_t checksum) {
return true;
}
void ProfileCompilationInfo::ClearData() {
profile_key_map_.clear();
info_.clear();
extra_descriptors_indexes_.clear();
extra_descriptors_.clear();
}
void ProfileCompilationInfo::ClearDataAndAdjustVersion(bool for_boot_image) {
ClearData();
memcpy(version_,
for_boot_image ? kProfileVersionForBootImage : kProfileVersion,
kProfileVersionSize);
}
bool ProfileCompilationInfo::IsForBootImage() const {
return memcmp(version_, kProfileVersionForBootImage, sizeof(kProfileVersionForBootImage)) == 0;
}
const uint8_t* ProfileCompilationInfo::GetVersion() const {
return version_;
}
bool ProfileCompilationInfo::DexFileData::ContainsClass(dex::TypeIndex type_index) const {
return class_set.find(type_index) != class_set.end();
}
uint32_t ProfileCompilationInfo::DexFileData::ClassesDataSize() const {
return class_set.empty()
? 0u
: sizeof(ProfileIndexType) + // Which dex file.
sizeof(uint16_t) + // Number of classes.
sizeof(uint16_t) * class_set.size(); // Type index diffs.
}
void ProfileCompilationInfo::DexFileData::WriteClasses(SafeBuffer& buffer) const {
if (class_set.empty()) {
return;
}
buffer.WriteUintAndAdvance(profile_index);
buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(class_set.size()));
WriteClassSet(buffer, class_set);
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::ReadClasses(
SafeBuffer& buffer,
const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
std::string* error) {
uint16_t classes_size;
if (!buffer.ReadUintAndAdvance(&classes_size)) {
*error = "Error reading classes size.";
return ProfileLoadStatus::kBadData;
}
uint16_t num_valid_type_indexes = dchecked_integral_cast<uint16_t>(
std::min<size_t>(num_type_ids + extra_descriptors_remap.size(), DexFile::kDexNoIndex16));
uint16_t type_index = 0u;
for (size_t i = 0; i != classes_size; ++i) {
uint16_t type_index_diff;
if (!buffer.ReadUintAndAdvance(&type_index_diff)) {
*error = "Error reading class type index diff.";
return ProfileLoadStatus::kBadData;
}
if (type_index_diff == 0u && i != 0u) {
*error = "Duplicate type index.";
return ProfileLoadStatus::kBadData;
}
if (type_index_diff >= num_valid_type_indexes - type_index) {
*error = "Invalid type index.";
return ProfileLoadStatus::kBadData;
}
type_index += type_index_diff;
if (type_index >= num_type_ids) {
uint32_t new_extra_descriptor_index = extra_descriptors_remap[type_index - num_type_ids];
if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
*error = "Remapped type index out of range.";
return ProfileLoadStatus::kMergeError;
}
class_set.insert(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
} else {
class_set.insert(dex::TypeIndex(type_index));
}
}
return ProfileLoadStatus::kSuccess;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::SkipClasses(
SafeBuffer& buffer,
std::string* error) {
uint16_t classes_size;
if (!buffer.ReadUintAndAdvance(&classes_size)) {
*error = "Error reading classes size to skip.";
return ProfileLoadStatus::kBadData;
}
size_t following_data_size = static_cast<size_t>(classes_size) * sizeof(uint16_t);
if (following_data_size > buffer.GetAvailableBytes()) {
*error = "Classes data size to skip exceeds remaining data.";
return ProfileLoadStatus::kBadData;
}
buffer.Advance(following_data_size);
return ProfileLoadStatus::kSuccess;
}
uint32_t ProfileCompilationInfo::DexFileData::MethodsDataSize(
/*out*/ uint16_t* method_flags,
/*out*/ size_t* saved_bitmap_bit_size) const {
uint16_t local_method_flags = GetUsedBitmapFlags();
size_t local_saved_bitmap_bit_size = POPCOUNT(local_method_flags) * num_method_ids;
if (!method_map.empty()) {
local_method_flags |= enum_cast<uint16_t>(MethodHotness::kFlagHot);
}
size_t size = 0u;
if (local_method_flags != 0u) {
size_t num_hot_methods = method_map.size();
size_t num_dex_pc_entries = 0u;
size_t num_class_entries = 0u;
for (const auto& method_entry : method_map) {
const InlineCacheMap& inline_cache_map = method_entry.second;
num_dex_pc_entries += inline_cache_map.size();
for (const auto& inline_cache_entry : inline_cache_map) {
const DexPcData& dex_pc_data = inline_cache_entry.second;
num_class_entries += dex_pc_data.classes.size();
}
}
constexpr size_t kPerHotMethodSize =
sizeof(uint16_t) + // Method index diff.
sizeof(uint16_t); // Inline cache size.
constexpr size_t kPerDexPcEntrySize =
sizeof(uint16_t) + // Dex PC.
sizeof(uint8_t); // Number of inline cache classes.
constexpr size_t kPerClassEntrySize =
sizeof(uint16_t); // Type index diff.
size_t saved_bitmap_byte_size = BitsToBytesRoundUp(local_saved_bitmap_bit_size);
size = sizeof(ProfileIndexType) + // Which dex file.
sizeof(uint32_t) + // Total size of following data.
sizeof(uint16_t) + // Method flags.
saved_bitmap_byte_size + // Bitmap data.
num_hot_methods * kPerHotMethodSize + // Data for hot methods.
num_dex_pc_entries * kPerDexPcEntrySize + // Data for dex pc entries.
num_class_entries * kPerClassEntrySize; // Data for inline cache class entries.
}
if (method_flags != nullptr) {
*method_flags = local_method_flags;
}
if (saved_bitmap_bit_size != nullptr) {
*saved_bitmap_bit_size = local_saved_bitmap_bit_size;
}
return size;
}
void ProfileCompilationInfo::DexFileData::WriteMethods(SafeBuffer& buffer) const {
uint16_t method_flags;
size_t saved_bitmap_bit_size;
uint32_t methods_data_size = MethodsDataSize(&method_flags, &saved_bitmap_bit_size);
if (methods_data_size == 0u) {
return; // No data to write.
}
DCHECK_GE(buffer.GetAvailableBytes(), methods_data_size);
uint32_t expected_available_bytes_at_end = buffer.GetAvailableBytes() - methods_data_size;
// Write the profile index.
buffer.WriteUintAndAdvance(profile_index);
// Write the total size of the following methods data (without the profile index
// and the total size itself) for easy skipping when the dex file is filtered out.
uint32_t following_data_size = methods_data_size - sizeof(ProfileIndexType) - sizeof(uint32_t);
buffer.WriteUintAndAdvance(following_data_size);
// Write the used method flags.
buffer.WriteUintAndAdvance(method_flags);
// Write the bitmap data.
size_t saved_bitmap_byte_size = BitsToBytesRoundUp(saved_bitmap_bit_size);
DCHECK_LE(saved_bitmap_byte_size, buffer.GetAvailableBytes());
BitMemoryRegion saved_bitmap(buffer.GetCurrentPtr(), /*bit_start=*/ 0, saved_bitmap_bit_size);
size_t saved_bitmap_index = 0u;
ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
if ((method_flags & flag) != 0u) {
size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
BitMemoryRegion src = method_bitmap.Subregion(index * num_method_ids, num_method_ids);
saved_bitmap.Subregion(saved_bitmap_index * num_method_ids, num_method_ids).CopyBits(src);
++saved_bitmap_index;
}
return true;
});
DCHECK_EQ(saved_bitmap_index * num_method_ids, saved_bitmap_bit_size);
// Clear the padding bits.
size_t padding_bit_size = saved_bitmap_byte_size * kBitsPerByte - saved_bitmap_bit_size;
BitMemoryRegion padding_region(buffer.GetCurrentPtr(), saved_bitmap_bit_size, padding_bit_size);
padding_region.StoreBits(/*bit_offset=*/ 0u, /*value=*/ 0u, /*bit_length=*/ padding_bit_size);
buffer.Advance(saved_bitmap_byte_size);
uint16_t last_method_index = 0;
for (const auto& method_entry : method_map) {
uint16_t method_index = method_entry.first;
const InlineCacheMap& inline_cache_map = method_entry.second;
// Store the difference between the method indices for better compression.
// The SafeMap is ordered by method_id, so the difference will always be non negative.
DCHECK_GE(method_index, last_method_index);
uint16_t diff_with_last_method_index = method_index - last_method_index;
last_method_index = method_index;
buffer.WriteUintAndAdvance(diff_with_last_method_index);
// Add inline cache map size.
buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(inline_cache_map.size()));
// Add inline cache entries.
for (const auto& inline_cache_entry : inline_cache_map) {
uint16_t dex_pc = inline_cache_entry.first;
const DexPcData& dex_pc_data = inline_cache_entry.second;
const ArenaSet<dex::TypeIndex>& classes = dex_pc_data.classes;
// Add the dex pc.
buffer.WriteUintAndAdvance(dex_pc);
// Add the megamorphic/missing_types encoding if needed and continue.
// In either cases we don't add any classes to the profiles and so there's
// no point to continue.
// TODO: in case we miss types there is still value to add the rest of the
// classes. (This requires changing profile version or using a new section type.)
if (dex_pc_data.is_missing_types) {
// At this point the megamorphic flag should not be set.
DCHECK(!dex_pc_data.is_megamorphic);
DCHECK_EQ(classes.size(), 0u);
buffer.WriteUintAndAdvance(kIsMissingTypesEncoding);
continue;
} else if (dex_pc_data.is_megamorphic) {
DCHECK_EQ(classes.size(), 0u);
buffer.WriteUintAndAdvance(kIsMegamorphicEncoding);
continue;
}
DCHECK_LT(classes.size(), ProfileCompilationInfo::kIndividualInlineCacheSize);
DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes";
// Add the number of classes for the dex PC.
buffer.WriteUintAndAdvance(dchecked_integral_cast<uint8_t>(classes.size()));
// Store the class set.
WriteClassSet(buffer, classes);
}
}
// Check if we've written the right number of bytes.
DCHECK_EQ(buffer.GetAvailableBytes(), expected_available_bytes_at_end);
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::ReadMethods(
SafeBuffer& buffer,
const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
std::string* error) {
uint32_t following_data_size;
if (!buffer.ReadUintAndAdvance(&following_data_size)) {
*error = "Error reading methods data size.";
return ProfileLoadStatus::kBadData;
}
if (following_data_size > buffer.GetAvailableBytes()) {
*error = "Methods data size exceeds available data size.";
return ProfileLoadStatus::kBadData;
}
uint32_t expected_available_bytes_at_end = buffer.GetAvailableBytes() - following_data_size;
// Read method flags.
uint16_t method_flags;
if (!buffer.ReadUintAndAdvance(&method_flags)) {
*error = "Error reading method flags.";
return ProfileLoadStatus::kBadData;
}
if (!is_for_boot_image && method_flags >= (MethodHotness::kFlagLastRegular << 1)) {
// The profile we're loading contains data for boot image.
*error = "Method flags contain boot image profile flags for non-boot image profile.";
return ProfileLoadStatus::kBadData;
}
// Read method bitmap.
size_t saved_bitmap_bit_size = POPCOUNT(method_flags & ~MethodHotness::kFlagHot) * num_method_ids;
size_t saved_bitmap_byte_size = BitsToBytesRoundUp(saved_bitmap_bit_size);
if (sizeof(uint16_t) + saved_bitmap_byte_size > following_data_size) {
*error = "Insufficient available data for method bitmap.";
return ProfileLoadStatus::kBadData;
}
BitMemoryRegion saved_bitmap(buffer.GetCurrentPtr(), /*bit_start=*/ 0, saved_bitmap_bit_size);
size_t saved_bitmap_index = 0u;
ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
if ((method_flags & flag) != 0u) {
size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
BitMemoryRegion src =
saved_bitmap.Subregion(saved_bitmap_index * num_method_ids, num_method_ids);
method_bitmap.Subregion(index * num_method_ids, num_method_ids).OrBits(src);
++saved_bitmap_index;
}
return true;
});
buffer.Advance(saved_bitmap_byte_size);
// Load hot methods.
if ((method_flags & MethodHotness::kFlagHot) != 0u) {
uint32_t num_valid_method_indexes =
std::min<uint32_t>(kMaxSupportedMethodIndex + 1u, num_method_ids);
uint16_t num_valid_type_indexes = dchecked_integral_cast<uint16_t>(
std::min<size_t>(num_type_ids + extra_descriptors_remap.size(), DexFile::kDexNoIndex16));
uint16_t method_index = 0;
bool first_diff = true;
while (buffer.GetAvailableBytes() > expected_available_bytes_at_end) {
uint16_t diff_with_last_method_index;
if (!buffer.ReadUintAndAdvance(&diff_with_last_method_index)) {
*error = "Error reading method index diff.";
return ProfileLoadStatus::kBadData;
}
if (diff_with_last_method_index == 0u && !first_diff) {
*error = "Duplicate method index.";
return ProfileLoadStatus::kBadData;
}
first_diff = false;
if (diff_with_last_method_index >= num_valid_method_indexes - method_index) {
*error = "Invalid method index.";
return ProfileLoadStatus::kBadData;
}
method_index += diff_with_last_method_index;
InlineCacheMap* inline_cache = FindOrAddHotMethod(method_index);
DCHECK(inline_cache != nullptr);
// Load inline cache map size.
uint16_t inline_cache_size;
if (!buffer.ReadUintAndAdvance(&inline_cache_size)) {
*error = "Error reading inline cache size.";
return ProfileLoadStatus::kBadData;
}
for (uint16_t ic_index = 0; ic_index != inline_cache_size; ++ic_index) {
// Load dex pc.
uint16_t dex_pc;
if (!buffer.ReadUintAndAdvance(&dex_pc)) {
*error = "Error reading inline cache dex pc.";
return ProfileLoadStatus::kBadData;
}
DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, dex_pc);
DCHECK(dex_pc_data != nullptr);
// Load inline cache classes.
uint8_t inline_cache_classes_size;
if (!buffer.ReadUintAndAdvance(&inline_cache_classes_size)) {
*error = "Error reading inline cache classes size.";
return ProfileLoadStatus::kBadData;
}
if (inline_cache_classes_size == kIsMissingTypesEncoding) {
dex_pc_data->SetIsMissingTypes();
} else if (inline_cache_classes_size == kIsMegamorphicEncoding) {
dex_pc_data->SetIsMegamorphic();
} else if (inline_cache_classes_size >= kIndividualInlineCacheSize) {
*error = "Inline cache size too large.";
return ProfileLoadStatus::kBadData;
} else {
uint16_t type_index = 0u;
for (size_t i = 0; i != inline_cache_classes_size; ++i) {
uint16_t type_index_diff;
if (!buffer.ReadUintAndAdvance(&type_index_diff)) {
*error = "Error reading inline cache type index diff.";
return ProfileLoadStatus::kBadData;
}
if (type_index_diff == 0u && i != 0u) {
*error = "Duplicate inline cache type index.";
return ProfileLoadStatus::kBadData;
}
if (type_index_diff >= num_valid_type_indexes - type_index) {
*error = "Invalid inline cache type index.";
return ProfileLoadStatus::kBadData;
}
type_index += type_index_diff;
if (type_index >= num_type_ids) {
ExtraDescriptorIndex new_extra_descriptor_index =
extra_descriptors_remap[type_index - num_type_ids];
if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
*error = "Remapped inline cache type index out of range.";
return ProfileLoadStatus::kMergeError;
}
dex_pc_data->AddClass(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
} else {
dex_pc_data->AddClass(dex::TypeIndex(type_index));
}
}
}
}
}
}
if (buffer.GetAvailableBytes() != expected_available_bytes_at_end) {
*error = "Methods data did not end at expected position.";
return ProfileLoadStatus::kBadData;
}
return ProfileLoadStatus::kSuccess;
}
ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::SkipMethods(
SafeBuffer& buffer,
std::string* error) {
uint32_t following_data_size;
if (!buffer.ReadUintAndAdvance(&following_data_size)) {
*error = "Error reading methods data size to skip.";
return ProfileLoadStatus::kBadData;
}
if (following_data_size > buffer.GetAvailableBytes()) {
*error = "Methods data size to skip exceeds remaining data.";
return ProfileLoadStatus::kBadData;
}
buffer.Advance(following_data_size);
return ProfileLoadStatus::kSuccess;
}
void ProfileCompilationInfo::DexFileData::WriteClassSet(
SafeBuffer& buffer,
const ArenaSet<dex::TypeIndex>& class_set) {
// Store the difference between the type indexes for better compression.
uint16_t last_type_index = 0u;
for (const dex::TypeIndex& type_index : class_set) {
DCHECK_GE(type_index.index_, last_type_index);
uint16_t diff_with_last_type_index = type_index.index_ - last_type_index;
last_type_index = type_index.index_;
buffer.WriteUintAndAdvance(diff_with_last_type_index);
}
}
size_t ProfileCompilationInfo::GetSizeWarningThresholdBytes() const {
return IsForBootImage() ? kSizeWarningThresholdBootBytes : kSizeWarningThresholdBytes;
}
size_t ProfileCompilationInfo::GetSizeErrorThresholdBytes() const {
return IsForBootImage() ? kSizeErrorThresholdBootBytes : kSizeErrorThresholdBytes;
}
std::ostream& operator<<(std::ostream& stream,
ProfileCompilationInfo::DexReferenceDumper dumper) {
stream << "[profile_key=" << dumper.GetProfileKey()
<< ",dex_checksum=" << std::hex << dumper.GetDexChecksum() << std::dec
<< ",num_type_ids=" << dumper.GetNumTypeIds()
<< ",num_method_ids=" << dumper.GetNumMethodIds()
<< "]";
return stream;
}
FlattenProfileData::FlattenProfileData() :
max_aggregation_for_methods_(0),
max_aggregation_for_classes_(0) {
}
FlattenProfileData::ItemMetadata::ItemMetadata() :
flags_(0) {
}
FlattenProfileData::ItemMetadata::ItemMetadata(const ItemMetadata& other) :
flags_(other.flags_),
annotations_(other.annotations_) {
}
std::unique_ptr<FlattenProfileData> ProfileCompilationInfo::ExtractProfileData(
const std::vector<std::unique_ptr<const DexFile>>& dex_files) const {
std::unique_ptr<FlattenProfileData> result(new FlattenProfileData());
auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); };
// Iterate through all the dex files, find the methods/classes associated with each of them,
// and add them to the flatten result.
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
// Find all the dex data for the given dex file.
// We may have multiple dex data if the methods or classes were added using
// different annotations.
std::vector<const DexFileData*> all_dex_data;
FindAllDexData(dex_file.get(), &all_dex_data);
for (const DexFileData* dex_data : all_dex_data) {
// Extract the annotation from the key as we want to store it in the flatten result.
ProfileSampleAnnotation annotation = GetAnnotationFromKey(dex_data->profile_key);
// Check which methods from the current dex files are in the profile.
for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
if (!hotness.IsInProfile()) {
// Not in the profile, continue.
continue;
}
// The method is in the profile, create metadata item for it and added to the result.
MethodReference ref(dex_file.get(), method_idx);
FlattenProfileData::ItemMetadata& metadata =
result->method_metadata_.GetOrCreate(ref, create_metadata_fn);
metadata.flags_ |= hotness.flags_;
metadata.annotations_.push_back(annotation);
// Update the max aggregation counter for methods.
// This is essentially a cache, to avoid traversing all the methods just to find out
// this value.
result->max_aggregation_for_methods_ = std::max(
result->max_aggregation_for_methods_,
static_cast<uint32_t>(metadata.annotations_.size()));
}
// Check which classes from the current dex files are in the profile.
for (const dex::TypeIndex& type_index : dex_data->class_set) {
if (type_index.index_ >= dex_file->NumTypeIds()) {
// Not a valid `dex::TypeIndex` for `TypeReference`.
// TODO: Rewrite the API to use descriptors or the `ProfileCompilationInfo` directly
// instead of the `FlattenProfileData` helper class.
continue;
}
TypeReference ref(dex_file.get(), type_index);
FlattenProfileData::ItemMetadata& metadata =
result->class_metadata_.GetOrCreate(ref, create_metadata_fn);
metadata.annotations_.push_back(annotation);
// Update the max aggregation counter for classes.
result->max_aggregation_for_classes_ = std::max(
result->max_aggregation_for_classes_,
static_cast<uint32_t>(metadata.annotations_.size()));
}
}
}
return result;
}
void FlattenProfileData::MergeData(const FlattenProfileData& other) {
auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); };
for (const auto& it : other.method_metadata_) {
const MethodReference& otherRef = it.first;
const FlattenProfileData::ItemMetadata otherData = it.second;
const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations =
otherData.GetAnnotations();
FlattenProfileData::ItemMetadata& metadata =
method_metadata_.GetOrCreate(otherRef, create_metadata_fn);
metadata.flags_ |= otherData.GetFlags();
metadata.annotations_.insert(
metadata.annotations_.end(), other_annotations.begin(), other_annotations.end());
max_aggregation_for_methods_ = std::max(
max_aggregation_for_methods_,
static_cast<uint32_t>(metadata.annotations_.size()));
}
for (const auto& it : other.class_metadata_) {
const TypeReference& otherRef = it.first;
const FlattenProfileData::ItemMetadata otherData = it.second;
const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations =
otherData.GetAnnotations();
FlattenProfileData::ItemMetadata& metadata =
class_metadata_.GetOrCreate(otherRef, create_metadata_fn);
metadata.flags_ |= otherData.GetFlags();
metadata.annotations_.insert(
metadata.annotations_.end(), other_annotations.begin(), other_annotations.end());
max_aggregation_for_classes_ = std::max(
max_aggregation_for_classes_,
static_cast<uint32_t>(metadata.annotations_.size()));
}
}
} // namespace art