| /* |
| * Copyright (C) 2023 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_riscv64.h" |
| |
| #include "android-base/logging.h" |
| #include "android-base/macros.h" |
| #include "arch/riscv64/jni_frame_riscv64.h" |
| #include "arch/riscv64/registers_riscv64.h" |
| #include "base/arena_containers.h" |
| #include "base/macros.h" |
| #include "class_root-inl.h" |
| #include "code_generator_utils.h" |
| #include "dwarf/register.h" |
| #include "gc/heap.h" |
| #include "gc/space/image_space.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics_list.h" |
| #include "intrinsics_riscv64.h" |
| #include "jit/profiling_info.h" |
| #include "linker/linker_patch.h" |
| #include "mirror/class-inl.h" |
| #include "optimizing/nodes.h" |
| #include "optimizing/profiling_info_builder.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "stack_map_stream.h" |
| #include "trace.h" |
| #include "utils/label.h" |
| #include "utils/riscv64/assembler_riscv64.h" |
| #include "utils/stack_checks.h" |
| |
| namespace art HIDDEN { |
| namespace riscv64 { |
| |
| // Placeholder values embedded in instructions, patched at link time. |
| constexpr uint32_t kLinkTimeOffsetPlaceholderHigh = 0x12345; |
| constexpr uint32_t kLinkTimeOffsetPlaceholderLow = 0x678; |
| |
| // Compare-and-jump packed switch generates approx. 3 + 1.5 * N 32-bit |
| // instructions for N cases. |
| // Table-based packed switch generates approx. 10 32-bit instructions |
| // and N 32-bit data words for N cases. |
| // We switch to the table-based method starting with 6 entries. |
| static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 6; |
| |
| static constexpr XRegister kCoreCalleeSaves[] = { |
| // S1(TR) is excluded as the ART thread register. |
| S0, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, RA |
| }; |
| |
| static constexpr FRegister kFpuCalleeSaves[] = { |
| FS0, FS1, FS2, FS3, FS4, FS5, FS6, FS7, FS8, FS9, FS10, FS11 |
| }; |
| |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kRiscv64PointerSize, x).Int32Value() |
| |
| Location RegisterOrZeroBitPatternLocation(HInstruction* instruction) { |
| DCHECK(!DataType::IsFloatingPointType(instruction->GetType())); |
| return IsZeroBitPattern(instruction) |
| ? Location::ConstantLocation(instruction) |
| : Location::RequiresRegister(); |
| } |
| |
| Location FpuRegisterOrZeroBitPatternLocation(HInstruction* instruction) { |
| DCHECK(DataType::IsFloatingPointType(instruction->GetType())); |
| return IsZeroBitPattern(instruction) |
| ? Location::ConstantLocation(instruction) |
| : Location::RequiresFpuRegister(); |
| } |
| |
| XRegister InputXRegisterOrZero(Location location) { |
| if (location.IsConstant()) { |
| DCHECK(location.GetConstant()->IsZeroBitPattern()); |
| return Zero; |
| } else { |
| return location.AsRegister<XRegister>(); |
| } |
| } |
| |
| Location ValueLocationForStore(HInstruction* value) { |
| if (IsZeroBitPattern(value)) { |
| return Location::ConstantLocation(value); |
| } else if (DataType::IsFloatingPointType(value->GetType())) { |
| return Location::RequiresFpuRegister(); |
| } else { |
| return Location::RequiresRegister(); |
| } |
| } |
| |
| Location Riscv64ReturnLocation(DataType::Type return_type) { |
| switch (return_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kUint32: |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| case DataType::Type::kUint64: |
| case DataType::Type::kInt64: |
| return Location::RegisterLocation(A0); |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| return Location::FpuRegisterLocation(FA0); |
| |
| case DataType::Type::kVoid: |
| return Location::NoLocation(); |
| } |
| UNREACHABLE(); |
| } |
| |
| static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| DCHECK_EQ( |
| calling_convention.GetRegisterAt(0), |
| calling_convention.GetReturnLocation(DataType::Type::kReference).AsRegister<XRegister>()); |
| return caller_saves; |
| } |
| |
| template <ClassStatus kStatus> |
| static constexpr int64_t ShiftedSignExtendedClassStatusValue() { |
| // This is used only for status values that have the highest bit set. |
| static_assert(CLZ(enum_cast<uint32_t>(kStatus)) == status_lsb_position); |
| constexpr uint32_t kShiftedStatusValue = enum_cast<uint32_t>(kStatus) << status_lsb_position; |
| static_assert(kShiftedStatusValue >= 0x80000000u); |
| return static_cast<int64_t>(kShiftedStatusValue) - (INT64_C(1) << 32); |
| } |
| |
| // Split a 64-bit address used by JIT to the nearest 4KiB-aligned base address and a 12-bit |
| // signed offset. It is usually cheaper to materialize the aligned address than the full address. |
| std::pair<uint64_t, int32_t> SplitJitAddress(uint64_t address) { |
| uint64_t bits0_11 = address & UINT64_C(0xfff); |
| uint64_t bit11 = address & UINT64_C(0x800); |
| // Round the address to nearest 4KiB address because the `imm12` has range [-0x800, 0x800). |
| uint64_t base_address = (address & ~UINT64_C(0xfff)) + (bit11 << 1); |
| int32_t imm12 = dchecked_integral_cast<int32_t>(bits0_11) - |
| dchecked_integral_cast<int32_t>(bit11 << 1); |
| return {base_address, imm12}; |
| } |
| |
| int32_t ReadBarrierMarkEntrypointOffset(Location ref) { |
| DCHECK(ref.IsRegister()); |
| int reg = ref.reg(); |
| DCHECK(T0 <= reg && reg <= T6 && reg != TR) << reg; |
| // Note: Entrypoints for registers X30 (T5) and X31 (T6) are stored in entries |
| // for X0 (Zero) and X1 (RA) because these are not valid registers for marking |
| // and we currently have slots only up to register 29. |
| int entry_point_number = (reg >= 30) ? reg - 30 : reg; |
| return Thread::ReadBarrierMarkEntryPointsOffset<kRiscv64PointerSize>(entry_point_number); |
| } |
| |
| Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) { |
| return Riscv64ReturnLocation(return_type); |
| } |
| |
| Location InvokeDexCallingConventionVisitorRISCV64::GetReturnLocation(DataType::Type type) const { |
| return Riscv64ReturnLocation(type); |
| } |
| |
| Location InvokeDexCallingConventionVisitorRISCV64::GetMethodLocation() const { |
| return Location::RegisterLocation(kArtMethodRegister); |
| } |
| |
| Location InvokeDexCallingConventionVisitorRISCV64::GetNextLocation(DataType::Type type) { |
| Location next_location; |
| if (type == DataType::Type::kVoid) { |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| } |
| |
| // Note: Unlike the RISC-V C/C++ calling convention, managed ABI does not use |
| // GPRs to pass FP args when we run out of FPRs. |
| if (DataType::IsFloatingPointType(type) && |
| float_index_ < calling_convention.GetNumberOfFpuRegisters()) { |
| next_location = |
| Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++)); |
| } else if (!DataType::IsFloatingPointType(type) && |
| (gp_index_ < calling_convention.GetNumberOfRegisters())) { |
| next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index_++)); |
| } else { |
| size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); |
| next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) : |
| Location::StackSlot(stack_offset); |
| } |
| |
| // Space on the stack is reserved for all arguments. |
| stack_index_ += DataType::Is64BitType(type) ? 2 : 1; |
| |
| return next_location; |
| } |
| |
| Location CriticalNativeCallingConventionVisitorRiscv64::GetNextLocation(DataType::Type type) { |
| DCHECK_NE(type, DataType::Type::kReference); |
| |
| Location location = Location::NoLocation(); |
| if (DataType::IsFloatingPointType(type)) { |
| if (fpr_index_ < kParameterFpuRegistersLength) { |
| location = Location::FpuRegisterLocation(kParameterFpuRegisters[fpr_index_]); |
| ++fpr_index_; |
| } else { |
| // Native ABI allows passing excessive FP args in GPRs. This is facilitated by |
| // inserting fake conversion intrinsic calls (`Double.doubleToRawLongBits()` |
| // or `Float.floatToRawIntBits()`) by `CriticalNativeAbiFixupRiscv64`. |
| // Remaining FP args shall be passed on the stack. |
| CHECK_EQ(gpr_index_, kRuntimeParameterCoreRegistersLength); |
| } |
| } else { |
| // Native ABI uses the same core registers as a runtime call. |
| if (gpr_index_ < kRuntimeParameterCoreRegistersLength) { |
| location = Location::RegisterLocation(kRuntimeParameterCoreRegisters[gpr_index_]); |
| ++gpr_index_; |
| } |
| } |
| if (location.IsInvalid()) { |
| // Only a `float` gets a single slot. Integral args need to be sign-extended to 64 bits. |
| if (type == DataType::Type::kFloat32) { |
| location = Location::StackSlot(stack_offset_); |
| } else { |
| location = Location::DoubleStackSlot(stack_offset_); |
| } |
| stack_offset_ += kFramePointerSize; |
| |
| if (for_register_allocation_) { |
| location = Location::Any(); |
| } |
| } |
| return location; |
| } |
| |
| Location CriticalNativeCallingConventionVisitorRiscv64::GetReturnLocation( |
| DataType::Type type) const { |
| // The result is returned the same way in native ABI and managed ABI. No result conversion is |
| // needed, see comments in `Riscv64JniCallingConvention::RequiresSmallResultTypeExtension()`. |
| InvokeDexCallingConventionVisitorRISCV64 dex_calling_convention; |
| return dex_calling_convention.GetReturnLocation(type); |
| } |
| |
| Location CriticalNativeCallingConventionVisitorRiscv64::GetMethodLocation() const { |
| // Pass the method in the hidden argument T0. |
| return Location::RegisterLocation(T0); |
| } |
| |
| #define __ down_cast<CodeGeneratorRISCV64*>(codegen)->GetAssembler()-> // NOLINT |
| |
| void LocationsBuilderRISCV64::HandleInvoke(HInvoke* instruction) { |
| InvokeDexCallingConventionVisitorRISCV64 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(instruction, &calling_convention_visitor); |
| } |
| |
| class CompileOptimizedSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| CompileOptimizedSlowPathRISCV64(HSuspendCheck* suspend_check, XRegister base, int32_t imm12) |
| : SlowPathCodeRISCV64(suspend_check), |
| base_(base), |
| imm12_(imm12) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| uint32_t entrypoint_offset = |
| GetThreadOffset<kRiscv64PointerSize>(kQuickCompileOptimized).Int32Value(); |
| __ Bind(GetEntryLabel()); |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| riscv64::ScratchRegisterScope srs(riscv64_codegen->GetAssembler()); |
| XRegister counter = srs.AllocateXRegister(); |
| __ LoadConst32(counter, ProfilingInfo::GetOptimizeThreshold()); |
| __ Sh(counter, base_, imm12_); |
| if (instruction_ != nullptr) { |
| // Only saves live vector regs for SIMD. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| __ Loadd(RA, TR, entrypoint_offset); |
| // Note: we don't record the call here (and therefore don't generate a stack |
| // map), as the entrypoint should never be suspended. |
| __ Jalr(RA); |
| if (instruction_ != nullptr) { |
| // Only restores live vector regs for SIMD. |
| RestoreLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| __ J(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "CompileOptimizedSlowPath"; } |
| |
| private: |
| XRegister base_; |
| const int32_t imm12_; |
| |
| DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathRISCV64); |
| }; |
| |
| class SuspendCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| SuspendCheckSlowPathRISCV64(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCodeRISCV64(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); // Only saves live vector registers for SIMD. |
| riscv64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| RestoreLiveRegisters(codegen, locations); // Only restores live vector registers for SIMD. |
| if (successor_ == nullptr) { |
| __ J(GetReturnLabel()); |
| } else { |
| __ J(riscv64_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| Riscv64Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| const char* GetDescription() const override { return "SuspendCheckSlowPathRISCV64"; } |
| |
| HBasicBlock* GetSuccessor() const { return successor_; } |
| |
| private: |
| // If not null, the block to branch to after the suspend check. |
| HBasicBlock* const successor_; |
| |
| // If `successor_` is null, the label to branch to after the suspend check. |
| Riscv64Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathRISCV64); |
| }; |
| |
| class NullCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| explicit NullCheckSlowPathRISCV64(HNullCheck* instr) : SlowPathCodeRISCV64(instr) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| riscv64_codegen->InvokeRuntime( |
| kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "NullCheckSlowPathRISCV64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathRISCV64); |
| }; |
| |
| class BoundsCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| explicit BoundsCheckSlowPathRISCV64(HBoundsCheck* instruction) |
| : SlowPathCodeRISCV64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kInt32, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32); |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() ? |
| kQuickThrowStringBounds : |
| kQuickThrowArrayBounds; |
| riscv64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "BoundsCheckSlowPathRISCV64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathRISCV64); |
| }; |
| |
| class LoadClassSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| LoadClassSlowPathRISCV64(HLoadClass* cls, HInstruction* at) : SlowPathCodeRISCV64(at), cls_(cls) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location out = locations->Out(); |
| const uint32_t dex_pc = instruction_->GetDexPc(); |
| bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); |
| bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); |
| |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| if (must_resolve_type) { |
| DCHECK(IsSameDexFile(cls_->GetDexFile(), riscv64_codegen->GetGraph()->GetDexFile()) || |
| riscv64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) || |
| ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(), |
| &cls_->GetDexFile())); |
| dex::TypeIndex type_index = cls_->GetTypeIndex(); |
| __ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_); |
| if (cls_->NeedsAccessCheck()) { |
| CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>(); |
| riscv64_codegen->InvokeRuntime( |
| kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this); |
| } else { |
| CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>(); |
| riscv64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); |
| } |
| // If we also must_do_clinit, the resolved type is now in the correct register. |
| } else { |
| DCHECK(must_do_clinit); |
| Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); |
| riscv64_codegen->MoveLocation( |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), source, cls_->GetType()); |
| } |
| if (must_do_clinit) { |
| riscv64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>(); |
| } |
| |
| // Move the class to the desired location. |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| DataType::Type type = DataType::Type::kReference; |
| DCHECK_EQ(type, instruction_->GetType()); |
| riscv64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ J(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "LoadClassSlowPathRISCV64"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathRISCV64); |
| }; |
| |
| class DeoptimizationSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| explicit DeoptimizationSlowPathRISCV64(HDeoptimize* instruction) |
| : SlowPathCodeRISCV64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| SaveLiveRegisters(codegen, locations); |
| InvokeRuntimeCallingConvention calling_convention; |
| __ LoadConst32(calling_convention.GetRegisterAt(0), |
| static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); |
| riscv64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); |
| } |
| |
| const char* GetDescription() const override { return "DeoptimizationSlowPathRISCV64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathRISCV64); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| ReadBarrierForRootSlowPathRISCV64(HInstruction* instruction, Location out, Location root) |
| : SlowPathCodeRISCV64(instruction), out_(out), root_(root) { |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| DCHECK(codegen->EmitReadBarrier()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DataType::Type type = DataType::Type::kReference; |
| XRegister reg_out = out_.AsRegister<XRegister>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| riscv64_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| root_, |
| DataType::Type::kReference); |
| riscv64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| riscv64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ J(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierForRootSlowPathRISCV64"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathRISCV64); |
| }; |
| |
| class MethodEntryExitHooksSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| explicit MethodEntryExitHooksSlowPathRISCV64(HInstruction* instruction) |
| : SlowPathCodeRISCV64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| QuickEntrypointEnum entry_point = |
| (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook; |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| if (instruction_->IsMethodExitHook()) { |
| __ Li(A4, riscv64_codegen->GetFrameSize()); |
| } |
| riscv64_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this); |
| RestoreLiveRegisters(codegen, locations); |
| __ J(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { |
| return "MethodEntryExitHooksSlowPathRISCV"; |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathRISCV64); |
| }; |
| |
| class ArraySetSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| explicit ArraySetSlowPathRISCV64(HInstruction* instruction) : SlowPathCodeRISCV64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kReference, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| riscv64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ J(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ArraySetSlowPathRISCV64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathRISCV64); |
| }; |
| |
| class TypeCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| explicit TypeCheckSlowPathRISCV64(HInstruction* instruction, bool is_fatal) |
| : SlowPathCodeRISCV64(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| |
| uint32_t dex_pc = instruction_->GetDexPc(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kReference); |
| if (instruction_->IsInstanceOf()) { |
| riscv64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| DataType::Type ret_type = instruction_->GetType(); |
| Location ret_loc = calling_convention.GetReturnLocation(ret_type); |
| riscv64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| riscv64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| RestoreLiveRegisters(codegen, locations); |
| __ J(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const override { return "TypeCheckSlowPathRISCV64"; } |
| |
| bool IsFatal() const override { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathRISCV64); |
| }; |
| |
| class DivZeroCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| explicit DivZeroCheckSlowPathRISCV64(HDivZeroCheck* instruction) |
| : SlowPathCodeRISCV64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| riscv64_codegen->InvokeRuntime( |
| kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "DivZeroCheckSlowPathRISCV64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathRISCV64); |
| }; |
| |
| class ReadBarrierMarkSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| ReadBarrierMarkSlowPathRISCV64(HInstruction* instruction, Location ref, Location entrypoint) |
| : SlowPathCodeRISCV64(instruction), ref_(ref), entrypoint_(entrypoint) { |
| DCHECK(entrypoint.IsRegister()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierMarkSlowPathRISCV64"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| DCHECK(codegen->EmitReadBarrier()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| XRegister ref_reg = ref_.AsRegister<XRegister>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsArraySet() || |
| instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| DCHECK(ref_reg >= T0 && ref_reg != TR); |
| |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in A0 and V0 respectively): |
| // |
| // A0 <- ref |
| // V0 <- ReadBarrierMark(A0) |
| // ref <- V0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| riscv64_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); |
| DCHECK_NE(entrypoint_.AsRegister<XRegister>(), TMP); // A taken branch can clobber `TMP`. |
| __ Jalr(entrypoint_.AsRegister<XRegister>()); // Clobbers `RA` (used as the `entrypoint_`). |
| __ J(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| |
| // The location of the already loaded entrypoint. |
| const Location entrypoint_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathRISCV64); |
| }; |
| |
| class LoadStringSlowPathRISCV64 : public SlowPathCodeRISCV64 { |
| public: |
| explicit LoadStringSlowPathRISCV64(HLoadString* instruction) |
| : SlowPathCodeRISCV64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| DCHECK(instruction_->IsLoadString()); |
| DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); |
| CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen); |
| InvokeRuntimeCallingConvention calling_convention; |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| __ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_); |
| riscv64_codegen->InvokeRuntime( |
| kQuickResolveString, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| |
| DataType::Type type = DataType::Type::kReference; |
| DCHECK_EQ(type, instruction_->GetType()); |
| riscv64_codegen->MoveLocation( |
| locations->Out(), calling_convention.GetReturnLocation(type), type); |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ J(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "LoadStringSlowPathRISCV64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathRISCV64); |
| }; |
| |
| #undef __ |
| #define __ down_cast<Riscv64Assembler*>(GetAssembler())-> // NOLINT |
| |
| template <typename Reg, |
| void (Riscv64Assembler::*opS)(Reg, FRegister, FRegister), |
| void (Riscv64Assembler::*opD)(Reg, FRegister, FRegister)> |
| inline void InstructionCodeGeneratorRISCV64::FpBinOp( |
| Reg rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| Riscv64Assembler* assembler = down_cast<CodeGeneratorRISCV64*>(codegen_)->GetAssembler(); |
| if (type == DataType::Type::kFloat32) { |
| (assembler->*opS)(rd, rs1, rs2); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| (assembler->*opD)(rd, rs1, rs2); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::FAdd( |
| FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<FRegister, &Riscv64Assembler::FAddS, &Riscv64Assembler::FAddD>(rd, rs1, rs2, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FSub( |
| FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<FRegister, &Riscv64Assembler::FSubS, &Riscv64Assembler::FSubD>(rd, rs1, rs2, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FDiv( |
| FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<FRegister, &Riscv64Assembler::FDivS, &Riscv64Assembler::FDivD>(rd, rs1, rs2, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FMul( |
| FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<FRegister, &Riscv64Assembler::FMulS, &Riscv64Assembler::FMulD>(rd, rs1, rs2, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FMin( |
| FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<FRegister, &Riscv64Assembler::FMinS, &Riscv64Assembler::FMinD>(rd, rs1, rs2, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FMax( |
| FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<FRegister, &Riscv64Assembler::FMaxS, &Riscv64Assembler::FMaxD>(rd, rs1, rs2, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FEq( |
| XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<XRegister, &Riscv64Assembler::FEqS, &Riscv64Assembler::FEqD>(rd, rs1, rs2, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FLt( |
| XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<XRegister, &Riscv64Assembler::FLtS, &Riscv64Assembler::FLtD>(rd, rs1, rs2, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FLe( |
| XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) { |
| FpBinOp<XRegister, &Riscv64Assembler::FLeS, &Riscv64Assembler::FLeD>(rd, rs1, rs2, type); |
| } |
| |
| template <typename Reg, |
| void (Riscv64Assembler::*opS)(Reg, FRegister), |
| void (Riscv64Assembler::*opD)(Reg, FRegister)> |
| inline void InstructionCodeGeneratorRISCV64::FpUnOp( |
| Reg rd, FRegister rs1, DataType::Type type) { |
| Riscv64Assembler* assembler = down_cast<CodeGeneratorRISCV64*>(codegen_)->GetAssembler(); |
| if (type == DataType::Type::kFloat32) { |
| (assembler->*opS)(rd, rs1); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| (assembler->*opD)(rd, rs1); |
| } |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FAbs( |
| FRegister rd, FRegister rs1, DataType::Type type) { |
| FpUnOp<FRegister, &Riscv64Assembler::FAbsS, &Riscv64Assembler::FAbsD>(rd, rs1, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FNeg( |
| FRegister rd, FRegister rs1, DataType::Type type) { |
| FpUnOp<FRegister, &Riscv64Assembler::FNegS, &Riscv64Assembler::FNegD>(rd, rs1, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FMv( |
| FRegister rd, FRegister rs1, DataType::Type type) { |
| FpUnOp<FRegister, &Riscv64Assembler::FMvS, &Riscv64Assembler::FMvD>(rd, rs1, type); |
| } |
| |
| inline void InstructionCodeGeneratorRISCV64::FMvX( |
| XRegister rd, FRegister rs1, DataType::Type type) { |
| FpUnOp<XRegister, &Riscv64Assembler::FMvXW, &Riscv64Assembler::FMvXD>(rd, rs1, type); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::FClass( |
| XRegister rd, FRegister rs1, DataType::Type type) { |
| FpUnOp<XRegister, &Riscv64Assembler::FClassS, &Riscv64Assembler::FClassD>(rd, rs1, type); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::Load( |
| Location out, XRegister rs1, int32_t offset, DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| __ Loadbu(out.AsRegister<XRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kInt8: |
| __ Loadb(out.AsRegister<XRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kUint16: |
| __ Loadhu(out.AsRegister<XRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kInt16: |
| __ Loadh(out.AsRegister<XRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kInt32: |
| __ Loadw(out.AsRegister<XRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kInt64: |
| __ Loadd(out.AsRegister<XRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kReference: |
| __ Loadwu(out.AsRegister<XRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kFloat32: |
| __ FLoadw(out.AsFpuRegister<FRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kFloat64: |
| __ FLoadd(out.AsFpuRegister<FRegister>(), rs1, offset); |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::Store( |
| Location value, XRegister rs1, int32_t offset, DataType::Type type) { |
| DCHECK_IMPLIES(value.IsConstant(), IsZeroBitPattern(value.GetConstant())); |
| if (kPoisonHeapReferences && type == DataType::Type::kReference && !value.IsConstant()) { |
| riscv64::ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| __ Mv(tmp, value.AsRegister<XRegister>()); |
| codegen_->PoisonHeapReference(tmp); |
| __ Storew(tmp, rs1, offset); |
| return; |
| } |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| __ Storeb(InputXRegisterOrZero(value), rs1, offset); |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| __ Storeh(InputXRegisterOrZero(value), rs1, offset); |
| break; |
| case DataType::Type::kFloat32: |
| if (!value.IsConstant()) { |
| __ FStorew(value.AsFpuRegister<FRegister>(), rs1, offset); |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| __ Storew(InputXRegisterOrZero(value), rs1, offset); |
| break; |
| case DataType::Type::kFloat64: |
| if (!value.IsConstant()) { |
| __ FStored(value.AsFpuRegister<FRegister>(), rs1, offset); |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| case DataType::Type::kInt64: |
| __ Stored(InputXRegisterOrZero(value), rs1, offset); |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::StoreSeqCst(Location value, |
| XRegister rs1, |
| int32_t offset, |
| DataType::Type type, |
| HInstruction* instruction) { |
| if (DataType::Size(type) >= 4u) { |
| // Use AMOSWAP for 32-bit and 64-bit data types. |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister swap_src = kNoXRegister; |
| if (kPoisonHeapReferences && type == DataType::Type::kReference && !value.IsConstant()) { |
| swap_src = srs.AllocateXRegister(); |
| __ Mv(swap_src, value.AsRegister<XRegister>()); |
| codegen_->PoisonHeapReference(swap_src); |
| } else if (DataType::IsFloatingPointType(type) && !value.IsConstant()) { |
| swap_src = srs.AllocateXRegister(); |
| FMvX(swap_src, value.AsFpuRegister<FRegister>(), type); |
| } else { |
| swap_src = InputXRegisterOrZero(value); |
| } |
| XRegister addr = rs1; |
| if (offset != 0) { |
| addr = srs.AllocateXRegister(); |
| __ AddConst64(addr, rs1, offset); |
| } |
| if (DataType::Is64BitType(type)) { |
| __ AmoSwapD(Zero, swap_src, addr, AqRl::kRelease); |
| } else { |
| __ AmoSwapW(Zero, swap_src, addr, AqRl::kRelease); |
| } |
| if (instruction != nullptr) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } else { |
| // Use fences for smaller data types. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| Store(value, rs1, offset, type); |
| if (instruction != nullptr) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::ShNAdd( |
| XRegister rd, XRegister rs1, XRegister rs2, DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| DCHECK_EQ(DataType::SizeShift(type), 0u); |
| __ Add(rd, rs1, rs2); |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| DCHECK_EQ(DataType::SizeShift(type), 1u); |
| __ Sh1Add(rd, rs1, rs2); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| case DataType::Type::kFloat32: |
| DCHECK_EQ(DataType::SizeShift(type), 2u); |
| __ Sh2Add(rd, rs1, rs2); |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat64: |
| DCHECK_EQ(DataType::SizeShift(type), 3u); |
| __ Sh3Add(rd, rs1, rs2); |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| Riscv64Assembler* ParallelMoveResolverRISCV64::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverRISCV64::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType()); |
| } |
| |
| void ParallelMoveResolverRISCV64::EmitSwap(size_t index) { |
| MoveOperands* move = moves_[index]; |
| codegen_->SwapLocations(move->GetDestination(), move->GetSource(), move->GetType()); |
| } |
| |
| void ParallelMoveResolverRISCV64::SpillScratch([[maybe_unused]] int reg) { |
| LOG(FATAL) << "Unimplemented"; |
| UNREACHABLE(); |
| } |
| |
| void ParallelMoveResolverRISCV64::RestoreScratch([[maybe_unused]] int reg) { |
| LOG(FATAL) << "Unimplemented"; |
| UNREACHABLE(); |
| } |
| |
| void ParallelMoveResolverRISCV64::Exchange(int index1, int index2, bool double_slot) { |
| // We have 2 scratch X registers and 1 scratch F register that we can use. We prefer |
| // to use X registers for the swap but if both offsets are too big, we need to reserve |
| // one of the X registers for address adjustment and use an F register. |
| bool use_fp_tmp2 = false; |
| if (!IsInt<12>(index2)) { |
| if (!IsInt<12>(index1)) { |
| use_fp_tmp2 = true; |
| } else { |
| std::swap(index1, index2); |
| } |
| } |
| DCHECK_IMPLIES(!IsInt<12>(index2), use_fp_tmp2); |
| |
| Location loc1(double_slot ? Location::DoubleStackSlot(index1) : Location::StackSlot(index1)); |
| Location loc2(double_slot ? Location::DoubleStackSlot(index2) : Location::StackSlot(index2)); |
| riscv64::ScratchRegisterScope srs(GetAssembler()); |
| Location tmp = Location::RegisterLocation(srs.AllocateXRegister()); |
| DataType::Type tmp_type = double_slot ? DataType::Type::kInt64 : DataType::Type::kInt32; |
| Location tmp2 = use_fp_tmp2 |
| ? Location::FpuRegisterLocation(srs.AllocateFRegister()) |
| : Location::RegisterLocation(srs.AllocateXRegister()); |
| DataType::Type tmp2_type = use_fp_tmp2 |
| ? (double_slot ? DataType::Type::kFloat64 : DataType::Type::kFloat32) |
| : tmp_type; |
| |
| codegen_->MoveLocation(tmp, loc1, tmp_type); |
| codegen_->MoveLocation(tmp2, loc2, tmp2_type); |
| if (use_fp_tmp2) { |
| codegen_->MoveLocation(loc2, tmp, tmp_type); |
| } else { |
| // We cannot use `Stored()` or `Storew()` via `MoveLocation()` because we have |
| // no more scratch registers available. Use `Sd()` or `Sw()` explicitly. |
| DCHECK(IsInt<12>(index2)); |
| if (double_slot) { |
| __ Sd(tmp.AsRegister<XRegister>(), SP, index2); |
| } else { |
| __ Sw(tmp.AsRegister<XRegister>(), SP, index2); |
| } |
| srs.FreeXRegister(tmp.AsRegister<XRegister>()); // Free a temporary for `MoveLocation()`. |
| } |
| codegen_->MoveLocation(loc1, tmp2, tmp2_type); |
| } |
| |
| InstructionCodeGeneratorRISCV64::InstructionCodeGeneratorRISCV64(HGraph* graph, |
| CodeGeneratorRISCV64* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| void InstructionCodeGeneratorRISCV64::GenerateClassInitializationCheck( |
| SlowPathCodeRISCV64* slow_path, XRegister class_reg) { |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| XRegister tmp2 = srs.AllocateXRegister(); |
| |
| // We shall load the full 32-bit status word with sign-extension and compare as unsigned |
| // to a sign-extended shifted status value. This yields the same comparison as loading and |
| // materializing unsigned but the constant is materialized with a single LUI instruction. |
| __ Loadw(tmp, class_reg, mirror::Class::StatusOffset().SizeValue()); // Sign-extended. |
| __ Li(tmp2, ShiftedSignExtendedClassStatusValue<ClassStatus::kVisiblyInitialized>()); |
| __ Bltu(tmp, tmp2, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateBitstringTypeCheckCompare( |
| HTypeCheckInstruction* instruction, XRegister temp) { |
| UNUSED(instruction); |
| UNUSED(temp); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| if (instruction->IsNoOp()) { |
| if (successor != nullptr) { |
| __ J(codegen_->GetLabelOf(successor)); |
| } |
| return; |
| } |
| |
| if (codegen_->CanUseImplicitSuspendCheck()) { |
| LOG(FATAL) << "Unimplemented ImplicitSuspendCheck"; |
| return; |
| } |
| |
| SuspendCheckSlowPathRISCV64* slow_path = |
| down_cast<SuspendCheckSlowPathRISCV64*>(instruction->GetSlowPath()); |
| |
| if (slow_path == nullptr) { |
| slow_path = |
| new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathRISCV64(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| __ Loadw(tmp, TR, Thread::ThreadFlagsOffset<kRiscv64PointerSize>().Int32Value()); |
| static_assert(Thread::SuspendOrCheckpointRequestFlags() != std::numeric_limits<uint32_t>::max()); |
| static_assert(IsPowerOfTwo(Thread::SuspendOrCheckpointRequestFlags() + 1u)); |
| // Shift out other bits. Use an instruction that can be 16-bit with the "C" Standard Extension. |
| __ Slli(tmp, tmp, CLZ(static_cast<uint64_t>(Thread::SuspendOrCheckpointRequestFlags()))); |
| if (successor == nullptr) { |
| __ Bnez(tmp, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ Beqz(tmp, codegen_->GetLabelOf(successor)); |
| __ J(slow_path->GetEntryLabel()); |
| // slow_path will return to GetLabelOf(successor). |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| XRegister out_reg = out.AsRegister<XRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(codegen_->EmitReadBarrier()); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| out_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check= */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| __ Mv(maybe_temp.AsRegister<XRegister>(), out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ Loadwu(out_reg, out_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ Loadwu(out_reg, out_reg, offset); |
| codegen_->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| XRegister out_reg = out.AsRegister<XRegister>(); |
| XRegister obj_reg = obj.AsRegister<XRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(codegen_->EmitReadBarrier()); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| obj_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check= */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ Loadwu(out_reg, obj_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ Loadwu(out_reg, obj_reg, offset); |
| codegen_->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| SlowPathCodeRISCV64* CodeGeneratorRISCV64::AddGcRootBakerBarrierBarrierSlowPath( |
| HInstruction* instruction, Location root, Location temp) { |
| SlowPathCodeRISCV64* slow_path = |
| new (GetScopedAllocator()) ReadBarrierMarkSlowPathRISCV64(instruction, root, temp); |
| AddSlowPath(slow_path); |
| return slow_path; |
| } |
| |
| void CodeGeneratorRISCV64::EmitBakerReadBarierMarkingCheck( |
| SlowPathCodeRISCV64* slow_path, Location root, Location temp) { |
| const int32_t entry_point_offset = ReadBarrierMarkEntrypointOffset(root); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ Loadd(temp.AsRegister<XRegister>(), TR, entry_point_offset); |
| __ Bnez(temp.AsRegister<XRegister>(), slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorRISCV64::GenerateGcRootFieldLoad(HInstruction* instruction, |
| Location root, |
| XRegister obj, |
| uint32_t offset, |
| ReadBarrierOption read_barrier_option, |
| Riscv64Label* label_low) { |
| DCHECK_IMPLIES(label_low != nullptr, offset == kLinkTimeOffsetPlaceholderLow) << offset; |
| XRegister root_reg = root.AsRegister<XRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(EmitReadBarrier()); |
| if (kUseBakerReadBarrier) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded GC root or not. Instead, we |
| // load into `temp` (T6) the read barrier mark entry point corresponding |
| // to register `root`. If `temp` is null, it means that `GetIsGcMarking()` |
| // is false, and vice versa. |
| // |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp != null) { |
| // root = temp(root) |
| // } |
| // |
| // TODO(riscv64): Introduce a "marking register" that holds the pointer to one of the |
| // register marking entrypoints if marking (null if not marking) and make sure that |
| // marking entrypoints for other registers are at known offsets, so that we can call |
| // them using the "marking register" plus the offset embedded in the JALR instruction. |
| |
| if (label_low != nullptr) { |
| __ Bind(label_low); |
| } |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ Loadwu(root_reg, obj, offset); |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // Use RA as temp. It is clobbered in the slow path anyway. |
| Location temp = Location::RegisterLocation(RA); |
| SlowPathCodeRISCV64* slow_path = |
| AddGcRootBakerBarrierBarrierSlowPath(instruction, root, temp); |
| EmitBakerReadBarierMarkingCheck(slow_path, root, temp); |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = obj + offset |
| if (label_low != nullptr) { |
| __ Bind(label_low); |
| } |
| __ AddConst32(root_reg, obj, offset); |
| // /* mirror::Object* */ root = root->Read() |
| GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| if (label_low != nullptr) { |
| __ Bind(label_low); |
| } |
| __ Loadwu(root_reg, obj, offset); |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| Riscv64Label* true_target, |
| Riscv64Label* false_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ J(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ J(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| // The condition instruction has been materialized, compare the output to 0. |
| Location cond_val = instruction->GetLocations()->InAt(condition_input_index); |
| DCHECK(cond_val.IsRegister()); |
| if (true_target == nullptr) { |
| __ Beqz(cond_val.AsRegister<XRegister>(), false_target); |
| } else { |
| __ Bnez(cond_val.AsRegister<XRegister>(), true_target); |
| } |
| } else { |
| // The condition instruction has not been materialized, use its inputs as |
| // the comparison and its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| DataType::Type type = condition->InputAt(0)->GetType(); |
| LocationSummary* locations = condition->GetLocations(); |
| IfCondition if_cond = condition->GetCondition(); |
| Riscv64Label* branch_target = true_target; |
| |
| if (true_target == nullptr) { |
| if_cond = condition->GetOppositeCondition(); |
| branch_target = false_target; |
| } |
| |
| switch (type) { |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateFpCondition(if_cond, condition->IsGtBias(), type, locations, branch_target); |
| break; |
| default: |
| // Integral types and reference equality. |
| GenerateIntLongCompareAndBranch(if_cond, locations, branch_target); |
| break; |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ J(false_target); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DataType::Type type = instruction->GetResultType(); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| XRegister out = locations->Out().AsRegister<XRegister>(); |
| XRegister dividend = locations->InAt(0).AsRegister<XRegister>(); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ Mv(out, Zero); |
| } else { |
| if (imm == -1) { |
| if (type == DataType::Type::kInt32) { |
| __ Subw(out, Zero, dividend); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt64); |
| __ Sub(out, Zero, dividend); |
| } |
| } else if (out != dividend) { |
| __ Mv(out, dividend); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::DivRemByPowerOfTwo(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DataType::Type type = instruction->GetResultType(); |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type; |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| XRegister out = locations->Out().AsRegister<XRegister>(); |
| XRegister dividend = locations->InAt(0).AsRegister<XRegister>(); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| int64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); |
| int ctz_imm = CTZ(abs_imm); |
| DCHECK_GE(ctz_imm, 1); // Division by +/-1 is handled by `DivRemOneOrMinusOne()`. |
| |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| // Calculate the negative dividend adjustment `tmp = dividend < 0 ? abs_imm - 1 : 0`. |
| // This adjustment is needed for rounding the division result towards zero. |
| if (type == DataType::Type::kInt32 || ctz_imm == 1) { |
| // A 32-bit dividend is sign-extended to 64-bit, so we can use the upper bits. |
| // And for a 64-bit division by +/-2, we need just the sign bit. |
| DCHECK_IMPLIES(type == DataType::Type::kInt32, ctz_imm < 32); |
| __ Srli(tmp, dividend, 64 - ctz_imm); |
| } else { |
| // For other 64-bit divisions, we need to replicate the sign bit. |
| __ Srai(tmp, dividend, 63); |
| __ Srli(tmp, tmp, 64 - ctz_imm); |
| } |
| // The rest of the calculation can use 64-bit operations even for 32-bit div/rem. |
| __ Add(tmp, tmp, dividend); |
| if (instruction->IsDiv()) { |
| __ Srai(out, tmp, ctz_imm); |
| if (imm < 0) { |
| __ Neg(out, out); |
| } |
| } else { |
| if (ctz_imm <= 11) { |
| __ Andi(tmp, tmp, -abs_imm); |
| } else { |
| ScratchRegisterScope srs2(GetAssembler()); |
| XRegister tmp2 = srs2.AllocateXRegister(); |
| __ Li(tmp2, -abs_imm); |
| __ And(tmp, tmp, tmp2); |
| } |
| __ Sub(out, dividend, tmp); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| LocationSummary* locations = instruction->GetLocations(); |
| XRegister dividend = locations->InAt(0).AsRegister<XRegister>(); |
| XRegister out = locations->Out().AsRegister<XRegister>(); |
| Location second = locations->InAt(1); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| DataType::Type type = instruction->GetResultType(); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| |
| // TODO: optimize with constant. |
| __ LoadConst64(tmp, imm); |
| if (instruction->IsDiv()) { |
| if (type == DataType::Type::kInt32) { |
| __ Divw(out, dividend, tmp); |
| } else { |
| __ Div(out, dividend, tmp); |
| } |
| } else { |
| if (type == DataType::Type::kInt32) { |
| __ Remw(out, dividend, tmp); |
| } else { |
| __ Rem(out, dividend, tmp); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DataType::Type type = instruction->GetResultType(); |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type; |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| XRegister out = locations->Out().AsRegister<XRegister>(); |
| Location second = locations->InAt(1); |
| |
| if (second.IsConstant()) { |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (IsPowerOfTwo(AbsOrMin(imm))) { |
| DivRemByPowerOfTwo(instruction); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| XRegister dividend = locations->InAt(0).AsRegister<XRegister>(); |
| XRegister divisor = second.AsRegister<XRegister>(); |
| if (instruction->IsDiv()) { |
| if (type == DataType::Type::kInt32) { |
| __ Divw(out, dividend, divisor); |
| } else { |
| __ Div(out, dividend, divisor); |
| } |
| } else { |
| if (type == DataType::Type::kInt32) { |
| __ Remw(out, dividend, divisor); |
| } else { |
| __ Rem(out, dividend, divisor); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateIntLongCondition(IfCondition cond, |
| LocationSummary* locations) { |
| XRegister rd = locations->Out().AsRegister<XRegister>(); |
| GenerateIntLongCondition(cond, locations, rd, /*to_all_bits=*/ false); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateIntLongCondition(IfCondition cond, |
| LocationSummary* locations, |
| XRegister rd, |
| bool to_all_bits) { |
| XRegister rs1 = locations->InAt(0).AsRegister<XRegister>(); |
| Location rs2_location = locations->InAt(1); |
| bool use_imm = rs2_location.IsConstant(); |
| int64_t imm = use_imm ? CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant()) : 0; |
| XRegister rs2 = use_imm ? kNoXRegister : rs2_location.AsRegister<XRegister>(); |
| bool reverse_condition = false; |
| switch (cond) { |
| case kCondEQ: |
| case kCondNE: |
| if (!use_imm) { |
| __ Sub(rd, rs1, rs2); // SUB is OK here even for 32-bit comparison. |
| } else if (imm != 0) { |
| DCHECK(IsInt<12>(-imm)); |
| __ Addi(rd, rs1, -imm); // ADDI is OK here even for 32-bit comparison. |
| } // else test `rs1` directly without subtraction for `use_imm && imm == 0`. |
| if (cond == kCondEQ) { |
| __ Seqz(rd, (use_imm && imm == 0) ? rs1 : rd); |
| } else { |
| __ Snez(rd, (use_imm && imm == 0) ? rs1 : rd); |
| } |
| break; |
| |
| case kCondLT: |
| case kCondGE: |
| if (use_imm) { |
| DCHECK(IsInt<12>(imm)); |
| __ Slti(rd, rs1, imm); |
| } else { |
| __ Slt(rd, rs1, rs2); |
| } |
| // Calculate `rs1 >= rhs` as `!(rs1 < rhs)` since there's only the SLT but no SGE. |
| reverse_condition = (cond == kCondGE); |
| break; |
| |
| case kCondLE: |
| case kCondGT: |
| if (use_imm) { |
| // Calculate `rs1 <= imm` as `rs1 < imm + 1`. |
| DCHECK(IsInt<12>(imm + 1)); // The value that overflows would fail this check. |
| __ Slti(rd, rs1, imm + 1); |
| } else { |
| __ Slt(rd, rs2, rs1); |
| } |
| // Calculate `rs1 > imm` as `!(rs1 < imm + 1)` and calculate |
| // `rs1 <= rs2` as `!(rs2 < rs1)` since there's only the SLT but no SGE. |
| reverse_condition = ((cond == kCondGT) == use_imm); |
| break; |
| |
| case kCondB: |
| case kCondAE: |
| if (use_imm) { |
| // Sltiu sign-extends its 12-bit immediate operand before the comparison |
| // and thus lets us compare directly with unsigned values in the ranges |
| // [0, 0x7ff] and [0x[ffffffff]fffff800, 0x[ffffffff]ffffffff]. |
| DCHECK(IsInt<12>(imm)); |
| __ Sltiu(rd, rs1, imm); |
| } else { |
| __ Sltu(rd, rs1, rs2); |
| } |
| // Calculate `rs1 AE rhs` as `!(rs1 B rhs)` since there's only the SLTU but no SGEU. |
| reverse_condition = (cond == kCondAE); |
| break; |
| |
| case kCondBE: |
| case kCondA: |
| if (use_imm) { |
| // Calculate `rs1 BE imm` as `rs1 B imm + 1`. |
| // Sltiu sign-extends its 12-bit immediate operand before the comparison |
| // and thus lets us compare directly with unsigned values in the ranges |
| // [0, 0x7ff] and [0x[ffffffff]fffff800, 0x[ffffffff]ffffffff]. |
| DCHECK(IsInt<12>(imm + 1)); // The value that overflows would fail this check. |
| __ Sltiu(rd, rs1, imm + 1); |
| } else { |
| __ Sltu(rd, rs2, rs1); |
| } |
| // Calculate `rs1 A imm` as `!(rs1 B imm + 1)` and calculate |
| // `rs1 BE rs2` as `!(rs2 B rs1)` since there's only the SLTU but no SGEU. |
| reverse_condition = ((cond == kCondA) == use_imm); |
| break; |
| } |
| if (to_all_bits) { |
| // Store the result to all bits; in other words, "true" is represented by -1. |
| if (reverse_condition) { |
| __ Addi(rd, rd, -1); // 0 -> -1, 1 -> 0 |
| } else { |
| __ Neg(rd, rd); // 0 -> 0, 1 -> -1 |
| } |
| } else { |
| if (reverse_condition) { |
| __ Xori(rd, rd, 1); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateIntLongCompareAndBranch(IfCondition cond, |
| LocationSummary* locations, |
| Riscv64Label* label) { |
| XRegister left = locations->InAt(0).AsRegister<XRegister>(); |
| Location right_location = locations->InAt(1); |
| if (right_location.IsConstant()) { |
| DCHECK_EQ(CodeGenerator::GetInt64ValueOf(right_location.GetConstant()), 0); |
| switch (cond) { |
| case kCondEQ: |
| case kCondBE: // <= 0 if zero |
| __ Beqz(left, label); |
| break; |
| case kCondNE: |
| case kCondA: // > 0 if non-zero |
| __ Bnez(left, label); |
| break; |
| case kCondLT: |
| __ Bltz(left, label); |
| break; |
| case kCondGE: |
| __ Bgez(left, label); |
| break; |
| case kCondLE: |
| __ Blez(left, label); |
| break; |
| case kCondGT: |
| __ Bgtz(left, label); |
| break; |
| case kCondB: // always false |
| break; |
| case kCondAE: // always true |
| __ J(label); |
| break; |
| } |
| } else { |
| XRegister right_reg = right_location.AsRegister<XRegister>(); |
| switch (cond) { |
| case kCondEQ: |
| __ Beq(left, right_reg, label); |
| break; |
| case kCondNE: |
| __ Bne(left, right_reg, label); |
| break; |
| case kCondLT: |
| __ Blt(left, right_reg, label); |
| break; |
| case kCondGE: |
| __ Bge(left, right_reg, label); |
| break; |
| case kCondLE: |
| __ Ble(left, right_reg, label); |
| break; |
| case kCondGT: |
| __ Bgt(left, right_reg, label); |
| break; |
| case kCondB: |
| __ Bltu(left, right_reg, label); |
| break; |
| case kCondAE: |
| __ Bgeu(left, right_reg, label); |
| break; |
| case kCondBE: |
| __ Bleu(left, right_reg, label); |
| break; |
| case kCondA: |
| __ Bgtu(left, right_reg, label); |
| break; |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateFpCondition(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* locations, |
| Riscv64Label* label) { |
| DCHECK_EQ(label != nullptr, locations->Out().IsInvalid()); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister rd = |
| (label != nullptr) ? srs.AllocateXRegister() : locations->Out().AsRegister<XRegister>(); |
| GenerateFpCondition(cond, gt_bias, type, locations, label, rd, /*to_all_bits=*/ false); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateFpCondition(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* locations, |
| Riscv64Label* label, |
| XRegister rd, |
| bool to_all_bits) { |
| // RISCV-V FP compare instructions yield the following values: |
| // l<r l=r l>r Unordered |
| // FEQ l,r 0 1 0 0 |
| // FLT l,r 1 0 0 0 |
| // FLT r,l 0 0 1 0 |
| // FLE l,r 1 1 0 0 |
| // FLE r,l 0 1 1 0 |
| // |
| // We can calculate the `Compare` results using the following formulas: |
| // l<r l=r l>r Unordered |
| // Compare/gt_bias -1 0 1 1 = ((FLE l,r) ^ 1) - (FLT l,r) |
| // Compare/lt_bias -1 0 1 -1 = ((FLE r,l) - 1) + (FLT r,l) |
| // These are emitted in `VisitCompare()`. |
| // |
| // This function emits a fused `Condition(Compare(., .), 0)`. If we compare the |
| // `Compare` results above with 0, we get the following values and formulas: |
| // l<r l=r l>r Unordered |
| // CondEQ/- 0 1 0 0 = (FEQ l, r) |
| // CondNE/- 1 0 1 1 = (FEQ l, r) ^ 1 |
| // CondLT/gt_bias 1 0 0 0 = (FLT l,r) |
| // CondLT/lt_bias 1 0 0 1 = (FLE r,l) ^ 1 |
| // CondLE/gt_bias 1 1 0 0 = (FLE l,r) |
| // CondLE/lt_bias 1 1 0 1 = (FLT r,l) ^ 1 |
| // CondGT/gt_bias 0 0 1 1 = (FLE l,r) ^ 1 |
| // CondGT/lt_bias 0 0 1 0 = (FLT r,l) |
| // CondGE/gt_bias 0 1 1 1 = (FLT l,r) ^ 1 |
| // CondGE/lt_bias 0 1 1 0 = (FLE r,l) |
| // (CondEQ/CondNE comparison with zero yields the same result with gt_bias and lt_bias.) |
| // |
| // If the condition is not materialized, the `^ 1` is not emitted, |
| // instead the condition is reversed by emitting BEQZ instead of BNEZ. |
| |
| FRegister rs1 = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rs2 = locations->InAt(1).AsFpuRegister<FRegister>(); |
| |
| bool reverse_condition = false; |
| switch (cond) { |
| case kCondEQ: |
| FEq(rd, rs1, rs2, type); |
| break; |
| case kCondNE: |
| FEq(rd, rs1, rs2, type); |
| reverse_condition = true; |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| FLt(rd, rs1, rs2, type); |
| } else { |
| FLe(rd, rs2, rs1, type); |
| reverse_condition = true; |
| } |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| FLe(rd, rs1, rs2, type); |
| } else { |
| FLt(rd, rs2, rs1, type); |
| reverse_condition = true; |
| } |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| FLe(rd, rs1, rs2, type); |
| reverse_condition = true; |
| } else { |
| FLt(rd, rs2, rs1, type); |
| } |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| FLt(rd, rs1, rs2, type); |
| reverse_condition = true; |
| } else { |
| FLe(rd, rs2, rs1, type); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| |
| if (label != nullptr) { |
| if (reverse_condition) { |
| __ Beqz(rd, label); |
| } else { |
| __ Bnez(rd, label); |
| } |
| } else if (to_all_bits) { |
| // Store the result to all bits; in other words, "true" is represented by -1. |
| if (reverse_condition) { |
| __ Addi(rd, rd, -1); // 0 -> -1, 1 -> 0 |
| } else { |
| __ Neg(rd, rd); // 0 -> 0, 1 -> -1 |
| } |
| } else { |
| if (reverse_condition) { |
| __ Xori(rd, rd, 1); |
| } |
| } |
| } |
| |
| void CodeGeneratorRISCV64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| XRegister obj, |
| uint32_t offset, |
| Location temp, |
| bool needs_null_check) { |
| GenerateReferenceLoadWithBakerReadBarrier( |
| instruction, ref, obj, offset, /*index=*/ Location::NoLocation(), temp, needs_null_check); |
| } |
| |
| void CodeGeneratorRISCV64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| XRegister obj, |
| uint32_t data_offset, |
| Location index, |
| Location temp, |
| bool needs_null_check) { |
| GenerateReferenceLoadWithBakerReadBarrier( |
| instruction, ref, obj, data_offset, index, temp, needs_null_check); |
| } |
| |
| void CodeGeneratorRISCV64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| XRegister obj, |
| uint32_t offset, |
| Location index, |
| Location temp, |
| bool needs_null_check) { |
| // For now, use the same approach as for GC roots plus unpoison the reference if needed. |
| // TODO(riscv64): Implement checking if the holder is black. |
| UNUSED(temp); |
| |
| DCHECK(EmitBakerReadBarrier()); |
| XRegister reg = ref.AsRegister<XRegister>(); |
| if (index.IsValid()) { |
| DCHECK(!needs_null_check); |
| DCHECK(index.IsRegister()); |
| DataType::Type type = DataType::Type::kReference; |
| DCHECK_EQ(type, instruction->GetType()); |
| if (instruction->IsArrayGet()) { |
| // /* HeapReference<Object> */ ref = *(obj + index * element_size + offset) |
| instruction_visitor_.ShNAdd(reg, index.AsRegister<XRegister>(), obj, type); |
| } else { |
| // /* HeapReference<Object> */ ref = *(obj + index + offset) |
| DCHECK(instruction->IsInvoke()); |
| DCHECK(instruction->GetLocations()->Intrinsified()); |
| __ Add(reg, index.AsRegister<XRegister>(), obj); |
| } |
| __ Loadwu(reg, reg, offset); |
| } else { |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| __ Loadwu(reg, obj, offset); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| MaybeUnpoisonHeapReference(reg); |
| |
| // Slow path marking the reference. |
| XRegister tmp = RA; // Use RA as temp. It is clobbered in the slow path anyway. |
| SlowPathCodeRISCV64* slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathRISCV64( |
| instruction, ref, Location::RegisterLocation(tmp)); |
| AddSlowPath(slow_path); |
| |
| const int32_t entry_point_offset = ReadBarrierMarkEntrypointOffset(ref); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ Loadd(tmp, TR, entry_point_offset); |
| __ Bnez(tmp, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| SlowPathCodeRISCV64* CodeGeneratorRISCV64::AddReadBarrierSlowPath(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| UNUSED(instruction); |
| UNUSED(out); |
| UNUSED(ref); |
| UNUSED(obj); |
| UNUSED(offset); |
| UNUSED(index); |
| LOG(FATAL) << "Unimplemented"; |
| UNREACHABLE(); |
| } |
| |
| void CodeGeneratorRISCV64::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| UNUSED(instruction); |
| UNUSED(out); |
| UNUSED(ref); |
| UNUSED(obj); |
| UNUSED(offset); |
| UNUSED(index); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void CodeGeneratorRISCV64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (EmitReadBarrier()) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorRISCV64::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| UnpoisonHeapReference(out.AsRegister<XRegister>()); |
| } |
| } |
| |
| void CodeGeneratorRISCV64::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(EmitReadBarrier()); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCodeRISCV64* slow_path = |
| new (GetScopedAllocator()) ReadBarrierForRootSlowPathRISCV64(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ J(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::HandleGoto(HInstruction* instruction, |
| HBasicBlock* successor) { |
| if (successor->IsExitBlock()) { |
| DCHECK(instruction->GetPrevious()->AlwaysThrows()); |
| return; // no code needed |
| } |
| |
| HBasicBlock* block = instruction->GetBlock(); |
| HInstruction* previous = instruction->GetPrevious(); |
| HLoopInformation* info = block->GetLoopInformation(); |
| |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| codegen_->MaybeIncrementHotness(info->GetSuspendCheck(), /*is_frame_entry=*/ false); |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; // `GenerateSuspendCheck()` emitted the jump. |
| } |
| if (block->IsEntryBlock() && previous != nullptr && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(block, successor)) { |
| __ J(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenPackedSwitchWithCompares(XRegister adjusted, |
| XRegister temp, |
| uint32_t num_entries, |
| HBasicBlock* switch_block) { |
| // Note: The `adjusted` register holds `value - lower_bound`. If the `lower_bound` is 0, |
| // `adjusted` is the original `value` register and we must not clobber it. Otherwise, |
| // `adjusted` is the `temp`. The caller already emitted the `adjusted < num_entries` check. |
| |
| // Create a set of compare/jumps. |
| ArrayRef<HBasicBlock* const> successors(switch_block->GetSuccessors()); |
| uint32_t index = 0; |
| for (; num_entries - index >= 2u; index += 2u) { |
| // Jump to `successors[index]` if `value == lower_bound + index`. |
| // Note that `adjusted` holds `value - lower_bound - index`. |
| __ Beqz(adjusted, codegen_->GetLabelOf(successors[index])); |
| if (num_entries - index == 2u) { |
| break; // The last entry shall match, so the branch shall be unconditional. |
| } |
| // Jump to `successors[index + 1]` if `value == lower_bound + index + 1`. |
| // Modify `adjusted` to hold `value - lower_bound - index - 2` for this comparison. |
| __ Addi(temp, adjusted, -2); |
| adjusted = temp; |
| __ Bltz(adjusted, codegen_->GetLabelOf(successors[index + 1])); |
| } |
| // For the last entry, unconditionally jump to `successors[num_entries - 1]`. |
| __ J(codegen_->GetLabelOf(successors[num_entries - 1u])); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenTableBasedPackedSwitch(XRegister adjusted, |
| XRegister temp, |
| uint32_t num_entries, |
| HBasicBlock* switch_block) { |
| // Note: The `adjusted` register holds `value - lower_bound`. If the `lower_bound` is 0, |
| // `adjusted` is the original `value` register and we must not clobber it. Otherwise, |
| // `adjusted` is the `temp`. The caller already emitted the `adjusted < num_entries` check. |
| |
| // Create a jump table. |
| ArenaVector<Riscv64Label*> labels(num_entries, |
| __ GetAllocator()->Adapter(kArenaAllocSwitchTable)); |
| const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| labels[i] = codegen_->GetLabelOf(successors[i]); |
| } |
| JumpTable* table = __ CreateJumpTable(std::move(labels)); |
| |
| // Load the address of the jump table. |
| // Note: The `LoadLabelAddress()` emits AUIPC+ADD. It is possible to avoid the ADD and |
| // instead embed that offset in the LW below as well as all jump table entries but |
| // that would need some invasive changes in the jump table handling in the assembler. |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister table_base = srs.AllocateXRegister(); |
| __ LoadLabelAddress(table_base, table->GetLabel()); |
| |
| // Load the PC difference from the jump table. |
| // TODO(riscv64): Use SH2ADD from the Zba extension. |
| __ Slli(temp, adjusted, 2); |
| __ Add(temp, temp, table_base); |
| __ Lw(temp, temp, 0); |
| |
| // Compute the absolute target address by adding the table start address |
| // (the table contains offsets to targets relative to its start). |
| __ Add(temp, temp, table_base); |
| // And jump. |
| __ Jr(temp); |
| } |
| |
| int32_t InstructionCodeGeneratorRISCV64::VecAddress(LocationSummary* locations, |
| size_t size, |
| /*out*/ XRegister* adjusted_base) { |
| UNUSED(locations); |
| UNUSED(size); |
| UNUSED(adjusted_base); |
| LOG(FATAL) << "Unimplemented"; |
| UNREACHABLE(); |
| } |
| |
| void LocationsBuilderRISCV64::HandleBinaryOp(HBinaryOperation* instruction) { |
| DCHECK_EQ(instruction->InputCount(), 2u); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| DataType::Type type = instruction->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| HInstruction* right = instruction->InputAt(1); |
| bool can_use_imm = false; |
| if (instruction->IsMin() || instruction->IsMax()) { |
| can_use_imm = IsZeroBitPattern(instruction); |
| } else if (right->IsConstant()) { |
| int64_t imm = CodeGenerator::GetInt64ValueOf(right->AsConstant()); |
| can_use_imm = IsInt<12>(instruction->IsSub() ? -imm : imm); |
| } |
| if (can_use_imm) { |
| locations->SetInAt(1, Location::ConstantLocation(right)); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| if (instruction->IsMin() || instruction->IsMax()) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap); |
| } else { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::HandleBinaryOp(HBinaryOperation* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| XRegister rd = locations->Out().AsRegister<XRegister>(); |
| XRegister rs1 = locations->InAt(0).AsRegister<XRegister>(); |
| Location rs2_location = locations->InAt(1); |
| |
| bool use_imm = rs2_location.IsConstant(); |
| XRegister rs2 = use_imm ? kNoXRegister : rs2_location.AsRegister<XRegister>(); |
| int64_t imm = use_imm ? CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant()) : 0; |
| |
| if (instruction->IsAnd()) { |
| if (use_imm) { |
| __ Andi(rd, rs1, imm); |
| } else { |
| __ And(rd, rs1, rs2); |
| } |
| } else if (instruction->IsOr()) { |
| if (use_imm) { |
| __ Ori(rd, rs1, imm); |
| } else { |
| __ Or(rd, rs1, rs2); |
| } |
| } else if (instruction->IsXor()) { |
| if (use_imm) { |
| __ Xori(rd, rs1, imm); |
| } else { |
| __ Xor(rd, rs1, rs2); |
| } |
| } else if (instruction->IsAdd() || instruction->IsSub()) { |
| if (type == DataType::Type::kInt32) { |
| if (use_imm) { |
| __ Addiw(rd, rs1, instruction->IsSub() ? -imm : imm); |
| } else if (instruction->IsAdd()) { |
| __ Addw(rd, rs1, rs2); |
| } else { |
| DCHECK(instruction->IsSub()); |
| __ Subw(rd, rs1, rs2); |
| } |
| } else { |
| if (use_imm) { |
| __ Addi(rd, rs1, instruction->IsSub() ? -imm : imm); |
| } else if (instruction->IsAdd()) { |
| __ Add(rd, rs1, rs2); |
| } else { |
| DCHECK(instruction->IsSub()); |
| __ Sub(rd, rs1, rs2); |
| } |
| } |
| } else if (instruction->IsMin()) { |
| DCHECK_IMPLIES(use_imm, imm == 0); |
| __ Min(rd, rs1, use_imm ? Zero : rs2); |
| } else { |
| DCHECK(instruction->IsMax()); |
| DCHECK_IMPLIES(use_imm, imm == 0); |
| __ Max(rd, rs1, use_imm ? Zero : rs2); |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FRegister rd = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister rs1 = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rs2 = locations->InAt(1).AsFpuRegister<FRegister>(); |
| if (instruction->IsAdd()) { |
| FAdd(rd, rs1, rs2, type); |
| } else if (instruction->IsSub()) { |
| FSub(rd, rs1, rs2, type); |
| } else { |
| DCHECK(instruction->IsMin() || instruction->IsMax()); |
| // If one of the operands is NaN and the other is not, riscv64 instructions FMIN/FMAX |
| // return the other operand while we want to return the NaN operand. |
| DCHECK_NE(rd, rs1); // Requested `Location::kOutputOverlap`. |
| DCHECK_NE(rd, rs2); // Requested `Location::kOutputOverlap`. |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| XRegister tmp2 = srs.AllocateXRegister(); |
| Riscv64Label done; |
| // Return `rs1` if it's NaN. |
| FClass(tmp, rs1, type); |
| __ Li(tmp2, kFClassNaNMinValue); |
| FMv(rd, rs1, type); |
| __ Bgeu(tmp, tmp2, &done); |
| // Return `rs2` if it's NaN. |
| FClass(tmp, rs2, type); |
| FMv(rd, rs2, type); |
| __ Bgeu(tmp, tmp2, &done); |
| // Calculate Min/Max for non-NaN arguments. |
| if (instruction->IsMin()) { |
| FMin(rd, rs1, rs2, type); |
| } else { |
| FMax(rd, rs1, rs2, type); |
| } |
| __ Bind(&done); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected binary operation type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::HandleCondition(HCondition* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| switch (instruction->InputAt(0)->GetType()) { |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| break; |
| |
| default: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| HInstruction* rhs = instruction->InputAt(1); |
| bool use_imm = false; |
| if (rhs->IsConstant()) { |
| int64_t imm = CodeGenerator::GetInt64ValueOf(rhs->AsConstant()); |
| if (instruction->IsEmittedAtUseSite()) { |
| // For `HIf`, materialize all non-zero constants with an `HParallelMove`. |
| // Note: For certain constants and conditions, the code could be improved. |
| // For example, 2048 takes two instructions to materialize but the negative |
| // -2048 could be embedded in ADDI for EQ/NE comparison. |
| use_imm = (imm == 0); |
| } else { |
| // Constants that cannot be embedded in an instruction's 12-bit immediate shall be |
| // materialized with an `HParallelMove`. This simplifies the code and avoids cases |
| // with arithmetic overflow. Adjust the `imm` if needed for a particular instruction. |
| switch (instruction->GetCondition()) { |
| case kCondEQ: |
| case kCondNE: |
| imm = -imm; // ADDI with negative immediate (there is no SUBI). |
| break; |
| case kCondLE: |
| case kCondGT: |
| case kCondBE: |
| case kCondA: |
| imm += 1; // SLTI/SLTIU with adjusted immediate (there is no SLEI/SLEIU). |
| break; |
| default: |
| break; |
| } |
| use_imm = IsInt<12>(imm); |
| } |
| } |
| if (use_imm) { |
| locations->SetInAt(1, Location::ConstantLocation(rhs)); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| break; |
| } |
| } |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::HandleCondition(HCondition* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| DataType::Type type = instruction->InputAt(0)->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| switch (type) { |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateFpCondition(instruction->GetCondition(), instruction->IsGtBias(), type, locations); |
| return; |
| default: |
| // Integral types and reference equality. |
| GenerateIntLongCondition(instruction->GetCondition(), locations); |
| return; |
| } |
| } |
| |
| void LocationsBuilderRISCV64::HandleShift(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsShl() || |
| instruction->IsShr() || |
| instruction->IsUShr() || |
| instruction->IsRor()); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| DataType::Type type = instruction->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::HandleShift(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsShl() || |
| instruction->IsShr() || |
| instruction->IsUShr() || |
| instruction->IsRor()); |
| LocationSummary* locations = instruction->GetLocations(); |
| DataType::Type type = instruction->GetType(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| XRegister rd = locations->Out().AsRegister<XRegister>(); |
| XRegister rs1 = locations->InAt(0).AsRegister<XRegister>(); |
| Location rs2_location = locations->InAt(1); |
| |
| if (rs2_location.IsConstant()) { |
| int64_t imm = CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant()); |
| uint32_t shamt = |
| imm & (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance); |
| |
| if (shamt == 0) { |
| if (rd != rs1) { |
| __ Mv(rd, rs1); |
| } |
| } else if (type == DataType::Type::kInt32) { |
| if (instruction->IsShl()) { |
| __ Slliw(rd, rs1, shamt); |
| } else if (instruction->IsShr()) { |
| __ Sraiw(rd, rs1, shamt); |
| } else if (instruction->IsUShr()) { |
| __ Srliw(rd, rs1, shamt); |
| } else { |
| DCHECK(instruction->IsRor()); |
| __ Roriw(rd, rs1, shamt); |
| } |
| } else { |
| if (instruction->IsShl()) { |
| __ Slli(rd, rs1, shamt); |
| } else if (instruction->IsShr()) { |
| __ Srai(rd, rs1, shamt); |
| } else if (instruction->IsUShr()) { |
| __ Srli(rd, rs1, shamt); |
| } else { |
| DCHECK(instruction->IsRor()); |
| __ Rori(rd, rs1, shamt); |
| } |
| } |
| } else { |
| XRegister rs2 = rs2_location.AsRegister<XRegister>(); |
| if (type == DataType::Type::kInt32) { |
| if (instruction->IsShl()) { |
| __ Sllw(rd, rs1, rs2); |
| } else if (instruction->IsShr()) { |
| __ Sraw(rd, rs1, rs2); |
| } else if (instruction->IsUShr()) { |
| __ Srlw(rd, rs1, rs2); |
| } else { |
| DCHECK(instruction->IsRor()); |
| __ Rorw(rd, rs1, rs2); |
| } |
| } else { |
| if (instruction->IsShl()) { |
| __ Sll(rd, rs1, rs2); |
| } else if (instruction->IsShr()) { |
| __ Sra(rd, rs1, rs2); |
| } else if (instruction->IsUShr()) { |
| __ Srl(rd, rs1, rs2); |
| } else { |
| DCHECK(instruction->IsRor()); |
| __ Ror(rd, rs1, rs2); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift operation type " << type; |
| } |
| } |
| |
| void CodeGeneratorRISCV64::MaybeMarkGCCard(XRegister object, |
| XRegister value, |
| bool value_can_be_null) { |
| Riscv64Label done; |
| if (value_can_be_null) { |
| __ Beqz(value, &done); |
| } |
| MarkGCCard(object); |
| __ Bind(&done); |
| } |
| |
| void CodeGeneratorRISCV64::MarkGCCard(XRegister object) { |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister card = srs.AllocateXRegister(); |
| XRegister temp = srs.AllocateXRegister(); |
| // Load the address of the card table into `card`. |
| __ Loadd(card, TR, Thread::CardTableOffset<kRiscv64PointerSize>().Int32Value()); |
| |
| // Calculate the address of the card corresponding to `object`. |
| __ Srli(temp, object, gc::accounting::CardTable::kCardShift); |
| __ Add(temp, card, temp); |
| // Write the `art::gc::accounting::CardTable::kCardDirty` value into the |
| // `object`'s card. |
| // |
| // Register `card` contains the address of the card table. Note that the card |
| // table's base is biased during its creation so that it always starts at an |
| // address whose least-significant byte is equal to `kCardDirty` (see |
| // art::gc::accounting::CardTable::Create). Therefore the SB instruction |
| // below writes the `kCardDirty` (byte) value into the `object`'s card |
| // (located at `card + object >> kCardShift`). |
| // |
| // This dual use of the value in register `card` (1. to calculate the location |
| // of the card to mark; and 2. to load the `kCardDirty` value) saves a load |
| // (no need to explicitly load `kCardDirty` as an immediate value). |
| __ Sb(card, temp, 0); // No scratch register left for `Storeb()`. |
| } |
| |
| void CodeGeneratorRISCV64::CheckGCCardIsValid(XRegister object) { |
| Riscv64Label done; |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister card = srs.AllocateXRegister(); |
| XRegister temp = srs.AllocateXRegister(); |
| // Load the address of the card table into `card`. |
| __ Loadd(card, TR, Thread::CardTableOffset<kRiscv64PointerSize>().Int32Value()); |
| |
| // Calculate the address of the card corresponding to `object`. |
| __ Srli(temp, object, gc::accounting::CardTable::kCardShift); |
| __ Add(temp, card, temp); |
| // assert (!clean || !self->is_gc_marking) |
| __ Lb(temp, temp, 0); |
| static_assert(gc::accounting::CardTable::kCardClean == 0); |
| __ Bnez(temp, &done); |
| __ Loadw(temp, TR, Thread::IsGcMarkingOffset<kRiscv64PointerSize>().Int32Value()); |
| __ Beqz(temp, &done); |
| __ Unimp(); |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderRISCV64::HandleFieldSet(HInstruction* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ValueLocationForStore(instruction->InputAt(1))); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null, |
| WriteBarrierKind write_barrier_kind) { |
| DataType::Type type = field_info.GetFieldType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| XRegister obj = locations->InAt(0).AsRegister<XRegister>(); |
| Location value = locations->InAt(1); |
| DCHECK_IMPLIES(value.IsConstant(), IsZeroBitPattern(value.GetConstant())); |
| bool is_volatile = field_info.IsVolatile(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| if (is_volatile) { |
| StoreSeqCst(value, obj, offset, type, instruction); |
| } else { |
| Store(value, obj, offset, type); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| bool needs_write_barrier = |
| codegen_->StoreNeedsWriteBarrier(type, instruction->InputAt(1), write_barrier_kind); |
| if (needs_write_barrier) { |
| if (value.IsConstant()) { |
| DCHECK_EQ(write_barrier_kind, WriteBarrierKind::kEmitBeingReliedOn); |
| codegen_->MarkGCCard(obj); |
| } else { |
| codegen_->MaybeMarkGCCard( |
| obj, |
| value.AsRegister<XRegister>(), |
| value_can_be_null && write_barrier_kind == WriteBarrierKind::kEmitNotBeingReliedOn); |
| } |
| } else if (codegen_->ShouldCheckGCCard(type, instruction->InputAt(1), write_barrier_kind)) { |
| codegen_->CheckGCCardIsValid(obj); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::HandleFieldGet(HInstruction* instruction) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| bool object_field_get_with_read_barrier = |
| (instruction->GetType() == DataType::Type::kReference) && codegen_->EmitReadBarrier(); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, |
| object_field_get_with_read_barrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| |
| // Input for object receiver. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps for an object field get when read barriers |
| // are enabled: we do not want the load to overwrite the object's |
| // location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorRISCV64::GenerateFieldLoadWithBakerReadBarrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| XRegister obj = obj_loc.AsRegister<XRegister>(); |
| Location dst_loc = locations->Out(); |
| bool is_volatile = field_info.IsVolatile(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| |
| if (type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) { |
| // /* HeapReference<Object> */ dst = *(obj + offset) |
| Location temp_loc = locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorRISCV64::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| dst_loc, |
| obj, |
| offset, |
| temp_loc, |
| /* needs_null_check= */ true); |
| } else { |
| Load(dst_loc, obj, offset, type); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| |
| if (type == DataType::Type::kReference && !codegen_->EmitBakerReadBarrier()) { |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::GenerateMethodEntryExitHook(HInstruction* instruction) { |
| SlowPathCodeRISCV64* slow_path = |
| new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathRISCV64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| ScratchRegisterScope temps(GetAssembler()); |
| XRegister tmp = temps.AllocateXRegister(); |
| |
| if (instruction->IsMethodExitHook()) { |
| // Check if we are required to check if the caller needs a deoptimization. Strictly speaking it |
| // would be sufficient to check if CheckCallerForDeopt bit is set. Though it is faster to check |
| // if it is just non-zero. kCHA bit isn't used in debuggable runtimes as cha optimization is |
| // disabled in debuggable runtime. The other bit is used when this method itself requires a |
| // deoptimization due to redefinition. So it is safe to just check for non-zero value here. |
| __ Loadwu(tmp, SP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); |
| __ Bnez(tmp, slow_path->GetEntryLabel()); |
| } |
| |
| uint64_t hook_offset = instruction->IsMethodExitHook() ? |
| instrumentation::Instrumentation::HaveMethodExitListenersOffset().SizeValue() : |
| instrumentation::Instrumentation::HaveMethodEntryListenersOffset().SizeValue(); |
| auto [base_hook_address, hook_imm12] = SplitJitAddress( |
| reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation()) + hook_offset); |
| __ LoadConst64(tmp, base_hook_address); |
| __ Lbu(tmp, tmp, hook_imm12); |
| // Check if there are any method entry / exit listeners. If no, continue. |
| __ Beqz(tmp, slow_path->GetExitLabel()); |
| // Check if there are any slow (jvmti / trace with thread cpu time) method entry / exit listeners. |
| // If yes, just take the slow path. |
| static_assert(instrumentation::Instrumentation::kFastTraceListeners == 1u); |
| __ Addi(tmp, tmp, -1); |
| __ Bnez(tmp, slow_path->GetEntryLabel()); |
| |
| // Check if there is place in the buffer to store a new entry, if no, take the slow path. |
| int32_t trace_buffer_index_offset = |
| Thread::TraceBufferIndexOffset<kRiscv64PointerSize>().Int32Value(); |
| __ Loadd(tmp, TR, trace_buffer_index_offset); |
| __ Addi(tmp, tmp, -dchecked_integral_cast<int32_t>(kNumEntriesForWallClock)); |
| __ Bltz(tmp, slow_path->GetEntryLabel()); |
| |
| // Update the index in the `Thread`. |
| __ Stored(tmp, TR, trace_buffer_index_offset); |
| |
| // Allocate second core scratch register. We can no longer use `Stored()` |
| // and similar macro instructions because there is no core scratch register left. |
| XRegister tmp2 = temps.AllocateXRegister(); |
| |
| // Calculate the entry address in the buffer. |
| // /*addr*/ tmp = TR->GetMethodTraceBuffer() + sizeof(void*) * /*index*/ tmp; |
| __ Loadd(tmp2, TR, Thread::TraceBufferPtrOffset<kRiscv64PointerSize>().SizeValue()); |
| __ Sh3Add(tmp, tmp, tmp2); |
| |
| // Record method pointer and trace action. |
| __ Ld(tmp2, SP, 0); |
| // Use last two bits to encode trace method action. For MethodEntry it is 0 |
| // so no need to set the bits since they are 0 already. |
| DCHECK_GE(ArtMethod::Alignment(kRuntimePointerSize), static_cast<size_t>(4)); |
| static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodEnter) == 0); |
| static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodExit) == 1); |
| if (instruction->IsMethodExitHook()) { |
| __ Ori(tmp2, tmp2, enum_cast<int32_t>(TraceAction::kTraceMethodExit)); |
| } |
| static_assert(IsInt<12>(kMethodOffsetInBytes)); // No free scratch register for `Stored()`. |
| __ Sd(tmp2, tmp, kMethodOffsetInBytes); |
| |
| // Record the timestamp. |
| __ RdTime(tmp2); |
| static_assert(IsInt<12>(kTimestampOffsetInBytes)); // No free scratch register for `Stored()`. |
| __ Sd(tmp2, tmp, kTimestampOffsetInBytes); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitAbove(HAbove* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitAbove(HAbove* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitAboveOrEqual(HAboveOrEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitAboveOrEqual(HAboveOrEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected abs type " << abs->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = abs->GetLocations(); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: { |
| XRegister in = locations->InAt(0).AsRegister<XRegister>(); |
| XRegister out = locations->Out().AsRegister<XRegister>(); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| __ Sraiw(tmp, in, 31); |
| __ Xor(out, in, tmp); |
| __ Subw(out, out, tmp); |
| break; |
| } |
| case DataType::Type::kInt64: { |
| XRegister in = locations->InAt(0).AsRegister<XRegister>(); |
| XRegister out = locations->Out().AsRegister<XRegister>(); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| __ Srai(tmp, in, 63); |
| __ Xor(out, in, tmp); |
| __ Sub(out, out, tmp); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| FAbs(locations->Out().AsFpuRegister<FRegister>(), |
| locations->InAt(0).AsFpuRegister<FRegister>(), |
| abs->GetResultType()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected abs type " << abs->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitArrayGet(HArrayGet* instruction) { |
| DataType::Type type = instruction->GetType(); |
| bool object_array_get_with_read_barrier = |
| (type == DataType::Type::kReference) && codegen_->EmitReadBarrier(); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(instruction, |
| object_array_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (DataType::IsFloatingPointType(type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in the case of an object array get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // array's location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorRISCV64::GenerateArrayLoadWithBakerReadBarrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| XRegister obj = obj_loc.AsRegister<XRegister>(); |
| Location out_loc = locations->Out(); |
| Location index = locations->InAt(1); |
| uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); |
| DataType::Type type = instruction->GetType(); |
| const bool maybe_compressed_char_at = |
| mirror::kUseStringCompression && instruction->IsStringCharAt(); |
| |
| Riscv64Label string_char_at_done; |
| if (maybe_compressed_char_at) { |
| DCHECK_EQ(type, DataType::Type::kUint16); |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| Riscv64Label uncompressed_load; |
| { |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| __ Loadw(tmp, obj, count_offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ Andi(tmp, tmp, 0x1); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Bnez(tmp, &uncompressed_load); |
| } |
| XRegister out = out_loc.AsRegister<XRegister>(); |
| if (index.IsConstant()) { |
| int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); |
| __ Loadbu(out, obj, data_offset + const_index); |
| } else { |
| __ Add(out, obj, index.AsRegister<XRegister>()); |
| __ Loadbu(out, out, data_offset); |
| } |
| __ J(&string_char_at_done); |
| __ Bind(&uncompressed_load); |
| } |
| |
| if (type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ out = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| // Note that a potential implicit null check could be handled in these |
| // `CodeGeneratorRISCV64::Generate{Array,Field}LoadWithBakerReadBarrier()` calls |
| // but we currently do not support implicit null checks on `HArrayGet`. |
| DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); |
| Location temp = locations->GetTemp(0); |
| if (index.IsConstant()) { |
| // Array load with a constant index can be treated as a field load. |
| static constexpr size_t shift = DataType::SizeShift(DataType::Type::kReference); |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << shift) + data_offset; |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out_loc, |
| obj, |
| offset, |
| temp, |
| /* needs_null_check= */ false); |
| } else { |
| codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction, |
| out_loc, |
| obj, |
| data_offset, |
| index, |
| temp, |
| /* needs_null_check= */ false); |
| } |
| } else if (index.IsConstant()) { |
| int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); |
| int32_t offset = data_offset + (const_index << DataType::SizeShift(type)); |
| Load(out_loc, obj, offset, type); |
| if (!maybe_compressed_char_at) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| if (type == DataType::Type::kReference) { |
| DCHECK(!codegen_->EmitBakerReadBarrier()); |
| // If read barriers are enabled, emit read barriers other than Baker's using |
| // a slow path (and also unpoison the loaded reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); |
| } |
| } else { |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| ShNAdd(tmp, index.AsRegister<XRegister>(), obj, type); |
| Load(out_loc, tmp, data_offset, type); |
| if (!maybe_compressed_char_at) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| if (type == DataType::Type::kReference) { |
| DCHECK(!codegen_->EmitBakerReadBarrier()); |
| // If read barriers are enabled, emit read barriers other than Baker's using |
| // a slow path (and also unpoison the loaded reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow( |
| instruction, out_loc, out_loc, obj_loc, data_offset, index); |
| } |
| } |
| |
| if (maybe_compressed_char_at) { |
| __ Bind(&string_char_at_done); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| XRegister obj = locations->InAt(0).AsRegister<XRegister>(); |
| XRegister out = locations->Out().AsRegister<XRegister>(); |
| __ Loadwu(out, obj, offset); // Unsigned for string length; does not matter for other arrays. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // Mask out compression flag from String's array length. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ Srli(out, out, 1u); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitArraySet(HArraySet* instruction) { |
| bool needs_type_check = instruction->NeedsTypeCheck(); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, |
| needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| locations->SetInAt(2, ValueLocationForStore(instruction->GetValue())); |
| if (kPoisonHeapReferences && |
| instruction->GetComponentType() == DataType::Type::kReference && |
| !locations->InAt(1).IsConstant() && |
| !locations->InAt(2).IsConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| XRegister array = locations->InAt(0).AsRegister<XRegister>(); |
| Location index = locations->InAt(1); |
| Location value = locations->InAt(2); |
| DataType::Type value_type = instruction->GetComponentType(); |
| bool needs_type_check = instruction->NeedsTypeCheck(); |
| const WriteBarrierKind write_barrier_kind = instruction->GetWriteBarrierKind(); |
| bool needs_write_barrier = |
| codegen_->StoreNeedsWriteBarrier(value_type, instruction->GetValue(), write_barrier_kind); |
| size_t data_offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value(); |
| SlowPathCodeRISCV64* slow_path = nullptr; |
| |
| if (needs_write_barrier) { |
| DCHECK_EQ(value_type, DataType::Type::kReference); |
| DCHECK_IMPLIES(value.IsConstant(), value.GetConstant()->IsArithmeticZero()); |
| const bool storing_constant_zero = value.IsConstant(); |
| if (!storing_constant_zero) { |
| Riscv64Label do_store; |
| |
| bool can_value_be_null = instruction->GetValueCanBeNull(); |
| if (can_value_be_null) { |
| __ Beqz(value.AsRegister<XRegister>(), &do_store); |
| } |
| |
| if (needs_type_check) { |
| slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathRISCV64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister temp1 = srs.AllocateXRegister(); |
| XRegister temp2 = srs.AllocateXRegister(); |
| |
| // Note that when read barriers are enabled, the type checks are performed |
| // without read barriers. This is fine, even in the case where a class object |
| // is in the from-space after the flip, as a comparison involving such a type |
| // would not produce a false positive; it may of course produce a false |
| // negative, in which case we would take the ArraySet slow path. |
| |
| // /* HeapReference<Class> */ temp1 = array->klass_ |
| __ Loadwu(temp1, array, class_offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| codegen_->MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| __ Loadwu(temp2, temp1, component_offset); |
| // /* HeapReference<Class> */ temp1 = value->klass_ |
| __ Loadwu(temp1, value.AsRegister<XRegister>(), class_offset); |
| // If heap poisoning is enabled, no need to unpoison `temp1` |
| // nor `temp2`, as we are comparing two poisoned references. |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| Riscv64Label do_put; |
| __ Beq(temp1, temp2, &do_put); |
| // If heap poisoning is enabled, the `temp2` reference has |
| // not been unpoisoned yet; unpoison it now. |
| codegen_->MaybeUnpoisonHeapReference(temp2); |
| |
| // /* HeapReference<Class> */ temp1 = temp2->super_class_ |
| __ Loadwu(temp1, temp2, super_offset); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp1`, as we are comparing against null below. |
| __ Bnez(temp1, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ Bne(temp1, temp2, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| if (can_value_be_null) { |
| __ Bind(&do_store); |
| } |
| } |
| |
| DCHECK_NE(write_barrier_kind, WriteBarrierKind::kDontEmit); |
| // TODO(solanes): The WriteBarrierKind::kEmitNotBeingReliedOn case should be able to skip |
| // this write barrier when its value is null (without an extra Beqz since we already checked |
| // if the value is null for the type check). This will be done as a follow-up since it is a |
| // runtime optimization that needs extra care. |
| DCHECK_IMPLIES(storing_constant_zero, |
| write_barrier_kind == WriteBarrierKind::kEmitBeingReliedOn); |
| codegen_->MarkGCCard(array); |
| } else if (codegen_->ShouldCheckGCCard(value_type, instruction->GetValue(), write_barrier_kind)) { |
| codegen_->CheckGCCardIsValid(array); |
| } |
| |
| if (index.IsConstant()) { |
| int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); |
| int32_t offset = data_offset + (const_index << DataType::SizeShift(value_type)); |
| Store(value, array, offset, value_type); |
| } else { |
| ScratchRegisterScope srs(GetAssembler()); |
| // Heap poisoning needs two scratch registers in `Store()`, except for null constants. |
| XRegister tmp = |
| (kPoisonHeapReferences && value_type == DataType::Type::kReference && !value.IsConstant()) |
| ? locations->GetTemp(0).AsRegister<XRegister>() |
| : srs.AllocateXRegister(); |
| ShNAdd(tmp, index.AsRegister<XRegister>(), array, value_type); |
| Store(value, tmp, data_offset, value_type); |
| } |
| // There must be no instructions between the `Store()` and the `MaybeRecordImplicitNullCheck()`. |
| // We can avoid this if the type check makes the null check unconditionally. |
| DCHECK_IMPLIES(needs_type_check, needs_write_barrier); |
| if (!(needs_type_check && !instruction->GetValueCanBeNull())) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitBelow(HBelow* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitBelow(HBelow* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitBelowOrEqual(HBelowOrEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitBelowOrEqual(HBelowOrEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| __ Xori(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>(), 1); |
| } |
| |
| void LocationsBuilderRISCV64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| |
| HInstruction* index = instruction->InputAt(0); |
| HInstruction* length = instruction->InputAt(1); |
| |
| bool const_index = false; |
| bool const_length = false; |
| |
| if (length->IsConstant()) { |
| if (index->IsConstant()) { |
| const_index = true; |
| const_length = true; |
| } else { |
| int32_t length_value = length->AsIntConstant()->GetValue(); |
| if (length_value == 0 || length_value == 1) { |
| const_length = true; |
| } |
| } |
| } else if (index->IsConstant()) { |
| int32_t index_value = index->AsIntConstant()->GetValue(); |
| if (index_value <= 0) { |
| const_index = true; |
| } |
| } |
| |
| locations->SetInAt( |
| 0, |
| const_index ? Location::ConstantLocation(index) : Location::RequiresRegister()); |
| locations->SetInAt( |
| 1, |
| const_length ? Location::ConstantLocation(length) : Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| |
| if (length_loc.IsConstant()) { |
| int32_t length = length_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index_loc.IsConstant()) { |
| int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index < 0 || index >= length) { |
| BoundsCheckSlowPathRISCV64* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathRISCV64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| __ J(slow_path->GetEntryLabel()); |
| } else { |
| // Nothing to be done. |
| } |
| return; |
| } |
| |
| BoundsCheckSlowPathRISCV64* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathRISCV64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| XRegister index = index_loc.AsRegister<XRegister>(); |
| if (length == 0) { |
| __ J(slow_path->GetEntryLabel()); |
| } else { |
| DCHECK_EQ(length, 1); |
| __ Bnez(index, slow_path->GetEntryLabel()); |
| } |
| } else { |
| XRegister length = length_loc.AsRegister<XRegister>(); |
| BoundsCheckSlowPathRISCV64* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathRISCV64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (index_loc.IsConstant()) { |
| int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index < 0) { |
| __ J(slow_path->GetEntryLabel()); |
| } else { |
| DCHECK_EQ(index, 0); |
| __ Blez(length, slow_path->GetEntryLabel()); |
| } |
| } else { |
| XRegister index = index_loc.AsRegister<XRegister>(); |
| __ Bgeu(index, length, slow_path->GetEntryLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitBoundType([[maybe_unused]] HBoundType* instruction) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitBoundType([[maybe_unused]] HBoundType* instruction) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Temp is used for read barrier. |
| static size_t NumberOfInstanceOfTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) { |
| if (emit_read_barrier && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Interface case has 3 temps, one for holding the number of interfaces, one for the current |
| // interface pointer, one for loading the current interface. |
| // The other checks have one temp for loading the object's class and maybe a temp for read barrier. |
| static size_t NumberOfCheckCastTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) { |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck) { |
| return 3; |
| } |
| return 1 + NumberOfInstanceOfTemps(emit_read_barrier, type_check_kind); |
| } |
| |
| void LocationsBuilderRISCV64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary::CallKind call_kind = codegen_->GetCheckCastCallKind(instruction); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1))); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2))); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3))); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| locations->AddRegisterTemps(NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| XRegister obj = obj_loc.AsRegister<XRegister>(); |
| Location cls = (type_check_kind == TypeCheckKind::kBitstringCheck) |
| ? Location::NoLocation() |
| : locations->InAt(1); |
| Location temp_loc = locations->GetTemp(0); |
| XRegister temp = temp_loc.AsRegister<XRegister>(); |
| const size_t num_temps = NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind); |
| DCHECK_GE(num_temps, 1u); |
| DCHECK_LE(num_temps, 3u); |
| Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); |
| Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| Riscv64Label done; |
| |
| bool is_type_check_slow_path_fatal = codegen_->IsTypeCheckSlowPathFatal(instruction); |
| SlowPathCodeRISCV64* slow_path = |
| new (codegen_->GetScopedAllocator()) TypeCheckSlowPathRISCV64( |
| instruction, is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(slow_path); |
| |
| // Avoid this check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Beqz(obj, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ Bne(temp, cls.AsRegister<XRegister>(), slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| Riscv64Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ Beqz(temp, slow_path->GetEntryLabel()); |
| // Otherwise, compare the classes. |
| __ Bne(temp, cls.AsRegister<XRegister>(), &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Walk over the class hierarchy to find a match. |
| Riscv64Label loop; |
| __ Bind(&loop); |
| __ Beq(temp, cls.AsRegister<XRegister>(), &done); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. Otherwise, jump to the beginning of the loop. |
| __ Bnez(temp, &loop); |
| __ J(slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Do an exact check. |
| __ Beq(temp, cls.AsRegister<XRegister>(), &done); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the component type is null, jump to the slow path to throw the exception. |
| __ Beqz(temp, slow_path->GetEntryLabel()); |
| // Otherwise, the object is indeed an array, further check that this component |
| // type is not a primitive type. |
| __ Loadhu(temp, temp, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Bnez(temp, slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| // We always go into the type check slow path for the unresolved check case. |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| __ J(slow_path->GetEntryLabel()); |
| break; |
| |
| case TypeCheckKind::kInterfaceCheck: { |
| // Avoid read barriers to improve performance of the fast path. We can not get false |
| // positives by doing this. False negatives are handled by the slow path. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| iftable_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| XRegister temp2 = maybe_temp2_loc.AsRegister<XRegister>(); |
| XRegister temp3 = maybe_temp3_loc.AsRegister<XRegister>(); |
| // Iftable is never null. |
| __ Loadw(temp2, temp, array_length_offset); |
| // Loop through the iftable and check if any class matches. |
| Riscv64Label loop; |
| __ Bind(&loop); |
| __ Beqz(temp2, slow_path->GetEntryLabel()); |
| __ Lwu(temp3, temp, object_array_data_offset); |
| codegen_->MaybeUnpoisonHeapReference(temp3); |
| // Go to next interface. |
| __ Addi(temp, temp, 2 * kHeapReferenceSize); |
| __ Addi(temp2, temp2, -2); |
| // Compare the classes and continue the loop if they do not match. |
| __ Bne(temp3, cls.AsRegister<XRegister>(), &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, temp); |
| __ Bnez(temp, slow_path->GetEntryLabel()); |
| break; |
| } |
| } |
| |
| __ Bind(&done); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| XRegister in = locations->InAt(0).AsRegister<XRegister>(); |
| XRegister out = locations->Out().AsRegister<XRegister>(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| MemberOffset method_offset = |
| mirror::Class::EmbeddedVTableEntryOffset(instruction->GetIndex(), kRiscv64PointerSize); |
| __ Loadd(out, in, method_offset.SizeValue()); |
| } else { |
| uint32_t method_offset = dchecked_integral_cast<uint32_t>( |
| ImTable::OffsetOfElement(instruction->GetIndex(), kRiscv64PointerSize)); |
| __ Loadd(out, in, mirror::Class::ImtPtrOffset(kRiscv64PointerSize).Uint32Value()); |
| __ Loadd(out, out, method_offset); |
| } |
| } |
| |
| static int32_t GetExceptionTlsOffset() { |
| return Thread::ExceptionOffset<kRiscv64PointerSize>().Int32Value(); |
| } |
| |
| void LocationsBuilderRISCV64::VisitClearException(HClearException* instruction) { |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitClearException( |
| [[maybe_unused]] HClearException* instruction) { |
| __ Stored(Zero, TR, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitClinitCheck(HClinitCheck* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| // Rely on the type initialization to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitClinitCheck(HClinitCheck* instruction) { |
| // We assume the class is not null. |
| SlowPathCodeRISCV64* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathRISCV64( |
| instruction->GetLoadClass(), instruction); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, |
| instruction->GetLocations()->InAt(0).AsRegister<XRegister>()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitCompare(HCompare* instruction) { |
| DataType::Type in_type = instruction->InputAt(0)->GetType(); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| |
| switch (in_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, RegisterOrZeroBitPatternLocation(instruction->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << in_type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitCompare(HCompare* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| XRegister result = locations->Out().AsRegister<XRegister>(); |
| DataType::Type in_type = instruction->InputAt(0)->GetType(); |
| |
| // 0 if: left == right |
| // 1 if: left > right |
| // -1 if: left < right |
| switch (in_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| XRegister left = locations->InAt(0).AsRegister<XRegister>(); |
| XRegister right = InputXRegisterOrZero(locations->InAt(1)); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| __ Slt(tmp, left, right); |
| __ Slt(result, right, left); |
| __ Sub(result, result, tmp); |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FRegister left = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister right = locations->InAt(1).AsFpuRegister<FRegister>(); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| if (instruction->IsGtBias()) { |
| // ((FLE l,r) ^ 1) - (FLT l,r); see `GenerateFpCondition()`. |
| FLe(tmp, left, right, in_type); |
| FLt(result, left, right, in_type); |
| __ Xori(tmp, tmp, 1); |
| __ Sub(result, tmp, result); |
| } else { |
| // ((FLE r,l) - 1) + (FLT r,l); see `GenerateFpCondition()`. |
| FLe(tmp, right, left, in_type); |
| FLt(result, right, left, in_type); |
| __ Addi(tmp, tmp, -1); |
| __ Add(result, result, tmp); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unimplemented compare type " << in_type; |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitConstructorFence(HConstructorFence* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitConstructorFence( |
| [[maybe_unused]] HConstructorFence* instruction) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| |
| void LocationsBuilderRISCV64::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RegisterLocation(kArtMethodRegister)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitCurrentMethod( |
| [[maybe_unused]] HCurrentMethod* instruction) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderRISCV64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitShouldDeoptimizeFlag( |
| HShouldDeoptimizeFlag* instruction) { |
| __ Loadw(instruction->GetLocations()->Out().AsRegister<XRegister>(), |
| SP, |
| codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitDeoptimize(HDeoptimize* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| if (IsBooleanValueOrMaterializedCondition(instruction->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitDeoptimize(HDeoptimize* instruction) { |
| SlowPathCodeRISCV64* slow_path = |
| deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathRISCV64>(instruction); |
| GenerateTestAndBranch(instruction, |
| /* condition_input_index= */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target= */ nullptr); |
| } |
| |
| void LocationsBuilderRISCV64::VisitDiv(HDiv* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| switch (instruction->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << instruction->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitDiv(HDiv* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| GenerateDivRemIntegral(instruction); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); |
| FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); |
| FDiv(dst, lhs, rhs, type); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected div type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCodeRISCV64* slow_path = |
| new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathRISCV64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| Location value = instruction->GetLocations()->InAt(0); |
| |
| DataType::Type type = instruction->GetType(); |
| |
| if (!DataType::IsIntegralType(type)) { |
| LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; |
| UNREACHABLE(); |
| } |
| |
| if (value.IsConstant()) { |
| int64_t divisor = codegen_->GetInt64ValueOf(value.GetConstant()->AsConstant()); |
| if (divisor == 0) { |
| __ J(slow_path->GetEntryLabel()); |
| } else { |
| // A division by a non-null constant is valid. We don't need to perform |
| // any check, so simply fall through. |
| } |
| } else { |
| __ Beqz(value.AsRegister<XRegister>(), slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitDoubleConstant(HDoubleConstant* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(instruction)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitDoubleConstant( |
| [[maybe_unused]] HDoubleConstant* instruction) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderRISCV64::VisitEqual(HEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitEqual(HEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitExit(HExit* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitExit([[maybe_unused]] HExit* instruction) {} |
| |
| void LocationsBuilderRISCV64::VisitFloatConstant(HFloatConstant* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(instruction)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitFloatConstant( |
| [[maybe_unused]] HFloatConstant* instruction) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderRISCV64::VisitGoto(HGoto* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitGoto(HGoto* instruction) { |
| HandleGoto(instruction, instruction->GetSuccessor()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitGreaterThan(HGreaterThan* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitGreaterThan(HGreaterThan* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitIf(HIf* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| if (IsBooleanValueOrMaterializedCondition(instruction->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (GetGraph()->IsCompilingBaseline() && |
| codegen_->GetCompilerOptions().ProfileBranches() && |
| !Runtime::Current()->IsAotCompiler()) { |
| DCHECK(instruction->InputAt(0)->IsCondition()); |
| ProfilingInfo* info = GetGraph()->GetProfilingInfo(); |
| DCHECK(info != nullptr); |
| BranchCache* cache = info->GetBranchCache(instruction->GetDexPc()); |
| if (cache != nullptr) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitIf(HIf* instruction) { |
| HBasicBlock* true_successor = instruction->IfTrueSuccessor(); |
| HBasicBlock* false_successor = instruction->IfFalseSuccessor(); |
| Riscv64Label* true_target = codegen_->GoesToNextBlock(instruction->GetBlock(), true_successor) |
| ? nullptr |
| : codegen_->GetLabelOf(true_successor); |
| Riscv64Label* false_target = codegen_->GoesToNextBlock(instruction->GetBlock(), false_successor) |
| ? nullptr |
| : codegen_->GetLabelOf(false_successor); |
| if (IsBooleanValueOrMaterializedCondition(instruction->InputAt(0))) { |
| if (GetGraph()->IsCompilingBaseline() && |
| codegen_->GetCompilerOptions().ProfileBranches() && |
| !Runtime::Current()->IsAotCompiler()) { |
| DCHECK(instruction->InputAt(0)->IsCondition()); |
| ProfilingInfo* info = GetGraph()->GetProfilingInfo(); |
| DCHECK(info != nullptr); |
| BranchCache* cache = info->GetBranchCache(instruction->GetDexPc()); |
| // Currently, not all If branches are profiled. |
| if (cache != nullptr) { |
| uint64_t address = |
| reinterpret_cast64<uint64_t>(cache) + BranchCache::FalseOffset().Int32Value(); |
| static_assert( |
| BranchCache::TrueOffset().Int32Value() - BranchCache::FalseOffset().Int32Value() == 2, |
| "Unexpected offsets for BranchCache"); |
| Riscv64Label done; |
| XRegister condition = instruction->GetLocations()->InAt(0).AsRegister<XRegister>(); |
| XRegister temp = instruction->GetLocations()->GetTemp(0).AsRegister<XRegister>(); |
| __ LoadConst64(temp, address); |
| __ Sh1Add(temp, condition, temp); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister counter = srs.AllocateXRegister(); |
| __ Loadhu(counter, temp, 0); |
| __ Addi(counter, counter, 1); |
| { |
| ScratchRegisterScope srs2(GetAssembler()); |
| XRegister overflow = srs2.AllocateXRegister(); |
| __ Srli(overflow, counter, 16); |
| __ Bnez(overflow, &done); |
| } |
| __ Storeh(counter, temp, 0); |
| __ Bind(&done); |
| } |
| } |
| } |
| GenerateTestAndBranch(instruction, /* condition_input_index= */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderRISCV64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, |
| instruction->GetFieldInfo(), |
| instruction->GetValueCanBeNull(), |
| instruction->GetWriteBarrierKind()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: { |
| bool needs_read_barrier = codegen_->InstanceOfNeedsReadBarrier(instruction); |
| call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; |
| break; |
| } |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| case TypeCheckKind::kBitstringCheck: |
| break; |
| } |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1))); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2))); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3))); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| // The output does overlap inputs. |
| // Note that TypeCheckSlowPathRISCV64 uses this register too. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| locations->AddRegisterTemps( |
| NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| XRegister obj = obj_loc.AsRegister<XRegister>(); |
| Location cls = (type_check_kind == TypeCheckKind::kBitstringCheck) |
| ? Location::NoLocation() |
| : locations->InAt(1); |
| Location out_loc = locations->Out(); |
| XRegister out = out_loc.AsRegister<XRegister>(); |
| const size_t num_temps = NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind); |
| DCHECK_LE(num_temps, 1u); |
| Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| Riscv64Label done; |
| SlowPathCodeRISCV64* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // Avoid this check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Mv(out, Zero); |
| __ Beqz(obj, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| ReadBarrierOption read_barrier_option = |
| codegen_->ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); |
| // Classes must be equal for the instanceof to succeed. |
| __ Xor(out, out, cls.AsRegister<XRegister>()); |
| __ Seqz(out, out); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| ReadBarrierOption read_barrier_option = |
| codegen_->ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| Riscv64Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister( |
| instruction, out_loc, super_offset, maybe_temp_loc, read_barrier_option); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Beqz(out, &done); |
| __ Bne(out, cls.AsRegister<XRegister>(), &loop); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| ReadBarrierOption read_barrier_option = |
| codegen_->ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); |
| // Walk over the class hierarchy to find a match. |
| Riscv64Label loop, success; |
| __ Bind(&loop); |
| __ Beq(out, cls.AsRegister<XRegister>(), &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister( |
| instruction, out_loc, super_offset, maybe_temp_loc, read_barrier_option); |
| __ Bnez(out, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ J(&done); |
| __ Bind(&success); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| ReadBarrierOption read_barrier_option = |
| codegen_->ReadBarrierOptionForInstanceOf(instruction); |
| // FIXME(riscv64): We currently have marking entrypoints for 29 registers. |
| // We need to either store entrypoint for register `N` in entry `N-A` where |
| // `A` can be up to 5 (Zero, RA, SP, GP, TP are not valid registers for |
| // marking), or define two more entrypoints, or request an additional temp |
| // from the register allocator instead of using a scratch register. |
| ScratchRegisterScope srs(GetAssembler()); |
| Location tmp = Location::RegisterLocation(srs.AllocateXRegister()); |
| // /* HeapReference<Class> */ tmp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, tmp, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); |
| // Do an exact check. |
| __ LoadConst32(out, 1); |
| __ Beq(tmp.AsRegister<XRegister>(), cls.AsRegister<XRegister>(), &done); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, out_loc, tmp, component_offset, maybe_temp_loc, read_barrier_option); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Beqz(out, &done); |
| __ Loadhu(out, out, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Seqz(out, out); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier); |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) |
| TypeCheckSlowPathRISCV64(instruction, /* is_fatal= */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ Bne(out, cls.AsRegister<XRegister>(), slow_path->GetEntryLabel()); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathRISCV64( |
| instruction, /* is_fatal= */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ J(slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, out); |
| __ Beqz(out, out); |
| break; |
| } |
| } |
| |
| __ Bind(&done); |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitIntConstant(HIntConstant* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetOut(Location::ConstantLocation(instruction)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitIntConstant([[maybe_unused]] HIntConstant* instruction) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderRISCV64::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitInvokeUnresolved(HInvokeUnresolved* instruction) { |
| // The trampoline uses the same calling convention as dex calling conventions, except |
| // instead of loading arg0/A0 with the target Method*, arg0/A0 will contain the method_idx. |
| HandleInvoke(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInvokeUnresolved(HInvokeUnresolved* instruction) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitInvokeInterface(HInvokeInterface* instruction) { |
| HandleInvoke(instruction); |
| // Use T0 as the hidden argument for `art_quick_imt_conflict_trampoline`. |
| if (instruction->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { |
| instruction->GetLocations()->SetInAt(instruction->GetNumberOfArguments() - 1, |
| Location::RegisterLocation(T0)); |
| } else { |
| instruction->GetLocations()->AddTemp(Location::RegisterLocation(T0)); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInvokeInterface(HInvokeInterface* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| XRegister temp = locations->GetTemp(0).AsRegister<XRegister>(); |
| XRegister receiver = locations->InAt(0).AsRegister<XRegister>(); |
| int32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRiscv64PointerSize); |
| |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ Loadwu(temp, receiver, class_offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| codegen_->MaybeUnpoisonHeapReference(temp); |
| |
| // If we're compiling baseline, update the inline cache. |
| codegen_->MaybeGenerateInlineCacheCheck(instruction, temp); |
| |
| // The register T0 is required to be used for the hidden argument in |
| // `art_quick_imt_conflict_trampoline`. |
| if (instruction->GetHiddenArgumentLoadKind() != MethodLoadKind::kRecursive && |
| instruction->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) { |
| Location hidden_reg = instruction->GetLocations()->GetTemp(1); |
| // Load the resolved interface method in the hidden argument register T0. |
| DCHECK_EQ(T0, hidden_reg.AsRegister<XRegister>()); |
| codegen_->LoadMethod(instruction->GetHiddenArgumentLoadKind(), hidden_reg, instruction); |
| } |
| |
| __ Loadd(temp, temp, mirror::Class::ImtPtrOffset(kRiscv64PointerSize).Uint32Value()); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetImtIndex(), kRiscv64PointerSize)); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ Loadd(temp, temp, method_offset); |
| if (instruction->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) { |
| // We pass the method from the IMT in case of a conflict. This will ensure |
| // we go into the runtime to resolve the actual method. |
| Location hidden_reg = instruction->GetLocations()->GetTemp(1); |
| DCHECK_EQ(T0, hidden_reg.AsRegister<XRegister>()); |
| __ Mv(hidden_reg.AsRegister<XRegister>(), temp); |
| } |
| // RA = temp->GetEntryPoint(); |
| __ Loadd(RA, temp, entry_point.Int32Value()); |
| |
| // RA(); |
| __ Jalr(RA); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* instruction) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!instruction->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderRISCV64 intrinsic(GetGraph()->GetAllocator(), codegen_); |
| if (intrinsic.TryDispatch(instruction)) { |
| return; |
| } |
| |
| if (instruction->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { |
| CriticalNativeCallingConventionVisitorRiscv64 calling_convention_visitor( |
| /*for_register_allocation=*/ true); |
| CodeGenerator::CreateCommonInvokeLocationSummary(instruction, &calling_convention_visitor); |
| } else { |
| HandleInvoke(instruction); |
| } |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorRISCV64* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorRISCV64 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInvokeStaticOrDirect( |
| HInvokeStaticOrDirect* instruction) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!instruction->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(instruction, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| instruction, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitInvokeVirtual(HInvokeVirtual* instruction) { |
| IntrinsicLocationsBuilderRISCV64 intrinsic(GetGraph()->GetAllocator(), codegen_); |
| if (intrinsic.TryDispatch(instruction)) { |
| return; |
| } |
| |
| HandleInvoke(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInvokeVirtual(HInvokeVirtual* instruction) { |
| if (TryGenerateIntrinsicCode(instruction, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(instruction, instruction->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitInvokePolymorphic(HInvokePolymorphic* instruction) { |
| IntrinsicLocationsBuilderRISCV64 intrinsic(GetGraph()->GetAllocator(), codegen_); |
| if (intrinsic.TryDispatch(instruction)) { |
| return; |
| } |
| HandleInvoke(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInvokePolymorphic(HInvokePolymorphic* instruction) { |
| if (TryGenerateIntrinsicCode(instruction, codegen_)) { |
| return; |
| } |
| codegen_->GenerateInvokePolymorphicCall(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitInvokeCustom(HInvokeCustom* instruction) { |
| HandleInvoke(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitInvokeCustom(HInvokeCustom* instruction) { |
| codegen_->GenerateInvokeCustomCall(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitLessThan(HLessThan* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitLessThan(HLessThan* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitLessThanOrEqual(HLessThanOrEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitLessThanOrEqual(HLessThanOrEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitLoadClass(HLoadClass* instruction) { |
| HLoadClass::LoadKind load_kind = instruction->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| DCHECK_EQ(DataType::Type::kReference, instruction->GetType()); |
| DCHECK(loc.Equals(calling_convention.GetReturnLocation(DataType::Type::kReference))); |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(instruction, loc, loc); |
| return; |
| } |
| DCHECK_EQ(instruction->NeedsAccessCheck(), |
| load_kind == HLoadClass::LoadKind::kBssEntryPublic || |
| load_kind == HLoadClass::LoadKind::kBssEntryPackage); |
| |
| const bool requires_read_barrier = !instruction->IsInBootImage() && codegen_->EmitReadBarrier(); |
| LocationSummary::CallKind call_kind = (instruction->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !instruction->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadClass::LoadKind::kBssEntry || |
| load_kind == HLoadClass::LoadKind::kBssEntryPublic || |
| load_kind == HLoadClass::LoadKind::kBssEntryPackage) { |
| if (codegen_->EmitNonBakerReadBarrier()) { |
| // For non-Baker read barriers we have a temp-clobbering call. |
| } else { |
| // Rely on the type resolution or initialization and marking to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorRISCV64::VisitLoadClass(HLoadClass* instruction) |
| NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = instruction->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| codegen_->GenerateLoadClassRuntimeCall(instruction); |
| return; |
| } |
| DCHECK_EQ(instruction->NeedsAccessCheck(), |
| load_kind == HLoadClass::LoadKind::kBssEntryPublic || |
| load_kind == HLoadClass::LoadKind::kBssEntryPackage); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location out_loc = locations->Out(); |
| XRegister out = out_loc.AsRegister<XRegister>(); |
| const ReadBarrierOption read_barrier_option = |
| instruction->IsInBootImage() ? kWithoutReadBarrier : codegen_->GetCompilerReadBarrierOption(); |
| bool generate_null_check = false; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!instruction->CanCallRuntime()); |
| DCHECK(!instruction->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| XRegister current_method = locations->InAt(0).AsRegister<XRegister>(); |
| codegen_->GenerateGcRootFieldLoad(instruction, |
| out_loc, |
| current_method, |
| ArtMethod::DeclaringClassOffset().Int32Value(), |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage() || |
| codegen_->GetCompilerOptions().IsBootImageExtension()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageTypePatch(instruction->GetDexFile(), instruction->GetTypeIndex()); |
| codegen_->EmitPcRelativeAuipcPlaceholder(info_high, out); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageTypePatch( |
| instruction->GetDexFile(), instruction->GetTypeIndex(), info_high); |
| codegen_->EmitPcRelativeAddiPlaceholder(info_low, out, out); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| uint32_t boot_image_offset = codegen_->GetBootImageOffset(instruction); |
| codegen_->LoadBootImageRelRoEntry(out, boot_image_offset); |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| case HLoadClass::LoadKind::kBssEntryPackage: { |
| CodeGeneratorRISCV64::PcRelativePatchInfo* bss_info_high = |
| codegen_->NewTypeBssEntryPatch(instruction); |
| codegen_->EmitPcRelativeAuipcPlaceholder(bss_info_high, out); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = codegen_->NewTypeBssEntryPatch( |
| instruction, bss_info_high); |
| codegen_->GenerateGcRootFieldLoad(instruction, |
| out_loc, |
| out, |
| /* offset= */ kLinkTimeOffsetPlaceholderLow, |
| read_barrier_option, |
| &info_low->label); |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = reinterpret_cast32<uint32_t>(instruction->GetClass().Get()); |
| DCHECK_NE(address, 0u); |
| __ Loadwu(out, codegen_->DeduplicateBootImageAddressLiteral(address)); |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: |
| __ Loadwu(out, codegen_->DeduplicateJitClassLiteral(instruction->GetDexFile(), |
| instruction->GetTypeIndex(), |
| instruction->GetClass())); |
| codegen_->GenerateGcRootFieldLoad( |
| instruction, out_loc, out, /* offset= */ 0, read_barrier_option); |
| break; |
| case HLoadClass::LoadKind::kRuntimeCall: |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| if (generate_null_check || instruction->MustGenerateClinitCheck()) { |
| DCHECK(instruction->CanCallRuntime()); |
| SlowPathCodeRISCV64* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadClassSlowPathRISCV64(instruction, instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (generate_null_check) { |
| __ Beqz(out, slow_path->GetEntryLabel()); |
| } |
| if (instruction->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitLoadException(HLoadException* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitLoadException(HLoadException* instruction) { |
| XRegister out = instruction->GetLocations()->Out().AsRegister<XRegister>(); |
| __ Loadwu(out, TR, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitLoadMethodHandle(HLoadMethodHandle* instruction) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(instruction, loc, loc); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitLoadMethodHandle(HLoadMethodHandle* instruction) { |
| codegen_->GenerateLoadMethodHandleRuntimeCall(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitLoadMethodType(HLoadMethodType* instruction) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(instruction, loc, loc); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitLoadMethodType(HLoadMethodType* instruction) { |
| codegen_->GenerateLoadMethodTypeRuntimeCall(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitLoadString(HLoadString* instruction) { |
| HLoadString::LoadKind load_kind = instruction->GetLoadKind(); |
| LocationSummary::CallKind call_kind = codegen_->GetLoadStringCallKind(instruction); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (load_kind == HLoadString::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(DataType::Type::kReference, instruction->GetType()); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadString::LoadKind::kBssEntry) { |
| if (codegen_->EmitNonBakerReadBarrier()) { |
| // For non-Baker read barriers we have a temp-clobbering call. |
| } else { |
| // Rely on the pResolveString and marking to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorRISCV64::VisitLoadString(HLoadString* instruction) |
| NO_THREAD_SAFETY_ANALYSIS { |
| HLoadString::LoadKind load_kind = instruction->GetLoadKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location out_loc = locations->Out(); |
| XRegister out = out_loc.AsRegister<XRegister>(); |
| |
| switch (load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage() || |
| codegen_->GetCompilerOptions().IsBootImageExtension()); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_high = codegen_->NewBootImageStringPatch( |
| instruction->GetDexFile(), instruction->GetStringIndex()); |
| codegen_->EmitPcRelativeAuipcPlaceholder(info_high, out); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = codegen_->NewBootImageStringPatch( |
| instruction->GetDexFile(), instruction->GetStringIndex(), info_high); |
| codegen_->EmitPcRelativeAddiPlaceholder(info_low, out, out); |
| return; |
| } |
| case HLoadString::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| uint32_t boot_image_offset = codegen_->GetBootImageOffset(instruction); |
| codegen_->LoadBootImageRelRoEntry(out, boot_image_offset); |
| return; |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_high = codegen_->NewStringBssEntryPatch( |
| instruction->GetDexFile(), instruction->GetStringIndex()); |
| codegen_->EmitPcRelativeAuipcPlaceholder(info_high, out); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = codegen_->NewStringBssEntryPatch( |
| instruction->GetDexFile(), instruction->GetStringIndex(), info_high); |
| codegen_->GenerateGcRootFieldLoad(instruction, |
| out_loc, |
| out, |
| /* offset= */ kLinkTimeOffsetPlaceholderLow, |
| codegen_->GetCompilerReadBarrierOption(), |
| &info_low->label); |
| SlowPathCodeRISCV64* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadStringSlowPathRISCV64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| __ Beqz(out, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| case HLoadString::LoadKind::kJitBootImageAddress: { |
| uint32_t address = reinterpret_cast32<uint32_t>(instruction->GetString().Get()); |
| DCHECK_NE(address, 0u); |
| __ Loadwu(out, codegen_->DeduplicateBootImageAddressLiteral(address)); |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: |
| __ Loadwu( |
| out, |
| codegen_->DeduplicateJitStringLiteral( |
| instruction->GetDexFile(), instruction->GetStringIndex(), instruction->GetString())); |
| codegen_->GenerateGcRootFieldLoad( |
| instruction, out_loc, out, 0, codegen_->GetCompilerReadBarrierOption()); |
| return; |
| default: |
| break; |
| } |
| |
| DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK(calling_convention.GetReturnLocation(DataType::Type::kReference).Equals(out_loc)); |
| __ LoadConst32(calling_convention.GetRegisterAt(0), instruction->GetStringIndex().index_); |
| codegen_->InvokeRuntime(kQuickResolveString, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| } |
| |
| void LocationsBuilderRISCV64::VisitLongConstant(HLongConstant* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetOut(Location::ConstantLocation(instruction)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitLongConstant( |
| [[maybe_unused]] HLongConstant* instruction) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderRISCV64::VisitMax(HMax* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitMax(HMax* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitMemoryBarrier(HMemoryBarrier* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitMemoryBarrier(HMemoryBarrier* instruction) { |
| codegen_->GenerateMemoryBarrier(instruction->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitMethodEntryHook(HMethodEntryHook* instruction) { |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitMethodEntryHook(HMethodEntryHook* instruction) { |
| DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable()); |
| DCHECK(codegen_->RequiresCurrentMethod()); |
| GenerateMethodEntryExitHook(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitMethodExitHook(HMethodExitHook* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| DataType::Type return_type = instruction->InputAt(0)->GetType(); |
| locations->SetInAt(0, Riscv64ReturnLocation(return_type)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitMethodExitHook(HMethodExitHook* instruction) { |
| DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable()); |
| DCHECK(codegen_->RequiresCurrentMethod()); |
| GenerateMethodEntryExitHook(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitMin(HMin* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitMin(HMin* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, |
| instruction, |
| instruction->GetDexPc()); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitMul(HMul* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| switch (instruction->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << instruction->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitMul(HMul* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| switch (instruction->GetResultType()) { |
| case DataType::Type::kInt32: |
| __ Mulw(locations->Out().AsRegister<XRegister>(), |
| locations->InAt(0).AsRegister<XRegister>(), |
| locations->InAt(1).AsRegister<XRegister>()); |
| break; |
| |
| case DataType::Type::kInt64: |
| __ Mul(locations->Out().AsRegister<XRegister>(), |
| locations->InAt(0).AsRegister<XRegister>(), |
| locations->InAt(1).AsRegister<XRegister>()); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| FMul(locations->Out().AsFpuRegister<FRegister>(), |
| locations->InAt(0).AsFpuRegister<FRegister>(), |
| locations->InAt(1).AsFpuRegister<FRegister>(), |
| instruction->GetResultType()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitNeg(HNeg* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| switch (instruction->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << instruction->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitNeg(HNeg* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| switch (instruction->GetResultType()) { |
| case DataType::Type::kInt32: |
| __ NegW(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>()); |
| break; |
| |
| case DataType::Type::kInt64: |
| __ Neg(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>()); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| FNeg(locations->Out().AsFpuRegister<FRegister>(), |
| locations->InAt(0).AsFpuRegister<FRegister>(), |
| instruction->GetResultType()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << instruction->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitNewArray(HNewArray* instruction) { |
| QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction); |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitNewInstance(HNewInstance* instruction) { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| } |
| |
| void LocationsBuilderRISCV64::VisitNop(HNop* instruction) { |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitNop([[maybe_unused]] HNop* instruction) { |
| // The environment recording already happened in CodeGenerator::Compile. |
| } |
| |
| void LocationsBuilderRISCV64::VisitNot(HNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitNot(HNot* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| switch (instruction->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| __ Not(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitNotEqual(HNotEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitNotEqual(HNotEqual* instruction) { |
| HandleCondition(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitNullConstant(HNullConstant* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetOut(Location::ConstantLocation(instruction)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitNullConstant( |
| [[maybe_unused]] HNullConstant* instruction) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderRISCV64::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitPackedSwitch(HPackedSwitch* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitPackedSwitch(HPackedSwitch* instruction) { |
| int32_t lower_bound = instruction->GetStartValue(); |
| uint32_t num_entries = instruction->GetNumEntries(); |
| LocationSummary* locations = instruction->GetLocations(); |
| XRegister value = locations->InAt(0).AsRegister<XRegister>(); |
| HBasicBlock* switch_block = instruction->GetBlock(); |
| HBasicBlock* default_block = instruction->GetDefaultBlock(); |
| |
| // Prepare a temporary register and an adjusted zero-based value. |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister temp = srs.AllocateXRegister(); |
| XRegister adjusted = value; |
| if (lower_bound != 0) { |
| adjusted = temp; |
| __ AddConst32(temp, value, -lower_bound); |
| } |
| |
| // Jump to the default block if the index is out of the packed switch value range. |
| // Note: We could save one instruction for `num_entries == 1` with BNEZ but the |
| // `HInstructionBuilder` transforms that case to an `HIf`, so let's keep the code simple. |
| CHECK_NE(num_entries, 0u); // `HInstructionBuilder` creates a `HGoto` for empty packed-switch. |
| { |
| ScratchRegisterScope srs2(GetAssembler()); |
| XRegister temp2 = srs2.AllocateXRegister(); |
| __ LoadConst32(temp2, num_entries); |
| __ Bgeu(adjusted, temp2, codegen_->GetLabelOf(default_block)); // Can clobber `TMP` if taken. |
| } |
| |
| if (num_entries >= kPackedSwitchCompareJumpThreshold) { |
| GenTableBasedPackedSwitch(adjusted, temp, num_entries, switch_block); |
| } else { |
| GenPackedSwitchWithCompares(adjusted, temp, num_entries, switch_block); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitParallelMove([[maybe_unused]] HParallelMove* instruction) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitParallelMove(HParallelMove* instruction) { |
| if (instruction->GetNext()->IsSuspendCheck() && |
| instruction->GetBlock()->GetLoopInformation() != nullptr) { |
| HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); |
| // The back edge will generate the suspend check. |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); |
| } |
| |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitParameterValue( |
| [[maybe_unused]] HParameterValue* instruction) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderRISCV64::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitPhi([[maybe_unused]] HPhi* instruction) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitRem(HRem* instruction) { |
| DataType::Type type = instruction->GetResultType(); |
| LocationSummary::CallKind call_kind = |
| DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(type)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitRem(HRem* instruction) { |
| DataType::Type type = instruction->GetType(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| GenerateDivRemIntegral(instruction); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| QuickEntrypointEnum entrypoint = |
| (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod; |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| if (type == DataType::Type::kFloat32) { |
| CheckEntrypointTypes<kQuickFmodf, float, float, float>(); |
| } else { |
| CheckEntrypointTypes<kQuickFmod, double, double, double>(); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitReturn(HReturn* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| DataType::Type return_type = instruction->InputAt(0)->GetType(); |
| DCHECK_NE(return_type, DataType::Type::kVoid); |
| locations->SetInAt(0, Riscv64ReturnLocation(return_type)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitReturn(HReturn* instruction) { |
| if (GetGraph()->IsCompilingOsr()) { |
| // To simplify callers of an OSR method, we put a floating point return value |
| // in both floating point and core return registers. |
| DataType::Type type = instruction->InputAt(0)->GetType(); |
| if (DataType::IsFloatingPointType(type)) { |
| FMvX(A0, FA0, type); |
| } |
| } |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderRISCV64::VisitReturnVoid(HReturnVoid* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitReturnVoid([[maybe_unused]] HReturnVoid* instruction) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderRISCV64::VisitRor(HRor* instruction) { |
| HandleShift(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitRor(HRor* instruction) { |
| HandleShift(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitShl(HShl* instruction) { |
| HandleShift(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitShl(HShl* instruction) { |
| HandleShift(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitShr(HShr* instruction) { |
| HandleShift(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitShr(HShr* instruction) { |
| HandleShift(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, |
| instruction->GetFieldInfo(), |
| instruction->GetValueCanBeNull(), |
| instruction->GetWriteBarrierKind()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { |
| codegen_->CreateStringBuilderAppendLocations(instruction, Location::RegisterLocation(A0)); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { |
| __ LoadConst32(A0, instruction->GetFormat()->GetValue()); |
| codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc()); |
| } |
| |
| void LocationsBuilderRISCV64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionRISCV64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionRISCV64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderRISCV64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionRISCV64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionRISCV64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderRISCV64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionRISCV64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionRISCV64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderRISCV64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionRISCV64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionRISCV64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderRISCV64::VisitSelect(HSelect* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| locations->SetInAt(0, FpuRegisterOrZeroBitPatternLocation(instruction->GetFalseValue())); |
| locations->SetInAt(1, FpuRegisterOrZeroBitPatternLocation(instruction->GetTrueValue())); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| if (!locations->InAt(0).IsConstant() && !locations->InAt(1).IsConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } else { |
| locations->SetInAt(0, RegisterOrZeroBitPatternLocation(instruction->GetFalseValue())); |
| locations->SetInAt(1, RegisterOrZeroBitPatternLocation(instruction->GetTrueValue())); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| if (IsBooleanValueOrMaterializedCondition(instruction->GetCondition())) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitSelect(HSelect* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| HInstruction* cond = instruction->GetCondition(); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| if (!IsBooleanValueOrMaterializedCondition(cond)) { |
| DataType::Type cond_type = cond->InputAt(0)->GetType(); |
| IfCondition if_cond = cond->AsCondition()->GetCondition(); |
| if (DataType::IsFloatingPointType(cond_type)) { |
| GenerateFpCondition(if_cond, |
| cond->AsCondition()->IsGtBias(), |
| cond_type, |
| cond->GetLocations(), |
| /*label=*/ nullptr, |
| tmp, |
| /*to_all_bits=*/ true); |
| } else { |
| GenerateIntLongCondition(if_cond, cond->GetLocations(), tmp, /*to_all_bits=*/ true); |
| } |
| } else { |
| // TODO(riscv64): Remove the normalizing SNEZ when we can ensure that booleans |
| // have only values 0 and 1. b/279302742 |
| __ Snez(tmp, locations->InAt(2).AsRegister<XRegister>()); |
| __ Neg(tmp, tmp); |
| } |
| |
| XRegister true_reg, false_reg, xor_reg, out_reg; |
| DataType::Type type = instruction->GetType(); |
| if (DataType::IsFloatingPointType(type)) { |
| if (locations->InAt(0).IsConstant()) { |
| DCHECK(locations->InAt(0).GetConstant()->IsZeroBitPattern()); |
| false_reg = Zero; |
| } else { |
| false_reg = srs.AllocateXRegister(); |
| FMvX(false_reg, locations->InAt(0).AsFpuRegister<FRegister>(), type); |
| } |
| if (locations->InAt(1).IsConstant()) { |
| DCHECK(locations->InAt(1).GetConstant()->IsZeroBitPattern()); |
| true_reg = Zero; |
| } else { |
| true_reg = (false_reg == Zero) ? srs.AllocateXRegister() |
| : locations->GetTemp(0).AsRegister<XRegister>(); |
| FMvX(true_reg, locations->InAt(1).AsFpuRegister<FRegister>(), type); |
| } |
| // We can clobber the "true value" with the XOR result. |
| // Note: The XOR is not emitted if `true_reg == Zero`, see below. |
| xor_reg = true_reg; |
| out_reg = tmp; |
| } else { |
| false_reg = InputXRegisterOrZero(locations->InAt(0)); |
| true_reg = InputXRegisterOrZero(locations->InAt(1)); |
| xor_reg = srs.AllocateXRegister(); |
| out_reg = locations->Out().AsRegister<XRegister>(); |
| } |
| |
| // We use a branch-free implementation of `HSelect`. |
| // With `tmp` initialized to 0 for `false` and -1 for `true`: |
| // xor xor_reg, false_reg, true_reg |
| // and tmp, tmp, xor_reg |
| // xor out_reg, tmp, false_reg |
| if (false_reg == Zero) { |
| xor_reg = true_reg; |
| } else if (true_reg == Zero) { |
| xor_reg = false_reg; |
| } else { |
| DCHECK_NE(xor_reg, Zero); |
| __ Xor(xor_reg, false_reg, true_reg); |
| } |
| __ And(tmp, tmp, xor_reg); |
| __ Xor(out_reg, tmp, false_reg); |
| |
| if (type == DataType::Type::kFloat64) { |
| __ FMvDX(locations->Out().AsFpuRegister<FRegister>(), out_reg); |
| } else if (type == DataType::Type::kFloat32) { |
| __ FMvWX(locations->Out().AsFpuRegister<FRegister>(), out_reg); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| // In suspend check slow path, usually there are no caller-save registers at all. |
| // If SIMD instructions are present, however, we force spilling all live SIMD |
| // registers in full width (since the runtime only saves/restores lower part). |
| locations->SetCustomSlowPathCallerSaves(GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : |
| RegisterSet::Empty()); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void LocationsBuilderRISCV64::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| void LocationsBuilderRISCV64::VisitTryBoundary(HTryBoundary* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitTryBoundary(HTryBoundary* instruction) { |
| HBasicBlock* successor = instruction->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(instruction, successor); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitTypeConversion(HTypeConversion* instruction) { |
| DataType::Type input_type = instruction->GetInputType(); |
| DataType::Type result_type = instruction->GetResultType(); |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| |
| if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) || |
| (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) { |
| LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| |
| if (DataType::IsFloatingPointType(input_type)) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| if (DataType::IsFloatingPointType(result_type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitTypeConversion(HTypeConversion* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| DataType::Type result_type = instruction->GetResultType(); |
| DataType::Type input_type = instruction->GetInputType(); |
| |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| |
| if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) { |
| XRegister dst = locations->Out().AsRegister<XRegister>(); |
| XRegister src = locations->InAt(0).AsRegister<XRegister>(); |
| switch (result_type) { |
| case DataType::Type::kUint8: |
| __ ZextB(dst, src); |
| break; |
| case DataType::Type::kInt8: |
| __ SextB(dst, src); |
| break; |
| case DataType::Type::kUint16: |
| __ ZextH(dst, src); |
| break; |
| case DataType::Type::kInt16: |
| __ SextH(dst, src); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| // Sign-extend 32-bit int into bits 32 through 63 for int-to-long and long-to-int |
| // conversions, except when the input and output registers are the same and we are not |
| // converting longs to shorter types. In these cases, do nothing. |
| if ((input_type == DataType::Type::kInt64) || (dst != src)) { |
| __ Addiw(dst, src, 0); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| UNREACHABLE(); |
| } |
| } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) { |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| XRegister src = locations->InAt(0).AsRegister<XRegister>(); |
| if (input_type == DataType::Type::kInt64) { |
| if (result_type == DataType::Type::kFloat32) { |
| __ FCvtSL(dst, src, FPRoundingMode::kRNE); |
| } else { |
| __ FCvtDL(dst, src, FPRoundingMode::kRNE); |
| } |
| } else { |
| if (result_type == DataType::Type::kFloat32) { |
| __ FCvtSW(dst, src, FPRoundingMode::kRNE); |
| } else { |
| __ FCvtDW(dst, src); // No rounding. |
| } |
| } |
| } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) { |
| CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64); |
| XRegister dst = locations->Out().AsRegister<XRegister>(); |
| FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); |
| if (result_type == DataType::Type::kInt64) { |
| if (input_type == DataType::Type::kFloat32) { |
| __ FCvtLS(dst, src, FPRoundingMode::kRTZ); |
| } else { |
| __ FCvtLD(dst, src, FPRoundingMode::kRTZ); |
| } |
| } else { |
| if (input_type == DataType::Type::kFloat32) { |
| __ FCvtWS(dst, src, FPRoundingMode::kRTZ); |
| } else { |
| __ FCvtWD(dst, src, FPRoundingMode::kRTZ); |
| } |
| } |
| // For NaN inputs we need to return 0. |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| FClass(tmp, src, input_type); |
| __ Sltiu(tmp, tmp, kFClassNaNMinValue); // 0 for NaN, 1 otherwise. |
| __ Neg(tmp, tmp); // 0 for NaN, -1 otherwise. |
| __ And(dst, dst, tmp); // Cleared for NaN. |
| } else if (DataType::IsFloatingPointType(result_type) && |
| DataType::IsFloatingPointType(input_type)) { |
| FRegister dst = locations->Out().AsFpuRegister<FRegister>(); |
| FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); |
| if (result_type == DataType::Type::kFloat32) { |
| __ FCvtSD(dst, src); |
| } else { |
| __ FCvtDS(dst, src); |
| } |
| } else { |
| LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type |
| << " to " << result_type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderRISCV64::VisitUShr(HUShr* instruction) { |
| HandleShift(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitUShr(HUShr* instruction) { |
| HandleShift(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecExtractScalar(HVecExtractScalar* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecExtractScalar(HVecExtractScalar* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecReduce(HVecReduce* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecReduce(HVecReduce* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecCnv(HVecCnv* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecCnv(HVecCnv* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecNeg(HVecNeg* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecNeg(HVecNeg* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecAbs(HVecAbs* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecAbs(HVecAbs* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecNot(HVecNot* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecNot(HVecNot* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecAdd(HVecAdd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecAdd(HVecAdd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecSub(HVecSub* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecSub(HVecSub* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecMul(HVecMul* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecMul(HVecMul* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecDiv(HVecDiv* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecDiv(HVecDiv* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecMin(HVecMin* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecMin(HVecMin* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecMax(HVecMax* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecMax(HVecMax* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecAnd(HVecAnd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecAnd(HVecAnd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecAndNot(HVecAndNot* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecAndNot(HVecAndNot* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecOr(HVecOr* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecOr(HVecOr* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecXor(HVecXor* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecXor(HVecXor* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecSaturationAdd(HVecSaturationAdd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecSaturationAdd(HVecSaturationAdd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecSaturationSub(HVecSaturationSub* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecSaturationSub(HVecSaturationSub* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecShl(HVecShl* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecShl(HVecShl* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecShr(HVecShr* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecShr(HVecShr* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecUShr(HVecUShr* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecUShr(HVecUShr* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecSetScalars(HVecSetScalars* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecSetScalars(HVecSetScalars* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecMultiplyAccumulate( |
| HVecMultiplyAccumulate* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecDotProd(HVecDotProd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecDotProd(HVecDotProd* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecLoad(HVecLoad* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecLoad(HVecLoad* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecStore(HVecStore* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecStore(HVecStore* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecPredSetAll(HVecPredSetAll* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecPredSetAll(HVecPredSetAll* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecPredWhile(HVecPredWhile* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecPredWhile(HVecPredWhile* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecPredToBoolean(HVecPredToBoolean* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecPredToBoolean(HVecPredToBoolean* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecCondition(HVecCondition* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecCondition(HVecCondition* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void LocationsBuilderRISCV64::VisitVecPredNot(HVecPredNot* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorRISCV64::VisitVecPredNot(HVecPredNot* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| namespace detail { |
| |
| // Mark which intrinsics we don't have handcrafted code for. |
| template <Intrinsics T> |
| struct IsUnimplemented { |
| bool is_unimplemented = false; |
| }; |
| |
| #define TRUE_OVERRIDE(Name) \ |
| template <> \ |
| struct IsUnimplemented<Intrinsics::k##Name> { \ |
| bool is_unimplemented = true; \ |
| }; |
| UNIMPLEMENTED_INTRINSIC_LIST_RISCV64(TRUE_OVERRIDE) |
| #undef TRUE_OVERRIDE |
| |
| static constexpr bool kIsIntrinsicUnimplemented[] = { |
| false, // kNone |
| #define IS_UNIMPLEMENTED(Intrinsic, ...) \ |
| IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented, |
| ART_INTRINSICS_LIST(IS_UNIMPLEMENTED) |
| #undef IS_UNIMPLEMENTED |
| }; |
| |
| } // namespace detail |
| |
| CodeGeneratorRISCV64::CodeGeneratorRISCV64(HGraph* graph, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfXRegisters, |
| kNumberOfFRegisters, |
| /*number_of_register_pairs=*/ 0u, |
| ComputeRegisterMask(kCoreCalleeSaves, arraysize(kCoreCalleeSaves)), |
| ComputeRegisterMask(kFpuCalleeSaves, arraysize(kFpuCalleeSaves)), |
| compiler_options, |
| stats, |
| ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)), |
| assembler_(graph->GetAllocator(), |
| compiler_options.GetInstructionSetFeatures()->AsRiscv64InstructionSetFeatures()), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| block_labels_(nullptr), |
| move_resolver_(graph->GetAllocator(), this), |
| uint32_literals_(std::less<uint32_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| uint64_literals_(std::less<uint64_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(StringReferenceValueComparator(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(TypeReferenceValueComparator(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) { |
| // Always mark the RA register to be saved. |
| AddAllocatedRegister(Location::RegisterLocation(RA)); |
| } |
| |
| void CodeGeneratorRISCV64::MaybeIncrementHotness(HSuspendCheck* suspend_check, |
| bool is_frame_entry) { |
| if (GetCompilerOptions().CountHotnessInCompiledCode()) { |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister method = is_frame_entry ? kArtMethodRegister : srs.AllocateXRegister(); |
| if (!is_frame_entry) { |
| __ Loadd(method, SP, 0); |
| } |
| XRegister counter = srs.AllocateXRegister(); |
| __ Loadhu(counter, method, ArtMethod::HotnessCountOffset().Int32Value()); |
| Riscv64Label done; |
| DCHECK_EQ(0u, interpreter::kNterpHotnessValue); |
| __ Beqz(counter, &done); // Can clobber `TMP` if taken. |
| __ Addi(counter, counter, -1); |
| // We may not have another scratch register available for `Storeh`()`, |
| // so we must use the `Sh()` function directly. |
| static_assert(IsInt<12>(ArtMethod::HotnessCountOffset().Int32Value())); |
| __ Sh(counter, method, ArtMethod::HotnessCountOffset().Int32Value()); |
| __ Bind(&done); |
| } |
| |
| if (GetGraph()->IsCompilingBaseline() && |
| GetGraph()->IsUsefulOptimizing() && |
| !Runtime::Current()->IsAotCompiler()) { |
| ProfilingInfo* info = GetGraph()->GetProfilingInfo(); |
| DCHECK(info != nullptr); |
| DCHECK(!HasEmptyFrame()); |
| uint64_t address = reinterpret_cast64<uint64_t>(info) + |
| ProfilingInfo::BaselineHotnessCountOffset().SizeValue(); |
| auto [base_address, imm12] = SplitJitAddress(address); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister counter = srs.AllocateXRegister(); |
| XRegister tmp = RA; |
| __ LoadConst64(tmp, base_address); |
| SlowPathCodeRISCV64* slow_path = |
| new (GetScopedAllocator()) CompileOptimizedSlowPathRISCV64(suspend_check, tmp, imm12); |
| AddSlowPath(slow_path); |
| __ Lhu(counter, tmp, imm12); |
| __ Beqz(counter, slow_path->GetEntryLabel()); // Can clobber `TMP` if taken. |
| __ Addi(counter, counter, -1); |
| __ Sh(counter, tmp, imm12); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| bool CodeGeneratorRISCV64::CanUseImplicitSuspendCheck() const { |
| // TODO(riscv64): Implement implicit suspend checks to reduce code size. |
| return false; |
| } |
| |
| void CodeGeneratorRISCV64::GenerateMemoryBarrier(MemBarrierKind kind) { |
| switch (kind) { |
| case MemBarrierKind::kAnyAny: |
| __ Fence(/*pred=*/ kFenceRead | kFenceWrite, /*succ=*/ kFenceRead | kFenceWrite); |
| break; |
| case MemBarrierKind::kAnyStore: |
| __ Fence(/*pred=*/ kFenceRead | kFenceWrite, /*succ=*/ kFenceWrite); |
| break; |
| case MemBarrierKind::kLoadAny: |
| __ Fence(/*pred=*/ kFenceRead, /*succ=*/ kFenceRead | kFenceWrite); |
| break; |
| case MemBarrierKind::kStoreStore: |
| __ Fence(/*pred=*/ kFenceWrite, /*succ=*/ kFenceWrite); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected memory barrier " << kind; |
| UNREACHABLE(); |
| } |
| } |
| |
| void CodeGeneratorRISCV64::GenerateFrameEntry() { |
| // Check if we need to generate the clinit check. We will jump to the |
| // resolution stub if the class is not initialized and the executing thread is |
| // not the thread initializing it. |
| // We do this before constructing the frame to get the correct stack trace if |
| // an exception is thrown. |
| if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) { |
| Riscv64Label resolution; |
| Riscv64Label memory_barrier; |
| |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| XRegister tmp2 = srs.AllocateXRegister(); |
| |
| // We don't emit a read barrier here to save on code size. We rely on the |
| // resolution trampoline to do a clinit check before re-entering this code. |
| __ Loadwu(tmp2, kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value()); |
| |
| // We shall load the full 32-bit status word with sign-extension and compare as unsigned |
| // to sign-extended shifted status values. This yields the same comparison as loading and |
| // materializing unsigned but the constant is materialized with a single LUI instruction. |
| __ Loadw(tmp, tmp2, mirror::Class::StatusOffset().SizeValue()); // Sign-extended. |
| |
| // Check if we're visibly initialized. |
| __ Li(tmp2, ShiftedSignExtendedClassStatusValue<ClassStatus::kVisiblyInitialized>()); |
| __ Bgeu(tmp, tmp2, &frame_entry_label_); // Can clobber `TMP` if taken. |
| |
| // Check if we're initialized and jump to code that does a memory barrier if so. |
| __ Li(tmp2, ShiftedSignExtendedClassStatusValue<ClassStatus::kInitialized>()); |
| __ Bgeu(tmp, tmp2, &memory_barrier); // Can clobber `TMP` if taken. |
| |
| // Check if we're initializing and the thread initializing is the one |
| // executing the code. |
| __ Li(tmp2, ShiftedSignExtendedClassStatusValue<ClassStatus::kInitializing>()); |
| __ Bltu(tmp, tmp2, &resolution); // Can clobber `TMP` if taken. |
| |
| __ Loadwu(tmp2, kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value()); |
| __ Loadw(tmp, tmp2, mirror::Class::ClinitThreadIdOffset().Int32Value()); |
| __ Loadw(tmp2, TR, Thread::TidOffset<kRiscv64PointerSize>().Int32Value()); |
| __ Beq(tmp, tmp2, &frame_entry_label_); |
| __ Bind(&resolution); |
| |
| // Jump to the resolution stub. |
| ThreadOffset64 entrypoint_offset = |
| GetThreadOffset<kRiscv64PointerSize>(kQuickQuickResolutionTrampoline); |
| __ Loadd(tmp, TR, entrypoint_offset.Int32Value()); |
| __ Jr(tmp); |
| |
| __ Bind(&memory_barrier); |
| GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| __ Bind(&frame_entry_label_); |
| |
| bool do_overflow_check = |
| FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kRiscv64) || !IsLeafMethod(); |
| |
| if (do_overflow_check) { |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| __ Loadw( |
| Zero, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kRiscv64))); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| if (!HasEmptyFrame()) { |
| // Make sure the frame size isn't unreasonably large. |
| DCHECK_LE(GetFrameSize(), GetMaximumFrameSize()); |
| |
| // Spill callee-saved registers. |
| |
| uint32_t frame_size = GetFrameSize(); |
| |
| IncreaseFrame(frame_size); |
| |
| uint32_t offset = frame_size; |
| for (size_t i = arraysize(kCoreCalleeSaves); i != 0; ) { |
| --i; |
| XRegister reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| offset -= kRiscv64DoublewordSize; |
| __ Stored(reg, SP, offset); |
| __ cfi().RelOffset(dwarf::Reg::Riscv64Core(reg), offset); |
| } |
| } |
| |
| for (size_t i = arraysize(kFpuCalleeSaves); i != 0; ) { |
| --i; |
| FRegister reg = kFpuCalleeSaves[i]; |
| if (allocated_registers_.ContainsFloatingPointRegister(reg)) { |
| offset -= kRiscv64DoublewordSize; |
| __ FStored(reg, SP, offset); |
| __ cfi().RelOffset(dwarf::Reg::Riscv64Fp(reg), offset); |
| } |
| } |
| |
| // Save the current method if we need it. Note that we do not |
| // do this in HCurrentMethod, as the instruction might have been removed |
| // in the SSA graph. |
| if (RequiresCurrentMethod()) { |
| __ Stored(kArtMethodRegister, SP, 0); |
| } |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| // Initialize should_deoptimize flag to 0. |
| __ Storew(Zero, SP, GetStackOffsetOfShouldDeoptimizeFlag()); |
| } |
| } |
| MaybeIncrementHotness(/* suspend_check= */ nullptr, /*is_frame_entry=*/ true); |
| } |
| |
| void CodeGeneratorRISCV64::GenerateFrameExit() { |
| __ cfi().RememberState(); |
| |
| if (!HasEmptyFrame()) { |
| // Restore callee-saved registers. |
| |
| // For better instruction scheduling restore RA before other registers. |
| uint32_t offset = GetFrameSize(); |
| for (size_t i = arraysize(kCoreCalleeSaves); i != 0; ) { |
| --i; |
| XRegister reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| offset -= kRiscv64DoublewordSize; |
| __ Loadd(reg, SP, offset); |
| __ cfi().Restore(dwarf::Reg::Riscv64Core(reg)); |
| } |
| } |
| |
| for (size_t i = arraysize(kFpuCalleeSaves); i != 0; ) { |
| --i; |
| FRegister reg = kFpuCalleeSaves[i]; |
| if (allocated_registers_.ContainsFloatingPointRegister(reg)) { |
| offset -= kRiscv64DoublewordSize; |
| __ FLoadd(reg, SP, offset); |
| __ cfi().Restore(dwarf::Reg::Riscv64Fp(reg)); |
| } |
| } |
| |
| DecreaseFrame(GetFrameSize()); |
| } |
| |
| __ Jr(RA); |
| |
| __ cfi().RestoreState(); |
| __ cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorRISCV64::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); } |
| |
| void CodeGeneratorRISCV64::MoveConstant(Location destination, int32_t value) { |
| DCHECK(destination.IsRegister()); |
| __ LoadConst32(destination.AsRegister<XRegister>(), value); |
| } |
| |
| void CodeGeneratorRISCV64::MoveLocation(Location destination, |
| Location source, |
| DataType::Type dst_type) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| |
| // A valid move type can always be inferred from the destination and source locations. |
| // When moving from and to a register, the `dst_type` can be used to generate 32-bit instead |
| // of 64-bit moves but it's generally OK to use 64-bit moves for 32-bit values in registers. |
| bool unspecified_type = (dst_type == DataType::Type::kVoid); |
| // TODO(riscv64): Is the destination type known in all cases? |
| // TODO(riscv64): Can unspecified `dst_type` move 32-bit GPR to FPR without NaN-boxing? |
| CHECK(!unspecified_type); |
| |
| if (destination.IsRegister() || destination.IsFpuRegister()) { |
| if (unspecified_type) { |
| HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr; |
| if (source.IsStackSlot() || |
| (src_cst != nullptr && |
| (src_cst->IsIntConstant() || src_cst->IsFloatConstant() || src_cst->IsNullConstant()))) { |
| // For stack slots and 32-bit constants, a 32-bit type is appropriate. |
| dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32; |
| } else { |
| // If the source is a double stack slot or a 64-bit constant, a 64-bit type |
| // is appropriate. Else the source is a register, and since the type has not |
| // been specified, we chose a 64-bit type to force a 64-bit move. |
| dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64; |
| } |
| } |
| DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) || |
| (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type))); |
| |
| if (source.IsStackSlot() || source.IsDoubleStackSlot()) { |
| // Move to GPR/FPR from stack |
| if (DataType::IsFloatingPointType(dst_type)) { |
| if (DataType::Is64BitType(dst_type)) { |
| __ FLoadd(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); |
| } else { |
| __ FLoadw(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); |
| } |
| } else { |
| if (DataType::Is64BitType(dst_type)) { |
| __ Loadd(destination.AsRegister<XRegister>(), SP, source.GetStackIndex()); |
| } else if (dst_type == DataType::Type::kReference) { |
| __ Loadwu(destination.AsRegister<XRegister>(), SP, source.GetStackIndex()); |
| } else { |
| __ Loadw(destination.AsRegister<XRegister>(), SP, source.GetStackIndex()); |
| } |
| } |
| } else if (source.IsConstant()) { |
| // Move to GPR/FPR from constant |
| // TODO(riscv64): Consider using literals for difficult-to-materialize 64-bit constants. |
| int64_t value = GetInt64ValueOf(source.GetConstant()->AsConstant()); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister gpr = DataType::IsFloatingPointType(dst_type) |
| ? srs.AllocateXRegister() |
| : destination.AsRegister<XRegister>(); |
| if (DataType::IsFloatingPointType(dst_type) && value == 0) { |
| gpr = Zero; // Note: The scratch register allocated above shall not be used. |
| } else { |
| // Note: For `float` we load the sign-extended value here as it can sometimes yield |
| // a shorter instruction sequence. The higher 32 bits shall be ignored during the |
| // transfer to FP reg and the result shall be correctly NaN-boxed. |
| __ LoadConst64(gpr, value); |
| } |
| if (dst_type == DataType::Type::kFloat32) { |
| __ FMvWX(destination.AsFpuRegister<FRegister>(), gpr); |
| } else if (dst_type == DataType::Type::kFloat64) { |
| __ FMvDX(destination.AsFpuRegister<FRegister>(), gpr); |
| } |
| } else if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| // Move to GPR from GPR |
| __ Mv(destination.AsRegister<XRegister>(), source.AsRegister<XRegister>()); |
| } else { |
| DCHECK(destination.IsFpuRegister()); |
| if (DataType::Is64BitType(dst_type)) { |
| __ FMvDX(destination.AsFpuRegister<FRegister>(), source.AsRegister<XRegister>()); |
| } else { |
| __ FMvWX(destination.AsFpuRegister<FRegister>(), source.AsRegister<XRegister>()); |
| } |
| } |
| } else if (source.IsFpuRegister()) { |
| if (destination.IsFpuRegister()) { |
| if (GetGraph()->HasSIMD()) { |
| LOG(FATAL) << "Vector extension is unsupported"; |
| UNREACHABLE(); |
| } else { |
| // Move to FPR from FPR |
| if (dst_type == DataType::Type::kFloat32) { |
| __ FMvS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>()); |
| } else { |
| DCHECK_EQ(dst_type, DataType::Type::kFloat64); |
| __ FMvD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>()); |
| } |
| } |
| } else { |
| DCHECK(destination.IsRegister()); |
| if (DataType::Is64BitType(dst_type)) { |
| __ FMvXD(destination.AsRegister<XRegister>(), source.AsFpuRegister<FRegister>()); |
| } else { |
| __ FMvXW(destination.AsRegister<XRegister>(), source.AsFpuRegister<FRegister>()); |
| } |
| } |
| } |
| } else if (destination.IsSIMDStackSlot()) { |
| LOG(FATAL) << "SIMD is unsupported"; |
| UNREACHABLE(); |
| } else { // The destination is not a register. It must be a stack slot. |
| DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot()); |
| if (source.IsRegister() || source.IsFpuRegister()) { |
| if (unspecified_type) { |
| if (source.IsRegister()) { |
| dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64; |
| } else { |
| dst_type = |
| destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64; |
| } |
| } |
| DCHECK_EQ(source.IsFpuRegister(), DataType::IsFloatingPointType(dst_type)); |
| // For direct @CriticalNative calls, we need to sign-extend narrow integral args |
| // to 64 bits, so widening integral values is allowed. Narrowing is forbidden. |
| DCHECK_IMPLIES(DataType::IsFloatingPointType(dst_type) || destination.IsStackSlot(), |
| destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)); |
| // Move to stack from GPR/FPR |
| if (destination.IsDoubleStackSlot()) { |
| if (source.IsRegister()) { |
| __ Stored(source.AsRegister<XRegister>(), SP, destination.GetStackIndex()); |
| } else { |
| __ FStored(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex()); |
| } |
| } else { |
| if (source.IsRegister()) { |
| __ Storew(source.AsRegister<XRegister>(), SP, destination.GetStackIndex()); |
| } else { |
| __ FStorew(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex()); |
| } |
| } |
| } else if (source.IsConstant()) { |
| // Move to stack from constant |
| int64_t value = GetInt64ValueOf(source.GetConstant()); |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister gpr = (value != 0) ? srs.AllocateXRegister() : Zero; |
| if (value != 0) { |
| __ LoadConst64(gpr, value); |
| } |
| if (destination.IsStackSlot()) { |
| __ Storew(gpr, SP, destination.GetStackIndex()); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()); |
| __ Stored(gpr, SP, destination.GetStackIndex()); |
| } |
| } else { |
| DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot()); |
| // For direct @CriticalNative calls, we need to sign-extend narrow integral args |
| // to 64 bits, so widening move is allowed. Narrowing move is forbidden. |
| DCHECK_IMPLIES(destination.IsStackSlot(), source.IsStackSlot()); |
| // Move to stack from stack |
| ScratchRegisterScope srs(GetAssembler()); |
| XRegister tmp = srs.AllocateXRegister(); |
| if (source.IsStackSlot()) { |
| __ Loadw(tmp, SP, source.GetStackIndex()); |
| } else { |
| __ Loadd(tmp, SP, source.GetStackIndex()); |
| } |
| if (destination.IsStackSlot()) { |
| __ Storew(tmp, SP, destination.GetStackIndex()); |
| } else { |
| __ Stored(tmp, SP, destination.GetStackIndex()); |
| } |
| } |
| } |
| } |
| |
| void CodeGeneratorRISCV64::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void CodeGeneratorRISCV64::SetupBlockedRegisters() const { |
| // ZERO, GP, SP, RA, TP and TR(S1) are reserved and can't be allocated. |
| blocked_core_registers_[Zero] = true; |
| blocked_core_registers_[GP] = true; |
| blocked_core_registers_[SP] = true; |
| blocked_core_registers_[RA] = true; |
| blocked_core_registers_[TP] = true; |
| blocked_core_registers_[TR] = true; // ART Thread register. |
| |
| // TMP(T6), TMP2(T5) and FTMP(FT11) are used as temporary/scratch registers. |
| blocked_core_registers_[TMP] = true; |
| blocked_core_registers_[TMP2] = true; |
| blocked_fpu_registers_[FTMP] = true; |
| |
| if (GetGraph()->IsDebuggable()) { |
| // Stubs do not save callee-save floating point registers. If the graph |
| // is debuggable, we need to deal with these registers differently. For |
| // now, just block them. |
| for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { |
| blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; |
| } |
| } |
| } |
| |
| size_t CodeGeneratorRISCV64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ Stored(XRegister(reg_id), SP, stack_index); |
| return kRiscv64DoublewordSize; |
| } |
| |
| size_t CodeGeneratorRISCV64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ Loadd(XRegister(reg_id), SP, stack_index); |
| return kRiscv64DoublewordSize; |
| } |
| |
| size_t CodeGeneratorRISCV64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| if (GetGraph()->HasSIMD()) { |
| // TODO(riscv64): RISC-V vector extension. |
| UNIMPLEMENTED(FATAL) << "Vector extension is unsupported"; |
| UNREACHABLE(); |
| } |
| __ FStored(FRegister(reg_id), SP, stack_index); |
| return kRiscv64FloatRegSizeInBytes; |
| } |
| |
| size_t CodeGeneratorRISCV64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| if (GetGraph()->HasSIMD()) { |
| // TODO(riscv64): RISC-V vector extension. |
| UNIMPLEMENTED(FATAL) << "Vector extension is unsupported"; |
| UNREACHABLE(); |
| } |
| __ FLoadd(FRegister(reg_id), SP, stack_index); |
| return kRiscv64FloatRegSizeInBytes; |
| } |
| |
| void CodeGeneratorRISCV64::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << XRegister(reg); |
| } |
| |
| void CodeGeneratorRISCV64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << FRegister(reg); |
| } |
| |
| const Riscv64InstructionSetFeatures& CodeGeneratorRISCV64::GetInstructionSetFeatures() const { |
| return *GetCompilerOptions().GetInstructionSetFeatures()->AsRiscv64InstructionSetFeatures(); |
| } |
| |
| void CodeGeneratorRISCV64::Finalize() { |
| // Ensure that we fix up branches and literal loads and emit the literal pool. |
| __ FinalizeCode(); |
| |
| // Adjust native pc offsets in stack maps. |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| for (size_t i = 0, num = stack_map_stream->GetNumberOfStackMaps(); i != num; ++i) { |
| uint32_t old_position = stack_map_stream->GetStackMapNativePcOffset(i); |
| uint32_t new_position = __ GetAdjustedPosition(old_position); |
| DCHECK_GE(new_position, old_position); |
| stack_map_stream->SetStackMapNativePcOffset(i, new_position); |
| } |
| |
| // Adjust pc offsets for the disassembly information. |
| if (disasm_info_ != nullptr) { |
| GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); |
| frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); |
| frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); |
| for (auto& entry : *disasm_info_->GetInstructionIntervals()) { |
| entry.second.start = __ GetAdjustedPosition(entry.second.start); |
| entry.second.end = __ GetAdjustedPosition(entry.second.end); |
| } |
| for (auto& entry : *disasm_info_->GetSlowPathIntervals()) { |
| entry.code_interval.start = __ GetAdjustedPosition(entry.code_interval.start); |
| entry.code_interval.end = __ GetAdjustedPosition(entry.code_interval.end); |
| } |
| } |
| } |
| |
| // Generate code to invoke a runtime entry point. |
| void CodeGeneratorRISCV64::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| |
| ThreadOffset64 entrypoint_offset = GetThreadOffset<kRiscv64PointerSize>(entrypoint); |
| |
| // TODO(riscv64): Reduce code size for AOT by using shared trampolines for slow path |
| // runtime calls across the entire oat file. |
| __ Loadd(RA, TR, entrypoint_offset.Int32Value()); |
| __ Jalr(RA); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| |
| // Generate code to invoke a runtime entry point, but do not record |
| // PC-related information in a stack map. |
| void CodeGeneratorRISCV64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| __ Loadd(RA, TR, entry_point_offset); |
| __ Jalr(RA); |
| } |
| |
| void CodeGeneratorRISCV64::IncreaseFrame(size_t adjustment) { |
| int32_t adjustment32 = dchecked_integral_cast<int32_t>(adjustment); |
| __ AddConst64(SP, SP, -adjustment32); |
| GetAssembler()->cfi().AdjustCFAOffset(adjustment32); |
| } |
| |
| void CodeGeneratorRISCV64::DecreaseFrame(size_t adjustment) { |
| int32_t adjustment32 = dchecked_integral_cast<int32_t>(adjustment); |
| __ AddConst64(SP, SP, adjustment32); |
| GetAssembler()->cfi().AdjustCFAOffset(-adjustment32); |
| } |
| |
| void CodeGeneratorRISCV64::GenerateNop() { |
| __ Nop(); |
| } |
| |
| void CodeGeneratorRISCV64::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| Location obj = instruction->GetLocations()->InAt(0); |
| |
| __ Lw(Zero, obj.AsRegister<XRegister>(), 0); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorRISCV64::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCodeRISCV64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathRISCV64(instruction); |
| AddSlowPath(slow_path); |
| |
| Location obj = instruction->GetLocations()->InAt(0); |
| |
| __ Beqz(obj.AsRegister<XRegister>(), slow_path->GetEntryLabel()); |
| } |
| |
| HLoadString::LoadKind CodeGeneratorRISCV64::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageRelRo: |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kJitBootImageAddress: |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorRISCV64::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBootImageRelRo: |
| case HLoadClass::LoadKind::kBssEntry: |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| case HLoadClass::LoadKind::kBssEntryPackage: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kJitBootImageAddress: |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorRISCV64::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, ArtMethod* method) { |
| UNUSED(method); |
| // On RISCV64 we support all dispatch types. |
| return desired_dispatch_info; |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageIntrinsicPatch( |
| uint32_t intrinsic_data, const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| /* dex_file= */ nullptr, intrinsic_data, info_high, &boot_image_other_patches_); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageRelRoPatch( |
| uint32_t boot_image_offset, const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| /* dex_file= */ nullptr, boot_image_offset, info_high, &boot_image_other_patches_); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageMethodPatch( |
| MethodReference target_method, const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, info_high, &boot_image_method_patches_); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewMethodBssEntryPatch( |
| MethodReference target_method, const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, info_high, &method_bss_entry_patches_); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageTypePatch( |
| const DexFile& dex_file, dex::TypeIndex type_index, const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &boot_image_type_patches_); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageJniEntrypointPatch( |
| MethodReference target_method, const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, info_high, &boot_image_jni_entrypoint_patches_); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewTypeBssEntryPatch( |
| HLoadClass* load_class, |
| const PcRelativePatchInfo* info_high) { |
| const DexFile& dex_file = load_class->GetDexFile(); |
| dex::TypeIndex type_index = load_class->GetTypeIndex(); |
| ArenaDeque<PcRelativePatchInfo>* patches = nullptr; |
| switch (load_class->GetLoadKind()) { |
| case HLoadClass::LoadKind::kBssEntry: |
| patches = &type_bss_entry_patches_; |
| break; |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| patches = &public_type_bss_entry_patches_; |
| break; |
| case HLoadClass::LoadKind::kBssEntryPackage: |
| patches = &package_type_bss_entry_patches_; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind(); |
| UNREACHABLE(); |
| } |
| return NewPcRelativePatch(&dex_file, type_index.index_, info_high, patches); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageStringPatch( |
| const DexFile& dex_file, dex::StringIndex string_index, const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &boot_image_string_patches_); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewStringBssEntryPatch( |
| const DexFile& dex_file, dex::StringIndex string_index, const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &string_bss_entry_patches_); |
| } |
| |
| CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewPcRelativePatch( |
| const DexFile* dex_file, |
| uint32_t offset_or_index, |
| const PcRelativePatchInfo* info_high, |
| ArenaDeque<PcRelativePatchInfo>* patches) { |
| patches->emplace_back(dex_file, offset_or_index, info_high); |
| return &patches->back(); |
| } |
| |
| Literal* CodeGeneratorRISCV64::DeduplicateUint32Literal(uint32_t value) { |
| return uint32_literals_.GetOrCreate(value, |
| [this, value]() { return __ NewLiteral<uint32_t>(value); }); |
| } |
| |
| Literal* CodeGeneratorRISCV64::DeduplicateUint64Literal(uint64_t value) { |
| return uint64_literals_.GetOrCreate(value, |
| [this, value]() { return __ NewLiteral<uint64_t>(value); }); |
| } |
| |
| Literal* CodeGeneratorRISCV64::DeduplicateBootImageAddressLiteral(uint64_t address) { |
| return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address)); |
| } |
| |
| Literal* CodeGeneratorRISCV64::DeduplicateJitStringLiteral(const DexFile& dex_file, |
| dex::StringIndex string_index, |
| Handle<mirror::String> handle) { |
| ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); |
| return jit_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { return __ NewLiteral<uint32_t>(/* value= */ 0u); }); |
| } |
| |
| Literal* CodeGeneratorRISCV64::DeduplicateJitClassLiteral(const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| Handle<mirror::Class> handle) { |
| ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); |
| return jit_class_patches_.GetOrCreate( |
| TypeReference(&dex_file, type_index), |
| [this]() { return __ NewLiteral<uint32_t>(/* value= */ 0u); }); |
| } |
| |
| void CodeGeneratorRISCV64::PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| const Literal* literal, |
| uint64_t index_in_table) const { |
| uint32_t literal_offset = GetAssembler().GetLabelLocation(literal->GetLabel()); |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| reinterpret_cast<uint32_t*>(code + literal_offset)[0] = dchecked_integral_cast<uint32_t>(address); |
| } |
| |
| void CodeGeneratorRISCV64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const auto& entry : jit_string_patches_) { |
| const StringReference& string_reference = entry.first; |
| Literal* table_entry_literal = entry.second; |
| uint64_t index_in_table = GetJitStringRootIndex(string_reference); |
| PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); |
| } |
| for (const auto& entry : jit_class_patches_) { |
| const TypeReference& type_reference = entry.first; |
| Literal* table_entry_literal = entry.second; |
| uint64_t index_in_table = GetJitClassRootIndex(type_reference); |
| PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); |
| } |
| } |
| |
| void CodeGeneratorRISCV64::EmitPcRelativeAuipcPlaceholder(PcRelativePatchInfo* info_high, |
| XRegister out) { |
| DCHECK(info_high->pc_insn_label == &info_high->label); |
| __ Bind(&info_high->label); |
| __ Auipc(out, /*imm20=*/ kLinkTimeOffsetPlaceholderHigh); |
| } |
| |
| void CodeGeneratorRISCV64::EmitPcRelativeAddiPlaceholder(PcRelativePatchInfo* info_low, |
| XRegister rd, |
| XRegister rs1) { |
| DCHECK(info_low->pc_insn_label != &info_low->label); |
| __ Bind(&info_low->label); |
| __ Addi(rd, rs1, /*imm12=*/ kLinkTimeOffsetPlaceholderLow); |
| } |
| |
| void CodeGeneratorRISCV64::EmitPcRelativeLwuPlaceholder(PcRelativePatchInfo* info_low, |
| XRegister rd, |
| XRegister rs1) { |
| DCHECK(info_low->pc_insn_label != &info_low->label); |
| __ Bind(&info_low->label); |
| __ Lwu(rd, rs1, /*offset=*/ kLinkTimeOffsetPlaceholderLow); |
| } |
| |
| void CodeGeneratorRISCV64::EmitPcRelativeLdPlaceholder(PcRelativePatchInfo* info_low, |
| XRegister rd, |
| XRegister rs1) { |
| DCHECK(info_low->pc_insn_label != &info_low->label); |
| __ Bind(&info_low->label); |
| __ Ld(rd, rs1, /*offset=*/ kLinkTimeOffsetPlaceholderLow); |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorRISCV64::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<PcRelativePatchInfo>& infos, |
| ArenaVector<linker::LinkerPatch>* linker_patches) { |
| for (const PcRelativePatchInfo& info : infos) { |
| linker_patches->push_back(Factory(__ GetLabelLocation(&info.label), |
| info.target_dex_file, |
| __ GetLabelLocation(info.pc_insn_label), |
| info.offset_or_index)); |
| } |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)> |
| linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, |
| const DexFile* target_dex_file, |
| uint32_t pc_insn_offset, |
| uint32_t boot_image_offset) { |
| DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null. |
| return Factory(literal_offset, pc_insn_offset, boot_image_offset); |
| } |
| |
| void CodeGeneratorRISCV64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| boot_image_method_patches_.size() + |
| method_bss_entry_patches_.size() + |
| boot_image_type_patches_.size() + |
| type_bss_entry_patches_.size() + |
| public_type_bss_entry_patches_.size() + |
| package_type_bss_entry_patches_.size() + |
| boot_image_string_patches_.size() + |
| string_bss_entry_patches_.size() + |
| boot_image_jni_entrypoint_patches_.size() + |
| boot_image_other_patches_.size(); |
| linker_patches->reserve(size); |
| if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>( |
| boot_image_method_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>( |
| boot_image_type_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>( |
| boot_image_string_patches_, linker_patches); |
| } else { |
| DCHECK(boot_image_method_patches_.empty()); |
| DCHECK(boot_image_type_patches_.empty()); |
| DCHECK(boot_image_string_patches_.empty()); |
| } |
| if (GetCompilerOptions().IsBootImage()) { |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>( |
| boot_image_other_patches_, linker_patches); |
| } else { |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>( |
| boot_image_other_patches_, linker_patches); |
| } |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>( |
| method_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>( |
| type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>( |
| public_type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>( |
| package_type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>( |
| string_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>( |
| boot_image_jni_entrypoint_patches_, linker_patches); |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| void CodeGeneratorRISCV64::LoadTypeForBootImageIntrinsic(XRegister dest, |
| TypeReference target_type) { |
| // Load the type the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. |
| DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); |
| PcRelativePatchInfo* info_high = |
| NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex()); |
| EmitPcRelativeAuipcPlaceholder(info_high, dest); |
| PcRelativePatchInfo* info_low = |
| NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), info_high); |
| EmitPcRelativeAddiPlaceholder(info_low, dest, dest); |
| } |
| |
| void CodeGeneratorRISCV64::LoadBootImageRelRoEntry(XRegister dest, uint32_t boot_image_offset) { |
| PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_offset); |
| EmitPcRelativeAuipcPlaceholder(info_high, dest); |
| PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_offset, info_high); |
| // Note: Boot image is in the low 4GiB and the entry is always 32-bit, so emit a 32-bit load. |
| EmitPcRelativeLwuPlaceholder(info_low, dest, dest); |
| } |
| |
| void CodeGeneratorRISCV64::LoadBootImageAddress(XRegister dest, uint32_t boot_image_reference) { |
| if (GetCompilerOptions().IsBootImage()) { |
| PcRelativePatchInfo* info_high = NewBootImageIntrinsicPatch(boot_image_reference); |
| EmitPcRelativeAuipcPlaceholder(info_high, dest); |
| PcRelativePatchInfo* info_low = NewBootImageIntrinsicPatch(boot_image_reference, info_high); |
| EmitPcRelativeAddiPlaceholder(info_low, dest, dest); |
| } else if (GetCompilerOptions().GetCompilePic()) { |
| LoadBootImageRelRoEntry(dest, boot_image_reference); |
| } else { |
| DCHECK(GetCompilerOptions().IsJitCompiler()); |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| DCHECK(!heap->GetBootImageSpaces().empty()); |
| const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference; |
| // Note: Boot image is in the low 4GiB (usually the low 2GiB, requiring just LUI+ADDI). |
| // We may not have an available scratch register for `LoadConst64()` but it never |
| // emits better code than `Li()` for 32-bit unsigned constants anyway. |
| __ Li(dest, reinterpret_cast32<uint32_t>(address)); |
| } |
| } |
| |
| void CodeGeneratorRISCV64::LoadIntrinsicDeclaringClass(XRegister dest, HInvoke* invoke) { |
| DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone); |
| if (GetCompilerOptions().IsBootImage()) { |
| MethodReference target_method = invoke->GetResolvedMethodReference(); |
| dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; |
| LoadTypeForBootImageIntrinsic(dest, TypeReference(target_method.dex_file, type_idx)); |
| } else { |
| uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke); |
| LoadBootImageAddress(dest, boot_image_offset); |
| } |
| } |
| |
| void CodeGeneratorRISCV64::LoadClassRootForIntrinsic(XRegister dest, ClassRoot class_root) { |
| if (GetCompilerOptions().IsBootImage()) { |
| ScopedObjectAccess soa(Thread::Current()); |
| ObjPtr<mirror::Class> klass = GetClassRoot(class_root); |
| TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex()); |
| LoadTypeForBootImageIntrinsic(dest, target_type); |
| } else { |
| uint32_t boot_image_offset = GetBootImageOffset(class_root); |
| LoadBootImageAddress(dest, boot_image_offset); |
| } |
| } |
| |
| void CodeGeneratorRISCV64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) { |
| switch (load_kind) { |
| case MethodLoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_high = |
| NewBootImageMethodPatch(invoke->GetResolvedMethodReference()); |
| EmitPcRelativeAuipcPlaceholder(info_high, temp.AsRegister<XRegister>()); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = |
| NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), info_high); |
| EmitPcRelativeAddiPlaceholder( |
| info_low, temp.AsRegister<XRegister>(), temp.AsRegister<XRegister>()); |
| break; |
| } |
| case MethodLoadKind::kBootImageRelRo: { |
| uint32_t boot_image_offset = GetBootImageOffset(invoke); |
| LoadBootImageRelRoEntry(temp.AsRegister<XRegister>(), boot_image_offset); |
| break; |
| } |
| case MethodLoadKind::kBssEntry: { |
| PcRelativePatchInfo* info_high = NewMethodBssEntryPatch(invoke->GetMethodReference()); |
| EmitPcRelativeAuipcPlaceholder(info_high, temp.AsRegister<XRegister>()); |
| PcRelativePatchInfo* info_low = |
| NewMethodBssEntryPatch(invoke->GetMethodReference(), info_high); |
| EmitPcRelativeLdPlaceholder( |
| info_low, temp.AsRegister<XRegister>(), temp.AsRegister<XRegister>()); |
| break; |
| } |
| case MethodLoadKind::kJitDirectAddress: { |
| __ LoadConst64(temp.AsRegister<XRegister>(), |
| reinterpret_cast<uint64_t>(invoke->GetResolvedMethod())); |
| break; |
| } |
| case MethodLoadKind::kRuntimeCall: { |
| // Test situation, don't do anything. |
| break; |
| } |
| default: { |
| LOG(FATAL) << "Load kind should have already been handled " << load_kind; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void CodeGeneratorRISCV64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, |
| Location temp, |
| SlowPathCode* slow_path) { |
| // All registers are assumed to be correctly set up per the calling convention. |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| |
| switch (invoke->GetMethodLoadKind()) { |
| case MethodLoadKind::kStringInit: { |
| // temp = thread->string_init_entrypoint |
| uint32_t offset = |
| GetThreadOffset<kRiscv64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| __ Loadd(temp.AsRegister<XRegister>(), TR, offset); |
| break; |
| } |
| case MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex()); |
| break; |
| case MethodLoadKind::kRuntimeCall: |
| GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); |
| return; // No code pointer retrieval; the runtime performs the call directly. |
| case MethodLoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); |
| if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { |
| // Do not materialize the method pointer, load directly the entrypoint. |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_high = |
| NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference()); |
| EmitPcRelativeAuipcPlaceholder(info_high, RA); |
| CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = |
| NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), info_high); |
| EmitPcRelativeLdPlaceholder(info_low, RA, RA); |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| default: |
| LoadMethod(invoke->GetMethodLoadKind(), temp, invoke); |
| break; |
| } |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case CodePtrLocation::kCallSelf: |
| DCHECK(!GetGraph()->HasShouldDeoptimizeFlag()); |
| __ Jal(&frame_entry_label_); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| break; |
| case CodePtrLocation::kCallArtMethod: |
| // RA = callee_method->entry_point_from_quick_compiled_code_; |
| __ Loadd(RA, |
| callee_method.AsRegister<XRegister>(), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRiscv64PointerSize).Int32Value()); |
| // RA() |
| __ Jalr(RA); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| break; |
| case CodePtrLocation::kCallCriticalNative: { |
| size_t out_frame_size = |
| PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorRiscv64, |
| kNativeStackAlignment, |
| GetCriticalNativeDirectCallFrameSize>(invoke); |
| if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) { |
| // Entrypoint is already loaded in RA. |
| } else { |
| // RA = callee_method->ptr_sized_fields_.data_; // EntryPointFromJni |
| MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kRiscv64PointerSize); |
| __ Loadd(RA, callee_method.AsRegister<XRegister>(), offset.Int32Value()); |
| } |
| __ Jalr(RA); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| // The result is returned the same way in native ABI and managed ABI. No result conversion is |
| // needed, see comments in `Riscv64JniCallingConvention::RequiresSmallResultTypeExtension()`. |
| if (out_frame_size != 0u) { |
| DecreaseFrame(out_frame_size); |
| } |
| break; |
| } |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorRISCV64::MaybeGenerateInlineCacheCheck(HInstruction* instruction, |
| XRegister klass) { |
| if (ProfilingInfoBuilder::IsInlineCacheUseful(instruction->AsInvoke(), this)) { |
| ProfilingInfo* info = GetGraph()->GetProfilingInfo(); |
| DCHECK(info != nullptr); |
| InlineCache* cache = ProfilingInfoBuilder::GetInlineCache( |
| info, GetCompilerOptions(), instruction->AsInvoke()); |
| if (cache != nullptr) { |
| uint64_t address = reinterpret_cast64<uint64_t>(cache); |
| Riscv64Label done; |
| // The `art_quick_update_inline_cache` expects the inline cache in T5. |
| XRegister ic_reg = T5; |
| ScratchRegisterScope srs(GetAssembler()); |
| DCHECK_EQ(srs.AvailableXRegisters(), 2u); |
| srs.ExcludeXRegister(ic_reg); |
| DCHECK_EQ(srs.AvailableXRegisters(), 1u); |
| __ LoadConst64(ic_reg, address); |
| { |
| ScratchRegisterScope srs2(GetAssembler()); |
| XRegister tmp = srs2.AllocateXRegister(); |
| __ Loadd(tmp, ic_reg, InlineCache::ClassesOffset().Int32Value()); |
| // Fast path for a monomorphic cache. |
| __ Beq(klass, tmp, &done); |
| } |
| InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc()); |
| __ Bind(&done); |
| } else { |
| // This is unexpected, but we don't guarantee stable compilation across |
| // JIT runs so just warn about it. |
| ScopedObjectAccess soa(Thread::Current()); |
| LOG(WARNING) << "Missing inline cache for " << GetGraph()->GetArtMethod()->PrettyMethod(); |
| } |
| } |
| } |
| |
| void CodeGeneratorRISCV64::GenerateVirtualCall(HInvokeVirtual* invoke, |
| Location temp_location, |
| SlowPathCode* slow_path) { |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| XRegister receiver = calling_convention.GetRegisterAt(0); |
| XRegister temp = temp_location.AsRegister<XRegister>(); |
| MemberOffset method_offset = |
| mirror::Class::EmbeddedVTableEntryOffset(invoke->GetVTableIndex(), kRiscv64PointerSize); |
| MemberOffset class_offset = mirror::Object::ClassOffset(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRiscv64PointerSize); |
| |
| // temp = object->GetClass(); |
| __ Loadwu(temp, receiver, class_offset.Int32Value()); |
| MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| MaybeUnpoisonHeapReference(temp); |
| |
| // If we're compiling baseline, update the inline cache. |
| MaybeGenerateInlineCacheCheck(invoke, temp); |
| |
| // temp = temp->GetMethodAt(method_offset); |
| __ Loadd(temp, temp, method_offset.Int32Value()); |
| // RA = temp->GetEntryPoint(); |
| __ Loadd(RA, temp, entry_point.Int32Value()); |
| // RA(); |
| __ Jalr(RA); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| |
| void CodeGeneratorRISCV64::MoveFromReturnRegister(Location trg, DataType::Type type) { |
| if (!trg.IsValid()) { |
| DCHECK_EQ(type, DataType::Type::kVoid); |
| return; |
| } |
| |
| DCHECK_NE(type, DataType::Type::kVoid); |
| |
| if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) { |
| XRegister trg_reg = trg.AsRegister<XRegister>(); |
| XRegister res_reg = Riscv64ReturnLocation(type).AsRegister<XRegister>(); |
| if (trg_reg != res_reg) { |
| __ Mv(trg_reg, res_reg); |
| } |
| } else { |
| FRegister trg_reg = trg.AsFpuRegister<FRegister>(); |
| FRegister res_reg = Riscv64ReturnLocation(type).AsFpuRegister<FRegister>(); |
| if (trg_reg != res_reg) { |
| __ FMvD(trg_reg, res_reg); // 64-bit move is OK also for `float`. |
| } |
| } |
| } |
| |
| void CodeGeneratorRISCV64::PoisonHeapReference(XRegister reg) { |
| __ Sub(reg, Zero, reg); // Negate the ref. |
| __ ZextW(reg, reg); // Zero-extend the 32-bit ref. |
| } |
| |
| void CodeGeneratorRISCV64::UnpoisonHeapReference(XRegister reg) { |
| __ Sub(reg, Zero, reg); // Negate the ref. |
| __ ZextW(reg, reg); // Zero-extend the 32-bit ref. |
| } |
| |
| void CodeGeneratorRISCV64::MaybePoisonHeapReference(XRegister reg) { |
| if (kPoisonHeapReferences) { |
| PoisonHeapReference(reg); |
| } |
| } |
| |
| void CodeGeneratorRISCV64::MaybeUnpoisonHeapReference(XRegister reg) { |
| if (kPoisonHeapReferences) { |
| UnpoisonHeapReference(reg); |
| } |
| } |
| |
| void CodeGeneratorRISCV64::SwapLocations(Location loc1, Location loc2, DataType::Type type) { |
| DCHECK(!loc1.IsConstant()); |
| DCHECK(!loc2.IsConstant()); |
| |
| if (loc1.Equals(loc2)) { |
| return; |
| } |
| |
| bool is_slot1 = loc1.IsStackSlot() || loc1.IsDoubleStackSlot(); |
| bool is_slot2 = loc2.IsStackSlot() || loc2.IsDoubleStackSlot(); |
| bool is_simd1 = loc1.IsSIMDStackSlot(); |
| bool is_simd2 = loc2.IsSIMDStackSlot(); |
| bool is_fp_reg1 = loc1.IsFpuRegister(); |
| bool is_fp_reg2 = loc2.IsFpuRegister(); |
| |
| if ((is_slot1 != is_slot2) || |
| (loc2.IsRegister() && loc1.IsRegister()) || |
| (is_fp_reg2 && is_fp_reg1)) { |
| if ((is_fp_reg2 && is_fp_reg1) && GetGraph()->HasSIMD()) { |
| LOG(FATAL) << "Unsupported"; |
| UNREACHABLE(); |
| } |
| ScratchRegisterScope srs(GetAssembler()); |
| Location tmp = (is_fp_reg2 || is_fp_reg1) |
| ? Location::FpuRegisterLocation(srs.AllocateFRegister()) |
| : Location::RegisterLocation(srs.AllocateXRegister()); |
| MoveLocation(tmp, loc1, type); |
| MoveLocation(loc1, loc2, type); |
| MoveLocation(loc2, tmp, type); |
| } else if (is_slot1 && is_slot2) { |
| move_resolver_.Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), loc1.IsDoubleStackSlot()); |
| } else if (is_simd1 && is_simd2) { |
| // TODO(riscv64): Add VECTOR/SIMD later. |
| UNIMPLEMENTED(FATAL) << "Vector extension is unsupported"; |
| } else if ((is_fp_reg1 && is_simd2) || (is_fp_reg2 && is_simd1)) { |
| // TODO(riscv64): Add VECTOR/SIMD later. |
| UNIMPLEMENTED(FATAL) << "Vector extension is unsupported"; |
| } else { |
| LOG(FATAL) << "Unimplemented swap between locations " << loc1 << " and " << loc2; |
| } |
| } |
| |
| } // namespace riscv64 |
| } // namespace art |