| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_ |
| #define ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_ |
| |
| #include <deque> |
| #include <utility> |
| #include <vector> |
| |
| #include "arch/mips/instruction_set_features_mips.h" |
| #include "base/arena_containers.h" |
| #include "base/enums.h" |
| #include "base/globals.h" |
| #include "base/macros.h" |
| #include "base/stl_util_identity.h" |
| #include "constants_mips.h" |
| #include "heap_poisoning.h" |
| #include "managed_register_mips.h" |
| #include "offsets.h" |
| #include "utils/assembler.h" |
| #include "utils/jni_macro_assembler.h" |
| #include "utils/label.h" |
| |
| namespace art { |
| namespace mips { |
| |
| static constexpr size_t kMipsHalfwordSize = 2; |
| static constexpr size_t kMipsWordSize = 4; |
| static constexpr size_t kMipsDoublewordSize = 8; |
| |
| enum LoadOperandType { |
| kLoadSignedByte, |
| kLoadUnsignedByte, |
| kLoadSignedHalfword, |
| kLoadUnsignedHalfword, |
| kLoadWord, |
| kLoadDoubleword, |
| kLoadQuadword |
| }; |
| |
| enum StoreOperandType { |
| kStoreByte, |
| kStoreHalfword, |
| kStoreWord, |
| kStoreDoubleword, |
| kStoreQuadword |
| }; |
| |
| // Used to test the values returned by ClassS/ClassD. |
| enum FPClassMaskType { |
| kSignalingNaN = 0x001, |
| kQuietNaN = 0x002, |
| kNegativeInfinity = 0x004, |
| kNegativeNormal = 0x008, |
| kNegativeSubnormal = 0x010, |
| kNegativeZero = 0x020, |
| kPositiveInfinity = 0x040, |
| kPositiveNormal = 0x080, |
| kPositiveSubnormal = 0x100, |
| kPositiveZero = 0x200, |
| }; |
| |
| // Instruction description in terms of input and output registers. |
| // Used for instruction reordering. |
| struct InOutRegMasks { |
| InOutRegMasks() |
| : gpr_outs_(0), gpr_ins_(0), fpr_outs_(0), fpr_ins_(0), cc_outs_(0), cc_ins_(0) {} |
| |
| inline InOutRegMasks& GprOuts(Register reg) { |
| gpr_outs_ |= (1u << reg); |
| gpr_outs_ &= ~1u; // Ignore register ZERO. |
| return *this; |
| } |
| template<typename T, typename... Ts> |
| inline InOutRegMasks& GprOuts(T one, Ts... more) { GprOuts(one); GprOuts(more...); return *this; } |
| |
| inline InOutRegMasks& GprIns(Register reg) { |
| gpr_ins_ |= (1u << reg); |
| gpr_ins_ &= ~1u; // Ignore register ZERO. |
| return *this; |
| } |
| template<typename T, typename... Ts> |
| inline InOutRegMasks& GprIns(T one, Ts... more) { GprIns(one); GprIns(more...); return *this; } |
| |
| inline InOutRegMasks& GprInOuts(Register reg) { GprIns(reg); GprOuts(reg); return *this; } |
| template<typename T, typename... Ts> |
| inline InOutRegMasks& GprInOuts(T one, Ts... more) { |
| GprInOuts(one); |
| GprInOuts(more...); |
| return *this; |
| } |
| |
| inline InOutRegMasks& FprOuts(FRegister reg) { fpr_outs_ |= (1u << reg); return *this; } |
| inline InOutRegMasks& FprOuts(VectorRegister reg) { return FprOuts(static_cast<FRegister>(reg)); } |
| template<typename T, typename... Ts> |
| inline InOutRegMasks& FprOuts(T one, Ts... more) { FprOuts(one); FprOuts(more...); return *this; } |
| |
| inline InOutRegMasks& FprIns(FRegister reg) { fpr_ins_ |= (1u << reg); return *this; } |
| inline InOutRegMasks& FprIns(VectorRegister reg) { return FprIns(static_cast<FRegister>(reg)); } |
| template<typename T, typename... Ts> |
| inline InOutRegMasks& FprIns(T one, Ts... more) { FprIns(one); FprIns(more...); return *this; } |
| |
| inline InOutRegMasks& FprInOuts(FRegister reg) { FprIns(reg); FprOuts(reg); return *this; } |
| inline InOutRegMasks& FprInOuts(VectorRegister reg) { |
| return FprInOuts(static_cast<FRegister>(reg)); |
| } |
| template<typename T, typename... Ts> |
| inline InOutRegMasks& FprInOuts(T one, Ts... more) { |
| FprInOuts(one); |
| FprInOuts(more...); |
| return *this; |
| } |
| |
| inline InOutRegMasks& CcOuts(int cc) { cc_outs_ |= (1u << cc); return *this; } |
| template<typename T, typename... Ts> |
| inline InOutRegMasks& CcOuts(T one, Ts... more) { CcOuts(one); CcOuts(more...); return *this; } |
| |
| inline InOutRegMasks& CcIns(int cc) { cc_ins_ |= (1u << cc); return *this; } |
| template<typename T, typename... Ts> |
| inline InOutRegMasks& CcIns(T one, Ts... more) { CcIns(one); CcIns(more...); return *this; } |
| |
| // Mask of output GPRs for the instruction. |
| uint32_t gpr_outs_; |
| // Mask of input GPRs for the instruction. |
| uint32_t gpr_ins_; |
| // Mask of output FPRs for the instruction. |
| uint32_t fpr_outs_; |
| // Mask of input FPRs for the instruction. |
| uint32_t fpr_ins_; |
| // Mask of output FPU condition code flags for the instruction. |
| uint32_t cc_outs_; |
| // Mask of input FPU condition code flags for the instruction. |
| uint32_t cc_ins_; |
| |
| // TODO: add LO and HI. |
| }; |
| |
| class MipsLabel : public Label { |
| public: |
| MipsLabel() : prev_branch_id_plus_one_(0) {} |
| |
| MipsLabel(MipsLabel&& src) |
| : Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {} |
| |
| void AdjustBoundPosition(int delta) { |
| CHECK(IsBound()); |
| // Bound label's position is negative, hence decrementing it. |
| position_ -= delta; |
| } |
| |
| private: |
| uint32_t prev_branch_id_plus_one_; // To get distance from preceding branch, if any. |
| |
| friend class MipsAssembler; |
| DISALLOW_COPY_AND_ASSIGN(MipsLabel); |
| }; |
| |
| // Assembler literal is a value embedded in code, retrieved using a PC-relative load. |
| class Literal { |
| public: |
| static constexpr size_t kMaxSize = 8; |
| |
| Literal(uint32_t size, const uint8_t* data) |
| : label_(), size_(size) { |
| DCHECK_LE(size, Literal::kMaxSize); |
| memcpy(data_, data, size); |
| } |
| |
| template <typename T> |
| T GetValue() const { |
| DCHECK_EQ(size_, sizeof(T)); |
| T value; |
| memcpy(&value, data_, sizeof(T)); |
| return value; |
| } |
| |
| uint32_t GetSize() const { |
| return size_; |
| } |
| |
| const uint8_t* GetData() const { |
| return data_; |
| } |
| |
| MipsLabel* GetLabel() { |
| return &label_; |
| } |
| |
| const MipsLabel* GetLabel() const { |
| return &label_; |
| } |
| |
| private: |
| MipsLabel label_; |
| const uint32_t size_; |
| uint8_t data_[kMaxSize]; |
| |
| DISALLOW_COPY_AND_ASSIGN(Literal); |
| }; |
| |
| // Jump table: table of labels emitted after the literals. Similar to literals. |
| class JumpTable { |
| public: |
| explicit JumpTable(std::vector<MipsLabel*>&& labels) |
| : label_(), labels_(std::move(labels)) { |
| } |
| |
| uint32_t GetSize() const { |
| return static_cast<uint32_t>(labels_.size()) * sizeof(uint32_t); |
| } |
| |
| const std::vector<MipsLabel*>& GetData() const { |
| return labels_; |
| } |
| |
| MipsLabel* GetLabel() { |
| return &label_; |
| } |
| |
| const MipsLabel* GetLabel() const { |
| return &label_; |
| } |
| |
| private: |
| MipsLabel label_; |
| std::vector<MipsLabel*> labels_; |
| |
| DISALLOW_COPY_AND_ASSIGN(JumpTable); |
| }; |
| |
| // Slowpath entered when Thread::Current()->_exception is non-null. |
| class MipsExceptionSlowPath { |
| public: |
| explicit MipsExceptionSlowPath(MipsManagedRegister scratch, size_t stack_adjust) |
| : scratch_(scratch), stack_adjust_(stack_adjust) {} |
| |
| MipsExceptionSlowPath(MipsExceptionSlowPath&& src) |
| : scratch_(src.scratch_), |
| stack_adjust_(src.stack_adjust_), |
| exception_entry_(std::move(src.exception_entry_)) {} |
| |
| private: |
| MipsLabel* Entry() { return &exception_entry_; } |
| const MipsManagedRegister scratch_; |
| const size_t stack_adjust_; |
| MipsLabel exception_entry_; |
| |
| friend class MipsAssembler; |
| DISALLOW_COPY_AND_ASSIGN(MipsExceptionSlowPath); |
| }; |
| |
| class MipsAssembler final : public Assembler, public JNIMacroAssembler<PointerSize::k32> { |
| public: |
| using JNIBase = JNIMacroAssembler<PointerSize::k32>; |
| |
| explicit MipsAssembler(ArenaAllocator* allocator, |
| const MipsInstructionSetFeatures* instruction_set_features = nullptr) |
| : Assembler(allocator), |
| overwriting_(false), |
| overwrite_location_(0), |
| reordering_(true), |
| ds_fsm_state_(kExpectingLabel), |
| ds_fsm_target_pc_(0), |
| literals_(allocator->Adapter(kArenaAllocAssembler)), |
| jump_tables_(allocator->Adapter(kArenaAllocAssembler)), |
| last_position_adjustment_(0), |
| last_old_position_(0), |
| last_branch_id_(0), |
| has_msa_(instruction_set_features != nullptr ? instruction_set_features->HasMsa() : false), |
| isa_features_(instruction_set_features) { |
| cfi().DelayEmittingAdvancePCs(); |
| } |
| |
| size_t CodeSize() const override { return Assembler::CodeSize(); } |
| size_t CodePosition() override; |
| DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); } |
| |
| virtual ~MipsAssembler() { |
| for (auto& branch : branches_) { |
| CHECK(branch.IsResolved()); |
| } |
| } |
| |
| // Emit Machine Instructions. |
| void Addu(Register rd, Register rs, Register rt); |
| void Addiu(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label); |
| void Addiu(Register rt, Register rs, uint16_t imm16); |
| void Subu(Register rd, Register rs, Register rt); |
| |
| void MultR2(Register rs, Register rt); // R2 |
| void MultuR2(Register rs, Register rt); // R2 |
| void DivR2(Register rs, Register rt); // R2 |
| void DivuR2(Register rs, Register rt); // R2 |
| void MulR2(Register rd, Register rs, Register rt); // R2 |
| void DivR2(Register rd, Register rs, Register rt); // R2 |
| void ModR2(Register rd, Register rs, Register rt); // R2 |
| void DivuR2(Register rd, Register rs, Register rt); // R2 |
| void ModuR2(Register rd, Register rs, Register rt); // R2 |
| void MulR6(Register rd, Register rs, Register rt); // R6 |
| void MuhR6(Register rd, Register rs, Register rt); // R6 |
| void MuhuR6(Register rd, Register rs, Register rt); // R6 |
| void DivR6(Register rd, Register rs, Register rt); // R6 |
| void ModR6(Register rd, Register rs, Register rt); // R6 |
| void DivuR6(Register rd, Register rs, Register rt); // R6 |
| void ModuR6(Register rd, Register rs, Register rt); // R6 |
| |
| void And(Register rd, Register rs, Register rt); |
| void Andi(Register rt, Register rs, uint16_t imm16); |
| void Or(Register rd, Register rs, Register rt); |
| void Ori(Register rt, Register rs, uint16_t imm16); |
| void Xor(Register rd, Register rs, Register rt); |
| void Xori(Register rt, Register rs, uint16_t imm16); |
| void Nor(Register rd, Register rs, Register rt); |
| |
| void Movz(Register rd, Register rs, Register rt); // R2 |
| void Movn(Register rd, Register rs, Register rt); // R2 |
| void Seleqz(Register rd, Register rs, Register rt); // R6 |
| void Selnez(Register rd, Register rs, Register rt); // R6 |
| void ClzR6(Register rd, Register rs); |
| void ClzR2(Register rd, Register rs); |
| void CloR6(Register rd, Register rs); |
| void CloR2(Register rd, Register rs); |
| |
| void Seb(Register rd, Register rt); // R2+ |
| void Seh(Register rd, Register rt); // R2+ |
| void Wsbh(Register rd, Register rt); // R2+ |
| void Bitswap(Register rd, Register rt); // R6 |
| |
| void Sll(Register rd, Register rt, int shamt); |
| void Srl(Register rd, Register rt, int shamt); |
| void Rotr(Register rd, Register rt, int shamt); // R2+ |
| void Sra(Register rd, Register rt, int shamt); |
| void Sllv(Register rd, Register rt, Register rs); |
| void Srlv(Register rd, Register rt, Register rs); |
| void Rotrv(Register rd, Register rt, Register rs); // R2+ |
| void Srav(Register rd, Register rt, Register rs); |
| void Ext(Register rd, Register rt, int pos, int size); // R2+ |
| void Ins(Register rd, Register rt, int pos, int size); // R2+ |
| void Lsa(Register rd, Register rs, Register rt, int saPlusOne); // R6 |
| void ShiftAndAdd(Register dst, Register src_idx, Register src_base, int shamt, Register tmp = AT); |
| |
| void Lb(Register rt, Register rs, uint16_t imm16); |
| void Lh(Register rt, Register rs, uint16_t imm16); |
| void Lw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label); |
| void Lw(Register rt, Register rs, uint16_t imm16); |
| void Lwl(Register rt, Register rs, uint16_t imm16); |
| void Lwr(Register rt, Register rs, uint16_t imm16); |
| void Lbu(Register rt, Register rs, uint16_t imm16); |
| void Lhu(Register rt, Register rs, uint16_t imm16); |
| void Lwpc(Register rs, uint32_t imm19); // R6 |
| void Lui(Register rt, uint16_t imm16); |
| void Aui(Register rt, Register rs, uint16_t imm16); // R6 |
| void AddUpper(Register rt, Register rs, uint16_t imm16, Register tmp = AT); |
| void Sync(uint32_t stype); |
| void Mfhi(Register rd); // R2 |
| void Mflo(Register rd); // R2 |
| |
| void Sb(Register rt, Register rs, uint16_t imm16); |
| void Sh(Register rt, Register rs, uint16_t imm16); |
| void Sw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label); |
| void Sw(Register rt, Register rs, uint16_t imm16); |
| void Swl(Register rt, Register rs, uint16_t imm16); |
| void Swr(Register rt, Register rs, uint16_t imm16); |
| |
| void LlR2(Register rt, Register base, int16_t imm16 = 0); |
| void ScR2(Register rt, Register base, int16_t imm16 = 0); |
| void LlR6(Register rt, Register base, int16_t imm9 = 0); |
| void ScR6(Register rt, Register base, int16_t imm9 = 0); |
| |
| void Slt(Register rd, Register rs, Register rt); |
| void Sltu(Register rd, Register rs, Register rt); |
| void Slti(Register rt, Register rs, uint16_t imm16); |
| void Sltiu(Register rt, Register rs, uint16_t imm16); |
| |
| // Branches and jumps to immediate offsets/addresses do not take care of their |
| // delay/forbidden slots and generally should not be used directly. This applies |
| // to the following R2 and R6 branch/jump instructions with imm16, imm21, addr26 |
| // offsets/addresses. |
| // Use branches/jumps to labels instead. |
| void B(uint16_t imm16); |
| void Bal(uint16_t imm16); |
| void Beq(Register rs, Register rt, uint16_t imm16); |
| void Bne(Register rs, Register rt, uint16_t imm16); |
| void Beqz(Register rt, uint16_t imm16); |
| void Bnez(Register rt, uint16_t imm16); |
| void Bltz(Register rt, uint16_t imm16); |
| void Bgez(Register rt, uint16_t imm16); |
| void Blez(Register rt, uint16_t imm16); |
| void Bgtz(Register rt, uint16_t imm16); |
| void Bc1f(uint16_t imm16); // R2 |
| void Bc1f(int cc, uint16_t imm16); // R2 |
| void Bc1t(uint16_t imm16); // R2 |
| void Bc1t(int cc, uint16_t imm16); // R2 |
| void J(uint32_t addr26); |
| void Jal(uint32_t addr26); |
| // Jalr() and Jr() fill their delay slots when reordering is enabled. |
| // When reordering is disabled, the delay slots must be filled manually. |
| // You may use NopIfNoReordering() to fill them when reordering is disabled. |
| void Jalr(Register rd, Register rs); |
| void Jalr(Register rs); |
| void Jr(Register rs); |
| // Nal() does not fill its delay slot. It must be filled manually. |
| void Nal(); |
| void Auipc(Register rs, uint16_t imm16); // R6 |
| void Addiupc(Register rs, uint32_t imm19); // R6 |
| void Bc(uint32_t imm26); // R6 |
| void Balc(uint32_t imm26); // R6 |
| void Jic(Register rt, uint16_t imm16); // R6 |
| void Jialc(Register rt, uint16_t imm16); // R6 |
| void Bltc(Register rs, Register rt, uint16_t imm16); // R6 |
| void Bltzc(Register rt, uint16_t imm16); // R6 |
| void Bgtzc(Register rt, uint16_t imm16); // R6 |
| void Bgec(Register rs, Register rt, uint16_t imm16); // R6 |
| void Bgezc(Register rt, uint16_t imm16); // R6 |
| void Blezc(Register rt, uint16_t imm16); // R6 |
| void Bltuc(Register rs, Register rt, uint16_t imm16); // R6 |
| void Bgeuc(Register rs, Register rt, uint16_t imm16); // R6 |
| void Beqc(Register rs, Register rt, uint16_t imm16); // R6 |
| void Bnec(Register rs, Register rt, uint16_t imm16); // R6 |
| void Beqzc(Register rs, uint32_t imm21); // R6 |
| void Bnezc(Register rs, uint32_t imm21); // R6 |
| void Bc1eqz(FRegister ft, uint16_t imm16); // R6 |
| void Bc1nez(FRegister ft, uint16_t imm16); // R6 |
| |
| void AddS(FRegister fd, FRegister fs, FRegister ft); |
| void SubS(FRegister fd, FRegister fs, FRegister ft); |
| void MulS(FRegister fd, FRegister fs, FRegister ft); |
| void DivS(FRegister fd, FRegister fs, FRegister ft); |
| void AddD(FRegister fd, FRegister fs, FRegister ft); |
| void SubD(FRegister fd, FRegister fs, FRegister ft); |
| void MulD(FRegister fd, FRegister fs, FRegister ft); |
| void DivD(FRegister fd, FRegister fs, FRegister ft); |
| void SqrtS(FRegister fd, FRegister fs); |
| void SqrtD(FRegister fd, FRegister fs); |
| void AbsS(FRegister fd, FRegister fs); |
| void AbsD(FRegister fd, FRegister fs); |
| void MovS(FRegister fd, FRegister fs); |
| void MovD(FRegister fd, FRegister fs); |
| void NegS(FRegister fd, FRegister fs); |
| void NegD(FRegister fd, FRegister fs); |
| |
| void CunS(FRegister fs, FRegister ft); // R2 |
| void CunS(int cc, FRegister fs, FRegister ft); // R2 |
| void CeqS(FRegister fs, FRegister ft); // R2 |
| void CeqS(int cc, FRegister fs, FRegister ft); // R2 |
| void CueqS(FRegister fs, FRegister ft); // R2 |
| void CueqS(int cc, FRegister fs, FRegister ft); // R2 |
| void ColtS(FRegister fs, FRegister ft); // R2 |
| void ColtS(int cc, FRegister fs, FRegister ft); // R2 |
| void CultS(FRegister fs, FRegister ft); // R2 |
| void CultS(int cc, FRegister fs, FRegister ft); // R2 |
| void ColeS(FRegister fs, FRegister ft); // R2 |
| void ColeS(int cc, FRegister fs, FRegister ft); // R2 |
| void CuleS(FRegister fs, FRegister ft); // R2 |
| void CuleS(int cc, FRegister fs, FRegister ft); // R2 |
| void CunD(FRegister fs, FRegister ft); // R2 |
| void CunD(int cc, FRegister fs, FRegister ft); // R2 |
| void CeqD(FRegister fs, FRegister ft); // R2 |
| void CeqD(int cc, FRegister fs, FRegister ft); // R2 |
| void CueqD(FRegister fs, FRegister ft); // R2 |
| void CueqD(int cc, FRegister fs, FRegister ft); // R2 |
| void ColtD(FRegister fs, FRegister ft); // R2 |
| void ColtD(int cc, FRegister fs, FRegister ft); // R2 |
| void CultD(FRegister fs, FRegister ft); // R2 |
| void CultD(int cc, FRegister fs, FRegister ft); // R2 |
| void ColeD(FRegister fs, FRegister ft); // R2 |
| void ColeD(int cc, FRegister fs, FRegister ft); // R2 |
| void CuleD(FRegister fs, FRegister ft); // R2 |
| void CuleD(int cc, FRegister fs, FRegister ft); // R2 |
| void CmpUnS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpEqS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUeqS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpLtS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUltS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpLeS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUleS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpOrS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUneS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpNeS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUnD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpEqD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUeqD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpLtD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUltD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpLeD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUleD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpOrD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpUneD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void CmpNeD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void Movf(Register rd, Register rs, int cc = 0); // R2 |
| void Movt(Register rd, Register rs, int cc = 0); // R2 |
| void MovfS(FRegister fd, FRegister fs, int cc = 0); // R2 |
| void MovfD(FRegister fd, FRegister fs, int cc = 0); // R2 |
| void MovtS(FRegister fd, FRegister fs, int cc = 0); // R2 |
| void MovtD(FRegister fd, FRegister fs, int cc = 0); // R2 |
| void MovzS(FRegister fd, FRegister fs, Register rt); // R2 |
| void MovzD(FRegister fd, FRegister fs, Register rt); // R2 |
| void MovnS(FRegister fd, FRegister fs, Register rt); // R2 |
| void MovnD(FRegister fd, FRegister fs, Register rt); // R2 |
| void SelS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void SelD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void SeleqzS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void SeleqzD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void SelnezS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void SelnezD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void ClassS(FRegister fd, FRegister fs); // R6 |
| void ClassD(FRegister fd, FRegister fs); // R6 |
| void MinS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void MinD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void MaxS(FRegister fd, FRegister fs, FRegister ft); // R6 |
| void MaxD(FRegister fd, FRegister fs, FRegister ft); // R6 |
| |
| void TruncLS(FRegister fd, FRegister fs); // R2+, FR=1 |
| void TruncLD(FRegister fd, FRegister fs); // R2+, FR=1 |
| void TruncWS(FRegister fd, FRegister fs); |
| void TruncWD(FRegister fd, FRegister fs); |
| void Cvtsw(FRegister fd, FRegister fs); |
| void Cvtdw(FRegister fd, FRegister fs); |
| void Cvtsd(FRegister fd, FRegister fs); |
| void Cvtds(FRegister fd, FRegister fs); |
| void Cvtsl(FRegister fd, FRegister fs); // R2+, FR=1 |
| void Cvtdl(FRegister fd, FRegister fs); // R2+, FR=1 |
| void FloorWS(FRegister fd, FRegister fs); |
| void FloorWD(FRegister fd, FRegister fs); |
| |
| // Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs |
| // when loading the value as 32-bit halves. This applies to all 32-bit FPR loads: |
| // Mtc1(), Mthc1(), MoveToFpuHigh(), Lwc1(). Even if you need two Mtc1()'s or two |
| // Lwc1()'s to load a pair of 32-bit FPRs and these loads do not interfere with one |
| // another (unlike Mtc1() and Mthc1() with 64-bit FPRs), maintain the order: |
| // low then high. |
| // |
| // Also, prefer MoveFromFpuHigh()/MoveToFpuHigh() over Mfhc1()/Mthc1() and Mfc1()/Mtc1(). |
| // This will save you some if statements. |
| FRegister GetFpuRegLow(FRegister reg); |
| void Mfc1(Register rt, FRegister fs); |
| void Mtc1(Register rt, FRegister fs); |
| void Mfhc1(Register rt, FRegister fs); |
| void Mthc1(Register rt, FRegister fs); |
| void MoveFromFpuHigh(Register rt, FRegister fs); |
| void MoveToFpuHigh(Register rt, FRegister fs); |
| void Lwc1(FRegister ft, Register rs, uint16_t imm16); |
| void Ldc1(FRegister ft, Register rs, uint16_t imm16); |
| void Swc1(FRegister ft, Register rs, uint16_t imm16); |
| void Sdc1(FRegister ft, Register rs, uint16_t imm16); |
| |
| void Break(); |
| void Nop(); |
| void NopIfNoReordering(); |
| void Move(Register rd, Register rs); |
| void Clear(Register rd); |
| void Not(Register rd, Register rs); |
| |
| // MSA instructions. |
| void AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void Ffint_sW(VectorRegister wd, VectorRegister ws); |
| void Ffint_sD(VectorRegister wd, VectorRegister ws); |
| void Ftint_sW(VectorRegister wd, VectorRegister ws); |
| void Ftint_sD(VectorRegister wd, VectorRegister ws); |
| |
| void SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| // Immediate shift instructions, where shamtN denotes shift amount (must be between 0 and 2^N-1). |
| void SlliB(VectorRegister wd, VectorRegister ws, int shamt3); |
| void SlliH(VectorRegister wd, VectorRegister ws, int shamt4); |
| void SlliW(VectorRegister wd, VectorRegister ws, int shamt5); |
| void SlliD(VectorRegister wd, VectorRegister ws, int shamt6); |
| void SraiB(VectorRegister wd, VectorRegister ws, int shamt3); |
| void SraiH(VectorRegister wd, VectorRegister ws, int shamt4); |
| void SraiW(VectorRegister wd, VectorRegister ws, int shamt5); |
| void SraiD(VectorRegister wd, VectorRegister ws, int shamt6); |
| void SrliB(VectorRegister wd, VectorRegister ws, int shamt3); |
| void SrliH(VectorRegister wd, VectorRegister ws, int shamt4); |
| void SrliW(VectorRegister wd, VectorRegister ws, int shamt5); |
| void SrliD(VectorRegister wd, VectorRegister ws, int shamt6); |
| |
| void MoveV(VectorRegister wd, VectorRegister ws); |
| void SplatiB(VectorRegister wd, VectorRegister ws, int n4); |
| void SplatiH(VectorRegister wd, VectorRegister ws, int n3); |
| void SplatiW(VectorRegister wd, VectorRegister ws, int n2); |
| void SplatiD(VectorRegister wd, VectorRegister ws, int n1); |
| void Copy_sB(Register rd, VectorRegister ws, int n4); |
| void Copy_sH(Register rd, VectorRegister ws, int n3); |
| void Copy_sW(Register rd, VectorRegister ws, int n2); |
| void Copy_uB(Register rd, VectorRegister ws, int n4); |
| void Copy_uH(Register rd, VectorRegister ws, int n3); |
| void InsertB(VectorRegister wd, Register rs, int n4); |
| void InsertH(VectorRegister wd, Register rs, int n3); |
| void InsertW(VectorRegister wd, Register rs, int n2); |
| void FillB(VectorRegister wd, Register rs); |
| void FillH(VectorRegister wd, Register rs); |
| void FillW(VectorRegister wd, Register rs); |
| |
| void LdiB(VectorRegister wd, int imm8); |
| void LdiH(VectorRegister wd, int imm10); |
| void LdiW(VectorRegister wd, int imm10); |
| void LdiD(VectorRegister wd, int imm10); |
| void LdB(VectorRegister wd, Register rs, int offset); |
| void LdH(VectorRegister wd, Register rs, int offset); |
| void LdW(VectorRegister wd, Register rs, int offset); |
| void LdD(VectorRegister wd, Register rs, int offset); |
| void StB(VectorRegister wd, Register rs, int offset); |
| void StH(VectorRegister wd, Register rs, int offset); |
| void StW(VectorRegister wd, Register rs, int offset); |
| void StD(VectorRegister wd, Register rs, int offset); |
| |
| void IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| void Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); |
| |
| void PcntB(VectorRegister wd, VectorRegister ws); |
| void PcntH(VectorRegister wd, VectorRegister ws); |
| void PcntW(VectorRegister wd, VectorRegister ws); |
| void PcntD(VectorRegister wd, VectorRegister ws); |
| |
| // Helper for replicating floating point value in all destination elements. |
| void ReplicateFPToVectorRegister(VectorRegister dst, FRegister src, bool is_double); |
| |
| // Higher level composite instructions. |
| void LoadConst32(Register rd, int32_t value); |
| void LoadConst64(Register reg_hi, Register reg_lo, int64_t value); |
| void LoadDConst64(FRegister rd, int64_t value, Register temp); |
| void LoadSConst32(FRegister r, int32_t value, Register temp); |
| void Addiu32(Register rt, Register rs, int32_t value, Register rtmp = AT); |
| |
| void Bind(MipsLabel* label); |
| // When `is_bare` is false, the branches will promote to long (if the range |
| // of the individual branch instruction is insufficient) and the delay/ |
| // forbidden slots will be taken care of. |
| // Use `is_bare = false` when the branch target may be out of reach of the |
| // individual branch instruction. IOW, this is for general purpose use. |
| // |
| // When `is_bare` is true, just the branch instructions will be generated |
| // leaving delay/forbidden slot filling up to the caller and the branches |
| // won't promote to long if the range is insufficient (you'll get a |
| // compilation error when the range is exceeded). |
| // Use `is_bare = true` when the branch target is known to be within reach |
| // of the individual branch instruction. This is intended for small local |
| // optimizations around delay/forbidden slots. |
| // Also prefer using `is_bare = true` if the code near the branch is to be |
| // patched or analyzed at run time (e.g. introspection) to |
| // - show the intent and |
| // - fail during compilation rather than during patching/execution if the |
| // bare branch range is insufficent but the code size and layout are |
| // expected to remain unchanged |
| // |
| // R2 branches with delay slots that are also available on R6. |
| // On R6 when `is_bare` is false these convert to equivalent R6 compact |
| // branches (to reduce code size). On R2 or when `is_bare` is true they |
| // remain R2 branches with delay slots. |
| void B(MipsLabel* label, bool is_bare = false); |
| void Bal(MipsLabel* label, bool is_bare = false); |
| void Beq(Register rs, Register rt, MipsLabel* label, bool is_bare = false); |
| void Bne(Register rs, Register rt, MipsLabel* label, bool is_bare = false); |
| void Beqz(Register rt, MipsLabel* label, bool is_bare = false); |
| void Bnez(Register rt, MipsLabel* label, bool is_bare = false); |
| void Bltz(Register rt, MipsLabel* label, bool is_bare = false); |
| void Bgez(Register rt, MipsLabel* label, bool is_bare = false); |
| void Blez(Register rt, MipsLabel* label, bool is_bare = false); |
| void Bgtz(Register rt, MipsLabel* label, bool is_bare = false); |
| void Blt(Register rs, Register rt, MipsLabel* label, bool is_bare = false); |
| void Bge(Register rs, Register rt, MipsLabel* label, bool is_bare = false); |
| void Bltu(Register rs, Register rt, MipsLabel* label, bool is_bare = false); |
| void Bgeu(Register rs, Register rt, MipsLabel* label, bool is_bare = false); |
| // R2-only branches with delay slots. |
| void Bc1f(MipsLabel* label, bool is_bare = false); // R2 |
| void Bc1f(int cc, MipsLabel* label, bool is_bare = false); // R2 |
| void Bc1t(MipsLabel* label, bool is_bare = false); // R2 |
| void Bc1t(int cc, MipsLabel* label, bool is_bare = false); // R2 |
| // R6-only compact branches without delay/forbidden slots. |
| void Bc(MipsLabel* label, bool is_bare = false); // R6 |
| void Balc(MipsLabel* label, bool is_bare = false); // R6 |
| // R6-only compact branches with forbidden slots. |
| void Beqc(Register rs, Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bnec(Register rs, Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Beqzc(Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bnezc(Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bltzc(Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bgezc(Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Blezc(Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bgtzc(Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bltc(Register rs, Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bgec(Register rs, Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bltuc(Register rs, Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| void Bgeuc(Register rs, Register rt, MipsLabel* label, bool is_bare = false); // R6 |
| // R6-only branches with delay slots. |
| void Bc1eqz(FRegister ft, MipsLabel* label, bool is_bare = false); // R6 |
| void Bc1nez(FRegister ft, MipsLabel* label, bool is_bare = false); // R6 |
| |
| void EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size); |
| void AdjustBaseAndOffset(Register& base, |
| int32_t& offset, |
| bool is_doubleword, |
| bool is_float = false); |
| void AdjustBaseOffsetAndElementSizeShift(Register& base, |
| int32_t& offset, |
| int& element_size_shift); |
| |
| private: |
| // This will be used as an argument for loads/stores |
| // when there is no need for implicit null checks. |
| struct NoImplicitNullChecker { |
| void operator()() const {} |
| }; |
| |
| public: |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void StoreConstToOffset(StoreOperandType type, |
| int64_t value, |
| Register base, |
| int32_t offset, |
| Register temp, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| // We permit `base` and `temp` to coincide (however, we check that neither is AT), |
| // in which case the `base` register may be overwritten in the process. |
| CHECK_NE(temp, AT); // Must not use AT as temp, so as not to overwrite the adjusted base. |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword)); |
| uint32_t low = Low32Bits(value); |
| uint32_t high = High32Bits(value); |
| Register reg; |
| // If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp` |
| // to load and hold the value but we can use AT instead as AT hasn't been used yet. |
| // Otherwise, `temp` can be used for the value. And if `temp` is the same as the |
| // original `base` (that is, `base` prior to the adjustment), the original `base` |
| // register will be overwritten. |
| if (base == temp) { |
| temp = AT; |
| } |
| if (low == 0) { |
| reg = ZERO; |
| } else { |
| reg = temp; |
| LoadConst32(reg, low); |
| } |
| switch (type) { |
| case kStoreByte: |
| Sb(reg, base, offset); |
| break; |
| case kStoreHalfword: |
| Sh(reg, base, offset); |
| break; |
| case kStoreWord: |
| Sw(reg, base, offset); |
| break; |
| case kStoreDoubleword: |
| Sw(reg, base, offset); |
| null_checker(); |
| if (high == 0) { |
| reg = ZERO; |
| } else { |
| reg = temp; |
| if (high != low) { |
| LoadConst32(reg, high); |
| } |
| } |
| Sw(reg, base, offset + kMipsWordSize); |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| if (type != kStoreDoubleword) { |
| null_checker(); |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void LoadFromOffset(LoadOperandType type, |
| Register reg, |
| Register base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword)); |
| switch (type) { |
| case kLoadSignedByte: |
| Lb(reg, base, offset); |
| break; |
| case kLoadUnsignedByte: |
| Lbu(reg, base, offset); |
| break; |
| case kLoadSignedHalfword: |
| Lh(reg, base, offset); |
| break; |
| case kLoadUnsignedHalfword: |
| Lhu(reg, base, offset); |
| break; |
| case kLoadWord: |
| Lw(reg, base, offset); |
| break; |
| case kLoadDoubleword: |
| if (reg == base) { |
| // This will clobber the base when loading the lower register. Since we have to load the |
| // higher register as well, this will fail. Solution: reverse the order. |
| Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize); |
| null_checker(); |
| Lw(reg, base, offset); |
| } else { |
| Lw(reg, base, offset); |
| null_checker(); |
| Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize); |
| } |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| if (type != kLoadDoubleword) { |
| null_checker(); |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void LoadSFromOffset(FRegister reg, |
| Register base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true); |
| Lwc1(reg, base, offset); |
| null_checker(); |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void LoadDFromOffset(FRegister reg, |
| Register base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true); |
| if (IsAligned<kMipsDoublewordSize>(offset)) { |
| Ldc1(reg, base, offset); |
| null_checker(); |
| } else { |
| if (Is32BitFPU()) { |
| Lwc1(reg, base, offset); |
| null_checker(); |
| Lwc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize); |
| } else { |
| // 64-bit FPU. |
| Lwc1(reg, base, offset); |
| null_checker(); |
| Lw(T8, base, offset + kMipsWordSize); |
| Mthc1(T8, reg); |
| } |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void LoadQFromOffset(FRegister reg, |
| Register base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| int element_size_shift = -1; |
| AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift); |
| switch (element_size_shift) { |
| case TIMES_1: LdB(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_2: LdH(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_4: LdW(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_8: LdD(static_cast<VectorRegister>(reg), base, offset); break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| null_checker(); |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void StoreToOffset(StoreOperandType type, |
| Register reg, |
| Register base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| // Must not use AT as `reg`, so as not to overwrite the value being stored |
| // with the adjusted `base`. |
| CHECK_NE(reg, AT); |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword)); |
| switch (type) { |
| case kStoreByte: |
| Sb(reg, base, offset); |
| break; |
| case kStoreHalfword: |
| Sh(reg, base, offset); |
| break; |
| case kStoreWord: |
| Sw(reg, base, offset); |
| break; |
| case kStoreDoubleword: |
| CHECK_NE(reg, base); |
| CHECK_NE(static_cast<Register>(reg + 1), base); |
| Sw(reg, base, offset); |
| null_checker(); |
| Sw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize); |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| if (type != kStoreDoubleword) { |
| null_checker(); |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void StoreSToOffset(FRegister reg, |
| Register base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true); |
| Swc1(reg, base, offset); |
| null_checker(); |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void StoreDToOffset(FRegister reg, |
| Register base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true); |
| if (IsAligned<kMipsDoublewordSize>(offset)) { |
| Sdc1(reg, base, offset); |
| null_checker(); |
| } else { |
| if (Is32BitFPU()) { |
| Swc1(reg, base, offset); |
| null_checker(); |
| Swc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize); |
| } else { |
| // 64-bit FPU. |
| Mfhc1(T8, reg); |
| Swc1(reg, base, offset); |
| null_checker(); |
| Sw(T8, base, offset + kMipsWordSize); |
| } |
| } |
| } |
| |
| template <typename ImplicitNullChecker = NoImplicitNullChecker> |
| void StoreQToOffset(FRegister reg, |
| Register base, |
| int32_t offset, |
| ImplicitNullChecker null_checker = NoImplicitNullChecker()) { |
| int element_size_shift = -1; |
| AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift); |
| switch (element_size_shift) { |
| case TIMES_1: StB(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_2: StH(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_4: StW(static_cast<VectorRegister>(reg), base, offset); break; |
| case TIMES_8: StD(static_cast<VectorRegister>(reg), base, offset); break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| null_checker(); |
| } |
| |
| void LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset); |
| void LoadSFromOffset(FRegister reg, Register base, int32_t offset); |
| void LoadDFromOffset(FRegister reg, Register base, int32_t offset); |
| void LoadQFromOffset(FRegister reg, Register base, int32_t offset); |
| void StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset); |
| void StoreSToOffset(FRegister reg, Register base, int32_t offset); |
| void StoreDToOffset(FRegister reg, Register base, int32_t offset); |
| void StoreQToOffset(FRegister reg, Register base, int32_t offset); |
| |
| // Emit data (e.g. encoded instruction or immediate) to the instruction stream. |
| void Emit(uint32_t value); |
| |
| // Push/pop composite routines. |
| void Push(Register rs); |
| void Pop(Register rd); |
| void PopAndReturn(Register rd, Register rt); |
| |
| // |
| // Heap poisoning. |
| // |
| |
| // Poison a heap reference contained in `src` and store it in `dst`. |
| void PoisonHeapReference(Register dst, Register src) { |
| // dst = -src. |
| Subu(dst, ZERO, src); |
| } |
| // Poison a heap reference contained in `reg`. |
| void PoisonHeapReference(Register reg) { |
| // reg = -reg. |
| PoisonHeapReference(reg, reg); |
| } |
| // Unpoison a heap reference contained in `reg`. |
| void UnpoisonHeapReference(Register reg) { |
| // reg = -reg. |
| Subu(reg, ZERO, reg); |
| } |
| // Poison a heap reference contained in `reg` if heap poisoning is enabled. |
| void MaybePoisonHeapReference(Register reg) { |
| if (kPoisonHeapReferences) { |
| PoisonHeapReference(reg); |
| } |
| } |
| // Unpoison a heap reference contained in `reg` if heap poisoning is enabled. |
| void MaybeUnpoisonHeapReference(Register reg) { |
| if (kPoisonHeapReferences) { |
| UnpoisonHeapReference(reg); |
| } |
| } |
| |
| void Bind(Label* label) override { |
| Bind(down_cast<MipsLabel*>(label)); |
| } |
| void Jump(Label* label ATTRIBUTE_UNUSED) override { |
| UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS"; |
| } |
| |
| // Don't warn about a different virtual Bind/Jump in the base class. |
| using JNIBase::Bind; |
| using JNIBase::Jump; |
| |
| // Create a new label that can be used with Jump/Bind calls. |
| std::unique_ptr<JNIMacroLabel> CreateLabel() override { |
| LOG(FATAL) << "Not implemented on MIPS32"; |
| UNREACHABLE(); |
| } |
| // Emit an unconditional jump to the label. |
| void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) override { |
| LOG(FATAL) << "Not implemented on MIPS32"; |
| UNREACHABLE(); |
| } |
| // Emit a conditional jump to the label by applying a unary condition test to the register. |
| void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED, |
| JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED, |
| ManagedRegister test ATTRIBUTE_UNUSED) override { |
| LOG(FATAL) << "Not implemented on MIPS32"; |
| UNREACHABLE(); |
| } |
| |
| // Code at this offset will serve as the target for the Jump call. |
| void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) override { |
| LOG(FATAL) << "Not implemented on MIPS32"; |
| UNREACHABLE(); |
| } |
| |
| // Create a new literal with a given value. |
| // NOTE: Force the template parameter to be explicitly specified. |
| template <typename T> |
| Literal* NewLiteral(typename Identity<T>::type value) { |
| static_assert(std::is_integral<T>::value, "T must be an integral type."); |
| return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value)); |
| } |
| |
| // Load label address using PC-relative addressing. |
| // To be used with data labels in the literal / jump table area only and not |
| // with regular code labels. |
| // |
| // For R6 base_reg must be ZERO. |
| // |
| // On R2 there are two possible uses w.r.t. base_reg: |
| // |
| // - base_reg = ZERO: |
| // The NAL instruction will be generated as part of the load and it will |
| // clobber the RA register. |
| // |
| // - base_reg != ZERO: |
| // The RA-clobbering NAL instruction won't be generated as part of the load. |
| // The label pc_rel_base_label_ must be bound (with BindPcRelBaseLabel()) |
| // and base_reg must hold the address of the label. Example: |
| // __ Nal(); |
| // __ Move(S3, RA); |
| // __ BindPcRelBaseLabel(); // S3 holds the address of pc_rel_base_label_. |
| // __ LoadLabelAddress(A0, S3, label1); |
| // __ LoadLabelAddress(A1, S3, label2); |
| // __ LoadLiteral(V0, S3, literal1); |
| // __ LoadLiteral(V1, S3, literal2); |
| void LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label); |
| |
| // Create a new literal with the given data. |
| Literal* NewLiteral(size_t size, const uint8_t* data); |
| |
| // Load literal using PC-relative addressing. |
| // See the above comments for LoadLabelAddress() on the value of base_reg. |
| void LoadLiteral(Register dest_reg, Register base_reg, Literal* literal); |
| |
| // Create a jump table for the given labels that will be emitted when finalizing. |
| // When the table is emitted, offsets will be relative to the location of the table. |
| // The table location is determined by the location of its label (the label precedes |
| // the table data) and should be loaded using LoadLabelAddress(). |
| JumpTable* CreateJumpTable(std::vector<MipsLabel*>&& labels); |
| |
| // |
| // Overridden common assembler high-level functionality. |
| // |
| |
| // Emit code that will create an activation on the stack. |
| void BuildFrame(size_t frame_size, |
| ManagedRegister method_reg, |
| ArrayRef<const ManagedRegister> callee_save_regs, |
| const ManagedRegisterEntrySpills& entry_spills) override; |
| |
| // Emit code that will remove an activation from the stack. |
| void RemoveFrame(size_t frame_size, |
| ArrayRef<const ManagedRegister> callee_save_regs, |
| bool may_suspend) override; |
| |
| void IncreaseFrameSize(size_t adjust) override; |
| void DecreaseFrameSize(size_t adjust) override; |
| |
| // Store routines. |
| void Store(FrameOffset offs, ManagedRegister msrc, size_t size) override; |
| void StoreRef(FrameOffset dest, ManagedRegister msrc) override; |
| void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) override; |
| |
| void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) override; |
| |
| void StoreStackOffsetToThread(ThreadOffset32 thr_offs, |
| FrameOffset fr_offs, |
| ManagedRegister mscratch) override; |
| |
| void StoreStackPointerToThread(ThreadOffset32 thr_offs) override; |
| |
| void StoreSpanning(FrameOffset dest, |
| ManagedRegister msrc, |
| FrameOffset in_off, |
| ManagedRegister mscratch) override; |
| |
| // Load routines. |
| void Load(ManagedRegister mdest, FrameOffset src, size_t size) override; |
| |
| void LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) override; |
| |
| void LoadRef(ManagedRegister dest, FrameOffset src) override; |
| |
| void LoadRef(ManagedRegister mdest, |
| ManagedRegister base, |
| MemberOffset offs, |
| bool unpoison_reference) override; |
| |
| void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) override; |
| |
| void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) override; |
| |
| // Copying routines. |
| void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) override; |
| |
| void CopyRawPtrFromThread(FrameOffset fr_offs, |
| ThreadOffset32 thr_offs, |
| ManagedRegister mscratch) override; |
| |
| void CopyRawPtrToThread(ThreadOffset32 thr_offs, |
| FrameOffset fr_offs, |
| ManagedRegister mscratch) override; |
| |
| void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) override; |
| |
| void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) override; |
| |
| void Copy(FrameOffset dest, |
| ManagedRegister src_base, |
| Offset src_offset, |
| ManagedRegister mscratch, |
| size_t size) override; |
| |
| void Copy(ManagedRegister dest_base, |
| Offset dest_offset, |
| FrameOffset src, |
| ManagedRegister mscratch, |
| size_t size) override; |
| |
| void Copy(FrameOffset dest, |
| FrameOffset src_base, |
| Offset src_offset, |
| ManagedRegister mscratch, |
| size_t size) override; |
| |
| void Copy(ManagedRegister dest, |
| Offset dest_offset, |
| ManagedRegister src, |
| Offset src_offset, |
| ManagedRegister mscratch, |
| size_t size) override; |
| |
| void Copy(FrameOffset dest, |
| Offset dest_offset, |
| FrameOffset src, |
| Offset src_offset, |
| ManagedRegister mscratch, |
| size_t size) override; |
| |
| void MemoryBarrier(ManagedRegister) override; |
| |
| // Sign extension. |
| void SignExtend(ManagedRegister mreg, size_t size) override; |
| |
| // Zero extension. |
| void ZeroExtend(ManagedRegister mreg, size_t size) override; |
| |
| // Exploit fast access in managed code to Thread::Current(). |
| void GetCurrentThread(ManagedRegister tr) override; |
| void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) override; |
| |
| // Set up out_reg to hold a Object** into the handle scope, or to be null if the |
| // value is null and null_allowed. in_reg holds a possibly stale reference |
| // that can be used to avoid loading the handle scope entry to see if the value is |
| // null. |
| void CreateHandleScopeEntry(ManagedRegister out_reg, |
| FrameOffset handlescope_offset, |
| ManagedRegister in_reg, |
| bool null_allowed) override; |
| |
| // Set up out_off to hold a Object** into the handle scope, or to be null if the |
| // value is null and null_allowed. |
| void CreateHandleScopeEntry(FrameOffset out_off, |
| FrameOffset handlescope_offset, |
| ManagedRegister mscratch, |
| bool null_allowed) override; |
| |
| // src holds a handle scope entry (Object**) load this into dst. |
| void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) override; |
| |
| // Heap::VerifyObject on src. In some cases (such as a reference to this) we |
| // know that src may not be null. |
| void VerifyObject(ManagedRegister src, bool could_be_null) override; |
| void VerifyObject(FrameOffset src, bool could_be_null) override; |
| |
| // Call to address held at [base+offset]. |
| void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) override; |
| void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) override; |
| void CallFromThread(ThreadOffset32 offset, ManagedRegister mscratch) override; |
| |
| // Generate code to check if Thread::Current()->exception_ is non-null |
| // and branch to a ExceptionSlowPath if it is. |
| void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) override; |
| |
| // Emit slow paths queued during assembly and promote short branches to long if needed. |
| void FinalizeCode() override; |
| |
| // Emit branches and finalize all instructions. |
| void FinalizeInstructions(const MemoryRegion& region); |
| |
| // Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS, |
| // must be used instead of MipsLabel::GetPosition()). |
| uint32_t GetLabelLocation(const MipsLabel* label) const; |
| |
| // Get the final position of a label after local fixup based on the old position |
| // recorded before FinalizeCode(). |
| uint32_t GetAdjustedPosition(uint32_t old_position); |
| |
| // R2 doesn't have PC-relative addressing, which we need to access literals. We simulate it by |
| // reading the PC value into a general-purpose register with the NAL instruction and then loading |
| // literals through this base register. The code generator calls this method (at most once per |
| // method being compiled) to bind a label to the location for which the PC value is acquired. |
| // The assembler then computes literal offsets relative to this label. |
| void BindPcRelBaseLabel(); |
| |
| // Returns the location of the label bound with BindPcRelBaseLabel(). |
| uint32_t GetPcRelBaseLabelLocation() const; |
| |
| // Note that PC-relative literal loads are handled as pseudo branches because they need very |
| // similar relocation and may similarly expand in size to accomodate for larger offsets relative |
| // to PC. |
| enum BranchCondition { |
| kCondLT, |
| kCondGE, |
| kCondLE, |
| kCondGT, |
| kCondLTZ, |
| kCondGEZ, |
| kCondLEZ, |
| kCondGTZ, |
| kCondEQ, |
| kCondNE, |
| kCondEQZ, |
| kCondNEZ, |
| kCondLTU, |
| kCondGEU, |
| kCondF, // Floating-point predicate false. |
| kCondT, // Floating-point predicate true. |
| kUncond, |
| }; |
| friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs); |
| |
| // Enables or disables instruction reordering (IOW, automatic filling of delay slots) |
| // similarly to ".set reorder" / ".set noreorder" in traditional MIPS assembly. |
| // Returns the last state, which may be useful for temporary enabling/disabling of |
| // reordering. |
| bool SetReorder(bool enable); |
| |
| private: |
| // Description of the last instruction in terms of input and output registers. |
| // Used to make the decision of moving the instruction into a delay slot. |
| struct DelaySlot { |
| DelaySlot(); |
| |
| // Encoded instruction that may be used to fill the delay slot or 0 |
| // (0 conveniently represents NOP). |
| uint32_t instruction_; |
| |
| // Input/output register masks. |
| InOutRegMasks masks_; |
| |
| // Label for patchable instructions to allow moving them into delay slots. |
| MipsLabel* patcher_label_; |
| }; |
| |
| // Delay slot finite state machine's (DS FSM's) state. The FSM state is updated |
| // upon every new instruction and label generated. The FSM detects instructions |
| // suitable for delay slots and immediately preceded with labels. These are target |
| // instructions for branches. If an unconditional R2 branch does not get its delay |
| // slot filled with the immediately preceding instruction, it may instead get the |
| // slot filled with the target instruction (the branch will need its offset |
| // incremented past the target instruction). We call this "absorption". The FSM |
| // records PCs of the target instructions suitable for this optimization. |
| enum DsFsmState { |
| kExpectingLabel, |
| kExpectingInstruction, |
| kExpectingCommit |
| }; |
| friend std::ostream& operator<<(std::ostream& os, const DsFsmState& rhs); |
| |
| class Branch { |
| public: |
| enum Type { |
| // R2 short branches (can be promoted to long). |
| kUncondBranch, |
| kCondBranch, |
| kCall, |
| // R2 short branches (can't be promoted to long), delay slots filled manually. |
| kBareUncondBranch, |
| kBareCondBranch, |
| kBareCall, |
| // R2 near label. |
| kLabel, |
| // R2 near literal. |
| kLiteral, |
| // R2 long branches. |
| kLongUncondBranch, |
| kLongCondBranch, |
| kLongCall, |
| // R2 far label. |
| kFarLabel, |
| // R2 far literal. |
| kFarLiteral, |
| // R6 short branches (can be promoted to long). |
| kR6UncondBranch, |
| kR6CondBranch, |
| kR6Call, |
| // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. |
| kR6BareUncondBranch, |
| kR6BareCondBranch, |
| kR6BareCall, |
| // R6 near label. |
| kR6Label, |
| // R6 near literal. |
| kR6Literal, |
| // R6 long branches. |
| kR6LongUncondBranch, |
| kR6LongCondBranch, |
| kR6LongCall, |
| // R6 far label. |
| kR6FarLabel, |
| // R6 far literal. |
| kR6FarLiteral, |
| }; |
| // Bit sizes of offsets defined as enums to minimize chance of typos. |
| enum OffsetBits { |
| kOffset16 = 16, |
| kOffset18 = 18, |
| kOffset21 = 21, |
| kOffset23 = 23, |
| kOffset28 = 28, |
| kOffset32 = 32, |
| }; |
| |
| static constexpr uint32_t kUnresolved = 0xffffffff; // Unresolved target_ |
| static constexpr int32_t kMaxBranchLength = 32; |
| static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t); |
| // The following two instruction encodings can never legally occur in branch delay |
| // slots and are used as markers. |
| // |
| // kUnfilledDelaySlot means that the branch may use either the preceding or the target |
| // instruction to fill its delay slot (the latter is only possible with unconditional |
| // R2 branches and is termed here as "absorption"). |
| static constexpr uint32_t kUnfilledDelaySlot = 0x10000000; // beq zero, zero, 0. |
| // kUnfillableDelaySlot means that the branch cannot use an instruction (other than NOP) |
| // to fill its delay slot. This is only used for unconditional R2 branches to prevent |
| // absorption of the target instruction when reordering is disabled. |
| static constexpr uint32_t kUnfillableDelaySlot = 0x13FF0000; // beq ra, ra, 0. |
| |
| struct BranchInfo { |
| // Branch length as a number of 4-byte-long instructions. |
| uint32_t length; |
| // Ordinal number (0-based) of the first (or the only) instruction that contains the branch's |
| // PC-relative offset (or its most significant 16-bit half, which goes first). |
| uint32_t instr_offset; |
| // Different MIPS instructions with PC-relative offsets apply said offsets to slightly |
| // different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte |
| // instructions) from the instruction containing the offset. |
| uint32_t pc_org; |
| // How large (in bits) a PC-relative offset can be for a given type of branch (kR6CondBranch |
| // and kR6BareCondBranch are an exception: use kOffset23 for beqzc/bnezc). |
| OffsetBits offset_size; |
| // Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift |
| // count. |
| int offset_shift; |
| }; |
| static const BranchInfo branch_info_[/* Type */]; |
| |
| // Unconditional branch or call. |
| Branch(bool is_r6, uint32_t location, uint32_t target, bool is_call, bool is_bare); |
| // Conditional branch. |
| Branch(bool is_r6, |
| uint32_t location, |
| uint32_t target, |
| BranchCondition condition, |
| Register lhs_reg, |
| Register rhs_reg, |
| bool is_bare); |
| // Label address (in literal area) or literal. |
| Branch(bool is_r6, |
| uint32_t location, |
| Register dest_reg, |
| Register base_reg, |
| Type label_or_literal_type); |
| |
| // Some conditional branches with lhs = rhs are effectively NOPs, while some |
| // others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs. |
| // So, we need a way to identify such branches in order to emit no instructions for them |
| // or change them to unconditional. |
| static bool IsNop(BranchCondition condition, Register lhs, Register rhs); |
| static bool IsUncond(BranchCondition condition, Register lhs, Register rhs); |
| |
| static BranchCondition OppositeCondition(BranchCondition cond); |
| |
| Type GetType() const; |
| BranchCondition GetCondition() const; |
| Register GetLeftRegister() const; |
| Register GetRightRegister() const; |
| uint32_t GetTarget() const; |
| uint32_t GetLocation() const; |
| uint32_t GetOldLocation() const; |
| uint32_t GetPrecedingInstructionLength(Type type) const; |
| uint32_t GetPrecedingInstructionSize(Type type) const; |
| uint32_t GetLength() const; |
| uint32_t GetOldLength() const; |
| uint32_t GetSize() const; |
| uint32_t GetOldSize() const; |
| uint32_t GetEndLocation() const; |
| uint32_t GetOldEndLocation() const; |
| bool IsBare() const; |
| bool IsLong() const; |
| bool IsResolved() const; |
| |
| // Various helpers for branch delay slot management. |
| bool CanHaveDelayedInstruction(const DelaySlot& delay_slot) const; |
| void SetDelayedInstruction(uint32_t instruction, MipsLabel* patcher_label = nullptr); |
| uint32_t GetDelayedInstruction() const; |
| MipsLabel* GetPatcherLabel() const; |
| void DecrementLocations(); |
| |
| // Returns the bit size of the signed offset that the branch instruction can handle. |
| OffsetBits GetOffsetSize() const; |
| |
| // Calculates the distance between two byte locations in the assembler buffer and |
| // returns the number of bits needed to represent the distance as a signed integer. |
| // |
| // Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc), |
| // and 26 (bc) bits, which are additionally shifted left 2 positions at run time. |
| // |
| // Composite branches (made of several instructions) with longer reach have 32-bit |
| // offsets encoded as 2 16-bit "halves" in two instructions (high half goes first). |
| // The composite branches cover the range of PC + +/-2GB on MIPS32 CPUs. However, |
| // the range is not end-to-end on MIPS64 (unless addresses are forced to zero- or |
| // sign-extend from 32 to 64 bits by the appropriate CPU configuration). |
| // Consider the following implementation of a long unconditional branch, for |
| // example: |
| // |
| // auipc at, offset_31_16 // at = pc + sign_extend(offset_31_16) << 16 |
| // jic at, offset_15_0 // pc = at + sign_extend(offset_15_0) |
| // |
| // Both of the above instructions take 16-bit signed offsets as immediate operands. |
| // When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000 |
| // due to sign extension. This must be compensated for by incrementing offset_31_16 |
| // by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is |
| // 0x7FFF, adding 1 will overflow the positive offset into the negative range. |
| // Therefore, the long branch range is something like from PC - 0x80000000 to |
| // PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side. |
| // |
| // The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special |
| // case with the addiu instruction and a 16 bit offset. |
| static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target); |
| |
| // Resolve a branch when the target is known. |
| void Resolve(uint32_t target); |
| |
| // Relocate a branch by a given delta if needed due to expansion of this or another |
| // branch at a given location by this delta (just changes location_ and target_). |
| void Relocate(uint32_t expand_location, uint32_t delta); |
| |
| // If the branch is short, changes its type to long. |
| void PromoteToLong(); |
| |
| // If necessary, updates the type by promoting a short branch to a long branch |
| // based on the branch location and target. Returns the amount (in bytes) by |
| // which the branch size has increased. |
| // max_short_distance caps the maximum distance between location_ and target_ |
| // that is allowed for short branches. This is for debugging/testing purposes. |
| // max_short_distance = 0 forces all short branches to become long. |
| // Use the implicit default argument when not debugging/testing. |
| uint32_t PromoteIfNeeded(uint32_t location, |
| uint32_t max_short_distance = std::numeric_limits<uint32_t>::max()); |
| |
| // Returns the location of the instruction(s) containing the offset. |
| uint32_t GetOffsetLocation() const; |
| |
| // Calculates and returns the offset ready for encoding in the branch instruction(s). |
| uint32_t GetOffset(uint32_t location) const; |
| |
| private: |
| // Completes branch construction by determining and recording its type. |
| void InitializeType(Type initial_type, bool is_r6); |
| // Helper for the above. |
| void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type); |
| |
| uint32_t old_location_; // Offset into assembler buffer in bytes. |
| uint32_t location_; // Offset into assembler buffer in bytes. |
| uint32_t target_; // Offset into assembler buffer in bytes. |
| |
| uint32_t lhs_reg_; // Left-hand side register in conditional branches or |
| // FPU condition code. Destination register in literals. |
| uint32_t rhs_reg_; // Right-hand side register in conditional branches. |
| // Base register in literals (ZERO on R6). |
| BranchCondition condition_; // Condition for conditional branches. |
| |
| Type type_; // Current type of the branch. |
| Type old_type_; // Initial type of the branch. |
| |
| uint32_t delayed_instruction_; // Encoded instruction for the delay slot or |
| // kUnfilledDelaySlot if none but fillable or |
| // kUnfillableDelaySlot if none and unfillable |
| // (the latter is only used for unconditional R2 |
| // branches). |
| |
| MipsLabel* patcher_label_; // Patcher label for the instruction in the delay slot. |
| }; |
| friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs); |
| friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs); |
| |
| uint32_t EmitR(int opcode, Register rs, Register rt, Register rd, int shamt, int funct); |
| uint32_t EmitI(int opcode, Register rs, Register rt, uint16_t imm); |
| uint32_t EmitI21(int opcode, Register rs, uint32_t imm21); |
| uint32_t EmitI26(int opcode, uint32_t imm26); |
| uint32_t EmitFR(int opcode, int fmt, FRegister ft, FRegister fs, FRegister fd, int funct); |
| uint32_t EmitFI(int opcode, int fmt, FRegister rt, uint16_t imm); |
| void EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16); |
| void EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21); |
| uint32_t EmitMsa3R(int operation, |
| int df, |
| VectorRegister wt, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode); |
| uint32_t EmitMsaBIT(int operation, |
| int df_m, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode); |
| uint32_t EmitMsaELM(int operation, |
| int df_n, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode); |
| uint32_t EmitMsaMI10(int s10, Register rs, VectorRegister wd, int minor_opcode, int df); |
| uint32_t EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode); |
| uint32_t EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode); |
| uint32_t EmitMsa2RF(int operation, |
| int df, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode); |
| |
| void Buncond(MipsLabel* label, bool is_r6, bool is_bare); |
| void Bcond(MipsLabel* label, |
| bool is_r6, |
| bool is_bare, |
| BranchCondition condition, |
| Register lhs, |
| Register rhs = ZERO); |
| void Call(MipsLabel* label, bool is_r6, bool is_bare); |
| void FinalizeLabeledBranch(MipsLabel* label); |
| |
| // Various helpers for branch delay slot management. |
| InOutRegMasks& DsFsmInstr(uint32_t instruction, MipsLabel* patcher_label = nullptr); |
| void DsFsmInstrNop(uint32_t instruction); |
| void DsFsmLabel(); |
| void DsFsmCommitLabel(); |
| void DsFsmDropLabel(); |
| void MoveInstructionToDelaySlot(Branch& branch); |
| bool CanExchangeWithSlt(Register rs, Register rt) const; |
| void ExchangeWithSlt(const DelaySlot& forwarded_slot); |
| void GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt); |
| |
| Branch* GetBranch(uint32_t branch_id); |
| const Branch* GetBranch(uint32_t branch_id) const; |
| uint32_t GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const; |
| uint32_t GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const; |
| void BindRelativeToPrecedingBranch(MipsLabel* label, |
| uint32_t prev_branch_id_plus_one, |
| uint32_t position); |
| |
| void EmitLiterals(); |
| void ReserveJumpTableSpace(); |
| void EmitJumpTables(); |
| void PromoteBranches(); |
| void EmitBranch(uint32_t branch_id); |
| void EmitBranches(); |
| void PatchCFI(size_t number_of_delayed_adjust_pcs); |
| |
| // Emits exception block. |
| void EmitExceptionPoll(MipsExceptionSlowPath* exception); |
| |
| bool HasMsa() const { |
| return has_msa_; |
| } |
| |
| bool IsR6() const { |
| if (isa_features_ != nullptr) { |
| return isa_features_->IsR6(); |
| } else { |
| return false; |
| } |
| } |
| |
| bool Is32BitFPU() const { |
| if (isa_features_ != nullptr) { |
| return isa_features_->Is32BitFloatingPoint(); |
| } else { |
| return true; |
| } |
| } |
| |
| // List of exception blocks to generate at the end of the code cache. |
| std::vector<MipsExceptionSlowPath> exception_blocks_; |
| |
| std::vector<Branch> branches_; |
| |
| // Whether appending instructions at the end of the buffer or overwriting the existing ones. |
| bool overwriting_; |
| // The current overwrite location. |
| uint32_t overwrite_location_; |
| |
| // Whether instruction reordering (IOW, automatic filling of delay slots) is enabled. |
| bool reordering_; |
| // Information about the last instruction that may be used to fill a branch delay slot. |
| DelaySlot delay_slot_; |
| // Delay slot FSM state. |
| DsFsmState ds_fsm_state_; |
| // PC of the current labeled target instruction. |
| uint32_t ds_fsm_target_pc_; |
| // PCs of labeled target instructions. |
| std::vector<uint32_t> ds_fsm_target_pcs_; |
| |
| // Use std::deque<> for literal labels to allow insertions at the end |
| // without invalidating pointers and references to existing elements. |
| ArenaDeque<Literal> literals_; |
| |
| // Jump table list. |
| ArenaDeque<JumpTable> jump_tables_; |
| |
| // There's no PC-relative addressing on MIPS32R2. So, in order to access literals relative to PC |
| // we get PC using the NAL instruction. This label marks the position within the assembler buffer |
| // that PC (from NAL) points to. |
| MipsLabel pc_rel_base_label_; |
| |
| // Data for GetAdjustedPosition(), see the description there. |
| uint32_t last_position_adjustment_; |
| uint32_t last_old_position_; |
| uint32_t last_branch_id_; |
| |
| const bool has_msa_; |
| |
| const MipsInstructionSetFeatures* isa_features_; |
| |
| DISALLOW_COPY_AND_ASSIGN(MipsAssembler); |
| }; |
| |
| } // namespace mips |
| } // namespace art |
| |
| #endif // ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_ |