| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "common_throws.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "jni_internal.h" |
| #include "mirror/array.h" |
| #include "mirror/class.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "scoped_thread_state_change.h" |
| |
| /* |
| * We make guarantees about the atomicity of accesses to primitive |
| * variables. These guarantees also apply to elements of arrays. |
| * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and |
| * must not cause "word tearing". Accesses to 64-bit array elements must |
| * either be atomic or treated as two 32-bit operations. References are |
| * always read and written atomically, regardless of the number of bits |
| * used to represent them. |
| * |
| * We can't rely on standard libc functions like memcpy(3) and memmove(3) |
| * in our implementation of System.arraycopy, because they may copy |
| * byte-by-byte (either for the full run or for "unaligned" parts at the |
| * start or end). We need to use functions that guarantee 16-bit or 32-bit |
| * atomicity as appropriate. |
| * |
| * System.arraycopy() is heavily used, so having an efficient implementation |
| * is important. The bionic libc provides a platform-optimized memory move |
| * function that should be used when possible. If it's not available, |
| * the trivial "reference implementation" versions below can be used until |
| * a proper version can be written. |
| * |
| * For these functions, The caller must guarantee that dst/src are aligned |
| * appropriately for the element type, and that n is a multiple of the |
| * element size. |
| */ |
| |
| /* |
| * Works like memmove(), except: |
| * - if all arguments are at least 32-bit aligned, we guarantee that we |
| * will use operations that preserve atomicity of 32-bit values |
| * - if not, we guarantee atomicity of 16-bit values |
| * |
| * If all three arguments are not at least 16-bit aligned, the behavior |
| * of this function is undefined. (We could remove this restriction by |
| * testing for unaligned values and punting to memmove(), but that's |
| * not currently useful.) |
| * |
| * TODO: add loop for 64-bit alignment |
| * TODO: use __builtin_prefetch |
| * TODO: write ARM/MIPS/x86 optimized versions |
| */ |
| void MemmoveWords(void* dst, const void* src, size_t n) { |
| DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x01), 0U); |
| |
| char* d = reinterpret_cast<char*>(dst); |
| const char* s = reinterpret_cast<const char*>(src); |
| size_t copyCount; |
| |
| // If the source and destination pointers are the same, this is |
| // an expensive no-op. Testing for an empty move now allows us |
| // to skip a check later. |
| if (n == 0 || d == s) { |
| return; |
| } |
| |
| // Determine if the source and destination buffers will overlap if |
| // we copy data forward (i.e. *dst++ = *src++). |
| // |
| // It's okay if the destination buffer starts before the source and |
| // there is some overlap, because the reader is always ahead of the |
| // writer. |
| if (LIKELY((d < s) || ((size_t)(d - s) >= n))) { |
| // Copy forward. We prefer 32-bit loads and stores even for 16-bit |
| // data, so sort that out. |
| if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { |
| // Not 32-bit aligned. Two possibilities: |
| // (1) Congruent, we can align to 32-bit by copying one 16-bit val |
| // (2) Non-congruent, we can do one of: |
| // a. copy whole buffer as a series of 16-bit values |
| // b. load/store 32 bits, using shifts to ensure alignment |
| // c. just copy the as 32-bit values and assume the CPU |
| // will do a reasonable job |
| // |
| // We're currently using (a), which is suboptimal. |
| if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { |
| copyCount = n; |
| } else { |
| copyCount = 2; |
| } |
| n -= copyCount; |
| copyCount /= sizeof(uint16_t); |
| |
| while (copyCount--) { |
| *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); |
| d += sizeof(uint16_t); |
| s += sizeof(uint16_t); |
| } |
| } |
| |
| // Copy 32-bit aligned words. |
| copyCount = n / sizeof(uint32_t); |
| while (copyCount--) { |
| *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s); |
| d += sizeof(uint32_t); |
| s += sizeof(uint32_t); |
| } |
| |
| // Check for leftovers. Either we finished exactly, or we have one remaining 16-bit chunk. |
| if ((n & 0x02) != 0) { |
| *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); |
| } |
| } else { |
| // Copy backward, starting at the end. |
| d += n; |
| s += n; |
| |
| if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { |
| // try for 32-bit alignment. |
| if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { |
| copyCount = n; |
| } else { |
| copyCount = 2; |
| } |
| n -= copyCount; |
| copyCount /= sizeof(uint16_t); |
| |
| while (copyCount--) { |
| d -= sizeof(uint16_t); |
| s -= sizeof(uint16_t); |
| *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); |
| } |
| } |
| |
| // Copy 32-bit aligned words. |
| copyCount = n / sizeof(uint32_t); |
| while (copyCount--) { |
| d -= sizeof(uint32_t); |
| s -= sizeof(uint32_t); |
| *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s); |
| } |
| |
| // Copy leftovers. |
| if ((n & 0x02) != 0) { |
| d -= sizeof(uint16_t); |
| s -= sizeof(uint16_t); |
| *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); |
| } |
| } |
| } |
| |
| #define move16 MemmoveWords |
| #define move32 MemmoveWords |
| |
| namespace art { |
| |
| static void ThrowArrayStoreException_NotAnArray(const char* identifier, mirror::Object* array) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| std::string actualType(PrettyTypeOf(array)); |
| Thread* self = Thread::Current(); |
| ThrowLocation throw_location = self->GetCurrentLocationForThrow(); |
| self->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;", |
| "%s of type %s is not an array", identifier, actualType.c_str()); |
| } |
| |
| static void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) { |
| ScopedObjectAccess soa(env); |
| |
| // Null pointer checks. |
| if (UNLIKELY(javaSrc == NULL)) { |
| ThrowNullPointerException(NULL, "src == null"); |
| return; |
| } |
| if (UNLIKELY(javaDst == NULL)) { |
| ThrowNullPointerException(NULL, "dst == null"); |
| return; |
| } |
| |
| // Make sure source and destination are both arrays. |
| mirror::Object* srcObject = soa.Decode<mirror::Object*>(javaSrc); |
| mirror::Object* dstObject = soa.Decode<mirror::Object*>(javaDst); |
| if (UNLIKELY(!srcObject->IsArrayInstance())) { |
| ThrowArrayStoreException_NotAnArray("source", srcObject); |
| return; |
| } |
| if (UNLIKELY(!dstObject->IsArrayInstance())) { |
| ThrowArrayStoreException_NotAnArray("destination", dstObject); |
| return; |
| } |
| mirror::Array* srcArray = srcObject->AsArray(); |
| mirror::Array* dstArray = dstObject->AsArray(); |
| mirror::Class* srcComponentType = srcArray->GetClass()->GetComponentType(); |
| mirror::Class* dstComponentType = dstArray->GetClass()->GetComponentType(); |
| |
| // Bounds checking. |
| if (UNLIKELY(srcPos < 0 || dstPos < 0 || length < 0 || srcPos > srcArray->GetLength() - length || dstPos > dstArray->GetLength() - length)) { |
| ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); |
| soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayIndexOutOfBoundsException;", |
| "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d", |
| srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, length); |
| return; |
| } |
| |
| // Handle primitive arrays. |
| if (srcComponentType->IsPrimitive() || dstComponentType->IsPrimitive()) { |
| // If one of the arrays holds a primitive type the other array must hold the exact same type. |
| if (UNLIKELY(srcComponentType != dstComponentType)) { |
| std::string srcType(PrettyTypeOf(srcArray)); |
| std::string dstType(PrettyTypeOf(dstArray)); |
| ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); |
| soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;", |
| "Incompatible types: src=%s, dst=%s", |
| srcType.c_str(), dstType.c_str()); |
| return; |
| } |
| |
| size_t width = srcArray->GetClass()->GetComponentSize(); |
| uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width)); |
| const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width)); |
| |
| switch (width) { |
| case 1: |
| memmove(dstBytes + dstPos, srcBytes + srcPos, length); |
| break; |
| case 2: |
| move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2); |
| break; |
| case 4: |
| move32(dstBytes + dstPos * 4, srcBytes + srcPos * 4, length * 4); |
| break; |
| case 8: |
| // We don't need to guarantee atomicity of the entire 64-bit word. |
| move32(dstBytes + dstPos * 8, srcBytes + srcPos * 8, length * 8); |
| break; |
| default: |
| LOG(FATAL) << "Unknown primitive array type: " << PrettyTypeOf(srcArray); |
| } |
| |
| return; |
| } |
| |
| // Neither class is primitive. Are the types trivially compatible? |
| const size_t width = sizeof(mirror::Object*); |
| uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width)); |
| const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width)); |
| if (dstArray == srcArray || dstComponentType->IsAssignableFrom(srcComponentType)) { |
| // Yes. Bulk copy. |
| COMPILE_ASSERT(sizeof(width) == sizeof(uint32_t), move32_assumes_Object_references_are_32_bit); |
| move32(dstBytes + dstPos * width, srcBytes + srcPos * width, length * width); |
| Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length); |
| return; |
| } |
| |
| // The arrays are not trivially compatible. However, we may still be able to copy some or all of |
| // the elements if the source objects are compatible (for example, copying an Object[] to |
| // String[], the Objects being copied might actually be Strings). |
| // We can't do a bulk move because that would introduce a check-use race condition, so we copy |
| // elements one by one. |
| |
| // We already dealt with overlapping copies, so we don't need to cope with that case below. |
| CHECK_NE(dstArray, srcArray); |
| |
| mirror::Object* const * srcObjects = |
| reinterpret_cast<mirror::Object* const *>(srcBytes + srcPos * width); |
| mirror::Object** dstObjects = reinterpret_cast<mirror::Object**>(dstBytes + dstPos * width); |
| mirror::Class* dstClass = dstArray->GetClass()->GetComponentType(); |
| |
| // We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that |
| // we know is assignable to the destination array's component type. |
| mirror::Class* lastAssignableElementClass = dstClass; |
| |
| mirror::Object* o = NULL; |
| int i = 0; |
| for (; i < length; ++i) { |
| o = srcObjects[i]; |
| if (o != NULL) { |
| mirror::Class* oClass = o->GetClass(); |
| if (lastAssignableElementClass == oClass) { |
| dstObjects[i] = o; |
| } else if (dstClass->IsAssignableFrom(oClass)) { |
| lastAssignableElementClass = oClass; |
| dstObjects[i] = o; |
| } else { |
| // Can't put this element into the array. |
| break; |
| } |
| } else { |
| dstObjects[i] = NULL; |
| } |
| } |
| |
| Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length); |
| if (UNLIKELY(i != length)) { |
| std::string actualSrcType(PrettyTypeOf(o)); |
| std::string dstType(PrettyTypeOf(dstArray)); |
| ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); |
| soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;", |
| "source[%d] of type %s cannot be stored in destination array of type %s", |
| srcPos + i, actualSrcType.c_str(), dstType.c_str()); |
| return; |
| } |
| } |
| |
| static jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) { |
| ScopedObjectAccess soa(env); |
| mirror::Object* o = soa.Decode<mirror::Object*>(javaObject); |
| return static_cast<jint>(o->IdentityHashCode()); |
| } |
| |
| static JNINativeMethod gMethods[] = { |
| NATIVE_METHOD(System, arraycopy, "(Ljava/lang/Object;ILjava/lang/Object;II)V"), |
| NATIVE_METHOD(System, identityHashCode, "(Ljava/lang/Object;)I"), |
| }; |
| |
| void register_java_lang_System(JNIEnv* env) { |
| REGISTER_NATIVE_METHODS("java/lang/System"); |
| } |
| |
| } // namespace art |