| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "intrinsics_x86.h" |
| |
| #include <limits> |
| |
| #include "arch/x86/instruction_set_features_x86.h" |
| #include "art_method.h" |
| #include "base/bit_utils.h" |
| #include "code_generator_x86.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "intrinsics.h" |
| #include "intrinsics_utils.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/string.h" |
| #include "thread.h" |
| #include "utils/x86/assembler_x86.h" |
| #include "utils/x86/constants_x86.h" |
| |
| namespace art { |
| |
| namespace x86 { |
| |
| static constexpr int kDoubleNaNHigh = 0x7FF80000; |
| static constexpr int kDoubleNaNLow = 0x00000000; |
| static constexpr int64_t kDoubleNaN = INT64_C(0x7FF8000000000000); |
| static constexpr int32_t kFloatNaN = INT32_C(0x7FC00000); |
| |
| IntrinsicLocationsBuilderX86::IntrinsicLocationsBuilderX86(CodeGeneratorX86* codegen) |
| : arena_(codegen->GetGraph()->GetArena()), |
| codegen_(codegen) { |
| } |
| |
| |
| X86Assembler* IntrinsicCodeGeneratorX86::GetAssembler() { |
| return down_cast<X86Assembler*>(codegen_->GetAssembler()); |
| } |
| |
| ArenaAllocator* IntrinsicCodeGeneratorX86::GetAllocator() { |
| return codegen_->GetGraph()->GetArena(); |
| } |
| |
| bool IntrinsicLocationsBuilderX86::TryDispatch(HInvoke* invoke) { |
| Dispatch(invoke); |
| LocationSummary* res = invoke->GetLocations(); |
| if (res == nullptr) { |
| return false; |
| } |
| if (kEmitCompilerReadBarrier && res->CanCall()) { |
| // Generating an intrinsic for this HInvoke may produce an |
| // IntrinsicSlowPathX86 slow path. Currently this approach |
| // does not work when using read barriers, as the emitted |
| // calling sequence will make use of another slow path |
| // (ReadBarrierForRootSlowPathX86 for HInvokeStaticOrDirect, |
| // ReadBarrierSlowPathX86 for HInvokeVirtual). So we bail |
| // out in this case. |
| // |
| // TODO: Find a way to have intrinsics work with read barriers. |
| invoke->SetLocations(nullptr); |
| return false; |
| } |
| return res->Intrinsified(); |
| } |
| |
| static void MoveArguments(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| InvokeDexCallingConventionVisitorX86 calling_convention_visitor; |
| IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); |
| } |
| |
| using IntrinsicSlowPathX86 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86>; |
| |
| #define __ assembler-> |
| |
| static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke, bool is64bit) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| if (is64bit) { |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke, bool is64bit) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| if (is64bit) { |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| if (is64bit) { |
| // Need to use the temporary. |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| __ movsd(temp, input.AsFpuRegister<XmmRegister>()); |
| __ movd(output.AsRegisterPairLow<Register>(), temp); |
| __ psrlq(temp, Immediate(32)); |
| __ movd(output.AsRegisterPairHigh<Register>(), temp); |
| } else { |
| __ movd(output.AsRegister<Register>(), input.AsFpuRegister<XmmRegister>()); |
| } |
| } |
| |
| static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| if (is64bit) { |
| // Need to use the temporary. |
| XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| __ movd(temp1, input.AsRegisterPairLow<Register>()); |
| __ movd(temp2, input.AsRegisterPairHigh<Register>()); |
| __ punpckldq(temp1, temp2); |
| __ movsd(output.AsFpuRegister<XmmRegister>(), temp1); |
| } else { |
| __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<Register>()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| CreateFPToIntLocations(arena_, invoke, /* is64bit */ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| CreateIntToFPLocations(arena_, invoke, /* is64bit */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| CreateFPToIntLocations(arena_, invoke, /* is64bit */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| CreateIntToFPLocations(arena_, invoke, /* is64bit */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorX86::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); |
| } |
| |
| static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| static void CreateLongToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void CreateLongToLongLocations(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| static void GenReverseBytes(LocationSummary* locations, |
| Primitive::Type size, |
| X86Assembler* assembler) { |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| switch (size) { |
| case Primitive::kPrimShort: |
| // TODO: Can be done with an xchg of 8b registers. This is straight from Quick. |
| __ bswapl(out); |
| __ sarl(out, Immediate(16)); |
| break; |
| case Primitive::kPrimInt: |
| __ bswapl(out); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected size for reverse-bytes: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongReverseBytes(HInvoke* invoke) { |
| CreateLongToLongLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongReverseBytes(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location input = locations->InAt(0); |
| Register input_lo = input.AsRegisterPairLow<Register>(); |
| Register input_hi = input.AsRegisterPairHigh<Register>(); |
| Location output = locations->Out(); |
| Register output_lo = output.AsRegisterPairLow<Register>(); |
| Register output_hi = output.AsRegisterPairHigh<Register>(); |
| |
| X86Assembler* assembler = GetAssembler(); |
| // Assign the inputs to the outputs, mixing low/high. |
| __ movl(output_lo, input_hi); |
| __ movl(output_hi, input_lo); |
| __ bswapl(output_lo); |
| __ bswapl(output_hi); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitShortReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitShortReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); |
| } |
| |
| |
| // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we |
| // need is 64b. |
| |
| static void CreateFloatToFloat(ArenaAllocator* arena, HInvoke* invoke) { |
| // TODO: Enable memory operations when the assembler supports them. |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect(); |
| DCHECK(static_or_direct != nullptr); |
| if (static_or_direct->HasSpecialInput() && |
| invoke->InputAt(static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) { |
| // We need addressibility for the constant area. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // We need a temporary to hold the constant. |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| static void MathAbsFP(LocationSummary* locations, |
| bool is64bit, |
| X86Assembler* assembler, |
| CodeGeneratorX86* codegen) { |
| Location output = locations->Out(); |
| |
| DCHECK(output.IsFpuRegister()); |
| if (locations->GetInputCount() == 2 && locations->InAt(1).IsValid()) { |
| DCHECK(locations->InAt(1).IsRegister()); |
| // We also have a constant area pointer. |
| Register constant_area = locations->InAt(1).AsRegister<Register>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| if (is64bit) { |
| __ movsd(temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF), constant_area)); |
| __ andpd(output.AsFpuRegister<XmmRegister>(), temp); |
| } else { |
| __ movss(temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF), constant_area)); |
| __ andps(output.AsFpuRegister<XmmRegister>(), temp); |
| } |
| } else { |
| // Create the right constant on an aligned stack. |
| if (is64bit) { |
| __ subl(ESP, Immediate(8)); |
| __ pushl(Immediate(0x7FFFFFFF)); |
| __ pushl(Immediate(0xFFFFFFFF)); |
| __ andpd(output.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| } else { |
| __ subl(ESP, Immediate(12)); |
| __ pushl(Immediate(0x7FFFFFFF)); |
| __ andps(output.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| } |
| __ addl(ESP, Immediate(16)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAbsDouble(HInvoke* invoke) { |
| CreateFloatToFloat(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAbsDouble(HInvoke* invoke) { |
| MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler(), codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAbsFloat(HInvoke* invoke) { |
| CreateFloatToFloat(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAbsFloat(HInvoke* invoke) { |
| MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler(), codegen_); |
| } |
| |
| static void CreateAbsIntLocation(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| } |
| |
| static void GenAbsInteger(LocationSummary* locations, X86Assembler* assembler) { |
| Location output = locations->Out(); |
| Register out = output.AsRegister<Register>(); |
| DCHECK_EQ(out, EAX); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| DCHECK_EQ(temp, EDX); |
| |
| // Sign extend EAX into EDX. |
| __ cdq(); |
| |
| // XOR EAX with sign. |
| __ xorl(EAX, EDX); |
| |
| // Subtract out sign to correct. |
| __ subl(EAX, EDX); |
| |
| // The result is in EAX. |
| } |
| |
| static void CreateAbsLongLocation(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void GenAbsLong(LocationSummary* locations, X86Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Register input_lo = input.AsRegisterPairLow<Register>(); |
| Register input_hi = input.AsRegisterPairHigh<Register>(); |
| Location output = locations->Out(); |
| Register output_lo = output.AsRegisterPairLow<Register>(); |
| Register output_hi = output.AsRegisterPairHigh<Register>(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| |
| // Compute the sign into the temporary. |
| __ movl(temp, input_hi); |
| __ sarl(temp, Immediate(31)); |
| |
| // Store the sign into the output. |
| __ movl(output_lo, temp); |
| __ movl(output_hi, temp); |
| |
| // XOR the input to the output. |
| __ xorl(output_lo, input_lo); |
| __ xorl(output_hi, input_hi); |
| |
| // Subtract the sign. |
| __ subl(output_lo, temp); |
| __ sbbl(output_hi, temp); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAbsInt(HInvoke* invoke) { |
| CreateAbsIntLocation(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAbsInt(HInvoke* invoke) { |
| GenAbsInteger(invoke->GetLocations(), GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAbsLong(HInvoke* invoke) { |
| CreateAbsLongLocation(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAbsLong(HInvoke* invoke) { |
| GenAbsLong(invoke->GetLocations(), GetAssembler()); |
| } |
| |
| static void GenMinMaxFP(LocationSummary* locations, |
| bool is_min, |
| bool is_double, |
| X86Assembler* assembler, |
| CodeGeneratorX86* codegen) { |
| Location op1_loc = locations->InAt(0); |
| Location op2_loc = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); |
| |
| // Shortcut for same input locations. |
| if (op1_loc.Equals(op2_loc)) { |
| DCHECK(out_loc.Equals(op1_loc)); |
| return; |
| } |
| |
| // (out := op1) |
| // out <=? op2 |
| // if Nan jmp Nan_label |
| // if out is min jmp done |
| // if op2 is min jmp op2_label |
| // handle -0/+0 |
| // jmp done |
| // Nan_label: |
| // out := NaN |
| // op2_label: |
| // out := op2 |
| // done: |
| // |
| // This removes one jmp, but needs to copy one input (op1) to out. |
| // |
| // TODO: This is straight from Quick (except literal pool). Make NaN an out-of-line slowpath? |
| |
| XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>(); |
| |
| NearLabel nan, done, op2_label; |
| if (is_double) { |
| __ ucomisd(out, op2); |
| } else { |
| __ ucomiss(out, op2); |
| } |
| |
| __ j(Condition::kParityEven, &nan); |
| |
| __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label); |
| __ j(is_min ? Condition::kBelow : Condition::kAbove, &done); |
| |
| // Handle 0.0/-0.0. |
| if (is_min) { |
| if (is_double) { |
| __ orpd(out, op2); |
| } else { |
| __ orps(out, op2); |
| } |
| } else { |
| if (is_double) { |
| __ andpd(out, op2); |
| } else { |
| __ andps(out, op2); |
| } |
| } |
| __ jmp(&done); |
| |
| // NaN handling. |
| __ Bind(&nan); |
| // Do we have a constant area pointer? |
| if (locations->GetInputCount() == 3 && locations->InAt(2).IsValid()) { |
| DCHECK(locations->InAt(2).IsRegister()); |
| Register constant_area = locations->InAt(2).AsRegister<Register>(); |
| if (is_double) { |
| __ movsd(out, codegen->LiteralInt64Address(kDoubleNaN, constant_area)); |
| } else { |
| __ movss(out, codegen->LiteralInt32Address(kFloatNaN, constant_area)); |
| } |
| } else { |
| if (is_double) { |
| __ pushl(Immediate(kDoubleNaNHigh)); |
| __ pushl(Immediate(kDoubleNaNLow)); |
| __ movsd(out, Address(ESP, 0)); |
| __ addl(ESP, Immediate(8)); |
| } else { |
| __ pushl(Immediate(kFloatNaN)); |
| __ movss(out, Address(ESP, 0)); |
| __ addl(ESP, Immediate(4)); |
| } |
| } |
| __ jmp(&done); |
| |
| // out := op2; |
| __ Bind(&op2_label); |
| if (is_double) { |
| __ movsd(out, op2); |
| } else { |
| __ movss(out, op2); |
| } |
| |
| // Done. |
| __ Bind(&done); |
| } |
| |
| static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| // The following is sub-optimal, but all we can do for now. It would be fine to also accept |
| // the second input to be the output (we can simply swap inputs). |
| locations->SetOut(Location::SameAsFirstInput()); |
| HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect(); |
| DCHECK(static_or_direct != nullptr); |
| if (static_or_direct->HasSpecialInput() && |
| invoke->InputAt(static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathMinDoubleDouble(HInvoke* invoke) { |
| CreateFPFPToFPLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathMinDoubleDouble(HInvoke* invoke) { |
| GenMinMaxFP(invoke->GetLocations(), |
| /* is_min */ true, |
| /* is_double */ true, |
| GetAssembler(), |
| codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathMinFloatFloat(HInvoke* invoke) { |
| CreateFPFPToFPLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathMinFloatFloat(HInvoke* invoke) { |
| GenMinMaxFP(invoke->GetLocations(), |
| /* is_min */ true, |
| /* is_double */ false, |
| GetAssembler(), |
| codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathMaxDoubleDouble(HInvoke* invoke) { |
| CreateFPFPToFPLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathMaxDoubleDouble(HInvoke* invoke) { |
| GenMinMaxFP(invoke->GetLocations(), |
| /* is_min */ false, |
| /* is_double */ true, |
| GetAssembler(), |
| codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathMaxFloatFloat(HInvoke* invoke) { |
| CreateFPFPToFPLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathMaxFloatFloat(HInvoke* invoke) { |
| GenMinMaxFP(invoke->GetLocations(), |
| /* is_min */ false, |
| /* is_double */ false, |
| GetAssembler(), |
| codegen_); |
| } |
| |
| static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long, |
| X86Assembler* assembler) { |
| Location op1_loc = locations->InAt(0); |
| Location op2_loc = locations->InAt(1); |
| |
| // Shortcut for same input locations. |
| if (op1_loc.Equals(op2_loc)) { |
| // Can return immediately, as op1_loc == out_loc. |
| // Note: if we ever support separate registers, e.g., output into memory, we need to check for |
| // a copy here. |
| DCHECK(locations->Out().Equals(op1_loc)); |
| return; |
| } |
| |
| if (is_long) { |
| // Need to perform a subtract to get the sign right. |
| // op1 is already in the same location as the output. |
| Location output = locations->Out(); |
| Register output_lo = output.AsRegisterPairLow<Register>(); |
| Register output_hi = output.AsRegisterPairHigh<Register>(); |
| |
| Register op2_lo = op2_loc.AsRegisterPairLow<Register>(); |
| Register op2_hi = op2_loc.AsRegisterPairHigh<Register>(); |
| |
| // Spare register to compute the subtraction to set condition code. |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| |
| // Subtract off op2_low. |
| __ movl(temp, output_lo); |
| __ subl(temp, op2_lo); |
| |
| // Now use the same tempo and the borrow to finish the subtraction of op2_hi. |
| __ movl(temp, output_hi); |
| __ sbbl(temp, op2_hi); |
| |
| // Now the condition code is correct. |
| Condition cond = is_min ? Condition::kGreaterEqual : Condition::kLess; |
| __ cmovl(cond, output_lo, op2_lo); |
| __ cmovl(cond, output_hi, op2_hi); |
| } else { |
| Register out = locations->Out().AsRegister<Register>(); |
| Register op2 = op2_loc.AsRegister<Register>(); |
| |
| // (out := op1) |
| // out <=? op2 |
| // if out is min jmp done |
| // out := op2 |
| // done: |
| |
| __ cmpl(out, op2); |
| Condition cond = is_min ? Condition::kGreater : Condition::kLess; |
| __ cmovl(cond, out, op2); |
| } |
| } |
| |
| static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| static void CreateLongLongToLongLocations(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Register to use to perform a long subtract to set cc. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathMinIntInt(HInvoke* invoke) { |
| CreateIntIntToIntLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathMinIntInt(HInvoke* invoke) { |
| GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathMinLongLong(HInvoke* invoke) { |
| CreateLongLongToLongLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathMinLongLong(HInvoke* invoke) { |
| GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathMaxIntInt(HInvoke* invoke) { |
| CreateIntIntToIntLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathMaxIntInt(HInvoke* invoke) { |
| GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathMaxLongLong(HInvoke* invoke) { |
| CreateLongLongToLongLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathMaxLongLong(HInvoke* invoke) { |
| GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler()); |
| } |
| |
| static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathSqrt(HInvoke* invoke) { |
| CreateFPToFPLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathSqrt(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| |
| GetAssembler()->sqrtsd(out, in); |
| } |
| |
| static void InvokeOutOfLineIntrinsic(CodeGeneratorX86* codegen, HInvoke* invoke) { |
| MoveArguments(invoke, codegen); |
| |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| codegen->GenerateStaticOrDirectCall(invoke->AsInvokeStaticOrDirect(), |
| Location::RegisterLocation(EAX)); |
| codegen->RecordPcInfo(invoke, invoke->GetDexPc()); |
| |
| // Copy the result back to the expected output. |
| Location out = invoke->GetLocations()->Out(); |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister()); |
| codegen->MoveFromReturnRegister(out, invoke->GetType()); |
| } |
| } |
| |
| static void CreateSSE41FPToFPLocations(ArenaAllocator* arena, |
| HInvoke* invoke, |
| CodeGeneratorX86* codegen) { |
| // Do we have instruction support? |
| if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { |
| CreateFPToFPLocations(arena, invoke); |
| return; |
| } |
| |
| // We have to fall back to a call to the intrinsic. |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| // Needs to be EAX for the invoke. |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| } |
| |
| static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86* codegen, |
| HInvoke* invoke, |
| X86Assembler* assembler, |
| int round_mode) { |
| LocationSummary* locations = invoke->GetLocations(); |
| if (locations->WillCall()) { |
| InvokeOutOfLineIntrinsic(codegen, invoke); |
| } else { |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| __ roundsd(out, in, Immediate(round_mode)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathCeil(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(arena_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathCeil(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathFloor(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(arena_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathFloor(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathRint(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(arena_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathRint(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0); |
| } |
| |
| // Note that 32 bit x86 doesn't have the capability to inline MathRoundDouble, |
| // as it needs 64 bit instructions. |
| void IntrinsicLocationsBuilderX86::VisitMathRoundFloat(HInvoke* invoke) { |
| // See intrinsics.h. |
| if (!kRoundIsPlusPointFive) { |
| return; |
| } |
| |
| // Do we have instruction support? |
| if (codegen_->GetInstructionSetFeatures().HasSSE4_1()) { |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| return; |
| } |
| |
| // We have to fall back to a call to the intrinsic. |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| // Needs to be EAX for the invoke. |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathRoundFloat(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| if (locations->WillCall()) { |
| InvokeOutOfLineIntrinsic(codegen_, invoke); |
| return; |
| } |
| |
| // Implement RoundFloat as t1 = floor(input + 0.5f); convert to int. |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| XmmRegister maxInt = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister inPlusPointFive = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| NearLabel done, nan; |
| X86Assembler* assembler = GetAssembler(); |
| |
| // Generate 0.5 into inPlusPointFive. |
| __ movl(out, Immediate(bit_cast<int32_t, float>(0.5f))); |
| __ movd(inPlusPointFive, out); |
| |
| // Add in the input. |
| __ addss(inPlusPointFive, in); |
| |
| // And truncate to an integer. |
| __ roundss(inPlusPointFive, inPlusPointFive, Immediate(1)); |
| |
| __ movl(out, Immediate(kPrimIntMax)); |
| // maxInt = int-to-float(out) |
| __ cvtsi2ss(maxInt, out); |
| |
| // if inPlusPointFive >= maxInt goto done |
| __ comiss(inPlusPointFive, maxInt); |
| __ j(kAboveEqual, &done); |
| |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| |
| // output = float-to-int-truncate(input) |
| __ cvttss2si(out, inPlusPointFive); |
| __ jmp(&done); |
| __ Bind(&nan); |
| |
| // output = 0 |
| __ xorl(out, out); |
| __ Bind(&done); |
| } |
| |
| static void CreateFPToFPCallLocations(ArenaAllocator* arena, |
| HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kCall, |
| kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| } |
| |
| static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86* codegen, QuickEntrypointEnum entry) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(locations->WillCall()); |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| X86Assembler* assembler = codegen->GetAssembler(); |
| |
| // We need some place to pass the parameters. |
| __ subl(ESP, Immediate(16)); |
| __ cfi().AdjustCFAOffset(16); |
| |
| // Pass the parameters at the bottom of the stack. |
| __ movsd(Address(ESP, 0), XMM0); |
| |
| // If we have a second parameter, pass it next. |
| if (invoke->GetNumberOfArguments() == 2) { |
| __ movsd(Address(ESP, 8), XMM1); |
| } |
| |
| // Now do the actual call. |
| __ fs()->call(Address::Absolute(GetThreadOffset<kX86WordSize>(entry))); |
| |
| // Extract the return value from the FP stack. |
| __ fstpl(Address(ESP, 0)); |
| __ movsd(XMM0, Address(ESP, 0)); |
| |
| // And clean up the stack. |
| __ addl(ESP, Immediate(16)); |
| __ cfi().AdjustCFAOffset(-16); |
| |
| codegen->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathCos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathCos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCos); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathSin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathSin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSin); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAcos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAcos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAcos); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAsin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAsin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAsin); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAtan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAtan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathCbrt(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathCbrt(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCbrt); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathCosh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathCosh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCosh); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathExp(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathExp(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExp); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathExpm1(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathExpm1(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExpm1); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathLog(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathLog(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathLog10(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathLog10(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog10); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathSinh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathSinh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSinh); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathTan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathTan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTan); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathTanh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathTanh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTanh); |
| } |
| |
| static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, |
| HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kCall, |
| kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAtan2(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAtan2(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan2); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathHypot(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathHypot(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickHypot); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathNextAfter(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathNextAfter(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickNextAfter); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringCharAt(HInvoke* invoke) { |
| // The inputs plus one temp. |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringCharAt(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Location of reference to data array. |
| const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count. |
| const int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Register idx = locations->InAt(1).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| // TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth |
| // the cost. |
| // TODO: For simplicity, the index parameter is requested in a register, so different from Quick |
| // we will not optimize the code for constants (which would save a register). |
| |
| SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| X86Assembler* assembler = GetAssembler(); |
| |
| __ cmpl(idx, Address(obj, count_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| __ j(kAboveEqual, slow_path->GetEntryLabel()); |
| |
| // out = out[2*idx]. |
| __ movzxw(out, Address(out, idx, ScaleFactor::TIMES_2, value_offset)); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| // We need at least two of the positions or length to be an integer constant, |
| // or else we won't have enough free registers. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| |
| int num_constants = |
| ((src_pos != nullptr) ? 1 : 0) |
| + ((dest_pos != nullptr) ? 1 : 0) |
| + ((length != nullptr) ? 1 : 0); |
| |
| if (num_constants < 2) { |
| // Not enough free registers. |
| return; |
| } |
| |
| // As long as we are checking, we might as well check to see if the src and dest |
| // positions are >= 0. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dest_pos != nullptr && dest_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // And since we are already checking, check the length too. |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0) { |
| // Just call as normal. |
| return; |
| } |
| } |
| |
| // Okay, it is safe to generate inline code. |
| LocationSummary* locations = |
| new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // arraycopy(Object src, int srcPos, Object dest, int destPos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); |
| locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); |
| |
| // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. |
| locations->AddTemp(Location::RegisterLocation(ESI)); |
| locations->AddTemp(Location::RegisterLocation(EDI)); |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } |
| |
| static void CheckPosition(X86Assembler* assembler, |
| Location pos, |
| Register input, |
| Register length, |
| SlowPathCode* slow_path, |
| Register input_len, |
| Register temp) { |
| // Where is the length in the String? |
| const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| |
| if (pos.IsConstant()) { |
| int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (pos_const == 0) { |
| // Check that length(input) >= length. |
| __ cmpl(Address(input, length_offset), length); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } else { |
| // Check that length(input) >= pos. |
| __ movl(input_len, Address(input, length_offset)); |
| __ cmpl(input_len, Immediate(pos_const)); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| __ leal(temp, Address(input_len, -pos_const)); |
| __ cmpl(temp, length); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } else { |
| // Check that pos >= 0. |
| Register pos_reg = pos.AsRegister<Register>(); |
| __ testl(pos_reg, pos_reg); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that pos <= length(input). |
| __ cmpl(Address(input, length_offset), pos_reg); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| __ movl(temp, Address(input, length_offset)); |
| __ subl(temp, pos_reg); |
| __ cmpl(temp, length); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register src = locations->InAt(0).AsRegister<Register>(); |
| Location srcPos = locations->InAt(1); |
| Register dest = locations->InAt(2).AsRegister<Register>(); |
| Location destPos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| |
| // Temporaries that we need for MOVSW. |
| Register src_base = locations->GetTemp(0).AsRegister<Register>(); |
| DCHECK_EQ(src_base, ESI); |
| Register dest_base = locations->GetTemp(1).AsRegister<Register>(); |
| DCHECK_EQ(dest_base, EDI); |
| Register count = locations->GetTemp(2).AsRegister<Register>(); |
| DCHECK_EQ(count, ECX); |
| |
| SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| // Bail out if the source and destination are the same (to handle overlap). |
| __ cmpl(src, dest); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Bail out if the source is null. |
| __ testl(src, src); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Bail out if the destination is null. |
| __ testl(dest, dest); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // If the length is negative, bail out. |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant()) { |
| __ cmpl(length.AsRegister<Register>(), length.AsRegister<Register>()); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| |
| // We need the count in ECX. |
| if (length.IsConstant()) { |
| __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movl(count, length.AsRegister<Register>()); |
| } |
| |
| // Validity checks: source. |
| CheckPosition(assembler, srcPos, src, count, slow_path, src_base, dest_base); |
| |
| // Validity checks: dest. |
| CheckPosition(assembler, destPos, dest, count, slow_path, src_base, dest_base); |
| |
| // Okay, everything checks out. Finally time to do the copy. |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); |
| DCHECK_EQ(char_size, 2u); |
| |
| const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); |
| |
| if (srcPos.IsConstant()) { |
| int32_t srcPos_const = srcPos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(src_base, Address(src, char_size * srcPos_const + data_offset)); |
| } else { |
| __ leal(src_base, Address(src, srcPos.AsRegister<Register>(), |
| ScaleFactor::TIMES_2, data_offset)); |
| } |
| if (destPos.IsConstant()) { |
| int32_t destPos_const = destPos.GetConstant()->AsIntConstant()->GetValue(); |
| |
| __ leal(dest_base, Address(dest, char_size * destPos_const + data_offset)); |
| } else { |
| __ leal(dest_base, Address(dest, destPos.AsRegister<Register>(), |
| ScaleFactor::TIMES_2, data_offset)); |
| } |
| |
| // Do the move. |
| __ rep_movsw(); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringCompareTo(HInvoke* invoke) { |
| // The inputs plus one temp. |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kCall, |
| kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringCompareTo(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| Register argument = locations->InAt(1).AsRegister<Register>(); |
| __ testl(argument, argument); |
| SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pStringCompareTo))); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringEquals(HInvoke* invoke) { |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // Request temporary registers, ECX and EDI needed for repe_cmpsl instruction. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| locations->AddTemp(Location::RegisterLocation(EDI)); |
| |
| // Set output, ESI needed for repe_cmpsl instruction anyways. |
| locations->SetOut(Location::RegisterLocation(ESI), Location::kOutputOverlap); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringEquals(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register str = locations->InAt(0).AsRegister<Register>(); |
| Register arg = locations->InAt(1).AsRegister<Register>(); |
| Register ecx = locations->GetTemp(0).AsRegister<Register>(); |
| Register edi = locations->GetTemp(1).AsRegister<Register>(); |
| Register esi = locations->Out().AsRegister<Register>(); |
| |
| NearLabel end, return_true, return_false; |
| |
| // Get offsets of count, value, and class fields within a string object. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| StringEqualsOptimizations optimizations(invoke); |
| if (!optimizations.GetArgumentNotNull()) { |
| // Check if input is null, return false if it is. |
| __ testl(arg, arg); |
| __ j(kEqual, &return_false); |
| } |
| |
| // Instanceof check for the argument by comparing class fields. |
| // All string objects must have the same type since String cannot be subclassed. |
| // Receiver must be a string object, so its class field is equal to all strings' class fields. |
| // If the argument is a string object, its class field must be equal to receiver's class field. |
| if (!optimizations.GetArgumentIsString()) { |
| __ movl(ecx, Address(str, class_offset)); |
| __ cmpl(ecx, Address(arg, class_offset)); |
| __ j(kNotEqual, &return_false); |
| } |
| |
| // Reference equality check, return true if same reference. |
| __ cmpl(str, arg); |
| __ j(kEqual, &return_true); |
| |
| // Load length of receiver string. |
| __ movl(ecx, Address(str, count_offset)); |
| // Check if lengths are equal, return false if they're not. |
| __ cmpl(ecx, Address(arg, count_offset)); |
| __ j(kNotEqual, &return_false); |
| // Return true if both strings are empty. |
| __ jecxz(&return_true); |
| |
| // Load starting addresses of string values into ESI/EDI as required for repe_cmpsl instruction. |
| __ leal(esi, Address(str, value_offset)); |
| __ leal(edi, Address(arg, value_offset)); |
| |
| // Divide string length by 2 to compare characters 2 at a time and adjust for odd lengths. |
| __ addl(ecx, Immediate(1)); |
| __ shrl(ecx, Immediate(1)); |
| |
| // Assertions that must hold in order to compare strings 2 characters at a time. |
| DCHECK_ALIGNED(value_offset, 4); |
| static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded"); |
| |
| // Loop to compare strings two characters at a time starting at the beginning of the string. |
| __ repe_cmpsl(); |
| // If strings are not equal, zero flag will be cleared. |
| __ j(kNotEqual, &return_false); |
| |
| // Return true and exit the function. |
| // If loop does not result in returning false, we return true. |
| __ Bind(&return_true); |
| __ movl(esi, Immediate(1)); |
| __ jmp(&end); |
| |
| // Return false and exit the function. |
| __ Bind(&return_false); |
| __ xorl(esi, esi); |
| __ Bind(&end); |
| } |
| |
| static void CreateStringIndexOfLocations(HInvoke* invoke, |
| ArenaAllocator* allocator, |
| bool start_at_zero) { |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| // The data needs to be in EDI for scasw. So request that the string is there, anyways. |
| locations->SetInAt(0, Location::RegisterLocation(EDI)); |
| // If we look for a constant char, we'll still have to copy it into EAX. So just request the |
| // allocator to do that, anyways. We can still do the constant check by checking the parameter |
| // of the instruction explicitly. |
| // Note: This works as we don't clobber EAX anywhere. |
| locations->SetInAt(1, Location::RegisterLocation(EAX)); |
| if (!start_at_zero) { |
| locations->SetInAt(2, Location::RequiresRegister()); // The starting index. |
| } |
| // As we clobber EDI during execution anyways, also use it as the output. |
| locations->SetOut(Location::SameAsFirstInput()); |
| |
| // repne scasw uses ECX as the counter. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| // Need another temporary to be able to compute the result. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void GenerateStringIndexOf(HInvoke* invoke, |
| X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| ArenaAllocator* allocator, |
| bool start_at_zero) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| Register string_obj = locations->InAt(0).AsRegister<Register>(); |
| Register search_value = locations->InAt(1).AsRegister<Register>(); |
| Register counter = locations->GetTemp(0).AsRegister<Register>(); |
| Register string_length = locations->GetTemp(1).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| // Check our assumptions for registers. |
| DCHECK_EQ(string_obj, EDI); |
| DCHECK_EQ(search_value, EAX); |
| DCHECK_EQ(counter, ECX); |
| DCHECK_EQ(out, EDI); |
| |
| // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, |
| // or directly dispatch if we have a constant. |
| SlowPathCode* slow_path = nullptr; |
| if (invoke->InputAt(1)->IsIntConstant()) { |
| if (static_cast<uint32_t>(invoke->InputAt(1)->AsIntConstant()->GetValue()) > |
| std::numeric_limits<uint16_t>::max()) { |
| // Always needs the slow-path. We could directly dispatch to it, but this case should be |
| // rare, so for simplicity just put the full slow-path down and branch unconditionally. |
| slow_path = new (allocator) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| } else { |
| __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max())); |
| slow_path = new (allocator) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ j(kAbove, slow_path->GetEntryLabel()); |
| } |
| |
| // From here down, we know that we are looking for a char that fits in 16 bits. |
| // Location of reference to data array within the String object. |
| int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count within the String object. |
| int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| |
| // Load string length, i.e., the count field of the string. |
| __ movl(string_length, Address(string_obj, count_offset)); |
| |
| // Do a zero-length check. |
| // TODO: Support jecxz. |
| NearLabel not_found_label; |
| __ testl(string_length, string_length); |
| __ j(kEqual, ¬_found_label); |
| |
| if (start_at_zero) { |
| // Number of chars to scan is the same as the string length. |
| __ movl(counter, string_length); |
| |
| // Move to the start of the string. |
| __ addl(string_obj, Immediate(value_offset)); |
| } else { |
| Register start_index = locations->InAt(2).AsRegister<Register>(); |
| |
| // Do a start_index check. |
| __ cmpl(start_index, string_length); |
| __ j(kGreaterEqual, ¬_found_label); |
| |
| // Ensure we have a start index >= 0; |
| __ xorl(counter, counter); |
| __ cmpl(start_index, Immediate(0)); |
| __ cmovl(kGreater, counter, start_index); |
| |
| // Move to the start of the string: string_obj + value_offset + 2 * start_index. |
| __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); |
| |
| // Now update ecx (the repne scasw work counter). We have string.length - start_index left to |
| // compare. |
| __ negl(counter); |
| __ leal(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); |
| } |
| |
| // Everything is set up for repne scasw: |
| // * Comparison address in EDI. |
| // * Counter in ECX. |
| __ repne_scasw(); |
| |
| // Did we find a match? |
| __ j(kNotEqual, ¬_found_label); |
| |
| // Yes, we matched. Compute the index of the result. |
| __ subl(string_length, counter); |
| __ leal(out, Address(string_length, -1)); |
| |
| NearLabel done; |
| __ jmp(&done); |
| |
| // Failed to match; return -1. |
| __ Bind(¬_found_label); |
| __ movl(out, Immediate(-1)); |
| |
| // And join up at the end. |
| __ Bind(&done); |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringIndexOf(HInvoke* invoke) { |
| CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringIndexOf(HInvoke* invoke) { |
| GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringIndexOfAfter(HInvoke* invoke) { |
| CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringIndexOfAfter(HInvoke* invoke) { |
| GenerateStringIndexOf( |
| invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kCall, |
| kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register byte_array = locations->InAt(0).AsRegister<Register>(); |
| __ testl(byte_array, byte_array); |
| SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromBytes))); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringNewStringFromChars(HInvoke* invoke) { |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kCall, |
| kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringNewStringFromChars(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| |
| // No need to emit code checking whether `locations->InAt(2)` is a null |
| // pointer, as callers of the native method |
| // |
| // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) |
| // |
| // all include a null check on `data` before calling that method. |
| __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromChars))); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringNewStringFromString(HInvoke* invoke) { |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kCall, |
| kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringNewStringFromString(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register string_to_copy = locations->InAt(0).AsRegister<Register>(); |
| __ testl(string_to_copy, string_to_copy); |
| SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromString))); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| // Place srcEnd in ECX to save a move below. |
| locations->SetInAt(2, Location::RegisterLocation(ECX)); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. |
| // We don't have enough registers to also grab ECX, so handle below. |
| locations->AddTemp(Location::RegisterLocation(ESI)); |
| locations->AddTemp(Location::RegisterLocation(EDI)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| size_t char_component_size = Primitive::ComponentSize(Primitive::kPrimChar); |
| // Location of data in char array buffer. |
| const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); |
| // Location of char array data in string. |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| |
| // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Location srcBegin = locations->InAt(1); |
| int srcBegin_value = |
| srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; |
| Register srcEnd = locations->InAt(2).AsRegister<Register>(); |
| Register dst = locations->InAt(3).AsRegister<Register>(); |
| Register dstBegin = locations->InAt(4).AsRegister<Register>(); |
| |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); |
| DCHECK_EQ(char_size, 2u); |
| |
| // Compute the address of the destination buffer. |
| __ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); |
| |
| // Compute the address of the source string. |
| if (srcBegin.IsConstant()) { |
| // Compute the address of the source string by adding the number of chars from |
| // the source beginning to the value offset of a string. |
| __ leal(ESI, Address(obj, srcBegin_value * char_size + value_offset)); |
| } else { |
| __ leal(ESI, Address(obj, srcBegin.AsRegister<Register>(), |
| ScaleFactor::TIMES_2, value_offset)); |
| } |
| |
| // Compute the number of chars (words) to move. |
| // Now is the time to save ECX, since we don't know if it will be used later. |
| __ pushl(ECX); |
| int stack_adjust = kX86WordSize; |
| __ cfi().AdjustCFAOffset(stack_adjust); |
| DCHECK_EQ(srcEnd, ECX); |
| if (srcBegin.IsConstant()) { |
| if (srcBegin_value != 0) { |
| __ subl(ECX, Immediate(srcBegin_value)); |
| } |
| } else { |
| DCHECK(srcBegin.IsRegister()); |
| __ subl(ECX, srcBegin.AsRegister<Register>()); |
| } |
| |
| // Do the move. |
| __ rep_movsw(); |
| |
| // And restore ECX. |
| __ popl(ECX); |
| __ cfi().AdjustCFAOffset(-stack_adjust); |
| } |
| |
| static void GenPeek(LocationSummary* locations, Primitive::Type size, X86Assembler* assembler) { |
| Register address = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Location out_loc = locations->Out(); |
| // x86 allows unaligned access. We do not have to check the input or use specific instructions |
| // to avoid a SIGBUS. |
| switch (size) { |
| case Primitive::kPrimByte: |
| __ movsxb(out_loc.AsRegister<Register>(), Address(address, 0)); |
| break; |
| case Primitive::kPrimShort: |
| __ movsxw(out_loc.AsRegister<Register>(), Address(address, 0)); |
| break; |
| case Primitive::kPrimInt: |
| __ movl(out_loc.AsRegister<Register>(), Address(address, 0)); |
| break; |
| case Primitive::kPrimLong: |
| __ movl(out_loc.AsRegisterPairLow<Register>(), Address(address, 0)); |
| __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(address, 4)); |
| break; |
| default: |
| LOG(FATAL) << "Type not recognized for peek: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPeekByte(HInvoke* invoke) { |
| CreateLongToIntLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPeekByte(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| CreateLongToIntLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| CreateLongToLongLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| CreateLongToIntLocations(arena_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); |
| } |
| |
| static void CreateLongIntToVoidLocations(ArenaAllocator* arena, Primitive::Type size, |
| HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| HInstruction* value = invoke->InputAt(1); |
| if (size == Primitive::kPrimByte) { |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(EDX, value)); |
| } else { |
| locations->SetInAt(1, Location::RegisterOrConstant(value)); |
| } |
| } |
| |
| static void GenPoke(LocationSummary* locations, Primitive::Type size, X86Assembler* assembler) { |
| Register address = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Location value_loc = locations->InAt(1); |
| // x86 allows unaligned access. We do not have to check the input or use specific instructions |
| // to avoid a SIGBUS. |
| switch (size) { |
| case Primitive::kPrimByte: |
| if (value_loc.IsConstant()) { |
| __ movb(Address(address, 0), |
| Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movb(Address(address, 0), value_loc.AsRegister<ByteRegister>()); |
| } |
| break; |
| case Primitive::kPrimShort: |
| if (value_loc.IsConstant()) { |
| __ movw(Address(address, 0), |
| Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movw(Address(address, 0), value_loc.AsRegister<Register>()); |
| } |
| break; |
| case Primitive::kPrimInt: |
| if (value_loc.IsConstant()) { |
| __ movl(Address(address, 0), |
| Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movl(Address(address, 0), value_loc.AsRegister<Register>()); |
| } |
| break; |
| case Primitive::kPrimLong: |
| if (value_loc.IsConstant()) { |
| int64_t value = value_loc.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(Address(address, 0), Immediate(Low32Bits(value))); |
| __ movl(Address(address, 4), Immediate(High32Bits(value))); |
| } else { |
| __ movl(Address(address, 0), value_loc.AsRegisterPairLow<Register>()); |
| __ movl(Address(address, 4), value_loc.AsRegisterPairHigh<Register>()); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Type not recognized for poke: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPokeByte(HInvoke* invoke) { |
| CreateLongIntToVoidLocations(arena_, Primitive::kPrimByte, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPokeByte(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| CreateLongIntToVoidLocations(arena_, Primitive::kPrimInt, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| CreateLongIntToVoidLocations(arena_, Primitive::kPrimLong, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| CreateLongIntToVoidLocations(arena_, Primitive::kPrimShort, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitThreadCurrentThread(HInvoke* invoke) { |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitThreadCurrentThread(HInvoke* invoke) { |
| Register out = invoke->GetLocations()->Out().AsRegister<Register>(); |
| GetAssembler()->fs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86WordSize>())); |
| } |
| |
| static void GenUnsafeGet(HInvoke* invoke, |
| Primitive::Type type, |
| bool is_volatile, |
| CodeGeneratorX86* codegen) { |
| X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location base_loc = locations->InAt(1); |
| Register base = base_loc.AsRegister<Register>(); |
| Location offset_loc = locations->InAt(2); |
| Register offset = offset_loc.AsRegisterPairLow<Register>(); |
| Location output_loc = locations->Out(); |
| |
| switch (type) { |
| case Primitive::kPrimInt: { |
| Register output = output_loc.AsRegister<Register>(); |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| Register output = output_loc.AsRegister<Register>(); |
| if (kEmitCompilerReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| Location temp = locations->GetTemp(0); |
| codegen->GenerateArrayLoadWithBakerReadBarrier( |
| invoke, output_loc, base, 0U, offset_loc, temp, /* needs_null_check */ false); |
| } else { |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| codegen->GenerateReadBarrierSlow( |
| invoke, output_loc, output_loc, base_loc, 0U, offset_loc); |
| } |
| } else { |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| __ MaybeUnpoisonHeapReference(output); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| Register output_lo = output_loc.AsRegisterPairLow<Register>(); |
| Register output_hi = output_loc.AsRegisterPairHigh<Register>(); |
| if (is_volatile) { |
| // Need to use a XMM to read atomically. |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| __ movsd(temp, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| __ movd(output_lo, temp); |
| __ psrlq(temp, Immediate(32)); |
| __ movd(output_hi, temp); |
| } else { |
| __ movl(output_lo, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| __ movl(output_hi, Address(base, offset, ScaleFactor::TIMES_1, 4)); |
| } |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported op size " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, |
| HInvoke* invoke, |
| Primitive::Type type, |
| bool is_volatile) { |
| bool can_call = kEmitCompilerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || |
| invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| can_call ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| if (type == Primitive::kPrimLong) { |
| if (is_volatile) { |
| // Need to use XMM to read volatile. |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // We need a temporary register for the read barrier marking slow |
| // path in InstructionCodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGet(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt, /* is_volatile */ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetLong(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong, /* is_volatile */ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetObject(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot, /* is_volatile */ true); |
| } |
| |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGet(HInvoke* invoke) { |
| GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetLong(HInvoke* invoke) { |
| GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetObject(HInvoke* invoke) { |
| GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_); |
| } |
| |
| |
| static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* arena, |
| Primitive::Type type, |
| HInvoke* invoke, |
| bool is_volatile) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| if (type == Primitive::kPrimNot) { |
| // Need temp registers for card-marking. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| // Ensure the value is in a byte register. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } else if (type == Primitive::kPrimLong && is_volatile) { |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafePut(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimInt, invoke, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimInt, invoke, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimInt, invoke, /* is_volatile */ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutObject(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimNot, invoke, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimNot, invoke, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimNot, invoke, /* is_volatile */ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutLong(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimLong, invoke, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimLong, invoke, /* is_volatile */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| arena_, Primitive::kPrimLong, invoke, /* is_volatile */ true); |
| } |
| |
| // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 |
| // memory model. |
| static void GenUnsafePut(LocationSummary* locations, |
| Primitive::Type type, |
| bool is_volatile, |
| CodeGeneratorX86* codegen) { |
| X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); |
| Register base = locations->InAt(1).AsRegister<Register>(); |
| Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); |
| Location value_loc = locations->InAt(3); |
| |
| if (type == Primitive::kPrimLong) { |
| Register value_lo = value_loc.AsRegisterPairLow<Register>(); |
| Register value_hi = value_loc.AsRegisterPairHigh<Register>(); |
| if (is_volatile) { |
| XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| __ movd(temp1, value_lo); |
| __ movd(temp2, value_hi); |
| __ punpckldq(temp1, temp2); |
| __ movsd(Address(base, offset, ScaleFactor::TIMES_1, 0), temp1); |
| } else { |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_lo); |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 4), value_hi); |
| } |
| } else if (kPoisonHeapReferences && type == Primitive::kPrimNot) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value_loc.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); |
| } else { |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_loc.AsRegister<Register>()); |
| } |
| |
| if (is_volatile) { |
| codegen->MemoryFence(); |
| } |
| |
| if (type == Primitive::kPrimNot) { |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(locations->GetTemp(0).AsRegister<Register>(), |
| locations->GetTemp(1).AsRegister<Register>(), |
| base, |
| value_loc.AsRegister<Register>(), |
| value_can_be_null); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafePut(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutObject(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutLong(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ true, codegen_); |
| } |
| |
| static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena, Primitive::Type type, |
| HInvoke* invoke) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Offset is a long, but in 32 bit mode, we only need the low word. |
| // Can we update the invoke here to remove a TypeConvert to Long? |
| locations->SetInAt(2, Location::RequiresRegister()); |
| // Expected value must be in EAX or EDX:EAX. |
| // For long, new value must be in ECX:EBX. |
| if (type == Primitive::kPrimLong) { |
| locations->SetInAt(3, Location::RegisterPairLocation(EAX, EDX)); |
| locations->SetInAt(4, Location::RegisterPairLocation(EBX, ECX)); |
| } else { |
| locations->SetInAt(3, Location::RegisterLocation(EAX)); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| } |
| |
| // Force a byte register for the output. |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| if (type == Primitive::kPrimNot) { |
| // Need temp registers for card-marking. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| // Need a byte register for marking. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafeCASInt(HInvoke* invoke) { |
| CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimInt, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafeCASLong(HInvoke* invoke) { |
| CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimLong, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The UnsafeCASObject intrinsic is missing a read barrier, and |
| // therefore sometimes does not work as expected (b/25883050). |
| // Turn it off temporarily as a quick fix, until the read barrier is |
| // implemented. |
| // |
| // TODO(rpl): Implement a read barrier in GenCAS below and re-enable |
| // this intrinsic. |
| if (kEmitCompilerReadBarrier) { |
| return; |
| } |
| |
| CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimNot, invoke); |
| } |
| |
| static void GenCAS(Primitive::Type type, HInvoke* invoke, CodeGeneratorX86* codegen) { |
| X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register base = locations->InAt(1).AsRegister<Register>(); |
| Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); |
| Location out = locations->Out(); |
| DCHECK_EQ(out.AsRegister<Register>(), EAX); |
| |
| if (type == Primitive::kPrimNot) { |
| Register expected = locations->InAt(3).AsRegister<Register>(); |
| // Ensure `expected` is in EAX (required by the CMPXCHG instruction). |
| DCHECK_EQ(expected, EAX); |
| Register value = locations->InAt(4).AsRegister<Register>(); |
| |
| // Mark card for object assuming new value is stored. |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(locations->GetTemp(0).AsRegister<Register>(), |
| locations->GetTemp(1).AsRegister<Register>(), |
| base, |
| value, |
| value_can_be_null); |
| |
| bool base_equals_value = (base == value); |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // If `base` and `value` are the same register location, move |
| // `value` to a temporary register. This way, poisoning |
| // `value` won't invalidate `base`. |
| value = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(value, base); |
| } |
| |
| // Check that the register allocator did not assign the location |
| // of `expected` (EAX) to `value` nor to `base`, so that heap |
| // poisoning (when enabled) works as intended below. |
| // - If `value` were equal to `expected`, both references would |
| // be poisoned twice, meaning they would not be poisoned at |
| // all, as heap poisoning uses address negation. |
| // - If `base` were equal to `expected`, poisoning `expected` |
| // would invalidate `base`. |
| DCHECK_NE(value, expected); |
| DCHECK_NE(base, expected); |
| |
| __ PoisonHeapReference(expected); |
| __ PoisonHeapReference(value); |
| } |
| |
| // TODO: Add a read barrier for the reference stored in the object |
| // before attempting the CAS, similar to the one in the |
| // art::Unsafe_compareAndSwapObject JNI implementation. |
| // |
| // Note that this code is not (yet) used when read barriers are |
| // enabled (see IntrinsicLocationsBuilderX86::VisitUnsafeCASObject). |
| DCHECK(!kEmitCompilerReadBarrier); |
| __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value); |
| |
| // LOCK CMPXCHG has full barrier semantics, and we don't need |
| // scheduling barriers at this time. |
| |
| // Convert ZF into the boolean result. |
| __ setb(kZero, out.AsRegister<Register>()); |
| __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>()); |
| |
| // If heap poisoning is enabled, we need to unpoison the values |
| // that were poisoned earlier. |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // `value` has been moved to a temporary register, no need to |
| // unpoison it. |
| } else { |
| // Ensure `value` is different from `out`, so that unpoisoning |
| // the former does not invalidate the latter. |
| DCHECK_NE(value, out.AsRegister<Register>()); |
| __ UnpoisonHeapReference(value); |
| } |
| // Do not unpoison the reference contained in register |
| // `expected`, as it is the same as register `out` (EAX). |
| } |
| } else { |
| if (type == Primitive::kPrimInt) { |
| // Ensure the expected value is in EAX (required by the CMPXCHG |
| // instruction). |
| DCHECK_EQ(locations->InAt(3).AsRegister<Register>(), EAX); |
| __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), |
| locations->InAt(4).AsRegister<Register>()); |
| } else if (type == Primitive::kPrimLong) { |
| // Ensure the expected value is in EAX:EDX and that the new |
| // value is in EBX:ECX (required by the CMPXCHG8B instruction). |
| DCHECK_EQ(locations->InAt(3).AsRegisterPairLow<Register>(), EAX); |
| DCHECK_EQ(locations->InAt(3).AsRegisterPairHigh<Register>(), EDX); |
| DCHECK_EQ(locations->InAt(4).AsRegisterPairLow<Register>(), EBX); |
| DCHECK_EQ(locations->InAt(4).AsRegisterPairHigh<Register>(), ECX); |
| __ LockCmpxchg8b(Address(base, offset, TIMES_1, 0)); |
| } else { |
| LOG(FATAL) << "Unexpected CAS type " << type; |
| } |
| |
| // LOCK CMPXCHG/LOCK CMPXCHG8B have full barrier semantics, and we |
| // don't need scheduling barriers at this time. |
| |
| // Convert ZF into the boolean result. |
| __ setb(kZero, out.AsRegister<Register>()); |
| __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>()); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafeCASInt(HInvoke* invoke) { |
| GenCAS(Primitive::kPrimInt, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafeCASLong(HInvoke* invoke) { |
| GenCAS(Primitive::kPrimLong, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafeCASObject(HInvoke* invoke) { |
| GenCAS(Primitive::kPrimNot, invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerReverse(HInvoke* invoke) { |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void SwapBits(Register reg, Register temp, int32_t shift, int32_t mask, |
| X86Assembler* assembler) { |
| Immediate imm_shift(shift); |
| Immediate imm_mask(mask); |
| __ movl(temp, reg); |
| __ shrl(reg, imm_shift); |
| __ andl(temp, imm_mask); |
| __ andl(reg, imm_mask); |
| __ shll(temp, imm_shift); |
| __ orl(reg, temp); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerReverse(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register reg = locations->InAt(0).AsRegister<Register>(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| |
| /* |
| * Use one bswap instruction to reverse byte order first and then use 3 rounds of |
| * swapping bits to reverse bits in a number x. Using bswap to save instructions |
| * compared to generic luni implementation which has 5 rounds of swapping bits. |
| * x = bswap x |
| * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; |
| * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; |
| * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; |
| */ |
| __ bswapl(reg); |
| SwapBits(reg, temp, 1, 0x55555555, assembler); |
| SwapBits(reg, temp, 2, 0x33333333, assembler); |
| SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongReverse(HInvoke* invoke) { |
| LocationSummary* locations = new (arena_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongReverse(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register reg_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Register reg_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| |
| // We want to swap high/low, then bswap each one, and then do the same |
| // as a 32 bit reverse. |
| // Exchange high and low. |
| __ movl(temp, reg_low); |
| __ movl(reg_low, reg_high); |
| __ movl(reg_high, temp); |
| |
| // bit-reverse low |
| __ bswapl(reg_low); |
| SwapBits(reg_low, temp, 1, 0x55555555, assembler); |
| SwapBits(reg_low, temp, 2, 0x33333333, assembler); |
| SwapBits(reg_low, temp, 4, 0x0f0f0f0f, assembler); |
| |
| // bit-reverse high |
| __ bswapl(reg_high); |
| SwapBits(reg_high, temp, 1, 0x55555555, assembler); |
| SwapBits(reg_high, temp, 2, 0x33333333, assembler); |
| SwapBits(reg_high, temp, 4, 0x0f0f0f0f, assembler); |
| } |
| |
| static void CreateBitCountLocations( |
| ArenaAllocator* arena, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { |
| if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { |
| // Do nothing if there is no popcnt support. This results in generating |
| // a call for the intrinsic rather than direct code. |
| return; |
| } |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| if (is_long) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenBitCount(X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| value = is_long |
| ? POPCOUNT(static_cast<uint64_t>(value)) |
| : POPCOUNT(static_cast<uint32_t>(value)); |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (!is_long) { |
| if (src.IsRegister()) { |
| __ popcntl(out, src.AsRegister<Register>()); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ popcntl(out, Address(ESP, src.GetStackIndex())); |
| } |
| } else { |
| // The 64-bit case needs to worry about two parts. |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| if (src.IsRegisterPair()) { |
| __ popcntl(temp, src.AsRegisterPairLow<Register>()); |
| __ popcntl(out, src.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ popcntl(temp, Address(ESP, src.GetStackIndex())); |
| __ popcntl(out, Address(ESP, src.GetHighStackIndex(kX86WordSize))); |
| } |
| __ addl(out, temp); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerBitCount(HInvoke* invoke) { |
| CreateBitCountLocations(arena_, codegen_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerBitCount(HInvoke* invoke) { |
| GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongBitCount(HInvoke* invoke) { |
| CreateBitCountLocations(arena_, codegen_, invoke, /* is_long */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongBitCount(HInvoke* invoke) { |
| GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true); |
| } |
| |
| static void CreateLeadingZeroLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| if (is_long) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(0, Location::Any()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenLeadingZeros(X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| value = is_long ? 64 : 32; |
| } else { |
| value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value)); |
| } |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (!is_long) { |
| if (src.IsRegister()) { |
| __ bsrl(out, src.AsRegister<Register>()); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsrl(out, Address(ESP, src.GetStackIndex())); |
| } |
| |
| // BSR sets ZF if the input was zero, and the output is undefined. |
| NearLabel all_zeroes, done; |
| __ j(kEqual, &all_zeroes); |
| |
| // Correct the result from BSR to get the final CLZ result. |
| __ xorl(out, Immediate(31)); |
| __ jmp(&done); |
| |
| // Fix the zero case with the expected result. |
| __ Bind(&all_zeroes); |
| __ movl(out, Immediate(32)); |
| |
| __ Bind(&done); |
| return; |
| } |
| |
| // 64 bit case needs to worry about both parts of the register. |
| DCHECK(src.IsRegisterPair()); |
| Register src_lo = src.AsRegisterPairLow<Register>(); |
| Register src_hi = src.AsRegisterPairHigh<Register>(); |
| NearLabel handle_low, done, all_zeroes; |
| |
| // Is the high word zero? |
| __ testl(src_hi, src_hi); |
| __ j(kEqual, &handle_low); |
| |
| // High word is not zero. We know that the BSR result is defined in this case. |
| __ bsrl(out, src_hi); |
| |
| // Correct the result from BSR to get the final CLZ result. |
| __ xorl(out, Immediate(31)); |
| __ jmp(&done); |
| |
| // High word was zero. We have to compute the low word count and add 32. |
| __ Bind(&handle_low); |
| __ bsrl(out, src_lo); |
| __ j(kEqual, &all_zeroes); |
| |
| // We had a valid result. Use an XOR to both correct the result and add 32. |
| __ xorl(out, Immediate(63)); |
| __ jmp(&done); |
| |
| // All zero case. |
| __ Bind(&all_zeroes); |
| __ movl(out, Immediate(64)); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLeadingZeroLocations(arena_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLeadingZeroLocations(arena_, invoke, /* is_long */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); |
| } |
| |
| static void CreateTrailingZeroLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = new (arena) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| if (is_long) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(0, Location::Any()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenTrailingZeros(X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| value = is_long ? 64 : 32; |
| } else { |
| value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value)); |
| } |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (!is_long) { |
| if (src.IsRegister()) { |
| __ bsfl(out, src.AsRegister<Register>()); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsfl(out, Address(ESP, src.GetStackIndex())); |
| } |
| |
| // BSF sets ZF if the input was zero, and the output is undefined. |
| NearLabel done; |
| __ j(kNotEqual, &done); |
| |
| // Fix the zero case with the expected result. |
| __ movl(out, Immediate(32)); |
| |
| __ Bind(&done); |
| return; |
| } |
| |
| // 64 bit case needs to worry about both parts of the register. |
| DCHECK(src.IsRegisterPair()); |
| Register src_lo = src.AsRegisterPairLow<Register>(); |
| Register src_hi = src.AsRegisterPairHigh<Register>(); |
| NearLabel done, all_zeroes; |
| |
| // If the low word is zero, then ZF will be set. If not, we have the answer. |
| __ bsfl(out, src_lo); |
| __ j(kNotEqual, &done); |
| |
| // Low word was zero. We have to compute the high word count and add 32. |
| __ bsfl(out, src_hi); |
| __ j(kEqual, &all_zeroes); |
| |
| // We had a valid result. Add 32 to account for the low word being zero. |
| __ addl(out, Immediate(32)); |
| __ jmp(&done); |
| |
| // All zero case. |
| __ Bind(&all_zeroes); |
| __ movl(out, Immediate(64)); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateTrailingZeroLocations(arena_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateTrailingZeroLocations(arena_, invoke, /* is_long */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); |
| } |
| |
| UNIMPLEMENTED_INTRINSIC(X86, MathRoundDouble) |
| UNIMPLEMENTED_INTRINSIC(X86, ReferenceGetReferent) |
| UNIMPLEMENTED_INTRINSIC(X86, SystemArrayCopy) |
| UNIMPLEMENTED_INTRINSIC(X86, FloatIsInfinite) |
| UNIMPLEMENTED_INTRINSIC(X86, DoubleIsInfinite) |
| UNIMPLEMENTED_INTRINSIC(X86, IntegerHighestOneBit) |
| UNIMPLEMENTED_INTRINSIC(X86, LongHighestOneBit) |
| UNIMPLEMENTED_INTRINSIC(X86, IntegerLowestOneBit) |
| UNIMPLEMENTED_INTRINSIC(X86, LongLowestOneBit) |
| |
| // 1.8. |
| UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddInt) |
| UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddLong) |
| UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetInt) |
| UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetLong) |
| UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetObject) |
| UNIMPLEMENTED_INTRINSIC(X86, UnsafeLoadFence) |
| UNIMPLEMENTED_INTRINSIC(X86, UnsafeStoreFence) |
| UNIMPLEMENTED_INTRINSIC(X86, UnsafeFullFence) |
| |
| UNREACHABLE_INTRINSICS(X86) |
| |
| #undef __ |
| |
| } // namespace x86 |
| } // namespace art |