| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "calling_convention_mips.h" |
| |
| #include <android-base/logging.h> |
| |
| #include "handle_scope-inl.h" |
| #include "utils/mips/managed_register_mips.h" |
| |
| namespace art { |
| namespace mips { |
| |
| // |
| // JNI calling convention constants. |
| // |
| |
| // Up to how many float-like (float, double) args can be enregistered in floating-point registers. |
| // The rest of the args must go in integer registers or on the stack. |
| constexpr size_t kMaxFloatOrDoubleRegisterArguments = 2u; |
| // Up to how many integer-like (pointers, objects, longs, int, short, bool, etc) args can be |
| // enregistered. The rest of the args must go on the stack. |
| constexpr size_t kMaxIntLikeRegisterArguments = 4u; |
| |
| static const Register kJniCoreArgumentRegisters[] = { A0, A1, A2, A3 }; |
| static const FRegister kJniFArgumentRegisters[] = { F12, F14 }; |
| static const DRegister kJniDArgumentRegisters[] = { D6, D7 }; |
| |
| // |
| // Managed calling convention constants. |
| // |
| |
| static const Register kManagedCoreArgumentRegisters[] = { A0, A1, A2, A3, T0, T1 }; |
| static const FRegister kManagedFArgumentRegisters[] = { F8, F10, F12, F14, F16, F18 }; |
| static const DRegister kManagedDArgumentRegisters[] = { D4, D5, D6, D7, D8, D9 }; |
| |
| static constexpr ManagedRegister kCalleeSaveRegisters[] = { |
| // Core registers. |
| MipsManagedRegister::FromCoreRegister(S2), |
| MipsManagedRegister::FromCoreRegister(S3), |
| MipsManagedRegister::FromCoreRegister(S4), |
| MipsManagedRegister::FromCoreRegister(S5), |
| MipsManagedRegister::FromCoreRegister(S6), |
| MipsManagedRegister::FromCoreRegister(S7), |
| MipsManagedRegister::FromCoreRegister(FP), |
| // No hard float callee saves. |
| }; |
| |
| static constexpr uint32_t CalculateCoreCalleeSpillMask() { |
| // RA is a special callee save which is not reported by CalleeSaveRegisters(). |
| uint32_t result = 1 << RA; |
| for (auto&& r : kCalleeSaveRegisters) { |
| if (r.AsMips().IsCoreRegister()) { |
| result |= (1 << r.AsMips().AsCoreRegister()); |
| } |
| } |
| return result; |
| } |
| |
| static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(); |
| static constexpr uint32_t kFpCalleeSpillMask = 0u; |
| |
| // Calling convention |
| ManagedRegister MipsManagedRuntimeCallingConvention::InterproceduralScratchRegister() { |
| return MipsManagedRegister::FromCoreRegister(T9); |
| } |
| |
| ManagedRegister MipsJniCallingConvention::InterproceduralScratchRegister() { |
| return MipsManagedRegister::FromCoreRegister(T9); |
| } |
| |
| static ManagedRegister ReturnRegisterForShorty(const char* shorty) { |
| if (shorty[0] == 'F') { |
| return MipsManagedRegister::FromFRegister(F0); |
| } else if (shorty[0] == 'D') { |
| return MipsManagedRegister::FromDRegister(D0); |
| } else if (shorty[0] == 'J') { |
| return MipsManagedRegister::FromRegisterPair(V0_V1); |
| } else if (shorty[0] == 'V') { |
| return MipsManagedRegister::NoRegister(); |
| } else { |
| return MipsManagedRegister::FromCoreRegister(V0); |
| } |
| } |
| |
| ManagedRegister MipsManagedRuntimeCallingConvention::ReturnRegister() { |
| return ReturnRegisterForShorty(GetShorty()); |
| } |
| |
| ManagedRegister MipsJniCallingConvention::ReturnRegister() { |
| return ReturnRegisterForShorty(GetShorty()); |
| } |
| |
| ManagedRegister MipsJniCallingConvention::IntReturnRegister() { |
| return MipsManagedRegister::FromCoreRegister(V0); |
| } |
| |
| // Managed runtime calling convention |
| |
| ManagedRegister MipsManagedRuntimeCallingConvention::MethodRegister() { |
| return MipsManagedRegister::FromCoreRegister(A0); |
| } |
| |
| bool MipsManagedRuntimeCallingConvention::IsCurrentParamInRegister() { |
| return false; // Everything moved to stack on entry. |
| } |
| |
| bool MipsManagedRuntimeCallingConvention::IsCurrentParamOnStack() { |
| return true; |
| } |
| |
| ManagedRegister MipsManagedRuntimeCallingConvention::CurrentParamRegister() { |
| LOG(FATAL) << "Should not reach here"; |
| return ManagedRegister::NoRegister(); |
| } |
| |
| FrameOffset MipsManagedRuntimeCallingConvention::CurrentParamStackOffset() { |
| CHECK(IsCurrentParamOnStack()); |
| FrameOffset result = |
| FrameOffset(displacement_.Int32Value() + // displacement |
| kFramePointerSize + // Method* |
| (itr_slots_ * kFramePointerSize)); // offset into in args |
| return result; |
| } |
| |
| const ManagedRegisterEntrySpills& MipsManagedRuntimeCallingConvention::EntrySpills() { |
| // We spill the argument registers on MIPS to free them up for scratch use, we then assume |
| // all arguments are on the stack. |
| if ((entry_spills_.size() == 0) && (NumArgs() > 0)) { |
| uint32_t gpr_index = 1; // Skip A0, it is used for ArtMethod*. |
| uint32_t fpr_index = 0; |
| |
| for (ResetIterator(FrameOffset(0)); HasNext(); Next()) { |
| if (IsCurrentParamAFloatOrDouble()) { |
| if (IsCurrentParamADouble()) { |
| if (fpr_index < arraysize(kManagedDArgumentRegisters)) { |
| entry_spills_.push_back( |
| MipsManagedRegister::FromDRegister(kManagedDArgumentRegisters[fpr_index++])); |
| } else { |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 8); |
| } |
| } else { |
| if (fpr_index < arraysize(kManagedFArgumentRegisters)) { |
| entry_spills_.push_back( |
| MipsManagedRegister::FromFRegister(kManagedFArgumentRegisters[fpr_index++])); |
| } else { |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 4); |
| } |
| } |
| } else { |
| if (IsCurrentParamALong() && !IsCurrentParamAReference()) { |
| if (gpr_index == 1 || gpr_index == 3) { |
| // Don't use A1-A2(A3-T0) as a register pair, move to A2-A3(T0-T1) instead. |
| gpr_index++; |
| } |
| if (gpr_index < arraysize(kManagedCoreArgumentRegisters) - 1) { |
| entry_spills_.push_back( |
| MipsManagedRegister::FromCoreRegister(kManagedCoreArgumentRegisters[gpr_index++])); |
| } else if (gpr_index == arraysize(kManagedCoreArgumentRegisters) - 1) { |
| gpr_index++; |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 4); |
| } else { |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 4); |
| } |
| } |
| |
| if (gpr_index < arraysize(kManagedCoreArgumentRegisters)) { |
| entry_spills_.push_back( |
| MipsManagedRegister::FromCoreRegister(kManagedCoreArgumentRegisters[gpr_index++])); |
| } else { |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 4); |
| } |
| } |
| } |
| } |
| return entry_spills_; |
| } |
| |
| // JNI calling convention |
| |
| MipsJniCallingConvention::MipsJniCallingConvention(bool is_static, |
| bool is_synchronized, |
| bool is_critical_native, |
| const char* shorty) |
| : JniCallingConvention(is_static, |
| is_synchronized, |
| is_critical_native, |
| shorty, |
| kMipsPointerSize) { |
| // SYSTEM V - Application Binary Interface (MIPS RISC Processor): |
| // Data Representation - Fundamental Types (3-4) specifies fundamental alignments for each type. |
| // "Each member is assigned to the lowest available offset with the appropriate alignment. This |
| // may require internal padding, depending on the previous member." |
| // |
| // All of our stack arguments are usually 4-byte aligned, however longs and doubles must be 8 |
| // bytes aligned. Add padding to maintain 8-byte alignment invariant. |
| // |
| // Compute padding to ensure longs and doubles are not split in o32. |
| size_t padding = 0; |
| size_t cur_arg, cur_reg; |
| if (LIKELY(HasExtraArgumentsForJni())) { |
| // Ignore the 'this' jobject or jclass for static methods and the JNIEnv. |
| // We start at the aligned register A2. |
| // |
| // Ignore the first 2 parameters because they are guaranteed to be aligned. |
| cur_arg = NumImplicitArgs(); // Skip the "this" argument. |
| cur_reg = 2; // Skip {A0=JNIEnv, A1=jobject} / {A0=JNIEnv, A1=jclass} parameters (start at A2). |
| } else { |
| // Check every parameter. |
| cur_arg = 0; |
| cur_reg = 0; |
| } |
| |
| // Shift across a logical register mapping that looks like: |
| // |
| // | A0 | A1 | A2 | A3 | SP+16 | SP+20 | SP+24 | ... | SP+n | SP+n+4 | |
| // |
| // or some of variants with floating-point registers (F12 and F14), for example |
| // |
| // | F12 | F14 | A3 | SP+16 | SP+20 | SP+24 | ... | SP+n | SP+n+4 | |
| // |
| // (where SP is the stack pointer at the start of called function). |
| // |
| // Any time there would normally be a long/double in an odd logical register, |
| // we have to push out the rest of the mappings by 4 bytes to maintain an 8-byte alignment. |
| // |
| // This works for both physical register pairs {A0, A1}, {A2, A3}, |
| // floating-point registers F12, F14 and for when the value is on the stack. |
| // |
| // For example: |
| // (a) long would normally go into A1, but we shift it into A2 |
| // | INT | (PAD) | LONG | |
| // | A0 | A1 | A2 | A3 | |
| // |
| // (b) long would normally go into A3, but we shift it into SP |
| // | INT | INT | INT | (PAD) | LONG | |
| // | A0 | A1 | A2 | A3 | SP+16 SP+20 | |
| // |
| // where INT is any <=4 byte arg, and LONG is any 8-byte arg. |
| for (; cur_arg < NumArgs(); cur_arg++) { |
| if (IsParamALongOrDouble(cur_arg)) { |
| if ((cur_reg & 1) != 0) { |
| padding += 4; |
| cur_reg++; // Additional bump to ensure alignment. |
| } |
| cur_reg += 2; // Bump the iterator twice for every long argument. |
| } else { |
| cur_reg++; // Bump the iterator for every argument. |
| } |
| } |
| if (cur_reg < kMaxIntLikeRegisterArguments) { |
| // As a special case when, as a result of shifting (or not) there are no arguments on the stack, |
| // we actually have 0 stack padding. |
| // |
| // For example with @CriticalNative and: |
| // (int, long) -> shifts the long but doesn't need to pad the stack |
| // |
| // shift |
| // \/ |
| // | INT | (PAD) | LONG | (EMPTY) ... |
| // | r0 | r1 | r2 | r3 | SP ... |
| // /\ |
| // no stack padding |
| padding_ = 0; |
| } else { |
| padding_ = padding; |
| } |
| |
| // Argument Passing (3-17): |
| // "When the first argument is integral, the remaining arguments are passed in the integer |
| // registers." |
| // |
| // "The rules that determine which arguments go into registers and which ones must be passed on |
| // the stack are most easily explained by considering the list of arguments as a structure, |
| // aligned according to normal structure rules. Mapping of this structure into the combination of |
| // stack and registers is as follows: up to two leading floating-point arguments can be passed in |
| // $f12 and $f14; everything else with a structure offset greater than or equal to 16 is passed on |
| // the stack. The remainder of the arguments are passed in $4..$7 based on their structure offset. |
| // Holes left in the structure for alignment are unused, whether in registers or in the stack." |
| // |
| // For example with @CriticalNative and: |
| // (a) first argument is not floating-point, so all go into integer registers |
| // | INT | FLOAT | DOUBLE | |
| // | A0 | A1 | A2 | A3 | |
| // (b) first argument is floating-point, but 2nd is integer |
| // | FLOAT | INT | DOUBLE | |
| // | F12 | A1 | A2 | A3 | |
| // (c) first two arguments are floating-point (float, double) |
| // | FLOAT | (PAD) | DOUBLE | INT | |
| // | F12 | | F14 | SP+16 | |
| // (d) first two arguments are floating-point (double, float) |
| // | DOUBLE | FLOAT | INT | |
| // | F12 | F14 | A3 | |
| // (e) first three arguments are floating-point, but just first two will go into fp registers |
| // | DOUBLE | FLOAT | FLOAT | |
| // | F12 | F14 | A3 | |
| // |
| // Find out if the first argument is a floating-point. In that case, floating-point registers will |
| // be used for up to two leading floating-point arguments. Otherwise, all arguments will be passed |
| // using integer registers. |
| use_fp_arg_registers_ = false; |
| if (is_critical_native) { |
| if (NumArgs() > 0) { |
| if (IsParamAFloatOrDouble(0)) { |
| use_fp_arg_registers_ = true; |
| } |
| } |
| } |
| } |
| |
| uint32_t MipsJniCallingConvention::CoreSpillMask() const { |
| return kCoreCalleeSpillMask; |
| } |
| |
| uint32_t MipsJniCallingConvention::FpSpillMask() const { |
| return kFpCalleeSpillMask; |
| } |
| |
| ManagedRegister MipsJniCallingConvention::ReturnScratchRegister() const { |
| return MipsManagedRegister::FromCoreRegister(AT); |
| } |
| |
| size_t MipsJniCallingConvention::FrameSize() { |
| // ArtMethod*, RA and callee save area size, local reference segment state. |
| const size_t method_ptr_size = static_cast<size_t>(kMipsPointerSize); |
| const size_t ra_return_addr_size = kFramePointerSize; |
| const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize; |
| |
| size_t frame_data_size = method_ptr_size + ra_return_addr_size + callee_save_area_size; |
| |
| if (LIKELY(HasLocalReferenceSegmentState())) { |
| // Local reference segment state. |
| frame_data_size += kFramePointerSize; |
| } |
| |
| // References plus 2 words for HandleScope header. |
| const size_t handle_scope_size = HandleScope::SizeOf(kMipsPointerSize, ReferenceCount()); |
| |
| size_t total_size = frame_data_size; |
| if (LIKELY(HasHandleScope())) { |
| // HandleScope is sometimes excluded. |
| total_size += handle_scope_size; // Handle scope size. |
| } |
| |
| // Plus return value spill area size. |
| total_size += SizeOfReturnValue(); |
| |
| return RoundUp(total_size, kStackAlignment); |
| } |
| |
| size_t MipsJniCallingConvention::OutArgSize() { |
| // Argument Passing (3-17): |
| // "Despite the fact that some or all of the arguments to a function are passed in registers, |
| // always allocate space on the stack for all arguments. This stack space should be a structure |
| // large enough to contain all the arguments, aligned according to normal structure rules (after |
| // promotion and structure return pointer insertion). The locations within the stack frame used |
| // for arguments are called the home locations." |
| // |
| // Allocate 16 bytes for home locations + space needed for stack arguments. |
| return RoundUp( |
| (kMaxIntLikeRegisterArguments + NumberOfOutgoingStackArgs()) * kFramePointerSize + padding_, |
| kStackAlignment); |
| } |
| |
| ArrayRef<const ManagedRegister> MipsJniCallingConvention::CalleeSaveRegisters() const { |
| return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters); |
| } |
| |
| // JniCallingConvention ABI follows o32 where longs and doubles must occur |
| // in even register numbers and stack slots. |
| void MipsJniCallingConvention::Next() { |
| JniCallingConvention::Next(); |
| |
| if (LIKELY(HasNext())) { // Avoid CHECK failure for IsCurrentParam |
| // Ensure slot is 8-byte aligned for longs/doubles (o32). |
| if (IsCurrentParamALongOrDouble() && ((itr_slots_ & 0x1u) != 0)) { |
| // itr_slots_ needs to be an even number, according to o32. |
| itr_slots_++; |
| } |
| } |
| } |
| |
| bool MipsJniCallingConvention::IsCurrentParamInRegister() { |
| // Argument Passing (3-17): |
| // "The rules that determine which arguments go into registers and which ones must be passed on |
| // the stack are most easily explained by considering the list of arguments as a structure, |
| // aligned according to normal structure rules. Mapping of this structure into the combination of |
| // stack and registers is as follows: up to two leading floating-point arguments can be passed in |
| // $f12 and $f14; everything else with a structure offset greater than or equal to 16 is passed on |
| // the stack. The remainder of the arguments are passed in $4..$7 based on their structure offset. |
| // Holes left in the structure for alignment are unused, whether in registers or in the stack." |
| // |
| // Even when floating-point registers are used, there can be up to 4 arguments passed in |
| // registers. |
| return itr_slots_ < kMaxIntLikeRegisterArguments; |
| } |
| |
| bool MipsJniCallingConvention::IsCurrentParamOnStack() { |
| return !IsCurrentParamInRegister(); |
| } |
| |
| ManagedRegister MipsJniCallingConvention::CurrentParamRegister() { |
| CHECK_LT(itr_slots_, kMaxIntLikeRegisterArguments); |
| // Up to two leading floating-point arguments can be passed in floating-point registers. |
| if (use_fp_arg_registers_ && (itr_args_ < kMaxFloatOrDoubleRegisterArguments)) { |
| if (IsCurrentParamAFloatOrDouble()) { |
| if (IsCurrentParamADouble()) { |
| return MipsManagedRegister::FromDRegister(kJniDArgumentRegisters[itr_args_]); |
| } else { |
| return MipsManagedRegister::FromFRegister(kJniFArgumentRegisters[itr_args_]); |
| } |
| } |
| } |
| // All other arguments (including other floating-point arguments) will be passed in integer |
| // registers. |
| if (IsCurrentParamALongOrDouble()) { |
| if (itr_slots_ == 0u) { |
| return MipsManagedRegister::FromRegisterPair(A0_A1); |
| } else { |
| CHECK_EQ(itr_slots_, 2u); |
| return MipsManagedRegister::FromRegisterPair(A2_A3); |
| } |
| } else { |
| return MipsManagedRegister::FromCoreRegister(kJniCoreArgumentRegisters[itr_slots_]); |
| } |
| } |
| |
| FrameOffset MipsJniCallingConvention::CurrentParamStackOffset() { |
| CHECK_GE(itr_slots_, kMaxIntLikeRegisterArguments); |
| size_t offset = displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize); |
| CHECK_LT(offset, OutArgSize()); |
| return FrameOffset(offset); |
| } |
| |
| size_t MipsJniCallingConvention::NumberOfOutgoingStackArgs() { |
| size_t static_args = HasSelfClass() ? 1 : 0; // Count jclass. |
| // Regular argument parameters and this. |
| size_t param_args = NumArgs() + NumLongOrDoubleArgs(); // Twice count 8-byte args. |
| // Count JNIEnv* less arguments in registers. |
| size_t internal_args = (HasJniEnv() ? 1 : 0); |
| size_t total_args = static_args + param_args + internal_args; |
| |
| return total_args - std::min(kMaxIntLikeRegisterArguments, static_cast<size_t>(total_args)); |
| } |
| |
| } // namespace mips |
| } // namespace art |