blob: b2ad490a573742f34d12141ff13406ed479944b9 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_mips.h"
#include "base/bit_utils.h"
#include "base/casts.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "memory_region.h"
#include "thread.h"
namespace art {
namespace mips {
static_assert(static_cast<size_t>(kMipsPointerSize) == kMipsWordSize,
"Unexpected Mips pointer size.");
static_assert(kMipsPointerSize == PointerSize::k32, "Unexpected Mips pointer size.");
std::ostream& operator<<(std::ostream& os, const DRegister& rhs) {
if (rhs >= D0 && rhs < kNumberOfDRegisters) {
os << "d" << static_cast<int>(rhs);
} else {
os << "DRegister[" << static_cast<int>(rhs) << "]";
}
return os;
}
MipsAssembler::DelaySlot::DelaySlot()
: instruction_(0),
patcher_label_(nullptr) {}
InOutRegMasks& MipsAssembler::DsFsmInstr(uint32_t instruction, MipsLabel* patcher_label) {
if (!reordering_) {
CHECK_EQ(ds_fsm_state_, kExpectingLabel);
CHECK_EQ(delay_slot_.instruction_, 0u);
return delay_slot_.masks_;
}
switch (ds_fsm_state_) {
case kExpectingLabel:
break;
case kExpectingInstruction:
CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size());
// If the last instruction is not suitable for delay slots, drop
// the PC of the label preceding it so that no unconditional branch
// uses this instruction to fill its delay slot.
if (instruction == 0) {
DsFsmDropLabel(); // Sets ds_fsm_state_ = kExpectingLabel.
} else {
// Otherwise wait for another instruction or label before we can
// commit the label PC. The label PC will be dropped if instead
// of another instruction or label there's a call from the code
// generator to CodePosition() to record the buffer size.
// Instructions after which the buffer size is recorded cannot
// be moved into delay slots or anywhere else because they may
// trigger signals and the signal handlers expect these signals
// to be coming from the instructions immediately preceding the
// recorded buffer locations.
ds_fsm_state_ = kExpectingCommit;
}
break;
case kExpectingCommit:
CHECK_EQ(ds_fsm_target_pc_ + 2 * sizeof(uint32_t), buffer_.Size());
DsFsmCommitLabel(); // Sets ds_fsm_state_ = kExpectingLabel.
break;
}
delay_slot_.instruction_ = instruction;
delay_slot_.masks_ = InOutRegMasks();
delay_slot_.patcher_label_ = patcher_label;
return delay_slot_.masks_;
}
void MipsAssembler::DsFsmLabel() {
if (!reordering_) {
CHECK_EQ(ds_fsm_state_, kExpectingLabel);
CHECK_EQ(delay_slot_.instruction_, 0u);
return;
}
switch (ds_fsm_state_) {
case kExpectingLabel:
ds_fsm_target_pc_ = buffer_.Size();
ds_fsm_state_ = kExpectingInstruction;
break;
case kExpectingInstruction:
// Allow consecutive labels.
CHECK_EQ(ds_fsm_target_pc_, buffer_.Size());
break;
case kExpectingCommit:
CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size());
DsFsmCommitLabel();
ds_fsm_target_pc_ = buffer_.Size();
ds_fsm_state_ = kExpectingInstruction;
break;
}
// We cannot move instructions into delay slots across labels.
delay_slot_.instruction_ = 0;
}
void MipsAssembler::DsFsmCommitLabel() {
if (ds_fsm_state_ == kExpectingCommit) {
ds_fsm_target_pcs_.emplace_back(ds_fsm_target_pc_);
}
ds_fsm_state_ = kExpectingLabel;
}
void MipsAssembler::DsFsmDropLabel() {
ds_fsm_state_ = kExpectingLabel;
}
bool MipsAssembler::SetReorder(bool enable) {
bool last_state = reordering_;
if (last_state != enable) {
DsFsmCommitLabel();
DsFsmInstrNop(0);
}
reordering_ = enable;
return last_state;
}
size_t MipsAssembler::CodePosition() {
// The last instruction cannot be used in a delay slot, do not commit
// the label before it (if any) and clear the delay slot.
DsFsmDropLabel();
DsFsmInstrNop(0);
size_t size = buffer_.Size();
// In theory we can get the following sequence:
// label1:
// instr
// label2: # label1 gets committed when label2 is seen
// CodePosition() call
// and we need to uncommit label1.
if (ds_fsm_target_pcs_.size() != 0 && ds_fsm_target_pcs_.back() + sizeof(uint32_t) == size) {
ds_fsm_target_pcs_.pop_back();
}
return size;
}
void MipsAssembler::DsFsmInstrNop(uint32_t instruction ATTRIBUTE_UNUSED) {
DsFsmInstr(0);
}
void MipsAssembler::FinalizeCode() {
for (auto& exception_block : exception_blocks_) {
EmitExceptionPoll(&exception_block);
}
// Commit the last branch target label (if any) and disable instruction reordering.
DsFsmCommitLabel();
SetReorder(false);
EmitLiterals();
ReserveJumpTableSpace();
PromoteBranches();
}
void MipsAssembler::FinalizeInstructions(const MemoryRegion& region) {
size_t number_of_delayed_adjust_pcs = cfi().NumberOfDelayedAdvancePCs();
EmitBranches();
EmitJumpTables();
Assembler::FinalizeInstructions(region);
PatchCFI(number_of_delayed_adjust_pcs);
}
void MipsAssembler::PatchCFI(size_t number_of_delayed_adjust_pcs) {
if (cfi().NumberOfDelayedAdvancePCs() == 0u) {
DCHECK_EQ(number_of_delayed_adjust_pcs, 0u);
return;
}
typedef DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC DelayedAdvancePC;
const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC();
const std::vector<uint8_t>& old_stream = data.first;
const std::vector<DelayedAdvancePC>& advances = data.second;
// PCs recorded before EmitBranches() need to be adjusted.
// PCs recorded during EmitBranches() are already adjusted.
// Both ranges are separately sorted but they may overlap.
if (kIsDebugBuild) {
auto cmp = [](const DelayedAdvancePC& lhs, const DelayedAdvancePC& rhs) {
return lhs.pc < rhs.pc;
};
CHECK(std::is_sorted(advances.begin(), advances.begin() + number_of_delayed_adjust_pcs, cmp));
CHECK(std::is_sorted(advances.begin() + number_of_delayed_adjust_pcs, advances.end(), cmp));
}
// Append initial CFI data if any.
size_t size = advances.size();
DCHECK_NE(size, 0u);
cfi().AppendRawData(old_stream, 0u, advances[0].stream_pos);
// Emit PC adjustments interleaved with the old CFI stream.
size_t adjust_pos = 0u;
size_t late_emit_pos = number_of_delayed_adjust_pcs;
while (adjust_pos != number_of_delayed_adjust_pcs || late_emit_pos != size) {
size_t adjusted_pc = (adjust_pos != number_of_delayed_adjust_pcs)
? GetAdjustedPosition(advances[adjust_pos].pc)
: static_cast<size_t>(-1);
size_t late_emit_pc = (late_emit_pos != size)
? advances[late_emit_pos].pc
: static_cast<size_t>(-1);
size_t advance_pc = std::min(adjusted_pc, late_emit_pc);
DCHECK_NE(advance_pc, static_cast<size_t>(-1));
size_t entry = (adjusted_pc <= late_emit_pc) ? adjust_pos : late_emit_pos;
if (adjusted_pc <= late_emit_pc) {
++adjust_pos;
} else {
++late_emit_pos;
}
cfi().AdvancePC(advance_pc);
size_t end_pos = (entry + 1u == size) ? old_stream.size() : advances[entry + 1u].stream_pos;
cfi().AppendRawData(old_stream, advances[entry].stream_pos, end_pos);
}
}
void MipsAssembler::EmitBranches() {
CHECK(!overwriting_);
CHECK(!reordering_);
// Now that everything has its final position in the buffer (the branches have
// been promoted), adjust the target label PCs.
for (size_t cnt = ds_fsm_target_pcs_.size(), i = 0; i < cnt; i++) {
ds_fsm_target_pcs_[i] = GetAdjustedPosition(ds_fsm_target_pcs_[i]);
}
// Switch from appending instructions at the end of the buffer to overwriting
// existing instructions (branch placeholders) in the buffer.
overwriting_ = true;
for (size_t id = 0; id < branches_.size(); id++) {
EmitBranch(id);
}
overwriting_ = false;
}
void MipsAssembler::Emit(uint32_t value) {
if (overwriting_) {
// Branches to labels are emitted into their placeholders here.
buffer_.Store<uint32_t>(overwrite_location_, value);
overwrite_location_ += sizeof(uint32_t);
} else {
// Other instructions are simply appended at the end here.
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<uint32_t>(value);
}
}
uint32_t MipsAssembler::EmitR(int opcode,
Register rs,
Register rt,
Register rd,
int shamt,
int funct) {
CHECK_NE(rs, kNoRegister);
CHECK_NE(rt, kNoRegister);
CHECK_NE(rd, kNoRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
static_cast<uint32_t>(rt) << kRtShift |
static_cast<uint32_t>(rd) << kRdShift |
shamt << kShamtShift |
funct;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitI(int opcode, Register rs, Register rt, uint16_t imm) {
CHECK_NE(rs, kNoRegister);
CHECK_NE(rt, kNoRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
static_cast<uint32_t>(rt) << kRtShift |
imm;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitI21(int opcode, Register rs, uint32_t imm21) {
CHECK_NE(rs, kNoRegister);
CHECK(IsUint<21>(imm21)) << imm21;
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
imm21;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitI26(int opcode, uint32_t imm26) {
CHECK(IsUint<26>(imm26)) << imm26;
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitFR(int opcode,
int fmt,
FRegister ft,
FRegister fs,
FRegister fd,
int funct) {
CHECK_NE(ft, kNoFRegister);
CHECK_NE(fs, kNoFRegister);
CHECK_NE(fd, kNoFRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
fmt << kFmtShift |
static_cast<uint32_t>(ft) << kFtShift |
static_cast<uint32_t>(fs) << kFsShift |
static_cast<uint32_t>(fd) << kFdShift |
funct;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitFI(int opcode, int fmt, FRegister ft, uint16_t imm) {
CHECK_NE(ft, kNoFRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
fmt << kFmtShift |
static_cast<uint32_t>(ft) << kFtShift |
imm;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitMsa3R(int operation,
int df,
VectorRegister wt,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(wt, kNoVectorRegister);
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsaOperationShift |
df << kDfShift |
static_cast<uint32_t>(wt) << kWtShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitMsaBIT(int operation,
int df_m,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsaOperationShift |
df_m << kDfMShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitMsaELM(int operation,
int df_n,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsaELMOperationShift |
df_n << kDfNShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitMsaMI10(int s10,
Register rs,
VectorRegister wd,
int minor_opcode,
int df) {
CHECK_NE(rs, kNoRegister);
CHECK_NE(wd, kNoVectorRegister);
CHECK(IsUint<10>(s10)) << s10;
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
s10 << kS10Shift |
static_cast<uint32_t>(rs) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode << kS10MinorShift |
df;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitMsaI10(int operation,
int df,
int i10,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(wd, kNoVectorRegister);
CHECK(IsUint<10>(i10)) << i10;
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsaOperationShift |
df << kDfShift |
i10 << kI10Shift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitMsa2R(int operation,
int df,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsa2ROperationShift |
df << kDf2RShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
return encoding;
}
uint32_t MipsAssembler::EmitMsa2RF(int operation,
int df,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsa2RFOperationShift |
df << kDf2RShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
return encoding;
}
void MipsAssembler::Addu(Register rd, Register rs, Register rt) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x21)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) {
if (patcher_label != nullptr) {
Bind(patcher_label);
}
DsFsmInstr(EmitI(0x9, rs, rt, imm16), patcher_label).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16) {
Addiu(rt, rs, imm16, /* patcher_label */ nullptr);
}
void MipsAssembler::Subu(Register rd, Register rs, Register rt) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x23)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::MultR2(Register rs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x18)).GprIns(rs, rt);
}
void MipsAssembler::MultuR2(Register rs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x19)).GprIns(rs, rt);
}
void MipsAssembler::DivR2(Register rs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1a)).GprIns(rs, rt);
}
void MipsAssembler::DivuR2(Register rs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1b)).GprIns(rs, rt);
}
void MipsAssembler::MulR2(Register rd, Register rs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0x1c, rs, rt, rd, 0, 2)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::DivR2(Register rd, Register rs, Register rt) {
CHECK(!IsR6());
DivR2(rs, rt);
Mflo(rd);
}
void MipsAssembler::ModR2(Register rd, Register rs, Register rt) {
CHECK(!IsR6());
DivR2(rs, rt);
Mfhi(rd);
}
void MipsAssembler::DivuR2(Register rd, Register rs, Register rt) {
CHECK(!IsR6());
DivuR2(rs, rt);
Mflo(rd);
}
void MipsAssembler::ModuR2(Register rd, Register rs, Register rt) {
CHECK(!IsR6());
DivuR2(rs, rt);
Mfhi(rd);
}
void MipsAssembler::MulR6(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x18)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::MuhR6(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x18)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::MuhuR6(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x19)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::DivR6(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x1a)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::ModR6(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x1a)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::DivuR6(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x1b)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::ModuR6(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x1b)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::And(Register rd, Register rs, Register rt) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x24)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Andi(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0xc, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Or(Register rd, Register rs, Register rt) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x25)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Ori(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0xd, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Xor(Register rd, Register rs, Register rt) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x26)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Xori(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0xe, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Nor(Register rd, Register rs, Register rt) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x27)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Movz(Register rd, Register rs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x0A)).GprInOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Movn(Register rd, Register rs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x0B)).GprInOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Seleqz(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x35)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Selnez(Register rd, Register rs, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x37)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::ClzR6(Register rd, Register rs) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x10)).GprOuts(rd).GprIns(rs);
}
void MipsAssembler::ClzR2(Register rd, Register rs) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0x1C, rs, rd, rd, 0, 0x20)).GprOuts(rd).GprIns(rs);
}
void MipsAssembler::CloR6(Register rd, Register rs) {
CHECK(IsR6());
DsFsmInstr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x11)).GprOuts(rd).GprIns(rs);
}
void MipsAssembler::CloR2(Register rd, Register rs) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0x1C, rs, rd, rd, 0, 0x21)).GprOuts(rd).GprIns(rs);
}
void MipsAssembler::Seb(Register rd, Register rt) {
DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x10, 0x20)).GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Seh(Register rd, Register rt) {
DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x18, 0x20)).GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Wsbh(Register rd, Register rt) {
DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 2, 0x20)).GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Bitswap(Register rd, Register rt) {
CHECK(IsR6());
DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x0, 0x20)).GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Sll(Register rd, Register rt, int shamt) {
CHECK(IsUint<5>(shamt)) << shamt;
DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x00)).GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Srl(Register rd, Register rt, int shamt) {
CHECK(IsUint<5>(shamt)) << shamt;
DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x02)).GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Rotr(Register rd, Register rt, int shamt) {
CHECK(IsUint<5>(shamt)) << shamt;
DsFsmInstr(EmitR(0, static_cast<Register>(1), rt, rd, shamt, 0x02)).GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Sra(Register rd, Register rt, int shamt) {
CHECK(IsUint<5>(shamt)) << shamt;
DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x03)).GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Sllv(Register rd, Register rt, Register rs) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x04)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Srlv(Register rd, Register rt, Register rs) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x06)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Rotrv(Register rd, Register rt, Register rs) {
DsFsmInstr(EmitR(0, rs, rt, rd, 1, 0x06)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Srav(Register rd, Register rt, Register rs) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x07)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Ext(Register rd, Register rt, int pos, int size) {
CHECK(IsUint<5>(pos)) << pos;
CHECK(0 < size && size <= 32) << size;
CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size;
DsFsmInstr(EmitR(0x1f, rt, rd, static_cast<Register>(size - 1), pos, 0x00))
.GprOuts(rd).GprIns(rt);
}
void MipsAssembler::Ins(Register rd, Register rt, int pos, int size) {
CHECK(IsUint<5>(pos)) << pos;
CHECK(0 < size && size <= 32) << size;
CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size;
DsFsmInstr(EmitR(0x1f, rt, rd, static_cast<Register>(pos + size - 1), pos, 0x04))
.GprInOuts(rd).GprIns(rt);
}
void MipsAssembler::Lsa(Register rd, Register rs, Register rt, int saPlusOne) {
CHECK(IsR6() || HasMsa());
CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne;
int sa = saPlusOne - 1;
DsFsmInstr(EmitR(0x0, rs, rt, rd, sa, 0x05)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::ShiftAndAdd(Register dst,
Register src_idx,
Register src_base,
int shamt,
Register tmp) {
CHECK(0 <= shamt && shamt <= 4) << shamt;
CHECK_NE(src_base, tmp);
if (shamt == TIMES_1) {
// Catch the special case where the shift amount is zero (0).
Addu(dst, src_base, src_idx);
} else if (IsR6() || HasMsa()) {
Lsa(dst, src_idx, src_base, shamt);
} else {
Sll(tmp, src_idx, shamt);
Addu(dst, src_base, tmp);
}
}
void MipsAssembler::Lb(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x20, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Lh(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x21, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) {
if (patcher_label != nullptr) {
Bind(patcher_label);
}
DsFsmInstr(EmitI(0x23, rs, rt, imm16), patcher_label).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16) {
Lw(rt, rs, imm16, /* patcher_label */ nullptr);
}
void MipsAssembler::Lwl(Register rt, Register rs, uint16_t imm16) {
CHECK(!IsR6());
DsFsmInstr(EmitI(0x22, rs, rt, imm16)).GprInOuts(rt).GprIns(rs);
}
void MipsAssembler::Lwr(Register rt, Register rs, uint16_t imm16) {
CHECK(!IsR6());
DsFsmInstr(EmitI(0x26, rs, rt, imm16)).GprInOuts(rt).GprIns(rs);
}
void MipsAssembler::Lbu(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x24, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Lhu(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x25, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Lwpc(Register rs, uint32_t imm19) {
CHECK(IsR6());
CHECK(IsUint<19>(imm19)) << imm19;
DsFsmInstrNop(EmitI21(0x3B, rs, (0x01 << 19) | imm19));
}
void MipsAssembler::Lui(Register rt, uint16_t imm16) {
DsFsmInstr(EmitI(0xf, static_cast<Register>(0), rt, imm16)).GprOuts(rt);
}
void MipsAssembler::Aui(Register rt, Register rs, uint16_t imm16) {
CHECK(IsR6());
DsFsmInstr(EmitI(0xf, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::AddUpper(Register rt, Register rs, uint16_t imm16, Register tmp) {
bool increment = (rs == rt);
if (increment) {
CHECK_NE(rs, tmp);
}
if (IsR6()) {
Aui(rt, rs, imm16);
} else if (increment) {
Lui(tmp, imm16);
Addu(rt, rs, tmp);
} else {
Lui(rt, imm16);
Addu(rt, rs, rt);
}
}
void MipsAssembler::Sync(uint32_t stype) {
DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, stype & 0x1f, 0xf));
}
void MipsAssembler::Mfhi(Register rd) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0, ZERO, ZERO, rd, 0, 0x10)).GprOuts(rd);
}
void MipsAssembler::Mflo(Register rd) {
CHECK(!IsR6());
DsFsmInstr(EmitR(0, ZERO, ZERO, rd, 0, 0x12)).GprOuts(rd);
}
void MipsAssembler::Sb(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x28, rs, rt, imm16)).GprIns(rt, rs);
}
void MipsAssembler::Sh(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x29, rs, rt, imm16)).GprIns(rt, rs);
}
void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) {
if (patcher_label != nullptr) {
Bind(patcher_label);
}
DsFsmInstr(EmitI(0x2b, rs, rt, imm16), patcher_label).GprIns(rt, rs);
}
void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16) {
Sw(rt, rs, imm16, /* patcher_label */ nullptr);
}
void MipsAssembler::Swl(Register rt, Register rs, uint16_t imm16) {
CHECK(!IsR6());
DsFsmInstr(EmitI(0x2a, rs, rt, imm16)).GprIns(rt, rs);
}
void MipsAssembler::Swr(Register rt, Register rs, uint16_t imm16) {
CHECK(!IsR6());
DsFsmInstr(EmitI(0x2e, rs, rt, imm16)).GprIns(rt, rs);
}
void MipsAssembler::LlR2(Register rt, Register base, int16_t imm16) {
CHECK(!IsR6());
DsFsmInstr(EmitI(0x30, base, rt, imm16)).GprOuts(rt).GprIns(base);
}
void MipsAssembler::ScR2(Register rt, Register base, int16_t imm16) {
CHECK(!IsR6());
DsFsmInstr(EmitI(0x38, base, rt, imm16)).GprInOuts(rt).GprIns(base);
}
void MipsAssembler::LlR6(Register rt, Register base, int16_t imm9) {
CHECK(IsR6());
CHECK(IsInt<9>(imm9));
DsFsmInstr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x36)).GprOuts(rt).GprIns(base);
}
void MipsAssembler::ScR6(Register rt, Register base, int16_t imm9) {
CHECK(IsR6());
CHECK(IsInt<9>(imm9));
DsFsmInstr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x26)).GprInOuts(rt).GprIns(base);
}
void MipsAssembler::Slt(Register rd, Register rs, Register rt) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x2a)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Sltu(Register rd, Register rs, Register rt) {
DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x2b)).GprOuts(rd).GprIns(rs, rt);
}
void MipsAssembler::Slti(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0xa, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::Sltiu(Register rt, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0xb, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
}
void MipsAssembler::B(uint16_t imm16) {
DsFsmInstrNop(EmitI(0x4, static_cast<Register>(0), static_cast<Register>(0), imm16));
}
void MipsAssembler::Bal(uint16_t imm16) {
DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x11), imm16));
}
void MipsAssembler::Beq(Register rs, Register rt, uint16_t imm16) {
DsFsmInstrNop(EmitI(0x4, rs, rt, imm16));
}
void MipsAssembler::Bne(Register rs, Register rt, uint16_t imm16) {
DsFsmInstrNop(EmitI(0x5, rs, rt, imm16));
}
void MipsAssembler::Beqz(Register rt, uint16_t imm16) {
Beq(rt, ZERO, imm16);
}
void MipsAssembler::Bnez(Register rt, uint16_t imm16) {
Bne(rt, ZERO, imm16);
}
void MipsAssembler::Bltz(Register rt, uint16_t imm16) {
DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0), imm16));
}
void MipsAssembler::Bgez(Register rt, uint16_t imm16) {
DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0x1), imm16));
}
void MipsAssembler::Blez(Register rt, uint16_t imm16) {
DsFsmInstrNop(EmitI(0x6, rt, static_cast<Register>(0), imm16));
}
void MipsAssembler::Bgtz(Register rt, uint16_t imm16) {
DsFsmInstrNop(EmitI(0x7, rt, static_cast<Register>(0), imm16));
}
void MipsAssembler::Bc1f(uint16_t imm16) {
Bc1f(0, imm16);
}
void MipsAssembler::Bc1f(int cc, uint16_t imm16) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstrNop(EmitI(0x11, static_cast<Register>(0x8), static_cast<Register>(cc << 2), imm16));
}
void MipsAssembler::Bc1t(uint16_t imm16) {
Bc1t(0, imm16);
}
void MipsAssembler::Bc1t(int cc, uint16_t imm16) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstrNop(EmitI(0x11,
static_cast<Register>(0x8),
static_cast<Register>((cc << 2) | 1),
imm16));
}
void MipsAssembler::J(uint32_t addr26) {
DsFsmInstrNop(EmitI26(0x2, addr26));
}
void MipsAssembler::Jal(uint32_t addr26) {
DsFsmInstrNop(EmitI26(0x3, addr26));
}
void MipsAssembler::Jalr(Register rd, Register rs) {
uint32_t last_instruction = delay_slot_.instruction_;
MipsLabel* patcher_label = delay_slot_.patcher_label_;
bool exchange = (last_instruction != 0 &&
(delay_slot_.masks_.gpr_outs_ & (1u << rs)) == 0 &&
((delay_slot_.masks_.gpr_ins_ | delay_slot_.masks_.gpr_outs_) & (1u << rd)) == 0);
if (exchange) {
// The last instruction cannot be used in a different delay slot,
// do not commit the label before it (if any).
DsFsmDropLabel();
}
DsFsmInstrNop(EmitR(0, rs, static_cast<Register>(0), rd, 0, 0x09));
if (exchange) {
// Exchange the last two instructions in the assembler buffer.
size_t size = buffer_.Size();
CHECK_GE(size, 2 * sizeof(uint32_t));
size_t pos1 = size - 2 * sizeof(uint32_t);
size_t pos2 = size - sizeof(uint32_t);
uint32_t instr1 = buffer_.Load<uint32_t>(pos1);
uint32_t instr2 = buffer_.Load<uint32_t>(pos2);
CHECK_EQ(instr1, last_instruction);
buffer_.Store<uint32_t>(pos1, instr2);
buffer_.Store<uint32_t>(pos2, instr1);
// Move the patcher label along with the patched instruction.
if (patcher_label != nullptr) {
patcher_label->AdjustBoundPosition(sizeof(uint32_t));
}
} else if (reordering_) {
Nop();
}
}
void MipsAssembler::Jalr(Register rs) {
Jalr(RA, rs);
}
void MipsAssembler::Jr(Register rs) {
Jalr(ZERO, rs);
}
void MipsAssembler::Nal() {
DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x10), 0));
}
void MipsAssembler::Auipc(Register rs, uint16_t imm16) {
CHECK(IsR6());
DsFsmInstrNop(EmitI(0x3B, rs, static_cast<Register>(0x1E), imm16));
}
void MipsAssembler::Addiupc(Register rs, uint32_t imm19) {
CHECK(IsR6());
CHECK(IsUint<19>(imm19)) << imm19;
DsFsmInstrNop(EmitI21(0x3B, rs, imm19));
}
void MipsAssembler::Bc(uint32_t imm26) {
CHECK(IsR6());
DsFsmInstrNop(EmitI26(0x32, imm26));
}
void MipsAssembler::Balc(uint32_t imm26) {
CHECK(IsR6());
DsFsmInstrNop(EmitI26(0x3A, imm26));
}
void MipsAssembler::Jic(Register rt, uint16_t imm16) {
CHECK(IsR6());
DsFsmInstrNop(EmitI(0x36, static_cast<Register>(0), rt, imm16));
}
void MipsAssembler::Jialc(Register rt, uint16_t imm16) {
CHECK(IsR6());
DsFsmInstrNop(EmitI(0x3E, static_cast<Register>(0), rt, imm16));
}
void MipsAssembler::Bltc(Register rs, Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
DsFsmInstrNop(EmitI(0x17, rs, rt, imm16));
}
void MipsAssembler::Bltzc(Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rt, ZERO);
DsFsmInstrNop(EmitI(0x17, rt, rt, imm16));
}
void MipsAssembler::Bgtzc(Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rt, ZERO);
DsFsmInstrNop(EmitI(0x17, static_cast<Register>(0), rt, imm16));
}
void MipsAssembler::Bgec(Register rs, Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
DsFsmInstrNop(EmitI(0x16, rs, rt, imm16));
}
void MipsAssembler::Bgezc(Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rt, ZERO);
DsFsmInstrNop(EmitI(0x16, rt, rt, imm16));
}
void MipsAssembler::Blezc(Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rt, ZERO);
DsFsmInstrNop(EmitI(0x16, static_cast<Register>(0), rt, imm16));
}
void MipsAssembler::Bltuc(Register rs, Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
DsFsmInstrNop(EmitI(0x7, rs, rt, imm16));
}
void MipsAssembler::Bgeuc(Register rs, Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
DsFsmInstrNop(EmitI(0x6, rs, rt, imm16));
}
void MipsAssembler::Beqc(Register rs, Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
DsFsmInstrNop(EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16));
}
void MipsAssembler::Bnec(Register rs, Register rt, uint16_t imm16) {
CHECK(IsR6());
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
DsFsmInstrNop(EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16));
}
void MipsAssembler::Beqzc(Register rs, uint32_t imm21) {
CHECK(IsR6());
CHECK_NE(rs, ZERO);
DsFsmInstrNop(EmitI21(0x36, rs, imm21));
}
void MipsAssembler::Bnezc(Register rs, uint32_t imm21) {
CHECK(IsR6());
CHECK_NE(rs, ZERO);
DsFsmInstrNop(EmitI21(0x3E, rs, imm21));
}
void MipsAssembler::Bc1eqz(FRegister ft, uint16_t imm16) {
CHECK(IsR6());
DsFsmInstrNop(EmitFI(0x11, 0x9, ft, imm16));
}
void MipsAssembler::Bc1nez(FRegister ft, uint16_t imm16) {
CHECK(IsR6());
DsFsmInstrNop(EmitFI(0x11, 0xD, ft, imm16));
}
void MipsAssembler::EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16) {
switch (cond) {
case kCondLTZ:
CHECK_EQ(rt, ZERO);
Bltz(rs, imm16);
break;
case kCondGEZ:
CHECK_EQ(rt, ZERO);
Bgez(rs, imm16);
break;
case kCondLEZ:
CHECK_EQ(rt, ZERO);
Blez(rs, imm16);
break;
case kCondGTZ:
CHECK_EQ(rt, ZERO);
Bgtz(rs, imm16);
break;
case kCondEQ:
Beq(rs, rt, imm16);
break;
case kCondNE:
Bne(rs, rt, imm16);
break;
case kCondEQZ:
CHECK_EQ(rt, ZERO);
Beqz(rs, imm16);
break;
case kCondNEZ:
CHECK_EQ(rt, ZERO);
Bnez(rs, imm16);
break;
case kCondF:
CHECK_EQ(rt, ZERO);
Bc1f(static_cast<int>(rs), imm16);
break;
case kCondT:
CHECK_EQ(rt, ZERO);
Bc1t(static_cast<int>(rs), imm16);
break;
case kCondLT:
case kCondGE:
case kCondLE:
case kCondGT:
case kCondLTU:
case kCondGEU:
case kUncond:
// We don't support synthetic R2 branches (preceded with slt[u]) at this level
// (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
LOG(FATAL) << "Unexpected branch condition " << cond;
UNREACHABLE();
}
}
void MipsAssembler::EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21) {
switch (cond) {
case kCondLT:
Bltc(rs, rt, imm16_21);
break;
case kCondGE:
Bgec(rs, rt, imm16_21);
break;
case kCondLE:
Bgec(rt, rs, imm16_21);
break;
case kCondGT:
Bltc(rt, rs, imm16_21);
break;
case kCondLTZ:
CHECK_EQ(rt, ZERO);
Bltzc(rs, imm16_21);
break;
case kCondGEZ:
CHECK_EQ(rt, ZERO);
Bgezc(rs, imm16_21);
break;
case kCondLEZ:
CHECK_EQ(rt, ZERO);
Blezc(rs, imm16_21);
break;
case kCondGTZ:
CHECK_EQ(rt, ZERO);
Bgtzc(rs, imm16_21);
break;
case kCondEQ:
Beqc(rs, rt, imm16_21);
break;
case kCondNE:
Bnec(rs, rt, imm16_21);
break;
case kCondEQZ:
CHECK_EQ(rt, ZERO);
Beqzc(rs, imm16_21);
break;
case kCondNEZ:
CHECK_EQ(rt, ZERO);
Bnezc(rs, imm16_21);
break;
case kCondLTU:
Bltuc(rs, rt, imm16_21);
break;
case kCondGEU:
Bgeuc(rs, rt, imm16_21);
break;
case kCondF:
CHECK_EQ(rt, ZERO);
Bc1eqz(static_cast<FRegister>(rs), imm16_21);
break;
case kCondT:
CHECK_EQ(rt, ZERO);
Bc1nez(static_cast<FRegister>(rs), imm16_21);
break;
case kUncond:
LOG(FATAL) << "Unexpected branch condition " << cond;
UNREACHABLE();
}
}
void MipsAssembler::AddS(FRegister fd, FRegister fs, FRegister ft) {
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x0)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::SubS(FRegister fd, FRegister fs, FRegister ft) {
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::MulS(FRegister fd, FRegister fs, FRegister ft) {
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x2)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::DivS(FRegister fd, FRegister fs, FRegister ft) {
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x3)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::AddD(FRegister fd, FRegister fs, FRegister ft) {
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x0)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::SubD(FRegister fd, FRegister fs, FRegister ft) {
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::MulD(FRegister fd, FRegister fs, FRegister ft) {
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x2)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::DivD(FRegister fd, FRegister fs, FRegister ft) {
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x3)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::SqrtS(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x4)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::SqrtD(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x4)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::AbsS(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x5)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::AbsD(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x5)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::MovS(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x6)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::MovD(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x6)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::NegS(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x7)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::NegD(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x7)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::CunS(FRegister fs, FRegister ft) {
CunS(0, fs, ft);
}
void MipsAssembler::CunS(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x31))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CeqS(FRegister fs, FRegister ft) {
CeqS(0, fs, ft);
}
void MipsAssembler::CeqS(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x32))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CueqS(FRegister fs, FRegister ft) {
CueqS(0, fs, ft);
}
void MipsAssembler::CueqS(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x33))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::ColtS(FRegister fs, FRegister ft) {
ColtS(0, fs, ft);
}
void MipsAssembler::ColtS(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x34))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CultS(FRegister fs, FRegister ft) {
CultS(0, fs, ft);
}
void MipsAssembler::CultS(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x35))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::ColeS(FRegister fs, FRegister ft) {
ColeS(0, fs, ft);
}
void MipsAssembler::ColeS(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x36))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CuleS(FRegister fs, FRegister ft) {
CuleS(0, fs, ft);
}
void MipsAssembler::CuleS(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x37))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CunD(FRegister fs, FRegister ft) {
CunD(0, fs, ft);
}
void MipsAssembler::CunD(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x31))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CeqD(FRegister fs, FRegister ft) {
CeqD(0, fs, ft);
}
void MipsAssembler::CeqD(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x32))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CueqD(FRegister fs, FRegister ft) {
CueqD(0, fs, ft);
}
void MipsAssembler::CueqD(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x33))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::ColtD(FRegister fs, FRegister ft) {
ColtD(0, fs, ft);
}
void MipsAssembler::ColtD(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x34))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CultD(FRegister fs, FRegister ft) {
CultD(0, fs, ft);
}
void MipsAssembler::CultD(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x35))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::ColeD(FRegister fs, FRegister ft) {
ColeD(0, fs, ft);
}
void MipsAssembler::ColeD(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x36))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CuleD(FRegister fs, FRegister ft) {
CuleD(0, fs, ft);
}
void MipsAssembler::CuleD(int cc, FRegister fs, FRegister ft) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x37))
.CcOuts(cc).FprIns(fs, ft);
}
void MipsAssembler::CmpUnS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x01)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpEqS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x02)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUeqS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x03)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpLtS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x04)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUltS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x05)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpLeS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x06)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUleS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x07)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpOrS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x11)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUneS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x12)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpNeS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x13)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUnD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x01)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpEqD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x02)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUeqD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x03)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpLtD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x04)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUltD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x05)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpLeD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x06)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUleD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x07)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpOrD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x11)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpUneD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x12)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::CmpNeD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x13)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::Movf(Register rd, Register rs, int cc) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitR(0, rs, static_cast<Register>(cc << 2), rd, 0, 0x01))
.GprInOuts(rd).GprIns(rs).CcIns(cc);
}
void MipsAssembler::Movt(Register rd, Register rs, int cc) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitR(0, rs, static_cast<Register>((cc << 2) | 1), rd, 0, 0x01))
.GprInOuts(rd).GprIns(rs).CcIns(cc);
}
void MipsAssembler::MovfS(FRegister fd, FRegister fs, int cc) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(cc << 2), fs, fd, 0x11))
.FprInOuts(fd).FprIns(fs).CcIns(cc);
}
void MipsAssembler::MovfD(FRegister fd, FRegister fs, int cc) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(cc << 2), fs, fd, 0x11))
.FprInOuts(fd).FprIns(fs).CcIns(cc);
}
void MipsAssembler::MovtS(FRegister fd, FRegister fs, int cc) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11))
.FprInOuts(fd).FprIns(fs).CcIns(cc);
}
void MipsAssembler::MovtD(FRegister fd, FRegister fs, int cc) {
CHECK(!IsR6());
CHECK(IsUint<3>(cc)) << cc;
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11))
.FprInOuts(fd).FprIns(fs).CcIns(cc);
}
void MipsAssembler::MovzS(FRegister fd, FRegister fs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x12))
.FprInOuts(fd).FprIns(fs).GprIns(rt);
}
void MipsAssembler::MovzD(FRegister fd, FRegister fs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x12))
.FprInOuts(fd).FprIns(fs).GprIns(rt);
}
void MipsAssembler::MovnS(FRegister fd, FRegister fs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x13))
.FprInOuts(fd).FprIns(fs).GprIns(rt);
}
void MipsAssembler::MovnD(FRegister fd, FRegister fs, Register rt) {
CHECK(!IsR6());
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x13))
.FprInOuts(fd).FprIns(fs).GprIns(rt);
}
void MipsAssembler::SelS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x10)).FprInOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::SelD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x10)).FprInOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::SeleqzS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x14)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::SeleqzD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x14)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::SelnezS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x17)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::SelnezD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x17)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::ClassS(FRegister fd, FRegister fs) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x1b)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::ClassD(FRegister fd, FRegister fs) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x1b)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::MinS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1c)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::MinD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1c)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::MaxS(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1e)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::MaxD(FRegister fd, FRegister fs, FRegister ft) {
CHECK(IsR6());
DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1e)).FprOuts(fd).FprIns(fs, ft);
}
void MipsAssembler::TruncLS(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x09)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::TruncLD(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x09)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::TruncWS(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x0D)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::TruncWD(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x0D)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::Cvtsw(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::Cvtdw(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::Cvtsd(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::Cvtds(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::Cvtsl(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::Cvtdl(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::FloorWS(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0xf)).FprOuts(fd).FprIns(fs);
}
void MipsAssembler::FloorWD(FRegister fd, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0xf)).FprOuts(fd).FprIns(fs);
}
FRegister MipsAssembler::GetFpuRegLow(FRegister reg) {
// If FPRs are 32-bit (and get paired to hold 64-bit values), accesses to
// odd-numbered FPRs are reattributed to even-numbered FPRs. This lets us
// use only even-numbered FPRs irrespective of whether we're doing single-
// or double-precision arithmetic. (We don't use odd-numbered 32-bit FPRs
// to hold single-precision values).
return Is32BitFPU() ? static_cast<FRegister>(reg & ~1u) : reg;
}
void MipsAssembler::Mfc1(Register rt, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x00, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0))
.GprOuts(rt).FprIns(GetFpuRegLow(fs));
}
// Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs
// when loading the value as 32-bit halves.
void MipsAssembler::Mtc1(Register rt, FRegister fs) {
uint32_t encoding =
EmitFR(0x11, 0x04, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0);
if (Is32BitFPU() && (fs % 2 != 0)) {
// If mtc1 is used to simulate mthc1 by writing to the odd-numbered FPR in
// a pair of 32-bit FPRs, the associated even-numbered FPR is an in/out.
DsFsmInstr(encoding).FprInOuts(GetFpuRegLow(fs)).GprIns(rt);
} else {
// Otherwise (the FPR is 64-bit or even-numbered), the FPR is an out.
DsFsmInstr(encoding).FprOuts(fs).GprIns(rt);
}
}
void MipsAssembler::Mfhc1(Register rt, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x03, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0))
.GprOuts(rt).FprIns(fs);
}
// Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs
// when loading the value as 32-bit halves.
void MipsAssembler::Mthc1(Register rt, FRegister fs) {
DsFsmInstr(EmitFR(0x11, 0x07, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0))
.FprInOuts(fs).GprIns(rt);
}
void MipsAssembler::MoveFromFpuHigh(Register rt, FRegister fs) {
if (Is32BitFPU()) {
CHECK_EQ(fs % 2, 0) << fs;
Mfc1(rt, static_cast<FRegister>(fs + 1));
} else {
Mfhc1(rt, fs);
}
}
void MipsAssembler::MoveToFpuHigh(Register rt, FRegister fs) {
if (Is32BitFPU()) {
CHECK_EQ(fs % 2, 0) << fs;
Mtc1(rt, static_cast<FRegister>(fs + 1));
} else {
Mthc1(rt, fs);
}
}
// Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs
// when loading the value as 32-bit halves.
void MipsAssembler::Lwc1(FRegister ft, Register rs, uint16_t imm16) {
uint32_t encoding = EmitI(0x31, rs, static_cast<Register>(ft), imm16);
if (Is32BitFPU() && (ft % 2 != 0)) {
// If lwc1 is used to load the odd-numbered FPR in a pair of 32-bit FPRs,
// the associated even-numbered FPR is an in/out.
DsFsmInstr(encoding).FprInOuts(GetFpuRegLow(ft)).GprIns(rs);
} else {
// Otherwise (the FPR is 64-bit or even-numbered), the FPR is an out.
DsFsmInstr(encoding).FprOuts(ft).GprIns(rs);
}
}
void MipsAssembler::Ldc1(FRegister ft, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x35, rs, static_cast<Register>(ft), imm16)).FprOuts(ft).GprIns(rs);
}
void MipsAssembler::Swc1(FRegister ft, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x39, rs, static_cast<Register>(ft), imm16)).FprIns(GetFpuRegLow(ft)).GprIns(rs);
}
void MipsAssembler::Sdc1(FRegister ft, Register rs, uint16_t imm16) {
DsFsmInstr(EmitI(0x3d, rs, static_cast<Register>(ft), imm16)).FprIns(ft).GprIns(rs);
}
void MipsAssembler::Break() {
DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, 0, 0xD));
}
void MipsAssembler::Nop() {
DsFsmInstrNop(EmitR(0x0, ZERO, ZERO, ZERO, 0, 0x0));
}
void MipsAssembler::NopIfNoReordering() {
if (!reordering_) {
Nop();
}
}
void MipsAssembler::Move(Register rd, Register rs) {
Or(rd, rs, ZERO);
}
void MipsAssembler::Clear(Register rd) {
Move(rd, ZERO);
}
void MipsAssembler::Not(Register rd, Register rs) {
Nor(rd, rs, ZERO);
}
void MipsAssembler::Push(Register rs) {
IncreaseFrameSize(kStackAlignment);
Sw(rs, SP, 0);
}
void MipsAssembler::Pop(Register rd) {
Lw(rd, SP, 0);
DecreaseFrameSize(kStackAlignment);
}
void MipsAssembler::PopAndReturn(Register rd, Register rt) {
bool reordering = SetReorder(false);
Lw(rd, SP, 0);
Jr(rt);
DecreaseFrameSize(kStackAlignment); // Single instruction in delay slot.
SetReorder(reordering);
}
void MipsAssembler::AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x3, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x3, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x3, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x3, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Ffint_sW(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2RF(0x19e, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::Ffint_sD(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2RF(0x19e, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::Ftint_sW(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2RF(0x19c, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::Ftint_sD(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2RF(0x19c, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::SlliB(VectorRegister wd, VectorRegister ws, int shamt3) {
CHECK(HasMsa());
CHECK(IsUint<3>(shamt3)) << shamt3;
DsFsmInstr(EmitMsaBIT(0x0, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SlliH(VectorRegister wd, VectorRegister ws, int shamt4) {
CHECK(HasMsa());
CHECK(IsUint<4>(shamt4)) << shamt4;
DsFsmInstr(EmitMsaBIT(0x0, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SlliW(VectorRegister wd, VectorRegister ws, int shamt5) {
CHECK(HasMsa());
CHECK(IsUint<5>(shamt5)) << shamt5;
DsFsmInstr(EmitMsaBIT(0x0, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SlliD(VectorRegister wd, VectorRegister ws, int shamt6) {
CHECK(HasMsa());
CHECK(IsUint<6>(shamt6)) << shamt6;
DsFsmInstr(EmitMsaBIT(0x0, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SraiB(VectorRegister wd, VectorRegister ws, int shamt3) {
CHECK(HasMsa());
CHECK(IsUint<3>(shamt3)) << shamt3;
DsFsmInstr(EmitMsaBIT(0x1, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SraiH(VectorRegister wd, VectorRegister ws, int shamt4) {
CHECK(HasMsa());
CHECK(IsUint<4>(shamt4)) << shamt4;
DsFsmInstr(EmitMsaBIT(0x1, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SraiW(VectorRegister wd, VectorRegister ws, int shamt5) {
CHECK(HasMsa());
CHECK(IsUint<5>(shamt5)) << shamt5;
DsFsmInstr(EmitMsaBIT(0x1, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SraiD(VectorRegister wd, VectorRegister ws, int shamt6) {
CHECK(HasMsa());
CHECK(IsUint<6>(shamt6)) << shamt6;
DsFsmInstr(EmitMsaBIT(0x1, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SrliB(VectorRegister wd, VectorRegister ws, int shamt3) {
CHECK(HasMsa());
CHECK(IsUint<3>(shamt3)) << shamt3;
DsFsmInstr(EmitMsaBIT(0x2, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SrliH(VectorRegister wd, VectorRegister ws, int shamt4) {
CHECK(HasMsa());
CHECK(IsUint<4>(shamt4)) << shamt4;
DsFsmInstr(EmitMsaBIT(0x2, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SrliW(VectorRegister wd, VectorRegister ws, int shamt5) {
CHECK(HasMsa());
CHECK(IsUint<5>(shamt5)) << shamt5;
DsFsmInstr(EmitMsaBIT(0x2, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SrliD(VectorRegister wd, VectorRegister ws, int shamt6) {
CHECK(HasMsa());
CHECK(IsUint<6>(shamt6)) << shamt6;
DsFsmInstr(EmitMsaBIT(0x2, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::MoveV(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsaBIT(0x1, 0x3e, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SplatiB(VectorRegister wd, VectorRegister ws, int n4) {
CHECK(HasMsa());
CHECK(IsUint<4>(n4)) << n4;
DsFsmInstr(EmitMsaELM(0x1, n4 | kMsaDfNByteMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SplatiH(VectorRegister wd, VectorRegister ws, int n3) {
CHECK(HasMsa());
CHECK(IsUint<3>(n3)) << n3;
DsFsmInstr(EmitMsaELM(0x1, n3 | kMsaDfNHalfwordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SplatiW(VectorRegister wd, VectorRegister ws, int n2) {
CHECK(HasMsa());
CHECK(IsUint<2>(n2)) << n2;
DsFsmInstr(EmitMsaELM(0x1, n2 | kMsaDfNWordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::SplatiD(VectorRegister wd, VectorRegister ws, int n1) {
CHECK(HasMsa());
CHECK(IsUint<1>(n1)) << n1;
DsFsmInstr(EmitMsaELM(0x1, n1 | kMsaDfNDoublewordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::Copy_sB(Register rd, VectorRegister ws, int n4) {
CHECK(HasMsa());
CHECK(IsUint<4>(n4)) << n4;
DsFsmInstr(EmitMsaELM(0x2, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19))
.GprOuts(rd).FprIns(ws);
}
void MipsAssembler::Copy_sH(Register rd, VectorRegister ws, int n3) {
CHECK(HasMsa());
CHECK(IsUint<3>(n3)) << n3;
DsFsmInstr(EmitMsaELM(0x2, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19))
.GprOuts(rd).FprIns(ws);
}
void MipsAssembler::Copy_sW(Register rd, VectorRegister ws, int n2) {
CHECK(HasMsa());
CHECK(IsUint<2>(n2)) << n2;
DsFsmInstr(EmitMsaELM(0x2, n2 | kMsaDfNWordMask, ws, static_cast<VectorRegister>(rd), 0x19))
.GprOuts(rd).FprIns(ws);
}
void MipsAssembler::Copy_uB(Register rd, VectorRegister ws, int n4) {
CHECK(HasMsa());
CHECK(IsUint<4>(n4)) << n4;
DsFsmInstr(EmitMsaELM(0x3, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19))
.GprOuts(rd).FprIns(ws);
}
void MipsAssembler::Copy_uH(Register rd, VectorRegister ws, int n3) {
CHECK(HasMsa());
CHECK(IsUint<3>(n3)) << n3;
DsFsmInstr(EmitMsaELM(0x3, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19))
.GprOuts(rd).FprIns(ws);
}
void MipsAssembler::InsertB(VectorRegister wd, Register rs, int n4) {
CHECK(HasMsa());
CHECK(IsUint<4>(n4)) << n4;
DsFsmInstr(EmitMsaELM(0x4, n4 | kMsaDfNByteMask, static_cast<VectorRegister>(rs), wd, 0x19))
.FprInOuts(wd).GprIns(rs);
}
void MipsAssembler::InsertH(VectorRegister wd, Register rs, int n3) {
CHECK(HasMsa());
CHECK(IsUint<3>(n3)) << n3;
DsFsmInstr(EmitMsaELM(0x4, n3 | kMsaDfNHalfwordMask, static_cast<VectorRegister>(rs), wd, 0x19))
.FprInOuts(wd).GprIns(rs);
}
void MipsAssembler::InsertW(VectorRegister wd, Register rs, int n2) {
CHECK(HasMsa());
CHECK(IsUint<2>(n2)) << n2;
DsFsmInstr(EmitMsaELM(0x4, n2 | kMsaDfNWordMask, static_cast<VectorRegister>(rs), wd, 0x19))
.FprInOuts(wd).GprIns(rs);
}
void MipsAssembler::FillB(VectorRegister wd, Register rs) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2R(0xc0, 0x0, static_cast<VectorRegister>(rs), wd, 0x1e))
.FprOuts(wd).GprIns(rs);
}
void MipsAssembler::FillH(VectorRegister wd, Register rs) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2R(0xc0, 0x1, static_cast<VectorRegister>(rs), wd, 0x1e))
.FprOuts(wd).GprIns(rs);
}
void MipsAssembler::FillW(VectorRegister wd, Register rs) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2R(0xc0, 0x2, static_cast<VectorRegister>(rs), wd, 0x1e))
.FprOuts(wd).GprIns(rs);
}
void MipsAssembler::LdiB(VectorRegister wd, int imm8) {
CHECK(HasMsa());
CHECK(IsInt<8>(imm8)) << imm8;
DsFsmInstr(EmitMsaI10(0x6, 0x0, imm8 & kMsaS10Mask, wd, 0x7)).FprOuts(wd);
}
void MipsAssembler::LdiH(VectorRegister wd, int imm10) {
CHECK(HasMsa());
CHECK(IsInt<10>(imm10)) << imm10;
DsFsmInstr(EmitMsaI10(0x6, 0x1, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd);
}
void MipsAssembler::LdiW(VectorRegister wd, int imm10) {
CHECK(HasMsa());
CHECK(IsInt<10>(imm10)) << imm10;
DsFsmInstr(EmitMsaI10(0x6, 0x2, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd);
}
void MipsAssembler::LdiD(VectorRegister wd, int imm10) {
CHECK(HasMsa());
CHECK(IsInt<10>(imm10)) << imm10;
DsFsmInstr(EmitMsaI10(0x6, 0x3, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd);
}
void MipsAssembler::LdB(VectorRegister wd, Register rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<10>(offset)) << offset;
DsFsmInstr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x8, 0x0)).FprOuts(wd).GprIns(rs);
}
void MipsAssembler::LdH(VectorRegister wd, Register rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<11>(offset)) << offset;
CHECK_ALIGNED(offset, kMipsHalfwordSize);
DsFsmInstr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x8, 0x1))
.FprOuts(wd).GprIns(rs);
}
void MipsAssembler::LdW(VectorRegister wd, Register rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<12>(offset)) << offset;
CHECK_ALIGNED(offset, kMipsWordSize);
DsFsmInstr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x8, 0x2))
.FprOuts(wd).GprIns(rs);
}
void MipsAssembler::LdD(VectorRegister wd, Register rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<13>(offset)) << offset;
CHECK_ALIGNED(offset, kMipsDoublewordSize);
DsFsmInstr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x8, 0x3))
.FprOuts(wd).GprIns(rs);
}
void MipsAssembler::StB(VectorRegister wd, Register rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<10>(offset)) << offset;
DsFsmInstr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x9, 0x0)).FprIns(wd).GprIns(rs);
}
void MipsAssembler::StH(VectorRegister wd, Register rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<11>(offset)) << offset;
CHECK_ALIGNED(offset, kMipsHalfwordSize);
DsFsmInstr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x9, 0x1))
.FprIns(wd).GprIns(rs);
}
void MipsAssembler::StW(VectorRegister wd, Register rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<12>(offset)) << offset;
CHECK_ALIGNED(offset, kMipsWordSize);
DsFsmInstr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x9, 0x2))
.FprIns(wd).GprIns(rs);
}
void MipsAssembler::StD(VectorRegister wd, Register rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<13>(offset)) << offset;
CHECK_ALIGNED(offset, kMipsDoublewordSize);
DsFsmInstr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x9, 0x3))
.FprIns(wd).GprIns(rs);
}
void MipsAssembler::IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
}
void MipsAssembler::PcntB(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2R(0xc1, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::PcntH(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2R(0xc1, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::PcntW(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2R(0xc1, 0x2, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::PcntD(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
DsFsmInstr(EmitMsa2R(0xc1, 0x3, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
}
void MipsAssembler::ReplicateFPToVectorRegister(VectorRegister dst,
FRegister src,
bool is_double) {
// Float or double in FPU register Fx can be considered as 0th element in vector register Wx.
if (is_double) {
SplatiD(dst, static_cast<VectorRegister>(src), 0);
} else {
SplatiW(dst, static_cast<VectorRegister>(src), 0);
}
}
void MipsAssembler::LoadConst32(Register rd, int32_t value) {
if (IsUint<16>(value)) {
// Use OR with (unsigned) immediate to encode 16b unsigned int.
Ori(rd, ZERO, value);
} else if (IsInt<16>(value)) {
// Use ADD with (signed) immediate to encode 16b signed int.
Addiu(rd, ZERO, value);
} else {
Lui(rd, High16Bits(value));
if (value & 0xFFFF)
Ori(rd, rd, Low16Bits(value));
}
}
void MipsAssembler::LoadConst64(Register reg_hi, Register reg_lo, int64_t value) {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
LoadConst32(reg_lo, low);
if (high != low) {
LoadConst32(reg_hi, high);
} else {
Move(reg_hi, reg_lo);
}
}
void MipsAssembler::LoadSConst32(FRegister r, int32_t value, Register temp) {
if (value == 0) {
temp = ZERO;
} else {
LoadConst32(temp, value);
}
Mtc1(temp, r);
}
void MipsAssembler::LoadDConst64(FRegister rd, int64_t value, Register temp) {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
if (low == 0) {
Mtc1(ZERO, rd);
} else {
LoadConst32(temp, low);
Mtc1(temp, rd);
}
if (high == 0) {
MoveToFpuHigh(ZERO, rd);
} else {
LoadConst32(temp, high);
MoveToFpuHigh(temp, rd);
}
}
void MipsAssembler::Addiu32(Register rt, Register rs, int32_t value, Register temp) {
CHECK_NE(rs, temp); // Must not overwrite the register `rs` while loading `value`.
if (IsInt<16>(value)) {
Addiu(rt, rs, value);
} else if (IsR6()) {
int16_t high = High16Bits(value);
int16_t low = Low16Bits(value);
high += (low < 0) ? 1 : 0; // Account for sign extension in addiu.
if (low != 0) {
Aui(temp, rs, high);
Addiu(rt, temp, low);
} else {
Aui(rt, rs, high);
}
} else {
// Do not load the whole 32-bit `value` if it can be represented as
// a sum of two 16-bit signed values. This can save an instruction.
constexpr int32_t kMinValueForSimpleAdjustment = std::numeric_limits<int16_t>::min() * 2;
constexpr int32_t kMaxValueForSimpleAdjustment = std::numeric_limits<int16_t>::max() * 2;
if (0 <= value && value <= kMaxValueForSimpleAdjustment) {
Addiu(temp, rs, kMaxValueForSimpleAdjustment / 2);
Addiu(rt, temp, value - kMaxValueForSimpleAdjustment / 2);
} else if (kMinValueForSimpleAdjustment <= value && value < 0) {
Addiu(temp, rs, kMinValueForSimpleAdjustment / 2);
Addiu(rt, temp, value - kMinValueForSimpleAdjustment / 2);
} else {
// Now that all shorter options have been exhausted, load the full 32-bit value.
LoadConst32(temp, value);
Addu(rt, rs, temp);
}
}
}
void MipsAssembler::Branch::InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size,
MipsAssembler::Branch::Type short_type,
MipsAssembler::Branch::Type long_type) {
type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type;
}
void MipsAssembler::Branch::InitializeType(Type initial_type, bool is_r6) {
OffsetBits offset_size_needed = GetOffsetSizeNeeded(location_, target_);
if (is_r6) {
// R6
switch (initial_type) {
case kLabel:
CHECK(!IsResolved());
type_ = kR6Label;
break;
case kLiteral:
CHECK(!IsResolved());
type_ = kR6Literal;
break;
case kCall:
InitShortOrLong(offset_size_needed, kR6Call, kR6LongCall);
break;
case kCondBranch:
switch (condition_) {
case kUncond:
InitShortOrLong(offset_size_needed, kR6UncondBranch, kR6LongUncondBranch);
break;
case kCondEQZ:
case kCondNEZ:
// Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions.
type_ = (offset_size_needed <= kOffset23) ? kR6CondBranch : kR6LongCondBranch;
break;
default:
InitShortOrLong(offset_size_needed, kR6CondBranch, kR6LongCondBranch);
break;
}
break;
case kBareCall:
type_ = kR6BareCall;
CHECK_LE(offset_size_needed, GetOffsetSize());
break;
case kBareCondBranch:
type_ = (condition_ == kUncond) ? kR6BareUncondBranch : kR6BareCondBranch;
CHECK_LE(offset_size_needed, GetOffsetSize());
break;
default:
LOG(FATAL) << "Unexpected branch type " << initial_type;
UNREACHABLE();
}
} else {
// R2
switch (initial_type) {
case kLabel:
CHECK(!IsResolved());
type_ = kLabel;
break;
case kLiteral:
CHECK(!IsResolved());
type_ = kLiteral;
break;
case kCall:
InitShortOrLong(offset_size_needed, kCall, kLongCall);
break;
case kCondBranch:
switch (condition_) {
case kUncond:
InitShortOrLong(offset_size_needed, kUncondBranch, kLongUncondBranch);
break;
default:
InitShortOrLong(offset_size_needed, kCondBranch, kLongCondBranch);
break;
}
break;
case kBareCall:
type_ = kBareCall;
CHECK_LE(offset_size_needed, GetOffsetSize());
break;
case kBareCondBranch:
type_ = (condition_ == kUncond) ? kBareUncondBranch : kBareCondBranch;
CHECK_LE(offset_size_needed, GetOffsetSize());
break;
default:
LOG(FATAL) << "Unexpected branch type " << initial_type;
UNREACHABLE();
}
}
old_type_ = type_;
}
bool MipsAssembler::Branch::IsNop(BranchCondition condition, Register lhs, Register rhs) {
switch (condition) {
case kCondLT:
case kCondGT:
case kCondNE:
case kCondLTU:
return lhs == rhs;
default:
return false;
}
}
bool MipsAssembler::Branch::IsUncond(BranchCondition condition, Register lhs, Register rhs) {
switch (condition) {
case kUncond:
return true;
case kCondGE:
case kCondLE:
case kCondEQ:
case kCondGEU:
return lhs == rhs;
default:
return false;
}
}
MipsAssembler::Branch::Branch(bool is_r6,
uint32_t location,
uint32_t target,
bool is_call,
bool is_bare)
: old_location_(location),
location_(location),
target_(target),
lhs_reg_(0),
rhs_reg_(0),
condition_(kUncond),
delayed_instruction_(kUnfilledDelaySlot),
patcher_label_(nullptr) {
InitializeType(
(is_call ? (is_bare ? kBareCall : kCall) : (is_bare ? kBareCondBranch : kCondBranch)),
is_r6);
}
MipsAssembler::Branch::Branch(bool is_r6,
uint32_t location,
uint32_t target,
MipsAssembler::BranchCondition condition,
Register lhs_reg,
Register rhs_reg,
bool is_bare)
: old_location_(location),
location_(location),
target_(target),
lhs_reg_(lhs_reg),
rhs_reg_(rhs_reg),
condition_(condition),
delayed_instruction_(kUnfilledDelaySlot),
patcher_label_(nullptr) {
CHECK_NE(condition, kUncond);
switch (condition) {
case kCondLT:
case kCondGE:
case kCondLE:
case kCondGT:
case kCondLTU:
case kCondGEU:
// We don't support synthetic R2 branches (preceded with slt[u]) at this level
// (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
// We leave this up to the caller.
CHECK(is_r6);
FALLTHROUGH_INTENDED;
case kCondEQ:
case kCondNE:
// Require registers other than 0 not only for R6, but also for R2 to catch errors.
// To compare with 0, use dedicated kCond*Z conditions.
CHECK_NE(lhs_reg, ZERO);
CHECK_NE(rhs_reg, ZERO);
break;
case kCondLTZ:
case kCondGEZ:
case kCondLEZ:
case kCondGTZ:
case kCondEQZ:
case kCondNEZ:
// Require registers other than 0 not only for R6, but also for R2 to catch errors.
CHECK_NE(lhs_reg, ZERO);
CHECK_EQ(rhs_reg, ZERO);
break;
case kCondF:
case kCondT:
CHECK_EQ(rhs_reg, ZERO);
break;
case kUncond:
UNREACHABLE();
}
CHECK(!IsNop(condition, lhs_reg, rhs_reg));
if (IsUncond(condition, lhs_reg, rhs_reg)) {
// Branch condition is always true, make the branch unconditional.
condition_ = kUncond;
}
InitializeType((is_bare ? kBareCondBranch : kCondBranch), is_r6);
}
MipsAssembler::Branch::Branch(bool is_r6,
uint32_t location,
Register dest_reg,
Register base_reg,
Type label_or_literal_type)
: old_location_(location),
location_(location),
target_(kUnresolved),
lhs_reg_(dest_reg),
rhs_reg_(base_reg),
condition_(kUncond),
delayed_instruction_(kUnfilledDelaySlot),
patcher_label_(nullptr) {
CHECK_NE(dest_reg, ZERO);
if (is_r6) {
CHECK_EQ(base_reg, ZERO);
}
InitializeType(label_or_literal_type, is_r6);
}
MipsAssembler::BranchCondition MipsAssembler::Branch::OppositeCondition(
MipsAssembler::BranchCondition cond) {
switch (cond) {
case kCondLT:
return kCondGE;
case kCondGE:
return kCondLT;
case kCondLE:
return kCondGT;
case kCondGT:
return kCondLE;
case kCondLTZ:
return kCondGEZ;
case kCondGEZ:
return kCondLTZ;
case kCondLEZ:
return kCondGTZ;
case kCondGTZ:
return kCondLEZ;
case kCondEQ:
return kCondNE;
case kCondNE:
return kCondEQ;
case kCondEQZ:
return kCondNEZ;
case kCondNEZ:
return kCondEQZ;
case kCondLTU:
return kCondGEU;
case kCondGEU:
return kCondLTU;
case kCondF:
return kCondT;
case kCondT:
return kCondF;
case kUncond:
LOG(FATAL) << "Unexpected branch condition " << cond;
}
UNREACHABLE();
}
MipsAssembler::Branch::Type MipsAssembler::Branch::GetType() const {
return type_;
}
MipsAssembler::BranchCondition MipsAssembler::Branch::GetCondition() const {
return condition_;
}
Register MipsAssembler::Branch::GetLeftRegister() const {
return static_cast<Register>(lhs_reg_);
}
Register MipsAssembler::Branch::GetRightRegister() const {
return static_cast<Register>(rhs_reg_);
}
uint32_t MipsAssembler::Branch::GetTarget() const {
return target_;
}
uint32_t MipsAssembler::Branch::GetLocation() const {
return location_;
}
uint32_t MipsAssembler::Branch::GetOldLocation() const {
return old_location_;
}
uint32_t MipsAssembler::Branch::GetPrecedingInstructionLength(Type type) const {
// Short branches with delay slots always consist of two instructions, the branch
// and the delay slot, irrespective of whether the delay slot is filled with a
// useful instruction or not.
// Long composite branches may have a length longer by one instruction than
// specified in branch_info_[].length. This happens when an instruction is taken
// to fill the short branch delay slot, but the branch eventually becomes long
// and formally has no delay slot to fill. This instruction is placed at the
// beginning of the long composite branch and this needs to be accounted for in
// the branch length and the location of the offset encoded in the branch.
switch (type) {
case kLongUncondBranch:
case kLongCondBranch:
case kLongCall:
case kR6LongCondBranch:
return (delayed_instruction_ != kUnfilledDelaySlot &&
delayed_instruction_ != kUnfillableDelaySlot) ? 1 : 0;
default:
return 0;
}
}
uint32_t MipsAssembler::Branch::GetPrecedingInstructionSize(Type type) const {
return GetPrecedingInstructionLength(type) * sizeof(uint32_t);
}
uint32_t MipsAssembler::Branch::GetLength() const {
return GetPrecedingInstructionLength(type_) + branch_info_[type_].length;
}
uint32_t MipsAssembler::Branch::GetOldLength() const {
return GetPrecedingInstructionLength(old_type_) + branch_info_[old_type_].length;
}
uint32_t MipsAssembler::Branch::GetSize() const {
return GetLength() * sizeof(uint32_t);
}
uint32_t MipsAssembler::Branch::GetOldSize() const {
return GetOldLength() * sizeof(uint32_t);
}
uint32_t MipsAssembler::Branch::GetEndLocation() const {
return GetLocation() + GetSize();
}
uint32_t MipsAssembler::Branch::GetOldEndLocation() const {
return GetOldLocation() + GetOldSize();
}
bool MipsAssembler::Branch::IsBare() const {
switch (type_) {
// R2 short branches (can't be promoted to long), delay slots filled manually.
case kBareUncondBranch:
case kBareCondBranch:
case kBareCall:
// R6 short branches (can't be promoted to long), forbidden/delay slots filled manually.
case kR6BareUncondBranch:
case kR6BareCondBranch:
case kR6BareCall:
return true;
default:
return false;
}
}
bool MipsAssembler::Branch::IsLong() const {
switch (type_) {
// R2 short branches (can be promoted to long).
case kUncondBranch:
case kCondBranch:
case kCall:
// R2 short branches (can't be promoted to long), delay slots filled manually.
case kBareUncondBranch:
case kBareCondBranch:
case kBareCall:
// R2 near label.
case kLabel:
// R2 near literal.
case kLiteral:
// R6 short branches (can be promoted to long).
case kR6UncondBranch:
case kR6CondBranch:
case kR6Call:
// R6 short branches (can't be promoted to long), forbidden/delay slots filled manually.
case kR6BareUncondBranch:
case kR6BareCondBranch:
case kR6BareCall:
// R6 near label.
case kR6Label:
// R6 near literal.
case kR6Literal:
return false;
// R2 long branches.
case kLongUncondBranch:
case kLongCondBranch:
case kLongCall:
// R2 far label.
case kFarLabel:
// R2 far literal.
case kFarLiteral:
// R6 long branches.
case kR6LongUncondBranch:
case kR6LongCondBranch:
case kR6LongCall:
// R6 far label.
case kR6FarLabel:
// R6 far literal.
case kR6FarLiteral:
return true;
}
UNREACHABLE();
}
bool MipsAssembler::Branch::IsResolved() const {
return target_ != kUnresolved;
}
MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSize() const {
bool r6_cond_branch = (type_ == kR6CondBranch || type_ == kR6BareCondBranch);
OffsetBits offset_size =
(r6_cond_branch && (condition_ == kCondEQZ || condition_ == kCondNEZ))
? kOffset23
: branch_info_[type_].offset_size;
return offset_size;
}
MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSizeNeeded(uint32_t location,
uint32_t target) {
// For unresolved targets assume the shortest encoding
// (later it will be made longer if needed).
if (target == kUnresolved)
return kOffset16;
int64_t distance = static_cast<int64_t>(target) - location;
// To simplify calculations in composite branches consisting of multiple instructions
// bump up the distance by a value larger than the max byte size of a composite branch.
distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize;
if (IsInt<kOffset16>(distance))
return kOffset16;
else if (IsInt<kOffset18>(distance))
return kOffset18;
else if (IsInt<kOffset21>(distance))
return kOffset21;
else if (IsInt<kOffset23>(distance))
return kOffset23;
else if (IsInt<kOffset28>(distance))
return kOffset28;
return kOffset32;
}
void MipsAssembler::Branch::Resolve(uint32_t target) {
target_ = target;
}
void MipsAssembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) {
if (location_ > expand_location) {
location_ += delta;
}
if (!IsResolved()) {
return; // Don't know the target yet.
}
if (target_ > expand_location) {
target_ += delta;
}
}
void MipsAssembler::Branch::PromoteToLong() {
CHECK(!IsBare()); // Bare branches do not promote.
switch (type_) {
// R2 short branches (can be promoted to long).
case kUncondBranch:
type_ = kLongUncondBranch;
break;
case kCondBranch:
type_ = kLongCondBranch;
break;
case kCall:
type_ = kLongCall;
break;
// R2 near label.
case kLabel:
type_ = kFarLabel;
break;
// R2 near literal.
case kLiteral:
type_ = kFarLiteral;
break;
// R6 short branches (can be promoted to long).
case kR6UncondBranch:
type_ = kR6LongUncondBranch;
break;
case kR6CondBranch:
type_ = kR6LongCondBranch;
break;
case kR6Call:
type_ = kR6LongCall;
break;
// R6 near label.
case kR6Label:
type_ = kR6FarLabel;
break;
// R6 near literal.
case kR6Literal:
type_ = kR6FarLiteral;
break;
default:
// Note: 'type_' is already long.
break;
}
CHECK(IsLong());
}
uint32_t MipsAssembler::GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const {
switch (branch->GetType()) {
case Branch::kLabel:
case Branch::kFarLabel:
case Branch::kLiteral:
case Branch::kFarLiteral:
if (branch->GetRightRegister() != ZERO) {
return GetLabelLocation(&pc_rel_base_label_);
}
// For those label/literal loads which come with their own NAL instruction
// and don't depend on `pc_rel_base_label_` we can simply use the location
// of the "branch" (the NAL precedes the "branch" immediately). The location
// is close enough for the user of the returned location, PromoteIfNeeded(),
// to not miss needed promotion to a far load.
// (GetOffsetSizeNeeded() provides a little leeway by means of kMaxBranchSize,
// which is larger than all composite branches and label/literal loads: it's
// OK to promote a bit earlier than strictly necessary, it makes things
// simpler.)
FALLTHROUGH_INTENDED;
default:
return branch->GetLocation();
}
}
uint32_t MipsAssembler::Branch::PromoteIfNeeded(uint32_t location, uint32_t max_short_distance) {
// `location` comes from GetBranchLocationOrPcRelBase() and is either the location
// of the PC-relative branch or (for some R2 label and literal loads) the location
// of `pc_rel_base_label_`. The PC-relative offset of the branch/load is relative
// to this location.
// If the branch is still unresolved or already long, nothing to do.
if (IsLong() || !IsResolved()) {
return 0;
}
// Promote the short branch to long if the offset size is too small
// to hold the distance between location and target_.
if (GetOffsetSizeNeeded(location, target_) > GetOffsetSize()) {
PromoteToLong();
uint32_t old_size = GetOldSize();
uint32_t new_size = GetSize();
CHECK_GT(new_size, old_size);
return new_size - old_size;
}
// The following logic is for debugging/testing purposes.
// Promote some short branches to long when it's not really required.
if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max() && !IsBare())) {
int64_t distance = static_cast<int64_t>(target_) - location;
distance = (distance >= 0) ? distance : -distance;
if (distance >= max_short_distance) {
PromoteToLong();
uint32_t old_size = GetOldSize();
uint32_t new_size = GetSize();
CHECK_GT(new_size, old_size);
return new_size - old_size;
}
}
return 0;
}
uint32_t MipsAssembler::Branch::GetOffsetLocation() const {
return location_ + GetPrecedingInstructionSize(type_) +
branch_info_[type_].instr_offset * sizeof(uint32_t);
}
uint32_t MipsAssembler::GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const {
switch (branch->GetType()) {
case Branch::kLabel:
case Branch::kFarLabel:
case Branch::kLiteral:
case Branch::kFarLiteral:
if (branch->GetRightRegister() == ZERO) {
// These loads don't use `pc_rel_base_label_` and instead rely on their own
// NAL instruction (it immediately precedes the "branch"). Therefore the
// effective PC-relative base register is RA and it corresponds to the 2nd
// instruction after the NAL.
return branch->GetLocation() + sizeof(uint32_t);
} else {
return GetLabelLocation(&pc_rel_base_label_);
}
default:
return branch->GetOffsetLocation() +
Branch::branch_info_[branch->GetType()].pc_org * sizeof(uint32_t);
}
}
uint32_t MipsAssembler::Branch::GetOffset(uint32_t location) const {
// `location` comes from GetBranchOrPcRelBaseForEncoding() and is either a location
// within/near the PC-relative branch or (for some R2 label and literal loads) the
// location of `pc_rel_base_label_`. The PC-relative offset of the branch/load is
// relative to this location.
CHECK(IsResolved());
uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize());
// Calculate the byte distance between instructions and also account for
// different PC-relative origins.
uint32_t offset = target_ - location;
// Prepare the offset for encoding into the instruction(s).
offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift;
return offset;
}
MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) {
CHECK_LT(branch_id, branches_.size());
return &branches_[branch_id];
}
const MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) const {
CHECK_LT(branch_id, branches_.size());
return &branches_[branch_id];
}
void MipsAssembler::BindRelativeToPrecedingBranch(MipsLabel* label,
uint32_t prev_branch_id_plus_one,
uint32_t position) {
if (prev_branch_id_plus_one != 0) {
const Branch* branch = GetBranch(prev_branch_id_plus_one - 1);
position -= branch->GetEndLocation();
}
label->prev_branch_id_plus_one_ = prev_branch_id_plus_one;
label->BindTo(position);
}
void MipsAssembler::Bind(MipsLabel* label) {
CHECK(!label->IsBound());
uint32_t bound_pc = buffer_.Size();
// Make the delay slot FSM aware of the new label.
DsFsmLabel();
// Walk the list of branches referring to and preceding this label.
// Store the previously unknown target addresses in them.
while (label->IsLinked()) {
uint32_t branch_id = label->Position();
Branch* branch = GetBranch(branch_id);
branch->Resolve(bound_pc);
uint32_t branch_location = branch->GetLocation();
// Extract the location of the previous branch in the list (walking the list backwards;
// the previous branch ID was stored in the space reserved for this branch).
uint32_t prev = buffer_.Load<uint32_t>(branch_location);
// On to the previous branch in the list...
label->position_ = prev;
}
// Now make the label object contain its own location (relative to the end of the preceding
// branch, if any; it will be used by the branches referring to and following this label).
BindRelativeToPrecedingBranch(label, branches_.size(), bound_pc);
}
uint32_t MipsAssembler::GetLabelLocation(const MipsLabel* label) const {
CHECK(label->IsBound());
uint32_t target = label->Position();
if (label->prev_branch_id_plus_one_ != 0) {
// Get label location based on the branch preceding it.
const Branch* branch = GetBranch(label->prev_branch_id_plus_one_ - 1);
target += branch->GetEndLocation();
}
return target;
}
uint32_t MipsAssembler::GetAdjustedPosition(uint32_t old_position) {
// We can reconstruct the adjustment by going through all the branches from the beginning
// up to the old_position. Since we expect AdjustedPosition() to be called in a loop
// with increasing old_position, we can use the data from last AdjustedPosition() to
// continue where we left off and the whole loop should be O(m+n) where m is the number
// of positions to adjust and n is the number of branches.
if (old_position < last_old_position_) {
last_position_adjustment_ = 0;
last_old_position_ = 0;
last_branch_id_ = 0;
}
while (last_branch_id_ != branches_.size()) {
const Branch* branch = GetBranch(last_branch_id_);
if (branch->GetLocation() >= old_position + last_position_adjustment_) {
break;
}
last_position_adjustment_ += branch->GetSize() - branch->GetOldSize();
++last_branch_id_;
}
last_old_position_ = old_position;
return old_position + last_position_adjustment_;
}
void MipsAssembler::BindPcRelBaseLabel() {
Bind(&pc_rel_base_label_);
}
uint32_t MipsAssembler::GetPcRelBaseLabelLocation() const {
return GetLabelLocation(&pc_rel_base_label_);
}
void MipsAssembler::FinalizeLabeledBranch(MipsLabel* label) {
uint32_t length = branches_.back().GetLength();
// Commit the last branch target label (if any).
DsFsmCommitLabel();
if (!label->IsBound()) {
// Branch forward (to a following label), distance is unknown.
// The first branch forward will contain 0, serving as the terminator of
// the list of forward-reaching branches.
Emit(label->position_);
// Nothing for the delay slot (yet).
DsFsmInstrNop(0);
length--;
// Now make the label object point to this branch
// (this forms a linked list of branches preceding this label).
uint32_t branch_id = branches_.size() - 1;
label->LinkTo(branch_id);
}
// Reserve space for the branch.
while (length--) {
Nop();
}
}
bool MipsAssembler::Branch::CanHaveDelayedInstruction(const DelaySlot& delay_slot) const {
if (delay_slot.instruction_ == 0) {
// NOP or no instruction for the delay slot.
return false;
}
switch (type_) {
// R2 unconditional branches.
case kUncondBranch:
case kLongUncondBranch:
// There are no register interdependencies.
return true;
// R2 calls.
case kCall:
case kLongCall:
// Instructions depending on or modifying RA should not be moved into delay slots
// of branches modifying RA.
return ((delay_slot.masks_.gpr_ins_ | delay_slot.masks_.gpr_outs_) & (1u << RA)) == 0;
// R2 conditional branches.
case kCondBranch:
case kLongCondBranch:
switch (condition_) {
// Branches with one GPR source.
case kCondLTZ:
case kCondGEZ:
case kCondLEZ:
case kCondGTZ:
case kCondEQZ:
case kCondNEZ:
return (delay_slot.masks_.gpr_outs_ & (1u << lhs_reg_)) == 0;
// Branches with two GPR sources.
case kCondEQ:
case kCondNE:
return (delay_slot.masks_.gpr_outs_ & ((1u << lhs_reg_) | (1u << rhs_reg_))) == 0;
// Branches with one FPU condition code source.
case kCondF:
case kCondT:
return (delay_slot.masks_.cc_outs_ & (1u << lhs_reg_)) == 0;
default:
// We don't support synthetic R2 branches (preceded with slt[u]) at this level
// (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
LOG(FATAL) << "Unexpected branch condition " << condition_;
UNREACHABLE();
}
// R6 unconditional branches.
case kR6UncondBranch:
case kR6LongUncondBranch:
// R6 calls.
case kR6Call:
case kR6LongCall:
// There are no delay slots.
return false;
// R6 conditional branches.
case kR6CondBranch:
case kR6LongCondBranch:
switch (condition_) {
// Branches with one FPU register source.
case kCondF:
case kCondT:
return (delay_slot.masks_.fpr_outs_ & (1u << lhs_reg_)) == 0;
// Others have a forbidden slot instead of a delay slot.
default:
return false;
}
// Literals.
default:
LOG(FATAL) << "Unexpected branch type " << type_;
UNREACHABLE();
}
}
uint32_t MipsAssembler::Branch::GetDelayedInstruction() const {
return delayed_instruction_;
}
MipsLabel* MipsAssembler::Branch::GetPatcherLabel() const {
return patcher_label_;
}
void MipsAssembler::Branch::SetDelayedInstruction(uint32_t instruction, MipsLabel* patcher_label) {
CHECK_NE(instruction, kUnfilledDelaySlot);
CHECK_EQ(delayed_instruction_, kUnfilledDelaySlot);
delayed_instruction_ = instruction;
patcher_label_ = patcher_label;
}
void MipsAssembler::Branch::DecrementLocations() {
// We first create a branch object, which gets its type and locations initialized,
// and then we check if the branch can actually have the preceding instruction moved
// into its delay slot. If it can, the branch locations need to be decremented.
//
// We could make the check before creating the branch object and avoid the location
// adjustment, but the check is cleaner when performed on an initialized branch
// object.
//
// If the branch is backwards (to a previously bound label), reducing the locations
// cannot cause a short branch to exceed its offset range because the offset reduces.
// And this is not at all a problem for a long branch backwards.
//
// If the branch is forward (not linked to any label yet), reducing the locations
// is harmless. The branch will be promoted to long if needed when the target is known.
CHECK_EQ(location_, old_location_);
CHECK_GE(old_location_, sizeof(uint32_t));
old_location_ -= sizeof(uint32_t);
location_ = old_location_;
}
void MipsAssembler::MoveInstructionToDelaySlot(Branch& branch) {
if (branch.IsBare()) {
// Delay slots are filled manually in bare branches.
return;
}
if (branch.CanHaveDelayedInstruction(delay_slot_)) {
// The last instruction cannot be used in a different delay slot,
// do not commit the label before it (if any).
DsFsmDropLabel();
// Remove the last emitted instruction.
size_t size = buffer_.Size();
CHECK_GE(size, sizeof(uint32_t));
size -= sizeof(uint32_t);
CHECK_EQ(buffer_.Load<uint32_t>(size), delay_slot_.instruction_);
buffer_.Resize(size);
// Attach it to the branch and adjust the branch locations.
branch.DecrementLocations();
branch.SetDelayedInstruction(delay_slot_.instruction_, delay_slot_.patcher_label_);
} else if (!reordering_ && branch.GetType() == Branch::kUncondBranch) {
// If reordefing is disabled, prevent absorption of the target instruction.
branch.SetDelayedInstruction(Branch::kUnfillableDelaySlot);
}
}
void MipsAssembler::Buncond(MipsLabel* label, bool is_r6, bool is_bare) {
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(is_r6, buffer_.Size(), target, /* is_call */ false, is_bare);
MoveInstructionToDelaySlot(branches_.back());
FinalizeLabeledBranch(label);
}
void MipsAssembler::Bcond(MipsLabel* label,
bool is_r6,
bool is_bare,
BranchCondition condition,
Register lhs,
Register rhs) {
// If lhs = rhs, this can be a NOP.
if (Branch::IsNop(condition, lhs, rhs)) {
return;
}
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(is_r6, buffer_.Size(), target, condition, lhs, rhs, is_bare);
MoveInstructionToDelaySlot(branches_.back());
FinalizeLabeledBranch(label);
}
void MipsAssembler::Call(MipsLabel* label, bool is_r6, bool is_bare) {
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(is_r6, buffer_.Size(), target, /* is_call */ true, is_bare);
MoveInstructionToDelaySlot(branches_.back());
FinalizeLabeledBranch(label);
}
void MipsAssembler::LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label) {
// Label address loads are treated as pseudo branches since they require very similar handling.
DCHECK(!label->IsBound());
// If `pc_rel_base_label_` isn't bound or none of registers contains its address, we
// may generate an individual NAL instruction to simulate PC-relative addressing on R2
// by specifying `base_reg` of `ZERO`. Check for it.
if (base_reg == ZERO && !IsR6()) {
Nal();
}
branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLabel);
FinalizeLabeledBranch(label);
}
Literal* MipsAssembler::NewLiteral(size_t size, const uint8_t* data) {
DCHECK(size == 4u || size == 8u) << size;
literals_.emplace_back(size, data);
return &literals_.back();
}
void MipsAssembler::LoadLiteral(Register dest_reg, Register base_reg, Literal* literal) {
// Literal loads are treated as pseudo branches since they require very similar handling.
DCHECK_EQ(literal->GetSize(), 4u);
MipsLabel* label = literal->GetLabel();
DCHECK(!label->IsBound());
// If `pc_rel_base_label_` isn't bound or none of registers contains its address, we
// may generate an individual NAL instruction to simulate PC-relative addressing on R2
// by specifying `base_reg` of `ZERO`. Check for it.
if (base_reg == ZERO && !IsR6()) {
Nal();
}
branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLiteral);
FinalizeLabeledBranch(label);
}
JumpTable* MipsAssembler::CreateJumpTable(std::vector<MipsLabel*>&& labels) {
jump_tables_.emplace_back(std::move(labels));
JumpTable* table = &jump_tables_.back();
DCHECK(!table->GetLabel()->IsBound());
return table;
}
void MipsAssembler::EmitLiterals() {
if (!literals_.empty()) {
// We don't support byte and half-word literals.
// TODO: proper alignment for 64-bit literals when they're implemented.
for (Literal& literal : literals_) {
MipsLabel* label = literal.GetLabel();
Bind(label);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
DCHECK(literal.GetSize() == 4u || literal.GetSize() == 8u);
for (size_t i = 0, size = literal.GetSize(); i != size; ++i) {
buffer_.Emit<uint8_t>(literal.GetData()[i]);
}
}
}
}
void MipsAssembler::ReserveJumpTableSpace() {
if (!jump_tables_.empty()) {
for (JumpTable& table : jump_tables_) {
MipsLabel* label = table.GetLabel();
Bind(label);
// Bulk ensure capacity, as this may be large.
size_t orig_size = buffer_.Size();
size_t required_capacity = orig_size + table.GetSize();
if (required_capacity > buffer_.Capacity()) {
buffer_.ExtendCapacity(required_capacity);
}
#ifndef NDEBUG
buffer_.has_ensured_capacity_ = true;
#endif
// Fill the space with dummy data as the data is not final
// until the branches have been promoted. And we shouldn't
// be moving uninitialized data during branch promotion.
for (size_t cnt = table.GetData().size(), i = 0; i < cnt; i++) {
buffer_.Emit<uint32_t>(0x1abe1234u);
}
#ifndef NDEBUG
buffer_.has_ensured_capacity_ = false;
#endif
}
}
}
void MipsAssembler::EmitJumpTables() {
if (!jump_tables_.empty()) {
CHECK(!overwriting_);
// Switch from appending instructions at the end of the buffer to overwriting
// existing instructions (here, jump tables) in the buffer.
overwriting_ = true;
for (JumpTable& table : jump_tables_) {
MipsLabel* table_label = table.GetLabel();
uint32_t start = GetLabelLocation(table_label);
overwrite_location_ = start;
for (MipsLabel* target : table.GetData()) {
CHECK_EQ(buffer_.Load<uint32_t>(overwrite_location_), 0x1abe1234u);
// The table will contain target addresses relative to the table start.
uint32_t offset = GetLabelLocation(target) - start;
Emit(offset);
}
}
overwriting_ = false;
}
}
void MipsAssembler::PromoteBranches() {
// Promote short branches to long as necessary.
bool changed;
do {
changed = false;
for (auto& branch : branches_) {
CHECK(branch.IsResolved());
uint32_t base = GetBranchLocationOrPcRelBase(&branch);
uint32_t delta = branch.PromoteIfNeeded(base);
// If this branch has been promoted and needs to expand in size,
// relocate all branches by the expansion size.
if (delta) {
changed = true;
uint32_t expand_location = branch.GetLocation();
for (auto& branch2 : branches_) {
branch2.Relocate(expand_location, delta);
}
}
}
} while (changed);
// Account for branch expansion by resizing the code buffer
// and moving the code in it to its final location.
size_t branch_count = branches_.size();
if (branch_count > 0) {
// Resize.
Branch& last_branch = branches_[branch_count - 1];
uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation();
uint32_t old_size = buffer_.Size();
buffer_.Resize(old_size + size_delta);
// Move the code residing between branch placeholders.
uint32_t end = old_size;
for (size_t i = branch_count; i > 0; ) {
Branch& branch = branches_[--i];
CHECK_GE(end, branch.GetOldEndLocation());
uint32_t size = end - branch.GetOldEndLocation();
buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size);
end = branch.GetOldLocation();
}
}
}
// Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
const MipsAssembler::Branch::BranchInfo MipsAssembler::Branch::branch_info_[] = {
// R2 short branches (can be promoted to long).
{ 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kUncondBranch
{ 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCondBranch
{ 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCall
// R2 short branches (can't be promoted to long), delay slots filled manually.
{ 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareUncondBranch
{ 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareCondBranch
{ 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareCall
// R2 near label.
{ 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLabel
// R2 near literal.
{ 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLiteral
// R2 long branches.
{ 9, 3, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongUncondBranch
{ 10, 4, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCondBranch
{ 6, 1, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCall
// R2 far label.
{ 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLabel
// R2 far literal.
{ 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLiteral
// R6 short branches (can be promoted to long).
{ 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6UncondBranch
{ 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6CondBranch
// Exception: kOffset23 for beqzc/bnezc.
{ 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6Call
// R6 short branches (can't be promoted to long), forbidden/delay slots filled manually.
{ 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6BareUncondBranch
{ 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6BareCondBranch
// Exception: kOffset23 for beqzc/bnezc.
{ 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6BareCall
// R6 near label.
{ 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Label
// R6 near literal.
{ 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Literal
// R6 long branches.
{ 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongUncondBranch
{ 3, 1, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCondBranch
{ 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCall
// R6 far label.
{ 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLabel
// R6 far literal.
{ 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLiteral
};
static inline bool IsAbsorbableInstruction(uint32_t instruction) {
// The relative patcher patches addiu, lw and sw with an immediate operand of 0x5678.
// We want to make sure that these instructions do not get absorbed into delay slots
// of unconditional branches on R2. Absorption would otherwise make copies of
// unpatched instructions.
if ((instruction & 0xFFFF) != 0x5678) {
return true;
}
switch (instruction >> kOpcodeShift) {
case 0x09: // Addiu.
case 0x23: // Lw.
case 0x2B: // Sw.
return false;
default:
return true;
}
}
static inline Register GetR2PcRelBaseRegister(Register reg) {
// LoadLabelAddress() and LoadLiteral() generate individual NAL
// instructions on R2 when the specified base register is ZERO
// and so the effective PC-relative base register is RA, not ZERO.
return (reg == ZERO) ? RA : reg;
}
// Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
void MipsAssembler::EmitBranch(uint32_t branch_id) {
CHECK_EQ(overwriting_, true);
Branch* branch = GetBranch(branch_id);
overwrite_location_ = branch->GetLocation();
uint32_t offset = branch->GetOffset(GetBranchOrPcRelBaseForEncoding(branch));
BranchCondition condition = branch->GetCondition();
Register lhs = branch->GetLeftRegister();
Register rhs = branch->GetRightRegister();
uint32_t delayed_instruction = branch->GetDelayedInstruction();
MipsLabel* patcher_label = branch->GetPatcherLabel();
if (patcher_label != nullptr) {
// Update the patcher label location to account for branch promotion and
// delay slot filling.
CHECK(patcher_label->IsBound());
uint32_t bound_pc = branch->GetLocation();
if (!branch->IsLong()) {
// Short branches precede delay slots.
// Long branches follow "delay slots".
bound_pc += sizeof(uint32_t);
}
// Rebind the label.
patcher_label->Reinitialize();
BindRelativeToPrecedingBranch(patcher_label, branch_id, bound_pc);
}
switch (branch->GetType()) {
// R2 short branches.
case Branch::kUncondBranch:
if (delayed_instruction == Branch::kUnfillableDelaySlot) {
// The branch was created when reordering was disabled, do not absorb the target
// instruction.
delayed_instruction = 0; // NOP.
} else if (delayed_instruction == Branch::kUnfilledDelaySlot) {
// Try to absorb the target instruction into the delay slot.
delayed_instruction = 0; // NOP.
// Incrementing the signed 16-bit offset past the target instruction must not
// cause overflow into the negative subrange, check for the max offset.
if (offset != 0x7FFF) {
uint32_t target = branch->GetTarget();
if (std::binary_search(ds_fsm_target_pcs_.begin(), ds_fsm_target_pcs_.end(), target)) {
uint32_t target_instruction = buffer_.Load<uint32_t>(target);
if (IsAbsorbableInstruction(target_instruction)) {
delayed_instruction = target_instruction;
offset++;
}
}
}
}
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
B(offset);
Emit(delayed_instruction);
break;
case Branch::kCondBranch:
DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
if (delayed_instruction == Branch::kUnfilledDelaySlot) {
delayed_instruction = 0; // NOP.
}
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
EmitBcondR2(condition, lhs, rhs, offset);
Emit(delayed_instruction);
break;
case Branch::kCall:
DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
if (delayed_instruction == Branch::kUnfilledDelaySlot) {
delayed_instruction = 0; // NOP.
}
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Bal(offset);
Emit(delayed_instruction);
break;
case Branch::kBareUncondBranch:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
B(offset);
break;
case Branch::kBareCondBranch:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
EmitBcondR2(condition, lhs, rhs, offset);
break;
case Branch::kBareCall:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Bal(offset);
break;
// R2 near label.
case Branch::kLabel:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Addiu(lhs, GetR2PcRelBaseRegister(rhs), offset);
break;
// R2 near literal.
case Branch::kLiteral:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lw(lhs, GetR2PcRelBaseRegister(rhs), offset);
break;
// R2 long branches.
case Branch::kLongUncondBranch:
// To get the value of the PC register we need to use the NAL instruction.
// NAL clobbers the RA register. However, RA must be preserved if the
// method is compiled without the entry/exit sequences that would take care
// of preserving RA (typically, leaf methods don't preserve RA explicitly).
// So, we need to preserve RA in some temporary storage ourselves. The AT
// register can't be used for this because we need it to load a constant
// which will be added to the value that NAL stores in RA. And we can't
// use T9 for this in the context of the JNI compiler, which uses it
// as a scratch register (see InterproceduralScratchRegister()).
// If we were to add a 32-bit constant to RA using two ADDIU instructions,
// we'd also need to use the ROTR instruction, which requires no less than
// MIPSR2.
// Perhaps, we could use T8 or one of R2's multiplier/divider registers
// (LO or HI) or even a floating-point register, but that doesn't seem
// like a nice solution. We may want this to work on both R6 and pre-R6.
// For now simply use the stack for RA. This should be OK since for the
// vast majority of code a short PC-relative branch is sufficient.
// TODO: can this be improved?
// TODO: consider generation of a shorter sequence when we know that RA
// is explicitly preserved by the method entry/exit code.
if (delayed_instruction != Branch::kUnfilledDelaySlot &&
delayed_instruction != Branch::kUnfillableDelaySlot) {
Emit(delayed_instruction);
}
Push(RA);
Nal();
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lui(AT, High16Bits(offset));
Ori(AT, AT, Low16Bits(offset));
Addu(AT, AT, RA);
Lw(RA, SP, 0);
Jr(AT);
DecreaseFrameSize(kStackAlignment);
break;
case Branch::kLongCondBranch:
// The comment on case 'Branch::kLongUncondBranch' applies here as well.
DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
if (delayed_instruction != Branch::kUnfilledDelaySlot) {
Emit(delayed_instruction);
}
// Note: the opposite condition branch encodes 8 as the distance, which is equal to the
// number of instructions skipped:
// (PUSH(IncreaseFrameSize(ADDIU) + SW) + NAL + LUI + ORI + ADDU + LW + JR).
EmitBcondR2(Branch::OppositeCondition(condition), lhs, rhs, 8);
Push(RA);
Nal();
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lui(AT, High16Bits(offset));
Ori(AT, AT, Low16Bits(offset));
Addu(AT, AT, RA);
Lw(RA, SP, 0);
Jr(AT);
DecreaseFrameSize(kStackAlignment);
break;
case Branch::kLongCall:
DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
if (delayed_instruction != Branch::kUnfilledDelaySlot) {
Emit(delayed_instruction);
}
Nal();
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lui(AT, High16Bits(offset));
Ori(AT, AT, Low16Bits(offset));
Addu(AT, AT, RA);
Jalr(AT);
Nop();
break;
// R2 far label.
case Branch::kFarLabel:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lui(AT, High16Bits(offset));
Ori(AT, AT, Low16Bits(offset));
Addu(lhs, AT, GetR2PcRelBaseRegister(rhs));
break;
// R2 far literal.
case Branch::kFarLiteral:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
offset += (offset & 0x8000) << 1; // Account for sign extension in lw.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lui(AT, High16Bits(offset));
Addu(AT, AT, GetR2PcRelBaseRegister(rhs));
Lw(lhs, AT, Low16Bits(offset));
break;
// R6 short branches.
case Branch::kR6UncondBranch:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Bc(offset);
break;
case Branch::kR6CondBranch:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
EmitBcondR6(condition, lhs, rhs, offset);
DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
if (delayed_instruction != Branch::kUnfilledDelaySlot) {
Emit(delayed_instruction);
} else {
// TODO: improve by filling the forbidden slot (IFF this is
// a forbidden and not a delay slot).
Nop();
}
break;
case Branch::kR6Call:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Balc(offset);
break;
case Branch::kR6BareUncondBranch:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Bc(offset);
break;
case Branch::kR6BareCondBranch:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
EmitBcondR6(condition, lhs, rhs, offset);
break;
case Branch::kR6BareCall:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Balc(offset);
break;
// R6 near label.
case Branch::kR6Label:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Addiupc(lhs, offset);
break;
// R6 near literal.
case Branch::kR6Literal:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lwpc(lhs, offset);
break;
// R6 long branches.
case Branch::kR6LongUncondBranch:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Jic(AT, Low16Bits(offset));
break;
case Branch::kR6LongCondBranch:
DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
if (delayed_instruction != Branch::kUnfilledDelaySlot) {
Emit(delayed_instruction);
}
EmitBcondR6(Branch::OppositeCondition(condition), lhs, rhs, 2);
offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Jic(AT, Low16Bits(offset));
break;
case Branch::kR6LongCall:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
offset += (offset & 0x8000) << 1; // Account for sign extension in jialc.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Jialc(AT, Low16Bits(offset));
break;
// R6 far label.
case Branch::kR6FarLabel:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
offset += (offset & 0x8000) << 1; // Account for sign extension in addiu.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Addiu(lhs, AT, Low16Bits(offset));
break;
// R6 far literal.
case Branch::kR6FarLiteral:
DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
offset += (offset & 0x8000) << 1; // Account for sign extension in lw.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Lw(lhs, AT, Low16Bits(offset));
break;
}
CHECK_EQ(overwrite_location_, branch->GetEndLocation());
CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize));
if (patcher_label != nullptr) {
// The patched instruction should look like one.
uint32_t patched_instruction = buffer_.Load<uint32_t>(GetLabelLocation(patcher_label));
CHECK(!IsAbsorbableInstruction(patched_instruction));
}
}
void MipsAssembler::B(MipsLabel* label, bool is_bare) {
Buncond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare);
}
void MipsAssembler::Bal(MipsLabel* label, bool is_bare) {
Call(label, /* is_r6 */ (IsR6() && !is_bare), is_bare);
}
void MipsAssembler::Beq(Register rs, Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondEQ, rs, rt);
}
void MipsAssembler::Bne(Register rs, Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondNE, rs, rt);
}
void MipsAssembler::Beqz(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondEQZ, rt);
}
void MipsAssembler::Bnez(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondNEZ, rt);
}
void MipsAssembler::Bltz(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondLTZ, rt);
}
void MipsAssembler::Bgez(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondGEZ, rt);
}
void MipsAssembler::Blez(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondLEZ, rt);
}
void MipsAssembler::Bgtz(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondGTZ, rt);
}
bool MipsAssembler::CanExchangeWithSlt(Register rs, Register rt) const {
// If the instruction modifies AT, `rs` or `rt`, it can't be exchanged with the slt[u]
// instruction because either slt[u] depends on `rs` or `rt` or the following
// conditional branch depends on AT set by slt[u].
// Likewise, if the instruction depends on AT, it can't be exchanged with slt[u]
// because slt[u] changes AT.
return (delay_slot_.instruction_ != 0 &&
(delay_slot_.masks_.gpr_outs_ & ((1u << AT) | (1u << rs) | (1u << rt))) == 0 &&
(delay_slot_.masks_.gpr_ins_ & (1u << AT)) == 0);
}
void MipsAssembler::ExchangeWithSlt(const DelaySlot& forwarded_slot) {
// Exchange the last two instructions in the assembler buffer.
size_t size = buffer_.Size();
CHECK_GE(size, 2 * sizeof(uint32_t));
size_t pos1 = size - 2 * sizeof(uint32_t);
size_t pos2 = size - sizeof(uint32_t);
uint32_t instr1 = buffer_.Load<uint32_t>(pos1);
uint32_t instr2 = buffer_.Load<uint32_t>(pos2);
CHECK_EQ(instr1, forwarded_slot.instruction_);
CHECK_EQ(instr2, delay_slot_.instruction_);
buffer_.Store<uint32_t>(pos1, instr2);
buffer_.Store<uint32_t>(pos2, instr1);
// Set the current delay slot information to that of the last instruction
// in the buffer.
delay_slot_ = forwarded_slot;
}
void MipsAssembler::GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt) {
// If possible, exchange the slt[u] instruction with the preceding instruction,
// so it can fill the delay slot.
DelaySlot forwarded_slot = delay_slot_;
bool exchange = CanExchangeWithSlt(rs, rt);
if (exchange) {
// The last instruction cannot be used in a different delay slot,
// do not commit the label before it (if any).
DsFsmDropLabel();
}
if (unsigned_slt) {
Sltu(AT, rs, rt);
} else {
Slt(AT, rs, rt);
}
if (exchange) {
ExchangeWithSlt(forwarded_slot);
}
}
void MipsAssembler::Blt(Register rs, Register rt, MipsLabel* label, bool is_bare) {
if (IsR6() && !is_bare) {
Bcond(label, IsR6(), is_bare, kCondLT, rs, rt);
} else if (!Branch::IsNop(kCondLT, rs, rt)) {
// Synthesize the instruction (not available on R2).
GenerateSltForCondBranch(/* unsigned_slt */ false, rs, rt);
Bnez(AT, label, is_bare);
}
}
void MipsAssembler::Bge(Register rs, Register rt, MipsLabel* label, bool is_bare) {
if (IsR6() && !is_bare) {
Bcond(label, IsR6(), is_bare, kCondGE, rs, rt);
} else if (Branch::IsUncond(kCondGE, rs, rt)) {
B(label, is_bare);
} else {
// Synthesize the instruction (not available on R2).
GenerateSltForCondBranch(/* unsigned_slt */ false, rs, rt);
Beqz(AT, label, is_bare);
}
}
void MipsAssembler::Bltu(Register rs, Register rt, MipsLabel* label, bool is_bare) {
if (IsR6() && !is_bare) {
Bcond(label, IsR6(), is_bare, kCondLTU, rs, rt);
} else if (!Branch::IsNop(kCondLTU, rs, rt)) {
// Synthesize the instruction (not available on R2).
GenerateSltForCondBranch(/* unsigned_slt */ true, rs, rt);
Bnez(AT, label, is_bare);
}
}
void MipsAssembler::Bgeu(Register rs, Register rt, MipsLabel* label, bool is_bare) {
if (IsR6() && !is_bare) {
Bcond(label, IsR6(), is_bare, kCondGEU, rs, rt);
} else if (Branch::IsUncond(kCondGEU, rs, rt)) {
B(label, is_bare);
} else {
// Synthesize the instruction (not available on R2).
GenerateSltForCondBranch(/* unsigned_slt */ true, rs, rt);
Beqz(AT, label, is_bare);
}
}
void MipsAssembler::Bc1f(MipsLabel* label, bool is_bare) {
Bc1f(0, label, is_bare);
}
void MipsAssembler::Bc1f(int cc, MipsLabel* label, bool is_bare) {
CHECK(IsUint<3>(cc)) << cc;
Bcond(label, /* is_r6 */ false, is_bare, kCondF, static_cast<Register>(cc), ZERO);
}
void MipsAssembler::Bc1t(MipsLabel* label, bool is_bare) {
Bc1t(0, label, is_bare);
}
void MipsAssembler::Bc1t(int cc, MipsLabel* label, bool is_bare) {
CHECK(IsUint<3>(cc)) << cc;
Bcond(label, /* is_r6 */ false, is_bare, kCondT, static_cast<Register>(cc), ZERO);
}
void MipsAssembler::Bc(MipsLabel* label, bool is_bare) {
Buncond(label, /* is_r6 */ true, is_bare);
}
void MipsAssembler::Balc(MipsLabel* label, bool is_bare) {
Call(label, /* is_r6 */ true, is_bare);
}
void MipsAssembler::Beqc(Register rs, Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondEQ, rs, rt);
}
void MipsAssembler::Bnec(Register rs, Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondNE, rs, rt);
}
void MipsAssembler::Beqzc(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondEQZ, rt);
}
void MipsAssembler::Bnezc(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondNEZ, rt);
}
void MipsAssembler::Bltzc(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondLTZ, rt);
}
void MipsAssembler::Bgezc(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondGEZ, rt);
}
void MipsAssembler::Blezc(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondLEZ, rt);
}
void MipsAssembler::Bgtzc(Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondGTZ, rt);
}
void MipsAssembler::Bltc(Register rs, Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondLT, rs, rt);
}
void MipsAssembler::Bgec(Register rs, Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondGE, rs, rt);
}
void MipsAssembler::Bltuc(Register rs, Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondLTU, rs, rt);
}
void MipsAssembler::Bgeuc(Register rs, Register rt, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondGEU, rs, rt);
}
void MipsAssembler::Bc1eqz(FRegister ft, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondF, static_cast<Register>(ft), ZERO);
}
void MipsAssembler::Bc1nez(FRegister ft, MipsLabel* label, bool is_bare) {
Bcond(label, /* is_r6 */ true, is_bare, kCondT, static_cast<Register>(ft), ZERO);
}
void MipsAssembler::AdjustBaseAndOffset(Register& base,
int32_t& offset,
bool is_doubleword,
bool is_float) {
// This method is used to adjust the base register and offset pair
// for a load/store when the offset doesn't fit into int16_t.
// It is assumed that `base + offset` is sufficiently aligned for memory
// operands that are machine word in size or smaller. For doubleword-sized
// operands it's assumed that `base` is a multiple of 8, while `offset`
// may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
// and spilled variables on the stack accessed relative to the stack
// pointer register).
// We preserve the "alignment" of `offset` by adjusting it by a multiple of 8.
CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`.
bool doubleword_aligned = IsAligned<kMipsDoublewordSize>(offset);
bool two_accesses = is_doubleword && (!is_float || !doubleword_aligned);
// IsInt<16> must be passed a signed value, hence the static cast below.
if (IsInt<16>(offset) &&
(!two_accesses || IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)))) {
// Nothing to do: `offset` (and, if needed, `offset + 4`) fits into int16_t.
return;
}
// Remember the "(mis)alignment" of `offset`, it will be checked at the end.
uint32_t misalignment = offset & (kMipsDoublewordSize - 1);
// Do not load the whole 32-bit `offset` if it can be represented as
// a sum of two 16-bit signed offsets. This can save an instruction or two.
// To simplify matters, only do this for a symmetric range of offsets from
// about -64KB to about +64KB, allowing further addition of 4 when accessing
// 64-bit variables with two 32-bit accesses.
constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7ff8; // Max int16_t that's a multiple of 8.
constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment;
if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
Addiu(AT, base, kMinOffsetForSimpleAdjustment);
offset -= kMinOffsetForSimpleAdjustment;
} else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
Addiu(AT, base, -kMinOffsetForSimpleAdjustment);
offset += kMinOffsetForSimpleAdjustment;
} else if (IsR6()) {
// On R6 take advantage of the aui instruction, e.g.:
// aui AT, base, offset_high
// lw reg_lo, offset_low(AT)
// lw reg_hi, (offset_low+4)(AT)
// or when offset_low+4 overflows int16_t:
// aui AT, base, offset_high
// addiu AT, AT, 8
// lw reg_lo, (offset_low-8)(AT)
// lw reg_hi, (offset_low-4)(AT)
int16_t offset_high = High16Bits(offset);
int16_t offset_low = Low16Bits(offset);
offset_high += (offset_low < 0) ? 1 : 0; // Account for offset sign extension in load/store.
Aui(AT, base, offset_high);
if (two_accesses && !IsInt<16>(static_cast<int32_t>(offset_low + kMipsWordSize))) {
// Avoid overflow in the 16-bit offset of the load/store instruction when adding 4.
Addiu(AT, AT, kMipsDoublewordSize);
offset_low -= kMipsDoublewordSize;
}
offset = offset_low;
} else {
// Do not load the whole 32-bit `offset` if it can be represented as
// a sum of three 16-bit signed offsets. This can save an instruction.
// To simplify matters, only do this for a symmetric range of offsets from
// about -96KB to about +96KB, allowing further addition of 4 when accessing
// 64-bit variables with two 32-bit accesses.
constexpr int32_t kMinOffsetForMediumAdjustment = 2 * kMinOffsetForSimpleAdjustment;
constexpr int32_t kMaxOffsetForMediumAdjustment = 3 * kMinOffsetForSimpleAdjustment;
if (0 <= offset && offset <= kMaxOffsetForMediumAdjustment) {
Addiu(AT, base, kMinOffsetForMediumAdjustment / 2);
Addiu(AT, AT, kMinOffsetForMediumAdjustment / 2);
offset -= kMinOffsetForMediumAdjustment;
} else if (-kMaxOffsetForMediumAdjustment <= offset && offset < 0) {
Addiu(AT, base, -kMinOffsetForMediumAdjustment / 2);
Addiu(AT, AT, -kMinOffsetForMediumAdjustment / 2);
offset += kMinOffsetForMediumAdjustment;
} else {
// Now that all shorter options have been exhausted, load the full 32-bit offset.
int32_t loaded_offset = RoundDown(offset, kMipsDoublewordSize);
LoadConst32(AT, loaded_offset);
Addu(AT, AT, base);
offset -= loaded_offset;
}
}
base = AT;
CHECK(IsInt<16>(offset));
if (two_accesses) {
CHECK(IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)));
}
CHECK_EQ(misalignment, offset & (kMipsDoublewordSize - 1));
}
void MipsAssembler::AdjustBaseOffsetAndElementSizeShift(Register& base,
int32_t& offset,
int& element_size_shift) {
// This method is used to adjust the base register, offset and element_size_shift
// for a vector load/store when the offset doesn't fit into allowed number of bits.
// MSA ld.df and st.df instructions take signed offsets as arguments, but maximum
// offset is dependant on the size of the data format df (10-bit offsets for ld.b,
// 11-bit for ld.h, 12-bit for ld.w and 13-bit for ld.d).
// If element_size_shift is non-negative at entry, it won't be changed, but offset
// will be checked for appropriate alignment. If negative at entry, it will be
// adjusted based on offset for maximum fit.
// It's assumed that `base` is a multiple of 8.
CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`.
if (element_size_shift >= 0) {
CHECK_LE(element_size_shift, TIMES_8);
CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift);
} else if (IsAligned<kMipsDoublewordSize>(offset)) {
element_size_shift = TIMES_8;
} else if (IsAligned<kMipsWordSize>(offset)) {
element_size_shift = TIMES_4;
} else if (IsAligned<kMipsHalfwordSize>(offset)) {
element_size_shift = TIMES_2;
} else {
element_size_shift = TIMES_1;
}
const int low_len = 10 + element_size_shift; // How many low bits of `offset` ld.df/st.df
// will take.
int16_t low = offset & ((1 << low_len) - 1); // Isolate these bits.
low -= (low & (1 << (low_len - 1))) << 1; // Sign-extend these bits.
if (low == offset) {
return; // `offset` fits into ld.df/st.df.
}
// First, see if `offset` can be represented as a sum of two or three signed offsets.
// This can save an instruction or two.
// Max int16_t that's a multiple of element size.
const int32_t kMaxDeltaForSimpleAdjustment = 0x8000 - (1 << element_size_shift);
// Max ld.df/st.df offset that's a multiple of element size.
const int32_t kMaxLoadStoreOffset = 0x1ff << element_size_shift;
const int32_t kMaxOffsetForSimpleAdjustment = kMaxDeltaForSimpleAdjustment + kMaxLoadStoreOffset;
const int32_t kMinOffsetForMediumAdjustment = 2 * kMaxDeltaForSimpleAdjustment;
const int32_t kMaxOffsetForMediumAdjustment = kMinOffsetForMediumAdjustment + kMaxLoadStoreOffset;
if (IsInt<16>(offset)) {
Addiu(AT, base, offset);
offset = 0;
} else if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
Addiu(AT, base, kMaxDeltaForSimpleAdjustment);
offset -= kMaxDeltaForSimpleAdjustment;
} else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
Addiu(AT, base, -kMaxDeltaForSimpleAdjustment);
offset += kMaxDeltaForSimpleAdjustment;
} else if (!IsR6() && 0 <= offset && offset <= kMaxOffsetForMediumAdjustment) {
Addiu(AT, base, kMaxDeltaForSimpleAdjustment);
if (offset <= kMinOffsetForMediumAdjustment) {
Addiu(AT, AT, offset - kMaxDeltaForSimpleAdjustment);
offset = 0;
} else {
Addiu(AT, AT, kMaxDeltaForSimpleAdjustment);
offset -= kMinOffsetForMediumAdjustment;
}
} else if (!IsR6() && -kMaxOffsetForMediumAdjustment <= offset && offset < 0) {
Addiu(AT, base, -kMaxDeltaForSimpleAdjustment);
if (-kMinOffsetForMediumAdjustment <= offset) {
Addiu(AT, AT, offset + kMaxDeltaForSimpleAdjustment);
offset = 0;
} else {
Addiu(AT, AT, -kMaxDeltaForSimpleAdjustment);
offset += kMinOffsetForMediumAdjustment;
}
} else {
// 16-bit or smaller parts of `offset`:
// |31 hi 16|15 mid 13-10|12-9 low 0|
//
// Instructions that supply each part as a signed integer addend:
// |aui |addiu |ld.df/st.df |
uint32_t tmp = static_cast<uint32_t>(offset) - low; // Exclude `low` from the rest of `offset`
// (accounts for sign of `low`).
tmp += (tmp & (UINT32_C(1) << 15)) << 1; // Account for sign extension in addiu.
int16_t mid = Low16Bits(tmp);
int16_t hi = High16Bits(tmp);
if (IsR6()) {
Aui(AT, base, hi);
} else {
Lui(AT, hi);
Addu(AT, AT, base);
}
if (mid != 0) {
Addiu(AT, AT, mid);
}
offset = low;
}
base = AT;
CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift);
CHECK(IsInt<10>(offset >> element_size_shift));
}
void MipsAssembler::LoadFromOffset(LoadOperandType type,
Register reg,
Register base,
int32_t offset) {
LoadFromOffset<>(type, reg, base, offset);
}
void MipsAssembler::LoadSFromOffset(FRegister reg, Register base, int32_t offset) {
LoadSFromOffset<>(reg, base, offset);
}
void MipsAssembler::LoadDFromOffset(FRegister reg, Register base, int32_t offset) {
LoadDFromOffset<>(reg, base, offset);
}
void MipsAssembler::LoadQFromOffset(FRegister reg, Register base, int32_t offset) {
LoadQFromOffset<>(reg, base, offset);
}
void MipsAssembler::EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset,
size_t size) {
MipsManagedRegister dst = m_dst.AsMips();
if (dst.IsNoRegister()) {
CHECK_EQ(0u, size) << dst;
} else if (dst.IsCoreRegister()) {
CHECK_EQ(kMipsWordSize, size) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset);
} else if (dst.IsRegisterPair()) {
CHECK_EQ(kMipsDoublewordSize, size) << dst;
LoadFromOffset(kLoadDoubleword, dst.AsRegisterPairLow(), src_register, src_offset);
} else if (dst.IsFRegister()) {
if (size == kMipsWordSize) {
LoadSFromOffset(dst.AsFRegister(), src_register, src_offset);
} else {
CHECK_EQ(kMipsDoublewordSize, size) << dst;
LoadDFromOffset(dst.AsFRegister(), src_register, src_offset);
}
} else if (dst.IsDRegister()) {
CHECK_EQ(kMipsDoublewordSize, size) << dst;
LoadDFromOffset(dst.AsOverlappingDRegisterLow(), src_register, src_offset);
}
}
void MipsAssembler::StoreToOffset(StoreOperandType type,
Register reg,
Register base,
int32_t offset) {
StoreToOffset<>(type, reg, base, offset);
}
void MipsAssembler::StoreSToOffset(FRegister reg, Register base, int32_t offset) {
StoreSToOffset<>(reg, base, offset);
}
void MipsAssembler::StoreDToOffset(FRegister reg, Register base, int32_t offset) {
StoreDToOffset<>(reg, base, offset);
}
void MipsAssembler::StoreQToOffset(FRegister reg, Register base, int32_t offset) {
StoreQToOffset<>(reg, base, offset);
}
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::MipsCore(static_cast<int>(reg));
}
constexpr size_t kFramePointerSize = 4;
void MipsAssembler::BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) {
CHECK_ALIGNED(frame_size, kStackAlignment);
DCHECK(!overwriting_);
// Increase frame to required size.
IncreaseFrameSize(frame_size);
// Push callee saves and return address.
int stack_offset = frame_size - kFramePointerSize;
StoreToOffset(kStoreWord, RA, SP, stack_offset);
cfi_.RelOffset(DWARFReg(RA), stack_offset);
for (int i = callee_save_regs.size() - 1; i >= 0; --i) {
stack_offset -= kFramePointerSize;
Register reg = callee_save_regs[i].AsMips().AsCoreRegister();
StoreToOffset(kStoreWord, reg, SP, stack_offset);
cfi_.RelOffset(DWARFReg(reg), stack_offset);
}
// Write out Method*.
StoreToOffset(kStoreWord, method_reg.AsMips().AsCoreRegister(), SP, 0);
// Write out entry spills.
int32_t offset = frame_size + kFramePointerSize;
for (size_t i = 0; i < entry_spills.size(); ++i) {
MipsManagedRegister reg = entry_spills.at(i).AsMips();
if (reg.IsNoRegister()) {
ManagedRegisterSpill spill = entry_spills.at(i);
offset += spill.getSize();
} else if (reg.IsCoreRegister()) {
StoreToOffset(kStoreWord, reg.AsCoreRegister(), SP, offset);
offset += kMipsWordSize;
} else if (reg.IsFRegister()) {
StoreSToOffset(reg.AsFRegister(), SP, offset);
offset += kMipsWordSize;
} else if (reg.IsDRegister()) {
StoreDToOffset(reg.AsOverlappingDRegisterLow(), SP, offset);
offset += kMipsDoublewordSize;
}
}
}
void MipsAssembler::RemoveFrame(size_t frame_size,
ArrayRef<const ManagedRegister> callee_save_regs,
bool may_suspend ATTRIBUTE_UNUSED) {
CHECK_ALIGNED(frame_size, kStackAlignment);
DCHECK(!overwriting_);
cfi_.RememberState();
// Pop callee saves and return address.
int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize;
for (size_t i = 0; i < callee_save_regs.size(); ++i) {
Register reg = callee_save_regs[i].AsMips().AsCoreRegister();
LoadFromOffset(kLoadWord, reg, SP, stack_offset);
cfi_.Restore(DWARFReg(reg));
stack_offset += kFramePointerSize;
}
LoadFromOffset(kLoadWord, RA, SP, stack_offset);
cfi_.Restore(DWARFReg(RA));
// Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
bool reordering = SetReorder(false);
if (exchange) {
// Jump to the return address.
Jr(RA);
// Decrease frame to required size.
DecreaseFrameSize(frame_size); // Single instruction in delay slot.
} else {
// Decrease frame to required size.
DecreaseFrameSize(frame_size);
// Jump to the return address.
Jr(RA);
Nop(); // In delay slot.
}
SetReorder(reordering);
// The CFI should be restored for any code that follows the exit block.
cfi_.RestoreState();
cfi_.DefCFAOffset(frame_size);
}
void MipsAssembler::IncreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kFramePointerSize);
Addiu32(SP, SP, -adjust);
cfi_.AdjustCFAOffset(adjust);
if (overwriting_) {
cfi_.OverrideDelayedPC(overwrite_location_);
}
}
void MipsAssembler::DecreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kFramePointerSize);
Addiu32(SP, SP, adjust);
cfi_.AdjustCFAOffset(-adjust);
if (overwriting_) {
cfi_.OverrideDelayedPC(overwrite_location_);
}
}
void MipsAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) {
MipsManagedRegister src = msrc.AsMips();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCoreRegister()) {
CHECK_EQ(kMipsWordSize, size);
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
} else if (src.IsRegisterPair()) {
CHECK_EQ(kMipsDoublewordSize, size);
StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value());
StoreToOffset(kStoreWord, src.AsRegisterPairHigh(),
SP, dest.Int32Value() + kMipsWordSize);
} else if (src.IsFRegister()) {
if (size == kMipsWordSize) {
StoreSToOffset(src.AsFRegister(), SP, dest.Int32Value());
} else {
CHECK_EQ(kMipsDoublewordSize, size);
StoreDToOffset(src.AsFRegister(), SP, dest.Int32Value());
}
} else if (src.IsDRegister()) {
CHECK_EQ(kMipsDoublewordSize, size);
StoreDToOffset(src.AsOverlappingDRegisterLow(), SP, dest.Int32Value());
}
}
void MipsAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
MipsManagedRegister src = msrc.AsMips();
CHECK(src.IsCoreRegister());
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
}
void MipsAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
MipsManagedRegister src = msrc.AsMips();
CHECK(src.IsCoreRegister());
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
}
void MipsAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
ManagedRegister mscratch) {
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadConst32(scratch.AsCoreRegister(), imm);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
}
void MipsAssembler::StoreStackOffsetToThread(ThreadOffset32 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(scratch.IsCoreRegister()) << scratch;
Addiu32(scratch.AsCoreRegister(), SP, fr_offs.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
S1, thr_offs.Int32Value());
}
void MipsAssembler::StoreStackPointerToThread(ThreadOffset32 thr_offs) {
StoreToOffset(kStoreWord, SP, S1, thr_offs.Int32Value());
}
void MipsAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc,
FrameOffset in_off, ManagedRegister mscratch) {
MipsManagedRegister src = msrc.AsMips();
MipsManagedRegister scratch = mscratch.AsMips();
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize);
}
void MipsAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
return EmitLoad(mdest, SP, src.Int32Value(), size);
}
void MipsAssembler::LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) {
return EmitLoad(mdest, S1, src.Int32Value(), size);
}
void MipsAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
MipsManagedRegister dest = mdest.AsMips();
CHECK(dest.IsCoreRegister());
LoadFromOffset(kLoadWord, dest.AsCoreRegister(), SP, src.Int32Value());
}
void MipsAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
bool unpoison_reference) {
MipsManagedRegister dest = mdest.AsMips();
CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister());
LoadFromOffset(kLoadWord, dest.AsCoreRegister(),
base.AsMips().AsCoreRegister(), offs.Int32Value());
if (unpoison_reference) {
MaybeUnpoisonHeapReference(dest.AsCoreRegister());
}
}
void MipsAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) {
MipsManagedRegister dest = mdest.AsMips();
CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister());
LoadFromOffset(kLoadWord, dest.AsCoreRegister(),
base.AsMips().AsCoreRegister(), offs.Int32Value());
}
void MipsAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) {
MipsManagedRegister dest = mdest.AsMips();
CHECK(dest.IsCoreRegister());
LoadFromOffset(kLoadWord, dest.AsCoreRegister(), S1, offs.Int32Value());
}
void MipsAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL) << "no sign extension necessary for mips";
}
void MipsAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL) << "no zero extension necessary for mips";
}
void MipsAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
MipsManagedRegister dest = mdest.AsMips();
MipsManagedRegister src = msrc.AsMips();
if (!dest.Equals(src)) {
if (dest.IsCoreRegister()) {
CHECK(src.IsCoreRegister()) << src;
Move(dest.AsCoreRegister(), src.AsCoreRegister());
} else if (dest.IsFRegister()) {
CHECK(src.IsFRegister()) << src;
if (size == kMipsWordSize) {
MovS(dest.AsFRegister(), src.AsFRegister());
} else {
CHECK_EQ(kMipsDoublewordSize, size);
MovD(dest.AsFRegister(), src.AsFRegister());
}
} else if (dest.IsDRegister()) {
CHECK(src.IsDRegister()) << src;
MovD(dest.AsOverlappingDRegisterLow(), src.AsOverlappingDRegisterLow());
} else {
CHECK(dest.IsRegisterPair()) << dest;
CHECK(src.IsRegisterPair()) << src;
// Ensure that the first move doesn't clobber the input of the second.
if (src.AsRegisterPairHigh() != dest.AsRegisterPairLow()) {
Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow());
Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh());
} else {
Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh());
Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow());
}
}
}
}
void MipsAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) {
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
}
void MipsAssembler::CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset32 thr_offs,
ManagedRegister mscratch) {
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
S1, thr_offs.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
SP, fr_offs.Int32Value());
}
void MipsAssembler::CopyRawPtrToThread(ThreadOffset32 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
SP, fr_offs.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
S1, thr_offs.Int32Value());
}
void MipsAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) {
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(scratch.IsCoreRegister()) << scratch;
CHECK(size == kMipsWordSize || size == kMipsDoublewordSize) << size;
if (size == kMipsWordSize) {
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
} else if (size == kMipsDoublewordSize) {
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + kMipsWordSize);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize);
}
}
void MipsAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
ManagedRegister mscratch, size_t size) {
Register scratch = mscratch.AsMips().AsCoreRegister();
CHECK_EQ(size, kMipsWordSize);
LoadFromOffset(kLoadWord, scratch, src_base.AsMips().AsCoreRegister(), src_offset.Int32Value());
StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value());
}
void MipsAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
ManagedRegister mscratch, size_t size) {
Register scratch = mscratch.AsMips().AsCoreRegister();
CHECK_EQ(size, kMipsWordSize);
LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch, dest_base.AsMips().AsCoreRegister(), dest_offset.Int32Value());
}
void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
FrameOffset src_base ATTRIBUTE_UNUSED,
Offset src_offset ATTRIBUTE_UNUSED,
ManagedRegister mscratch ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "no MIPS implementation";
}
void MipsAssembler::Copy(ManagedRegister dest, Offset dest_offset,
ManagedRegister src, Offset src_offset,
ManagedRegister mscratch, size_t size) {
CHECK_EQ(size, kMipsWordSize);
Register scratch = mscratch.AsMips().AsCoreRegister();
LoadFromOffset(kLoadWord, scratch, src.AsMips().AsCoreRegister(), src_offset.Int32Value());
StoreToOffset(kStoreWord, scratch, dest.AsMips().AsCoreRegister(), dest_offset.Int32Value());
}
void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
Offset dest_offset ATTRIBUTE_UNUSED,
FrameOffset src ATTRIBUTE_UNUSED,
Offset src_offset ATTRIBUTE_UNUSED,
ManagedRegister mscratch ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "no MIPS implementation";
}
void MipsAssembler::MemoryBarrier(ManagedRegister) {
// TODO: sync?
UNIMPLEMENTED(FATAL) << "no MIPS implementation";
}
void MipsAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
FrameOffset handle_scope_offset,
ManagedRegister min_reg,
bool null_allowed) {
MipsManagedRegister out_reg = mout_reg.AsMips();
MipsManagedRegister in_reg = min_reg.AsMips();
CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg;
CHECK(out_reg.IsCoreRegister()) << out_reg;
if (null_allowed) {
MipsLabel null_arg;
// Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
// the address in the handle scope holding the reference.
// E.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset).
if (in_reg.IsNoRegister()) {
LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
SP, handle_scope_offset.Int32Value());
in_reg = out_reg;
}
if (!out_reg.Equals(in_reg)) {
LoadConst32(out_reg.AsCoreRegister(), 0);
}
Beqz(in_reg.AsCoreRegister(), &null_arg);
Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
Bind(&null_arg);
} else {
Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
}
}
void MipsAssembler::CreateHandleScopeEntry(FrameOffset out_off,
FrameOffset handle_scope_offset,
ManagedRegister mscratch,
bool null_allowed) {
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(scratch.IsCoreRegister()) << scratch;
if (null_allowed) {
MipsLabel null_arg;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
// Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
// the address in the handle scope holding the reference.
// E.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset).
Beqz(scratch.AsCoreRegister(), &null_arg);
Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
Bind(&null_arg);
} else {
Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
}
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value());
}
// Given a handle scope entry, load the associated reference.
void MipsAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
ManagedRegister min_reg) {
MipsManagedRegister out_reg = mout_reg.AsMips();
MipsManagedRegister in_reg = min_reg.AsMips();
CHECK(out_reg.IsCoreRegister()) << out_reg;
CHECK(in_reg.IsCoreRegister()) << in_reg;
MipsLabel null_arg;
if (!out_reg.Equals(in_reg)) {
LoadConst32(out_reg.AsCoreRegister(), 0);
}
Beqz(in_reg.AsCoreRegister(), &null_arg);
LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
in_reg.AsCoreRegister(), 0);
Bind(&null_arg);
}
void MipsAssembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED,
bool could_be_null ATTRIBUTE_UNUSED) {
// TODO: not validating references.
}
void MipsAssembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED,
bool could_be_null ATTRIBUTE_UNUSED) {
// TODO: not validating references.
}
void MipsAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) {
MipsManagedRegister base = mbase.AsMips();
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(base.IsCoreRegister()) << base;
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
base.AsCoreRegister(), offset.Int32Value());
Jalr(scratch.AsCoreRegister());
NopIfNoReordering();
// TODO: place reference map on call.
}
void MipsAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
MipsManagedRegister scratch = mscratch.AsMips();
CHECK(scratch.IsCoreRegister()) << scratch;
// Call *(*(SP + base) + offset)
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
scratch.AsCoreRegister(), offset.Int32Value());
Jalr(scratch.AsCoreRegister());
NopIfNoReordering();
// TODO: place reference map on call.
}
void MipsAssembler::CallFromThread(ThreadOffset32 offset ATTRIBUTE_UNUSED,
ManagedRegister mscratch ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "no mips implementation";
}
void MipsAssembler::GetCurrentThread(ManagedRegister tr) {
Move(tr.AsMips().AsCoreRegister(), S1);
}
void MipsAssembler::GetCurrentThread(FrameOffset offset,
ManagedRegister mscratch ATTRIBUTE_UNUSED) {
StoreToOffset(kStoreWord, S1, SP, offset.Int32Value());
}
void MipsAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) {
MipsManagedRegister scratch = mscratch.AsMips();
exception_blocks_.emplace_back(scratch, stack_adjust);
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
S1, Thread::ExceptionOffset<kMipsPointerSize>().Int32Value());
Bnez(scratch.AsCoreRegister(), exception_blocks_.back().Entry());
}
void MipsAssembler::EmitExceptionPoll(MipsExceptionSlowPath* exception) {
Bind(exception->Entry());
if (exception->stack_adjust_ != 0) { // Fix up the frame.
DecreaseFrameSize(exception->stack_adjust_);
}
// Pass exception object as argument.
// Don't care about preserving A0 as this call won't return.
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
Move(A0, exception->scratch_.AsCoreRegister());
// Set up call to Thread::Current()->pDeliverException.
LoadFromOffset(kLoadWord, T9, S1,
QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, pDeliverException).Int32Value());
Jr(T9);
NopIfNoReordering();
// Call never returns.
Break();
}
} // namespace mips
} // namespace art