blob: d90689695b4e02e9bf9fd4931742cdb5e0862ad9 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_
#define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_
#include "code_generator.h"
#include "dex/dex_file_types.h"
#include "driver/compiler_options.h"
#include "nodes.h"
#include "parallel_move_resolver.h"
#include "string_reference.h"
#include "type_reference.h"
#include "utils/mips/assembler_mips.h"
namespace art {
namespace mips {
// InvokeDexCallingConvention registers
static constexpr Register kParameterCoreRegisters[] =
{ A1, A2, A3, T0, T1 };
static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters);
static constexpr FRegister kParameterFpuRegisters[] =
{ F8, F10, F12, F14, F16, F18 };
static constexpr size_t kParameterFpuRegistersLength = arraysize(kParameterFpuRegisters);
// InvokeRuntimeCallingConvention registers
static constexpr Register kRuntimeParameterCoreRegisters[] =
{ A0, A1, A2, A3 };
static constexpr size_t kRuntimeParameterCoreRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
static constexpr FRegister kRuntimeParameterFpuRegisters[] =
{ F12, F14 };
static constexpr size_t kRuntimeParameterFpuRegistersLength =
arraysize(kRuntimeParameterFpuRegisters);
static constexpr Register kCoreCalleeSaves[] =
{ S0, S1, S2, S3, S4, S5, S6, S7, FP, RA };
static constexpr FRegister kFpuCalleeSaves[] =
{ F20, F22, F24, F26, F28, F30 };
class CodeGeneratorMIPS;
VectorRegister VectorRegisterFrom(Location location);
class InvokeDexCallingConvention : public CallingConvention<Register, FRegister> {
public:
InvokeDexCallingConvention()
: CallingConvention(kParameterCoreRegisters,
kParameterCoreRegistersLength,
kParameterFpuRegisters,
kParameterFpuRegistersLength,
kMipsPointerSize) {}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention);
};
class InvokeDexCallingConventionVisitorMIPS : public InvokeDexCallingConventionVisitor {
public:
InvokeDexCallingConventionVisitorMIPS() {}
virtual ~InvokeDexCallingConventionVisitorMIPS() {}
Location GetNextLocation(DataType::Type type) OVERRIDE;
Location GetReturnLocation(DataType::Type type) const OVERRIDE;
Location GetMethodLocation() const OVERRIDE;
private:
InvokeDexCallingConvention calling_convention;
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorMIPS);
};
class InvokeRuntimeCallingConvention : public CallingConvention<Register, FRegister> {
public:
InvokeRuntimeCallingConvention()
: CallingConvention(kRuntimeParameterCoreRegisters,
kRuntimeParameterCoreRegistersLength,
kRuntimeParameterFpuRegisters,
kRuntimeParameterFpuRegistersLength,
kMipsPointerSize) {}
Location GetReturnLocation(DataType::Type return_type);
private:
DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention);
};
class FieldAccessCallingConventionMIPS : public FieldAccessCallingConvention {
public:
FieldAccessCallingConventionMIPS() {}
Location GetObjectLocation() const OVERRIDE {
return Location::RegisterLocation(A1);
}
Location GetFieldIndexLocation() const OVERRIDE {
return Location::RegisterLocation(A0);
}
Location GetReturnLocation(DataType::Type type) const OVERRIDE {
return DataType::Is64BitType(type)
? Location::RegisterPairLocation(V0, V1)
: Location::RegisterLocation(V0);
}
Location GetSetValueLocation(DataType::Type type, bool is_instance) const OVERRIDE {
return DataType::Is64BitType(type)
? Location::RegisterPairLocation(A2, A3)
: (is_instance ? Location::RegisterLocation(A2) : Location::RegisterLocation(A1));
}
Location GetFpuLocation(DataType::Type type ATTRIBUTE_UNUSED) const OVERRIDE {
return Location::FpuRegisterLocation(F0);
}
private:
DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionMIPS);
};
class ParallelMoveResolverMIPS : public ParallelMoveResolverWithSwap {
public:
ParallelMoveResolverMIPS(ArenaAllocator* allocator, CodeGeneratorMIPS* codegen)
: ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {}
void EmitMove(size_t index) OVERRIDE;
void EmitSwap(size_t index) OVERRIDE;
void SpillScratch(int reg) OVERRIDE;
void RestoreScratch(int reg) OVERRIDE;
void Exchange(int index1, int index2, bool double_slot);
void ExchangeQuadSlots(int index1, int index2);
MipsAssembler* GetAssembler() const;
private:
CodeGeneratorMIPS* const codegen_;
DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverMIPS);
};
class SlowPathCodeMIPS : public SlowPathCode {
public:
explicit SlowPathCodeMIPS(HInstruction* instruction)
: SlowPathCode(instruction), entry_label_(), exit_label_() {}
MipsLabel* GetEntryLabel() { return &entry_label_; }
MipsLabel* GetExitLabel() { return &exit_label_; }
private:
MipsLabel entry_label_;
MipsLabel exit_label_;
DISALLOW_COPY_AND_ASSIGN(SlowPathCodeMIPS);
};
class LocationsBuilderMIPS : public HGraphVisitor {
public:
LocationsBuilderMIPS(HGraph* graph, CodeGeneratorMIPS* codegen)
: HGraphVisitor(graph), codegen_(codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) OVERRIDE;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_MIPS(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) OVERRIDE {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
private:
void HandleInvoke(HInvoke* invoke);
void HandleBinaryOp(HBinaryOperation* operation);
void HandleCondition(HCondition* instruction);
void HandleShift(HBinaryOperation* operation);
void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
Location RegisterOrZeroConstant(HInstruction* instruction);
Location FpuRegisterOrConstantForStore(HInstruction* instruction);
InvokeDexCallingConventionVisitorMIPS parameter_visitor_;
CodeGeneratorMIPS* const codegen_;
DISALLOW_COPY_AND_ASSIGN(LocationsBuilderMIPS);
};
class InstructionCodeGeneratorMIPS : public InstructionCodeGenerator {
public:
InstructionCodeGeneratorMIPS(HGraph* graph, CodeGeneratorMIPS* codegen);
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) OVERRIDE;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_MIPS(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) OVERRIDE {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
MipsAssembler* GetAssembler() const { return assembler_; }
// Compare-and-jump packed switch generates approx. 3 + 2.5 * N 32-bit
// instructions for N cases.
// Table-based packed switch generates approx. 11 32-bit instructions
// and N 32-bit data words for N cases.
// At N = 6 they come out as 18 and 17 32-bit words respectively.
// We switch to the table-based method starting with 7 cases.
static constexpr uint32_t kPackedSwitchJumpTableThreshold = 6;
void GenerateMemoryBarrier(MemBarrierKind kind);
private:
void GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path, Register class_reg);
void GenerateSuspendCheck(HSuspendCheck* check, HBasicBlock* successor);
void HandleBinaryOp(HBinaryOperation* operation);
void HandleCondition(HCondition* instruction);
void HandleShift(HBinaryOperation* operation);
void HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
uint32_t dex_pc,
bool value_can_be_null);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info, uint32_t dex_pc);
void GenerateMinMaxInt(LocationSummary* locations, bool is_min, bool isR6, DataType::Type type);
void GenerateMinMaxFP(LocationSummary* locations, bool is_min, bool isR6, DataType::Type type);
void GenerateMinMax(HBinaryOperation*, bool is_min);
void GenerateAbsFP(LocationSummary* locations, DataType::Type type, bool isR2OrNewer, bool isR6);
// Generate a heap reference load using one register `out`:
//
// out <- *(out + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a read barrier and
// shall be a register in that case; it may be an invalid location
// otherwise.
void GenerateReferenceLoadOneRegister(HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option);
// Generate a heap reference load using two different registers
// `out` and `obj`:
//
// out <- *(obj + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a Baker's (fast
// path) read barrier and shall be a register in that case; it may
// be an invalid location otherwise.
void GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option);
// Generate a GC root reference load:
//
// root <- *(obj + offset)
//
// while honoring read barriers (if any).
void GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
Register obj,
uint32_t offset,
ReadBarrierOption read_barrier_option,
MipsLabel* label_low = nullptr);
void GenerateIntCompare(IfCondition cond, LocationSummary* locations);
// When the function returns `false` it means that the condition holds if `dst` is non-zero
// and doesn't hold if `dst` is zero. If it returns `true`, the roles of zero and non-zero
// `dst` are exchanged.
bool MaterializeIntCompare(IfCondition cond,
LocationSummary* input_locations,
Register dst);
void GenerateIntCompareAndBranch(IfCondition cond,
LocationSummary* locations,
MipsLabel* label);
void GenerateLongCompare(IfCondition cond, LocationSummary* locations);
void GenerateLongCompareAndBranch(IfCondition cond,
LocationSummary* locations,
MipsLabel* label);
void GenerateFpCompare(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations);
// When the function returns `false` it means that the condition holds if the condition
// code flag `cc` is non-zero and doesn't hold if `cc` is zero. If it returns `true`,
// the roles of zero and non-zero values of the `cc` flag are exchanged.
bool MaterializeFpCompareR2(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* input_locations,
int cc);
// When the function returns `false` it means that the condition holds if `dst` is non-zero
// and doesn't hold if `dst` is zero. If it returns `true`, the roles of zero and non-zero
// `dst` are exchanged.
bool MaterializeFpCompareR6(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* input_locations,
FRegister dst);
void GenerateFpCompareAndBranch(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations,
MipsLabel* label);
void GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
MipsLabel* true_target,
MipsLabel* false_target);
void DivRemOneOrMinusOne(HBinaryOperation* instruction);
void DivRemByPowerOfTwo(HBinaryOperation* instruction);
void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction);
void GenerateDivRemIntegral(HBinaryOperation* instruction);
void HandleGoto(HInstruction* got, HBasicBlock* successor);
void GenPackedSwitchWithCompares(Register value_reg,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block);
void GenTableBasedPackedSwitch(Register value_reg,
Register constant_area,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block);
int32_t VecAddress(LocationSummary* locations,
size_t size,
/* out */ Register* adjusted_base);
void GenConditionalMoveR2(HSelect* select);
void GenConditionalMoveR6(HSelect* select);
MipsAssembler* const assembler_;
CodeGeneratorMIPS* const codegen_;
DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorMIPS);
};
class CodeGeneratorMIPS : public CodeGenerator {
public:
CodeGeneratorMIPS(HGraph* graph,
const MipsInstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats = nullptr);
virtual ~CodeGeneratorMIPS() {}
void ComputeSpillMask() OVERRIDE;
bool HasAllocatedCalleeSaveRegisters() const OVERRIDE;
void GenerateFrameEntry() OVERRIDE;
void GenerateFrameExit() OVERRIDE;
void Bind(HBasicBlock* block) OVERRIDE;
void MoveConstant(Location location, HConstant* c);
size_t GetWordSize() const OVERRIDE { return kMipsWordSize; }
size_t GetFloatingPointSpillSlotSize() const OVERRIDE {
return GetGraph()->HasSIMD()
? 2 * kMipsDoublewordSize // 16 bytes for each spill.
: 1 * kMipsDoublewordSize; // 8 bytes for each spill.
}
uintptr_t GetAddressOf(HBasicBlock* block) OVERRIDE {
return assembler_.GetLabelLocation(GetLabelOf(block));
}
HGraphVisitor* GetLocationBuilder() OVERRIDE { return &location_builder_; }
HGraphVisitor* GetInstructionVisitor() OVERRIDE { return &instruction_visitor_; }
MipsAssembler* GetAssembler() OVERRIDE { return &assembler_; }
const MipsAssembler& GetAssembler() const OVERRIDE { return assembler_; }
// Emit linker patches.
void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) OVERRIDE;
void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) OVERRIDE;
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference field load when Baker's read barriers are used.
void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location temp,
bool needs_null_check);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference array load when Baker's read barriers are used.
void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t data_offset,
Location index,
Location temp,
bool needs_null_check);
// Factored implementation, used by GenerateFieldLoadWithBakerReadBarrier,
// GenerateArrayLoadWithBakerReadBarrier and some intrinsics.
//
// Load the object reference located at the address
// `obj + offset + (index << scale_factor)`, held by object `obj`, into
// `ref`, and mark it if needed.
//
// If `always_update_field` is true, the value of the reference is
// atomically updated in the holder (`obj`).
void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location index,
ScaleFactor scale_factor,
Location temp,
bool needs_null_check,
bool always_update_field = false);
// Generate a read barrier for a heap reference within `instruction`
// using a slow path.
//
// A read barrier for an object reference read from the heap is
// implemented as a call to the artReadBarrierSlow runtime entry
// point, which is passed the values in locations `ref`, `obj`, and
// `offset`:
//
// mirror::Object* artReadBarrierSlow(mirror::Object* ref,
// mirror::Object* obj,
// uint32_t offset);
//
// The `out` location contains the value returned by
// artReadBarrierSlow.
//
// When `index` is provided (i.e. for array accesses), the offset
// value passed to artReadBarrierSlow is adjusted to take `index`
// into account.
void GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// If read barriers are enabled, generate a read barrier for a heap
// reference using a slow path. If heap poisoning is enabled, also
// unpoison the reference in `out`.
void MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// Generate a read barrier for a GC root within `instruction` using
// a slow path.
//
// A read barrier for an object reference GC root is implemented as
// a call to the artReadBarrierForRootSlow runtime entry point,
// which is passed the value in location `root`:
//
// mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root);
//
// The `out` location contains the value returned by
// artReadBarrierForRootSlow.
void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root);
void MarkGCCard(Register object, Register value, bool value_can_be_null);
// Register allocation.
void SetupBlockedRegisters() const OVERRIDE;
size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE;
size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE;
size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE;
size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE;
void ClobberRA() {
clobbered_ra_ = true;
}
void DumpCoreRegister(std::ostream& stream, int reg) const OVERRIDE;
void DumpFloatingPointRegister(std::ostream& stream, int reg) const OVERRIDE;
InstructionSet GetInstructionSet() const OVERRIDE { return InstructionSet::kMips; }
const MipsInstructionSetFeatures& GetInstructionSetFeatures() const {
return isa_features_;
}
MipsLabel* GetLabelOf(HBasicBlock* block) const {
return CommonGetLabelOf<MipsLabel>(block_labels_, block);
}
void Initialize() OVERRIDE {
block_labels_ = CommonInitializeLabels<MipsLabel>();
}
void Finalize(CodeAllocator* allocator) OVERRIDE;
// Code generation helpers.
void MoveLocation(Location dst, Location src, DataType::Type dst_type) OVERRIDE;
void MoveConstant(Location destination, int32_t value) OVERRIDE;
void AddLocationAsTemp(Location location, LocationSummary* locations) OVERRIDE;
// Generate code to invoke a runtime entry point.
void InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path = nullptr) OVERRIDE;
// Generate code to invoke a runtime entry point, but do not record
// PC-related information in a stack map.
void InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path,
bool direct);
void GenerateInvokeRuntime(int32_t entry_point_offset, bool direct);
ParallelMoveResolver* GetMoveResolver() OVERRIDE { return &move_resolver_; }
bool NeedsTwoRegisters(DataType::Type type) const OVERRIDE {
return type == DataType::Type::kInt64;
}
// Check if the desired_string_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadString::LoadKind GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) OVERRIDE;
// Check if the desired_class_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadClass::LoadKind GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) OVERRIDE;
// Check if the desired_dispatch_info is supported. If it is, return it,
// otherwise return a fall-back info that should be used instead.
HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
HInvokeStaticOrDirect* invoke) OVERRIDE;
void GenerateStaticOrDirectCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) OVERRIDE;
void GenerateVirtualCall(
HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) OVERRIDE;
void MoveFromReturnRegister(Location trg ATTRIBUTE_UNUSED,
DataType::Type type ATTRIBUTE_UNUSED) OVERRIDE {
UNIMPLEMENTED(FATAL) << "Not implemented on MIPS";
}
void GenerateNop() OVERRIDE;
void GenerateImplicitNullCheck(HNullCheck* instruction) OVERRIDE;
void GenerateExplicitNullCheck(HNullCheck* instruction) OVERRIDE;
// The PcRelativePatchInfo is used for PC-relative addressing of methods/strings/types,
// whether through .data.bimg.rel.ro, .bss, or directly in the boot image.
//
// The 16-bit halves of the 32-bit PC-relative offset are patched separately, necessitating
// two patches/infos. There can be more than two patches/infos if the instruction supplying
// the high half is shared with e.g. a slow path, while the low half is supplied by separate
// instructions, e.g.:
// lui r1, high // patch
// addu r1, r1, rbase
// lw r2, low(r1) // patch
// beqz r2, slow_path
// back:
// ...
// slow_path:
// ...
// sw r2, low(r1) // patch
// b back
struct PcRelativePatchInfo : PatchInfo<MipsLabel> {
PcRelativePatchInfo(const DexFile* dex_file,
uint32_t off_or_idx,
const PcRelativePatchInfo* info_high)
: PatchInfo<MipsLabel>(dex_file, off_or_idx),
pc_rel_label(),
patch_info_high(info_high) { }
// Label for the instruction corresponding to PC+0. Not bound or used in low half patches.
// Not bound in high half patches on R2 when using HMipsComputeBaseMethodAddress.
// Bound in high half patches on R2 when using the NAL instruction instead of
// HMipsComputeBaseMethodAddress.
// Bound in high half patches on R6.
MipsLabel pc_rel_label;
// Pointer to the info for the high half patch or nullptr if this is the high half patch info.
const PcRelativePatchInfo* patch_info_high;
private:
PcRelativePatchInfo(PcRelativePatchInfo&& other) = delete;
DISALLOW_COPY_AND_ASSIGN(PcRelativePatchInfo);
};
PcRelativePatchInfo* NewBootImageRelRoPatch(uint32_t boot_image_offset,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewBootImageMethodPatch(MethodReference target_method,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewMethodBssEntryPatch(MethodReference target_method,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewBootImageTypePatch(const DexFile& dex_file,
dex::TypeIndex type_index,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewTypeBssEntryPatch(const DexFile& dex_file,
dex::TypeIndex type_index,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewBootImageStringPatch(const DexFile& dex_file,
dex::StringIndex string_index,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewStringBssEntryPatch(const DexFile& dex_file,
dex::StringIndex string_index,
const PcRelativePatchInfo* info_high = nullptr);
Literal* DeduplicateBootImageAddressLiteral(uint32_t address);
void EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high,
Register out,
Register base);
// The JitPatchInfo is used for JIT string and class loads.
struct JitPatchInfo {
JitPatchInfo(const DexFile& dex_file, uint64_t idx)
: target_dex_file(dex_file), index(idx) { }
JitPatchInfo(JitPatchInfo&& other) = default;
const DexFile& target_dex_file;
// String/type index.
uint64_t index;
// Label for the instruction loading the most significant half of the address.
MipsLabel high_label;
// Label for the instruction supplying the least significant half of the address.
MipsLabel low_label;
};
void PatchJitRootUse(uint8_t* code,
const uint8_t* roots_data,
const JitPatchInfo& info,
uint64_t index_in_table) const;
JitPatchInfo* NewJitRootStringPatch(const DexFile& dex_file,
dex::StringIndex string_index,
Handle<mirror::String> handle);
JitPatchInfo* NewJitRootClassPatch(const DexFile& dex_file,
dex::TypeIndex type_index,
Handle<mirror::Class> handle);
private:
Register GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, Register temp);
using Uint32ToLiteralMap = ArenaSafeMap<uint32_t, Literal*>;
Literal* DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map);
PcRelativePatchInfo* NewPcRelativePatch(const DexFile* dex_file,
uint32_t offset_or_index,
const PcRelativePatchInfo* info_high,
ArenaDeque<PcRelativePatchInfo>* patches);
template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
void EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo>& infos,
ArenaVector<linker::LinkerPatch>* linker_patches);
// Labels for each block that will be compiled.
MipsLabel* block_labels_;
MipsLabel frame_entry_label_;
LocationsBuilderMIPS location_builder_;
InstructionCodeGeneratorMIPS instruction_visitor_;
ParallelMoveResolverMIPS move_resolver_;
MipsAssembler assembler_;
const MipsInstructionSetFeatures& isa_features_;
// Deduplication map for 32-bit literals, used for non-patchable boot image addresses.
Uint32ToLiteralMap uint32_literals_;
// PC-relative method patch info for kBootImageLinkTimePcRelative/kBootImageRelRo.
// Also used for type/string patches for kBootImageRelRo (same linker patch as for methods).
ArenaDeque<PcRelativePatchInfo> boot_image_method_patches_;
// PC-relative method patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> method_bss_entry_patches_;
// PC-relative type patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PcRelativePatchInfo> boot_image_type_patches_;
// PC-relative type patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> type_bss_entry_patches_;
// PC-relative String patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PcRelativePatchInfo> boot_image_string_patches_;
// PC-relative String patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> string_bss_entry_patches_;
// Patches for string root accesses in JIT compiled code.
ArenaDeque<JitPatchInfo> jit_string_patches_;
// Patches for class root accesses in JIT compiled code.
ArenaDeque<JitPatchInfo> jit_class_patches_;
// PC-relative loads on R2 clobber RA, which may need to be preserved explicitly in leaf methods.
// This is a flag set by pc_relative_fixups_mips and dex_cache_array_fixups_mips optimizations.
bool clobbered_ra_;
DISALLOW_COPY_AND_ASSIGN(CodeGeneratorMIPS);
};
} // namespace mips
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_