| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "instruction_builder.h" |
| |
| #include "art_method-inl.h" |
| #include "base/arena_bit_vector.h" |
| #include "base/bit_vector-inl.h" |
| #include "base/logging.h" |
| #include "block_builder.h" |
| #include "class_linker-inl.h" |
| #include "code_generator.h" |
| #include "data_type-inl.h" |
| #include "dex/bytecode_utils.h" |
| #include "dex/dex_instruction-inl.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "driver/compiler_options.h" |
| #include "entrypoints/entrypoint_utils-inl.h" |
| #include "imtable-inl.h" |
| #include "intrinsics.h" |
| #include "intrinsics_utils.h" |
| #include "jit/jit.h" |
| #include "mirror/dex_cache.h" |
| #include "oat_file.h" |
| #include "optimizing_compiler_stats.h" |
| #include "reflective_handle_scope-inl.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "sharpening.h" |
| #include "ssa_builder.h" |
| #include "well_known_classes.h" |
| |
| namespace art HIDDEN { |
| |
| namespace { |
| |
| class SamePackageCompare { |
| public: |
| explicit SamePackageCompare(const DexCompilationUnit& dex_compilation_unit) |
| : dex_compilation_unit_(dex_compilation_unit) {} |
| |
| bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (klass->GetClassLoader() != dex_compilation_unit_.GetClassLoader().Get()) { |
| return false; |
| } |
| if (referrers_descriptor_ == nullptr) { |
| const DexFile* dex_file = dex_compilation_unit_.GetDexFile(); |
| uint32_t referrers_method_idx = dex_compilation_unit_.GetDexMethodIndex(); |
| referrers_descriptor_ = |
| dex_file->StringByTypeIdx(dex_file->GetMethodId(referrers_method_idx).class_idx_); |
| referrers_package_length_ = PackageLength(referrers_descriptor_); |
| } |
| std::string temp; |
| const char* klass_descriptor = klass->GetDescriptor(&temp); |
| size_t klass_package_length = PackageLength(klass_descriptor); |
| return (referrers_package_length_ == klass_package_length) && |
| memcmp(referrers_descriptor_, klass_descriptor, referrers_package_length_) == 0; |
| }; |
| |
| private: |
| static size_t PackageLength(const char* descriptor) { |
| const char* slash_pos = strrchr(descriptor, '/'); |
| return (slash_pos != nullptr) ? static_cast<size_t>(slash_pos - descriptor) : 0u; |
| } |
| |
| const DexCompilationUnit& dex_compilation_unit_; |
| const char* referrers_descriptor_ = nullptr; |
| size_t referrers_package_length_ = 0u; |
| }; |
| |
| } // anonymous namespace |
| |
| HInstructionBuilder::HInstructionBuilder(HGraph* graph, |
| HBasicBlockBuilder* block_builder, |
| SsaBuilder* ssa_builder, |
| const DexFile* dex_file, |
| const CodeItemDebugInfoAccessor& accessor, |
| DataType::Type return_type, |
| const DexCompilationUnit* dex_compilation_unit, |
| const DexCompilationUnit* outer_compilation_unit, |
| CodeGenerator* code_generator, |
| OptimizingCompilerStats* compiler_stats, |
| ScopedArenaAllocator* local_allocator) |
| : allocator_(graph->GetAllocator()), |
| graph_(graph), |
| dex_file_(dex_file), |
| code_item_accessor_(accessor), |
| return_type_(return_type), |
| block_builder_(block_builder), |
| ssa_builder_(ssa_builder), |
| code_generator_(code_generator), |
| dex_compilation_unit_(dex_compilation_unit), |
| outer_compilation_unit_(outer_compilation_unit), |
| compilation_stats_(compiler_stats), |
| local_allocator_(local_allocator), |
| locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)), |
| current_block_(nullptr), |
| current_locals_(nullptr), |
| latest_result_(nullptr), |
| current_this_parameter_(nullptr), |
| loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)), |
| class_cache_(std::less<dex::TypeIndex>(), local_allocator->Adapter(kArenaAllocGraphBuilder)) { |
| loop_headers_.reserve(kDefaultNumberOfLoops); |
| } |
| |
| HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const { |
| return block_builder_->GetBlockAt(dex_pc); |
| } |
| |
| inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) { |
| ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; |
| const size_t vregs = graph_->GetNumberOfVRegs(); |
| if (locals->size() == vregs) { |
| return locals; |
| } |
| return GetLocalsForWithAllocation(block, locals, vregs); |
| } |
| |
| ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation( |
| HBasicBlock* block, |
| ScopedArenaVector<HInstruction*>* locals, |
| const size_t vregs) { |
| DCHECK_NE(locals->size(), vregs); |
| locals->resize(vregs, nullptr); |
| if (block->IsCatchBlock()) { |
| // We record incoming inputs of catch phis at throwing instructions and |
| // must therefore eagerly create the phis. Phis for undefined vregs will |
| // be deleted when the first throwing instruction with the vreg undefined |
| // is encountered. Unused phis will be removed by dead phi analysis. |
| for (size_t i = 0; i < vregs; ++i) { |
| // No point in creating the catch phi if it is already undefined at |
| // the first throwing instruction. |
| HInstruction* current_local_value = (*current_locals_)[i]; |
| if (current_local_value != nullptr) { |
| HPhi* phi = new (allocator_) HPhi( |
| allocator_, |
| i, |
| 0, |
| current_local_value->GetType()); |
| block->AddPhi(phi); |
| (*locals)[i] = phi; |
| } |
| } |
| } |
| return locals; |
| } |
| |
| inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) { |
| ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block); |
| return (*locals)[local]; |
| } |
| |
| void HInstructionBuilder::InitializeBlockLocals() { |
| current_locals_ = GetLocalsFor(current_block_); |
| |
| if (current_block_->IsCatchBlock()) { |
| // Catch phis were already created and inputs collected from throwing sites. |
| if (kIsDebugBuild) { |
| // Make sure there was at least one throwing instruction which initialized |
| // locals (guaranteed by HGraphBuilder) and that all try blocks have been |
| // visited already (from HTryBoundary scoping and reverse post order). |
| bool catch_block_visited = false; |
| for (HBasicBlock* current : graph_->GetReversePostOrder()) { |
| if (current == current_block_) { |
| catch_block_visited = true; |
| } else if (current->IsTryBlock()) { |
| const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry(); |
| if (try_entry.HasExceptionHandler(*current_block_)) { |
| DCHECK(!catch_block_visited) << "Catch block visited before its try block."; |
| } |
| } |
| } |
| DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs()) |
| << "No instructions throwing into a live catch block."; |
| } |
| } else if (current_block_->IsLoopHeader()) { |
| // If the block is a loop header, we know we only have visited the pre header |
| // because we are visiting in reverse post order. We create phis for all initialized |
| // locals from the pre header. Their inputs will be populated at the end of |
| // the analysis. |
| for (size_t local = 0; local < current_locals_->size(); ++local) { |
| HInstruction* incoming = |
| ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local); |
| if (incoming != nullptr) { |
| HPhi* phi = new (allocator_) HPhi( |
| allocator_, |
| local, |
| 0, |
| incoming->GetType()); |
| current_block_->AddPhi(phi); |
| (*current_locals_)[local] = phi; |
| } |
| } |
| |
| // Save the loop header so that the last phase of the analysis knows which |
| // blocks need to be updated. |
| loop_headers_.push_back(current_block_); |
| } else if (current_block_->GetPredecessors().size() > 0) { |
| // All predecessors have already been visited because we are visiting in reverse post order. |
| // We merge the values of all locals, creating phis if those values differ. |
| for (size_t local = 0; local < current_locals_->size(); ++local) { |
| bool one_predecessor_has_no_value = false; |
| bool is_different = false; |
| HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); |
| |
| for (HBasicBlock* predecessor : current_block_->GetPredecessors()) { |
| HInstruction* current = ValueOfLocalAt(predecessor, local); |
| if (current == nullptr) { |
| one_predecessor_has_no_value = true; |
| break; |
| } else if (current != value) { |
| is_different = true; |
| } |
| } |
| |
| if (one_predecessor_has_no_value) { |
| // If one predecessor has no value for this local, we trust the verifier has |
| // successfully checked that there is a store dominating any read after this block. |
| continue; |
| } |
| |
| if (is_different) { |
| HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); |
| HPhi* phi = new (allocator_) HPhi( |
| allocator_, |
| local, |
| current_block_->GetPredecessors().size(), |
| first_input->GetType()); |
| for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) { |
| HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local); |
| phi->SetRawInputAt(i, pred_value); |
| } |
| current_block_->AddPhi(phi); |
| value = phi; |
| } |
| (*current_locals_)[local] = value; |
| } |
| } |
| } |
| |
| void HInstructionBuilder::PropagateLocalsToCatchBlocks() { |
| const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry(); |
| for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { |
| ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); |
| DCHECK_EQ(handler_locals->size(), current_locals_->size()); |
| for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { |
| HInstruction* handler_value = (*handler_locals)[vreg]; |
| if (handler_value == nullptr) { |
| // Vreg was undefined at a previously encountered throwing instruction |
| // and the catch phi was deleted. Do not record the local value. |
| continue; |
| } |
| DCHECK(handler_value->IsPhi()); |
| |
| HInstruction* local_value = (*current_locals_)[vreg]; |
| if (local_value == nullptr) { |
| // This is the first instruction throwing into `catch_block` where |
| // `vreg` is undefined. Delete the catch phi. |
| catch_block->RemovePhi(handler_value->AsPhi()); |
| (*handler_locals)[vreg] = nullptr; |
| } else { |
| // Vreg has been defined at all instructions throwing into `catch_block` |
| // encountered so far. Record the local value in the catch phi. |
| handler_value->AsPhi()->AddInput(local_value); |
| } |
| } |
| } |
| } |
| |
| void HInstructionBuilder::AppendInstruction(HInstruction* instruction) { |
| current_block_->AddInstruction(instruction); |
| InitializeInstruction(instruction); |
| } |
| |
| void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) { |
| if (current_block_->GetInstructions().IsEmpty()) { |
| current_block_->AddInstruction(instruction); |
| } else { |
| current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction()); |
| } |
| InitializeInstruction(instruction); |
| } |
| |
| void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) { |
| if (instruction->NeedsEnvironment()) { |
| HEnvironment* environment = new (allocator_) HEnvironment( |
| allocator_, |
| current_locals_->size(), |
| graph_->GetArtMethod(), |
| instruction->GetDexPc(), |
| instruction); |
| environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_)); |
| instruction->SetRawEnvironment(environment); |
| } |
| } |
| |
| HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) { |
| HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference); |
| if (!ref->CanBeNull()) { |
| return ref; |
| } |
| |
| HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc); |
| AppendInstruction(null_check); |
| return null_check; |
| } |
| |
| void HInstructionBuilder::SetLoopHeaderPhiInputs() { |
| for (size_t i = loop_headers_.size(); i > 0; --i) { |
| HBasicBlock* block = loop_headers_[i - 1]; |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->AsPhi(); |
| size_t vreg = phi->GetRegNumber(); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| HInstruction* value = ValueOfLocalAt(predecessor, vreg); |
| if (value == nullptr) { |
| // Vreg is undefined at this predecessor. Mark it dead and leave with |
| // fewer inputs than predecessors. SsaChecker will fail if not removed. |
| phi->SetDead(); |
| break; |
| } else { |
| phi->AddInput(value); |
| } |
| } |
| } |
| } |
| } |
| |
| static bool IsBlockPopulated(HBasicBlock* block) { |
| if (block->IsLoopHeader()) { |
| // Suspend checks were inserted into loop headers during building of dominator tree. |
| DCHECK(block->GetFirstInstruction()->IsSuspendCheck()); |
| return block->GetFirstInstruction() != block->GetLastInstruction(); |
| } else if (block->IsCatchBlock()) { |
| // Nops were inserted into the beginning of catch blocks. |
| DCHECK(block->GetFirstInstruction()->IsNop()); |
| return block->GetFirstInstruction() != block->GetLastInstruction(); |
| } else { |
| return !block->GetInstructions().IsEmpty(); |
| } |
| } |
| |
| bool HInstructionBuilder::Build() { |
| DCHECK(code_item_accessor_.HasCodeItem()); |
| locals_for_.resize( |
| graph_->GetBlocks().size(), |
| ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder))); |
| |
| // Find locations where we want to generate extra stackmaps for native debugging. |
| // This allows us to generate the info only at interesting points (for example, |
| // at start of java statement) rather than before every dex instruction. |
| const bool native_debuggable = code_generator_ != nullptr && |
| code_generator_->GetCompilerOptions().GetNativeDebuggable(); |
| ArenaBitVector* native_debug_info_locations = nullptr; |
| if (native_debuggable) { |
| native_debug_info_locations = FindNativeDebugInfoLocations(); |
| } |
| |
| for (HBasicBlock* block : graph_->GetReversePostOrder()) { |
| current_block_ = block; |
| uint32_t block_dex_pc = current_block_->GetDexPc(); |
| |
| InitializeBlockLocals(); |
| |
| if (current_block_->IsEntryBlock()) { |
| InitializeParameters(); |
| AppendInstruction(new (allocator_) HSuspendCheck(0u)); |
| if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { |
| AppendInstruction(new (allocator_) HMethodEntryHook(0u)); |
| } |
| AppendInstruction(new (allocator_) HGoto(0u)); |
| continue; |
| } else if (current_block_->IsExitBlock()) { |
| AppendInstruction(new (allocator_) HExit()); |
| continue; |
| } else if (current_block_->IsLoopHeader()) { |
| HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc()); |
| current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check); |
| // This is slightly odd because the loop header might not be empty (TryBoundary). |
| // But we're still creating the environment with locals from the top of the block. |
| InsertInstructionAtTop(suspend_check); |
| } else if (current_block_->IsCatchBlock()) { |
| // We add an environment emitting instruction at the beginning of each catch block, in order |
| // to support try catch inlining. |
| // This is slightly odd because the catch block might not be empty (TryBoundary). |
| InsertInstructionAtTop(new (allocator_) HNop(block_dex_pc, /* needs_environment= */ true)); |
| } |
| |
| if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) { |
| // Synthetic block that does not need to be populated. |
| DCHECK(IsBlockPopulated(current_block_)); |
| continue; |
| } |
| |
| DCHECK(!IsBlockPopulated(current_block_)); |
| |
| for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) { |
| if (current_block_ == nullptr) { |
| // The previous instruction ended this block. |
| break; |
| } |
| |
| const uint32_t dex_pc = pair.DexPc(); |
| if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) { |
| // This dex_pc starts a new basic block. |
| break; |
| } |
| |
| if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) { |
| PropagateLocalsToCatchBlocks(); |
| } |
| |
| if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { |
| AppendInstruction(new (allocator_) HNop(dex_pc, /* needs_environment= */ true)); |
| } |
| |
| // Note: There may be no Thread for gtests. |
| DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending()) |
| << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) |
| << " " << pair.Inst().Name() << "@" << dex_pc; |
| if (!ProcessDexInstruction(pair.Inst(), dex_pc)) { |
| return false; |
| } |
| DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending()) |
| << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) |
| << " " << pair.Inst().Name() << "@" << dex_pc; |
| } |
| |
| if (current_block_ != nullptr) { |
| // Branching instructions clear current_block, so we know the last |
| // instruction of the current block is not a branching instruction. |
| // We add an unconditional Goto to the next block. |
| DCHECK_EQ(current_block_->GetSuccessors().size(), 1u); |
| AppendInstruction(new (allocator_) HGoto()); |
| } |
| } |
| |
| SetLoopHeaderPhiInputs(); |
| |
| return true; |
| } |
| |
| void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) { |
| DCHECK(!code_item_accessor_.HasCodeItem()); |
| DCHECK(method->IsIntrinsic()); |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| CHECK(!method->IsSignaturePolymorphic()); |
| } |
| |
| locals_for_.resize( |
| graph_->GetBlocks().size(), |
| ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder))); |
| |
| // Fill the entry block. Do not add suspend check, we do not want a suspend |
| // check in intrinsics; intrinsic methods are supposed to be fast. |
| current_block_ = graph_->GetEntryBlock(); |
| InitializeBlockLocals(); |
| InitializeParameters(); |
| if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { |
| AppendInstruction(new (allocator_) HMethodEntryHook(0u)); |
| } |
| AppendInstruction(new (allocator_) HGoto(0u)); |
| |
| // Fill the body. |
| current_block_ = current_block_->GetSingleSuccessor(); |
| InitializeBlockLocals(); |
| DCHECK(!IsBlockPopulated(current_block_)); |
| |
| // Add the intermediate representation, if available, or invoke instruction. |
| size_t in_vregs = graph_->GetNumberOfInVRegs(); |
| size_t number_of_arguments = |
| in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr); |
| uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex(); |
| const char* shorty = dex_file_->GetMethodShorty(method_idx); |
| RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs); |
| if (!BuildSimpleIntrinsic(method, kNoDexPc, operands, shorty)) { |
| // Some intrinsics without intermediate representation still yield a leaf method, |
| // so build the invoke. Use HInvokeStaticOrDirect even for methods that would |
| // normally use an HInvokeVirtual (sharpen the call). |
| MethodReference target_method(dex_file_, method_idx); |
| HInvokeStaticOrDirect::DispatchInfo dispatch_info = { |
| MethodLoadKind::kRuntimeCall, |
| CodePtrLocation::kCallArtMethod, |
| /* method_load_data= */ 0u |
| }; |
| InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect; |
| HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect( |
| allocator_, |
| number_of_arguments, |
| return_type_, |
| kNoDexPc, |
| target_method, |
| method, |
| dispatch_info, |
| invoke_type, |
| target_method, |
| HInvokeStaticOrDirect::ClinitCheckRequirement::kNone, |
| !graph_->IsDebuggable()); |
| HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); |
| } |
| |
| // Add the return instruction. |
| if (return_type_ == DataType::Type::kVoid) { |
| if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { |
| AppendInstruction(new (allocator_) HMethodExitHook(graph_->GetNullConstant(), kNoDexPc)); |
| } |
| AppendInstruction(new (allocator_) HReturnVoid()); |
| } else { |
| if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { |
| AppendInstruction(new (allocator_) HMethodExitHook(latest_result_, kNoDexPc)); |
| } |
| AppendInstruction(new (allocator_) HReturn(latest_result_)); |
| } |
| |
| // Fill the exit block. |
| DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock()); |
| current_block_ = graph_->GetExitBlock(); |
| InitializeBlockLocals(); |
| AppendInstruction(new (allocator_) HExit()); |
| } |
| |
| ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() { |
| ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_, |
| code_item_accessor_.InsnsSizeInCodeUnits(), |
| /* expandable= */ false, |
| kArenaAllocGraphBuilder); |
| locations->ClearAllBits(); |
| // The visitor gets called when the line number changes. |
| // In other words, it marks the start of new java statement. |
| code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) { |
| locations->SetBit(entry.address_); |
| return false; |
| }); |
| // Instruction-specific tweaks. |
| for (const DexInstructionPcPair& inst : code_item_accessor_) { |
| switch (inst->Opcode()) { |
| case Instruction::MOVE_EXCEPTION: { |
| // Stop in native debugger after the exception has been moved. |
| // The compiler also expects the move at the start of basic block so |
| // we do not want to interfere by inserting native-debug-info before it. |
| locations->ClearBit(inst.DexPc()); |
| DexInstructionIterator next = std::next(DexInstructionIterator(inst)); |
| DCHECK(next.DexPc() != inst.DexPc()); |
| if (next != code_item_accessor_.end()) { |
| locations->SetBit(next.DexPc()); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| return locations; |
| } |
| |
| HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const { |
| HInstruction* value = (*current_locals_)[reg_number]; |
| DCHECK(value != nullptr); |
| |
| // If the operation requests a specific type, we make sure its input is of that type. |
| if (type != value->GetType()) { |
| if (DataType::IsFloatingPointType(type)) { |
| value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type); |
| } else if (type == DataType::Type::kReference) { |
| value = ssa_builder_->GetReferenceTypeEquivalent(value); |
| } |
| DCHECK(value != nullptr); |
| } |
| |
| return value; |
| } |
| |
| void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) { |
| DataType::Type stored_type = stored_value->GetType(); |
| DCHECK_NE(stored_type, DataType::Type::kVoid); |
| |
| // Storing into vreg `reg_number` may implicitly invalidate the surrounding |
| // registers. Consider the following cases: |
| // (1) Storing a wide value must overwrite previous values in both `reg_number` |
| // and `reg_number+1`. We store `nullptr` in `reg_number+1`. |
| // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` |
| // must invalidate it. We store `nullptr` in `reg_number-1`. |
| // Consequently, storing a wide value into the high vreg of another wide value |
| // will invalidate both `reg_number-1` and `reg_number+1`. |
| |
| if (reg_number != 0) { |
| HInstruction* local_low = (*current_locals_)[reg_number - 1]; |
| if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) { |
| // The vreg we are storing into was previously the high vreg of a pair. |
| // We need to invalidate its low vreg. |
| DCHECK((*current_locals_)[reg_number] == nullptr); |
| (*current_locals_)[reg_number - 1] = nullptr; |
| } |
| } |
| |
| (*current_locals_)[reg_number] = stored_value; |
| if (DataType::Is64BitType(stored_type)) { |
| // We are storing a pair. Invalidate the instruction in the high vreg. |
| (*current_locals_)[reg_number + 1] = nullptr; |
| } |
| } |
| |
| void HInstructionBuilder::InitializeParameters() { |
| DCHECK(current_block_->IsEntryBlock()); |
| |
| // outer_compilation_unit_ is null only when unit testing. |
| if (outer_compilation_unit_ == nullptr) { |
| return; |
| } |
| |
| const char* shorty = dex_compilation_unit_->GetShorty(); |
| uint16_t number_of_parameters = graph_->GetNumberOfInVRegs(); |
| uint16_t locals_index = graph_->GetNumberOfLocalVRegs(); |
| uint16_t parameter_index = 0; |
| |
| const dex::MethodId& referrer_method_id = |
| dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); |
| if (!dex_compilation_unit_->IsStatic()) { |
| // Add the implicit 'this' argument, not expressed in the signature. |
| HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_, |
| referrer_method_id.class_idx_, |
| parameter_index++, |
| DataType::Type::kReference, |
| /* is_this= */ true); |
| AppendInstruction(parameter); |
| UpdateLocal(locals_index++, parameter); |
| number_of_parameters--; |
| current_this_parameter_ = parameter; |
| } else { |
| DCHECK(current_this_parameter_ == nullptr); |
| } |
| |
| const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); |
| const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto); |
| for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { |
| HParameterValue* parameter = new (allocator_) HParameterValue( |
| *dex_file_, |
| arg_types->GetTypeItem(shorty_pos - 1).type_idx_, |
| parameter_index++, |
| DataType::FromShorty(shorty[shorty_pos]), |
| /* is_this= */ false); |
| ++shorty_pos; |
| AppendInstruction(parameter); |
| // Store the parameter value in the local that the dex code will use |
| // to reference that parameter. |
| UpdateLocal(locals_index++, parameter); |
| if (DataType::Is64BitType(parameter->GetType())) { |
| i++; |
| locals_index++; |
| parameter_index++; |
| } |
| } |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); |
| HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| T* comparison = new (allocator_) T(first, second, dex_pc); |
| AppendInstruction(comparison); |
| AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); |
| current_block_ = nullptr; |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { |
| HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); |
| T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); |
| AppendInstruction(comparison); |
| AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); |
| current_block_ = nullptr; |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Unop_12x(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| AppendInstruction(new (allocator_) T(type, first, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| void HInstructionBuilder::Conversion_12x(const Instruction& instruction, |
| DataType::Type input_type, |
| DataType::Type result_type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), input_type); |
| AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_23x(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), type); |
| AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32); |
| AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction, |
| DataType::Type type, |
| ComparisonBias bias, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), type); |
| AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), type); |
| HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_12x(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), type); |
| HInstruction* second = LoadLocal(instruction.VRegB(), type); |
| AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); |
| if (reverse) { |
| std::swap(first, second); |
| } |
| AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); |
| if (reverse) { |
| std::swap(first, second); |
| } |
| AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| // Does the method being compiled need any constructor barriers being inserted? |
| // (Always 'false' for methods that aren't <init>.) |
| static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) { |
| // Can be null in unit tests only. |
| if (UNLIKELY(cu == nullptr)) { |
| return false; |
| } |
| |
| // Constructor barriers are applicable only for <init> methods. |
| if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) { |
| return false; |
| } |
| |
| return cu->RequiresConstructorBarrier(); |
| } |
| |
| // Returns true if `block` has only one successor which starts at the next |
| // dex_pc after `instruction` at `dex_pc`. |
| static bool IsFallthroughInstruction(const Instruction& instruction, |
| uint32_t dex_pc, |
| HBasicBlock* block) { |
| uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits(); |
| return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc; |
| } |
| |
| void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) { |
| HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); |
| DexSwitchTable table(instruction, dex_pc); |
| |
| if (table.GetNumEntries() == 0) { |
| // Empty Switch. Code falls through to the next block. |
| DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_)); |
| AppendInstruction(new (allocator_) HGoto(dex_pc)); |
| } else if (table.ShouldBuildDecisionTree()) { |
| for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) { |
| HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc); |
| HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc); |
| AppendInstruction(comparison); |
| AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); |
| |
| if (!it.IsLast()) { |
| current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex()); |
| } |
| } |
| } else { |
| AppendInstruction( |
| new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc)); |
| } |
| |
| current_block_ = nullptr; |
| } |
| |
| void HInstructionBuilder::BuildReturn(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| if (type == DataType::Type::kVoid) { |
| // Only <init> (which is a return-void) could possibly have a constructor fence. |
| // This may insert additional redundant constructor fences from the super constructors. |
| // TODO: remove redundant constructor fences (b/36656456). |
| if (RequiresConstructorBarrier(dex_compilation_unit_)) { |
| // Compiling instance constructor. |
| DCHECK_STREQ("<init>", graph_->GetMethodName()); |
| |
| HInstruction* fence_target = current_this_parameter_; |
| DCHECK(fence_target != nullptr); |
| |
| AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_)); |
| MaybeRecordStat( |
| compilation_stats_, |
| MethodCompilationStat::kConstructorFenceGeneratedFinal); |
| } |
| if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { |
| // Return value is not used for void functions. We pass NullConstant to |
| // avoid special cases when generating code. |
| AppendInstruction(new (allocator_) HMethodExitHook(graph_->GetNullConstant(), dex_pc)); |
| } |
| AppendInstruction(new (allocator_) HReturnVoid(dex_pc)); |
| } else { |
| DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_)); |
| HInstruction* value = LoadLocal(instruction.VRegA(), type); |
| if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { |
| AppendInstruction(new (allocator_) HMethodExitHook(value, dex_pc)); |
| } |
| AppendInstruction(new (allocator_) HReturn(value, dex_pc)); |
| } |
| current_block_ = nullptr; |
| } |
| |
| static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { |
| switch (opcode) { |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: |
| return kStatic; |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: |
| return kDirect; |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| return kVirtual; |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| return kInterface; |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_SUPER: |
| return kSuper; |
| default: |
| LOG(FATAL) << "Unexpected invoke opcode: " << opcode; |
| UNREACHABLE(); |
| } |
| } |
| |
| // Try to resolve a method using the class linker. Return null if a method could |
| // not be resolved or the resolved method cannot be used for some reason. |
| // Also retrieve method data needed for creating the invoke intermediate |
| // representation while we hold the mutator lock here. |
| static ArtMethod* ResolveMethod(uint16_t method_idx, |
| ArtMethod* referrer, |
| const DexCompilationUnit& dex_compilation_unit, |
| /*inout*/InvokeType* invoke_type, |
| /*out*/MethodReference* resolved_method_info, |
| /*out*/uint16_t* imt_or_vtable_index, |
| /*out*/bool* is_string_constructor) { |
| ScopedObjectAccess soa(Thread::Current()); |
| |
| ClassLinker* class_linker = dex_compilation_unit.GetClassLinker(); |
| Handle<mirror::ClassLoader> class_loader = dex_compilation_unit.GetClassLoader(); |
| |
| ArtMethod* resolved_method = |
| class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>( |
| method_idx, |
| dex_compilation_unit.GetDexCache(), |
| class_loader, |
| referrer, |
| *invoke_type); |
| |
| if (UNLIKELY(resolved_method == nullptr)) { |
| // Clean up any exception left by type resolution. |
| soa.Self()->ClearException(); |
| return nullptr; |
| } |
| DCHECK(!soa.Self()->IsExceptionPending()); |
| |
| // The referrer may be unresolved for AOT if we're compiling a class that cannot be |
| // resolved because, for example, we don't find a superclass in the classpath. |
| if (referrer == nullptr) { |
| // The class linker cannot check access without a referrer, so we have to do it. |
| // Check if the declaring class or referencing class is accessible. |
| SamePackageCompare same_package(dex_compilation_unit); |
| ObjPtr<mirror::Class> declaring_class = resolved_method->GetDeclaringClass(); |
| bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class); |
| if (!declaring_class_accessible) { |
| // It is possible to access members from an inaccessible superclass |
| // by referencing them through an accessible subclass. |
| ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType( |
| dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_, |
| dex_compilation_unit.GetDexCache().Get(), |
| class_loader.Get()); |
| DCHECK(referenced_class != nullptr); // Must have been resolved when resolving the method. |
| if (!referenced_class->IsPublic() && !same_package(referenced_class)) { |
| return nullptr; |
| } |
| } |
| // Check whether the method itself is accessible. |
| // Since the referrer is unresolved but the method is resolved, it cannot be |
| // inside the same class, so a private method is known to be inaccessible. |
| // And without a resolved referrer, we cannot check for protected member access |
| // in superlass, so we handle only access to public member or within the package. |
| if (resolved_method->IsPrivate() || |
| (!resolved_method->IsPublic() && !declaring_class_accessible)) { |
| return nullptr; |
| } |
| } |
| |
| // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. |
| // We need to look at the referrer's super class vtable. We need to do this to know if we need to |
| // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of |
| // which require runtime handling. |
| if (*invoke_type == kSuper) { |
| if (referrer == nullptr) { |
| // We could not determine the method's class we need to wait until runtime. |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| return nullptr; |
| } |
| ArtMethod* actual_method = FindSuperMethodToCall</*access_check=*/true>( |
| method_idx, resolved_method, referrer, soa.Self()); |
| if (actual_method == nullptr) { |
| // Clean up any exception left by method resolution. |
| soa.Self()->ClearException(); |
| return nullptr; |
| } |
| if (!actual_method->IsInvokable()) { |
| // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub |
| // could resolve the callee to the wrong method. |
| return nullptr; |
| } |
| // Call GetCanonicalMethod in case the resolved method is a copy: for super calls, the encoding |
| // of ArtMethod in BSS relies on not having copies there. |
| resolved_method = actual_method->GetCanonicalMethod(class_linker->GetImagePointerSize()); |
| } |
| |
| if (*invoke_type == kInterface) { |
| if (resolved_method->GetDeclaringClass()->IsObjectClass()) { |
| // If the resolved method is from j.l.Object, emit a virtual call instead. |
| // The IMT conflict stub only handles interface methods. |
| *invoke_type = kVirtual; |
| } else { |
| DCHECK(resolved_method->GetDeclaringClass()->IsInterface()); |
| } |
| } |
| |
| *resolved_method_info = |
| MethodReference(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex()); |
| if (*invoke_type == kVirtual) { |
| // For HInvokeVirtual we need the vtable index. |
| *imt_or_vtable_index = resolved_method->GetVtableIndex(); |
| } else if (*invoke_type == kInterface) { |
| // For HInvokeInterface we need the IMT index. |
| *imt_or_vtable_index = resolved_method->GetImtIndex(); |
| DCHECK_EQ(*imt_or_vtable_index, ImTable::GetImtIndex(resolved_method)); |
| } |
| |
| *is_string_constructor = resolved_method->IsStringConstructor(); |
| |
| return resolved_method; |
| } |
| |
| bool HInstructionBuilder::BuildInvoke(const Instruction& instruction, |
| uint32_t dex_pc, |
| uint32_t method_idx, |
| const InstructionOperands& operands) { |
| InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); |
| const char* shorty = dex_file_->GetMethodShorty(method_idx); |
| DataType::Type return_type = DataType::FromShorty(shorty[0]); |
| |
| // Remove the return type from the 'proto'. |
| size_t number_of_arguments = strlen(shorty) - 1; |
| if (invoke_type != kStatic) { // instance call |
| // One extra argument for 'this'. |
| number_of_arguments++; |
| } |
| |
| MethodReference resolved_method_reference(nullptr, 0u); |
| bool is_string_constructor = false; |
| uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16; |
| ArtMethod* resolved_method = ResolveMethod(method_idx, |
| graph_->GetArtMethod(), |
| *dex_compilation_unit_, |
| &invoke_type, |
| &resolved_method_reference, |
| &imt_or_vtable_index, |
| &is_string_constructor); |
| |
| MethodReference method_reference(&graph_->GetDexFile(), method_idx); |
| if (UNLIKELY(resolved_method == nullptr)) { |
| DCHECK(!Thread::Current()->IsExceptionPending()); |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedMethod); |
| HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_reference, |
| invoke_type); |
| return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true); |
| } |
| |
| // Replace calls to String.<init> with StringFactory. |
| if (is_string_constructor) { |
| uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method); |
| HInvokeStaticOrDirect::DispatchInfo dispatch_info = { |
| MethodLoadKind::kStringInit, |
| CodePtrLocation::kCallArtMethod, |
| dchecked_integral_cast<uint64_t>(string_init_entry_point) |
| }; |
| // We pass null for the resolved_method to ensure optimizations |
| // don't rely on it. |
| HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect( |
| allocator_, |
| number_of_arguments - 1, |
| /* return_type= */ DataType::Type::kReference, |
| dex_pc, |
| method_reference, |
| /* resolved_method= */ nullptr, |
| dispatch_info, |
| invoke_type, |
| resolved_method_reference, |
| HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit, |
| !graph_->IsDebuggable()); |
| return HandleStringInit(invoke, operands, shorty); |
| } |
| |
| // Potential class initialization check, in the case of a static method call. |
| HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement = |
| HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; |
| HClinitCheck* clinit_check = nullptr; |
| if (invoke_type == kStatic) { |
| clinit_check = ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement); |
| } |
| |
| // Try to build an HIR replacement for the intrinsic. |
| if (UNLIKELY(resolved_method->IsIntrinsic()) && !graph_->IsDebuggable()) { |
| // All intrinsics are in the primary boot image, so their class can always be referenced |
| // and we do not need to rely on the implicit class initialization check. The class should |
| // be initialized but we do not require that here. |
| DCHECK_NE(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); |
| if (BuildSimpleIntrinsic(resolved_method, dex_pc, operands, shorty)) { |
| return true; |
| } |
| } |
| |
| HInvoke* invoke = nullptr; |
| if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { |
| // For sharpening, we create another MethodReference, to account for the |
| // kSuper case below where we cannot find a dex method index. |
| bool has_method_id = true; |
| if (invoke_type == kSuper) { |
| uint32_t dex_method_index = method_reference.index; |
| if (IsSameDexFile(*resolved_method_reference.dex_file, |
| *dex_compilation_unit_->GetDexFile())) { |
| // Update the method index to the one resolved. Note that this may be a no-op if |
| // we resolved to the method referenced by the instruction. |
| dex_method_index = resolved_method_reference.index; |
| } else { |
| // Try to find a dex method index in this caller's dex file. |
| ScopedObjectAccess soa(Thread::Current()); |
| dex_method_index = resolved_method->FindDexMethodIndexInOtherDexFile( |
| *dex_compilation_unit_->GetDexFile(), method_idx); |
| } |
| if (dex_method_index == dex::kDexNoIndex) { |
| has_method_id = false; |
| } else { |
| method_reference.index = dex_method_index; |
| } |
| } |
| HInvokeStaticOrDirect::DispatchInfo dispatch_info = |
| HSharpening::SharpenLoadMethod(resolved_method, |
| has_method_id, |
| /* for_interface_call= */ false, |
| code_generator_); |
| if (dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) { |
| graph_->SetHasDirectCriticalNativeCall(true); |
| } |
| invoke = new (allocator_) HInvokeStaticOrDirect(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_reference, |
| resolved_method, |
| dispatch_info, |
| invoke_type, |
| resolved_method_reference, |
| clinit_check_requirement, |
| !graph_->IsDebuggable()); |
| if (clinit_check != nullptr) { |
| // Add the class initialization check as last input of `invoke`. |
| DCHECK_EQ(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); |
| size_t clinit_check_index = invoke->InputCount() - 1u; |
| DCHECK(invoke->InputAt(clinit_check_index) == nullptr); |
| invoke->SetArgumentAt(clinit_check_index, clinit_check); |
| } |
| } else if (invoke_type == kVirtual) { |
| invoke = new (allocator_) HInvokeVirtual(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_reference, |
| resolved_method, |
| resolved_method_reference, |
| /*vtable_index=*/ imt_or_vtable_index, |
| !graph_->IsDebuggable()); |
| } else { |
| DCHECK_EQ(invoke_type, kInterface); |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(resolved_method->GetDeclaringClass()->IsInterface()); |
| } |
| MethodLoadKind load_kind = HSharpening::SharpenLoadMethod( |
| resolved_method, |
| /* has_method_id= */ true, |
| /* for_interface_call= */ true, |
| code_generator_) |
| .method_load_kind; |
| invoke = new (allocator_) HInvokeInterface(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_reference, |
| resolved_method, |
| resolved_method_reference, |
| /*imt_index=*/ imt_or_vtable_index, |
| load_kind, |
| !graph_->IsDebuggable()); |
| } |
| return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); |
| } |
| |
| static bool VarHandleAccessorNeedsReturnTypeCheck(HInvoke* invoke, DataType::Type return_type) { |
| mirror::VarHandle::AccessModeTemplate access_mode_template = |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic()); |
| |
| switch (access_mode_template) { |
| case mirror::VarHandle::AccessModeTemplate::kGet: |
| case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: |
| return return_type == DataType::Type::kReference; |
| case mirror::VarHandle::AccessModeTemplate::kSet: |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: |
| return false; |
| } |
| } |
| |
| // This function initializes `VarHandleOptimizations`, does a number of static checks and disables |
| // the intrinsic if some of the checks fail. This is necessary for the code generator to work (for |
| // both the baseline and the optimizing compiler). |
| static void DecideVarHandleIntrinsic(HInvoke* invoke) { |
| switch (invoke->GetIntrinsic()) { |
| case Intrinsics::kVarHandleCompareAndExchange: |
| case Intrinsics::kVarHandleCompareAndExchangeAcquire: |
| case Intrinsics::kVarHandleCompareAndExchangeRelease: |
| case Intrinsics::kVarHandleCompareAndSet: |
| case Intrinsics::kVarHandleGet: |
| case Intrinsics::kVarHandleGetAcquire: |
| case Intrinsics::kVarHandleGetAndAdd: |
| case Intrinsics::kVarHandleGetAndAddAcquire: |
| case Intrinsics::kVarHandleGetAndAddRelease: |
| case Intrinsics::kVarHandleGetAndBitwiseAnd: |
| case Intrinsics::kVarHandleGetAndBitwiseAndAcquire: |
| case Intrinsics::kVarHandleGetAndBitwiseAndRelease: |
| case Intrinsics::kVarHandleGetAndBitwiseOr: |
| case Intrinsics::kVarHandleGetAndBitwiseOrAcquire: |
| case Intrinsics::kVarHandleGetAndBitwiseOrRelease: |
| case Intrinsics::kVarHandleGetAndBitwiseXor: |
| case Intrinsics::kVarHandleGetAndBitwiseXorAcquire: |
| case Intrinsics::kVarHandleGetAndBitwiseXorRelease: |
| case Intrinsics::kVarHandleGetAndSet: |
| case Intrinsics::kVarHandleGetAndSetAcquire: |
| case Intrinsics::kVarHandleGetAndSetRelease: |
| case Intrinsics::kVarHandleGetOpaque: |
| case Intrinsics::kVarHandleGetVolatile: |
| case Intrinsics::kVarHandleSet: |
| case Intrinsics::kVarHandleSetOpaque: |
| case Intrinsics::kVarHandleSetRelease: |
| case Intrinsics::kVarHandleSetVolatile: |
| case Intrinsics::kVarHandleWeakCompareAndSet: |
| case Intrinsics::kVarHandleWeakCompareAndSetAcquire: |
| case Intrinsics::kVarHandleWeakCompareAndSetPlain: |
| case Intrinsics::kVarHandleWeakCompareAndSetRelease: |
| break; |
| default: |
| return; // Not a VarHandle intrinsic, skip. |
| } |
| |
| DCHECK(invoke->IsInvokePolymorphic()); |
| VarHandleOptimizations optimizations(invoke); |
| |
| // Do only simple static checks here (those for which we have enough information). More complex |
| // checks should be done in instruction simplifier, which runs after other optimization passes |
| // that may provide useful information. |
| |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count > 2u) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| if (expected_coordinates_count != 0u) { |
| // Except for static fields (no coordinates), the first coordinate must be a reference. |
| // Do not intrinsify if the reference is null as we would always go to slow path anyway. |
| HInstruction* object = invoke->InputAt(1); |
| if (object->GetType() != DataType::Type::kReference || object->IsNullConstant()) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| } |
| if (expected_coordinates_count == 2u) { |
| // For arrays and views, the second coordinate must be convertible to `int`. |
| // In this context, `boolean` is not convertible but we have to look at the shorty |
| // as compiler transformations can give the invoke a valid boolean input. |
| DataType::Type index_type = GetDataTypeFromShorty(invoke, 2); |
| if (index_type == DataType::Type::kBool || |
| DataType::Kind(index_type) != DataType::Type::kInt32) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| DataType::Type return_type = invoke->GetType(); |
| mirror::VarHandle::AccessModeTemplate access_mode_template = |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic()); |
| switch (access_mode_template) { |
| case mirror::VarHandle::AccessModeTemplate::kGet: |
| // The return type should be the same as varType, so it shouldn't be void. |
| if (return_type == DataType::Type::kVoid) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kSet: |
| if (return_type != DataType::Type::kVoid) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: { |
| if (return_type != DataType::Type::kBool) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| uint32_t expected_value_index = number_of_arguments - 2; |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index); |
| DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index); |
| if (expected_value_type != new_value_type) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| break; |
| } |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: { |
| uint32_t expected_value_index = number_of_arguments - 2; |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index); |
| DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index); |
| if (expected_value_type != new_value_type || return_type != expected_value_type) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| break; |
| } |
| case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: { |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1); |
| if (IsVarHandleGetAndAdd(invoke) && |
| (value_type == DataType::Type::kReference || value_type == DataType::Type::kBool)) { |
| // We should only add numerical types. |
| // |
| // For byte array views floating-point types are not allowed, see javadoc comments for |
| // java.lang.invoke.MethodHandles.byteArrayViewVarHandle(). But ART treats them as numeric |
| // types in ByteArrayViewVarHandle::Access(). Consequently we do generate intrinsic code, |
| // but it always fails access mode check at runtime. |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } else if (IsVarHandleGetAndBitwiseOp(invoke) && !DataType::IsIntegralType(value_type)) { |
| // We can only apply operators to bitwise integral types. |
| // Note that bitwise VarHandle operations accept a non-integral boolean type and |
| // perform the appropriate logical operation. However, the result is the same as |
| // using the bitwise operation on our boolean representation and this fits well |
| // with DataType::IsIntegralType() treating the compiler type kBool as integral. |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| if (value_type != return_type) { |
| optimizations.SetDoNotIntrinsify(); |
| return; |
| } |
| break; |
| } |
| } |
| } |
| |
| bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc, |
| uint32_t method_idx, |
| dex::ProtoIndex proto_idx, |
| const InstructionOperands& operands) { |
| const char* shorty = dex_file_->GetShorty(proto_idx); |
| DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands()); |
| DataType::Type return_type = DataType::FromShorty(shorty[0]); |
| size_t number_of_arguments = strlen(shorty); |
| // We use ResolveMethod which is also used in BuildInvoke in order to |
| // not duplicate code. As such, we need to provide is_string_constructor |
| // even if we don't need it afterwards. |
| InvokeType invoke_type = InvokeType::kPolymorphic; |
| bool is_string_constructor = false; |
| uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16; |
| MethodReference resolved_method_reference(nullptr, 0u); |
| ArtMethod* resolved_method = ResolveMethod(method_idx, |
| graph_->GetArtMethod(), |
| *dex_compilation_unit_, |
| &invoke_type, |
| &resolved_method_reference, |
| &imt_or_vtable_index, |
| &is_string_constructor); |
| |
| MethodReference method_reference(&graph_->GetDexFile(), method_idx); |
| HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_reference, |
| resolved_method, |
| resolved_method_reference, |
| proto_idx); |
| if (!HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false)) { |
| return false; |
| } |
| |
| if (invoke->GetIntrinsic() != Intrinsics::kNone && |
| invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvoke && |
| invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvokeExact && |
| VarHandleAccessorNeedsReturnTypeCheck(invoke, return_type)) { |
| // Type check is needed because VarHandle intrinsics do not type check the retrieved reference. |
| ScopedObjectAccess soa(Thread::Current()); |
| ArtMethod* referrer = graph_->GetArtMethod(); |
| dex::TypeIndex return_type_index = |
| referrer->GetDexFile()->GetProtoId(proto_idx).return_type_idx_; |
| |
| BuildTypeCheck(/* is_instance_of= */ false, invoke, return_type_index, dex_pc); |
| latest_result_ = current_block_->GetLastInstruction(); |
| } |
| |
| DecideVarHandleIntrinsic(invoke); |
| |
| return true; |
| } |
| |
| |
| bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc, |
| uint32_t call_site_idx, |
| const InstructionOperands& operands) { |
| dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx); |
| const char* shorty = dex_file_->GetShorty(proto_idx); |
| DataType::Type return_type = DataType::FromShorty(shorty[0]); |
| size_t number_of_arguments = strlen(shorty) - 1; |
| // HInvokeCustom takes a DexNoNoIndex method reference. |
| MethodReference method_reference(&graph_->GetDexFile(), dex::kDexNoIndex); |
| HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_, |
| number_of_arguments, |
| call_site_idx, |
| return_type, |
| dex_pc, |
| method_reference, |
| !graph_->IsDebuggable()); |
| return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); |
| } |
| |
| HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) { |
| ScopedObjectAccess soa(Thread::Current()); |
| |
| HLoadClass* load_class = BuildLoadClass(type_index, dex_pc); |
| |
| HInstruction* cls = load_class; |
| Handle<mirror::Class> klass = load_class->GetClass(); |
| |
| if (!IsInitialized(klass.Get())) { |
| cls = new (allocator_) HClinitCheck(load_class, dex_pc); |
| AppendInstruction(cls); |
| } |
| |
| // Only the access check entrypoint handles the finalizable class case. If we |
| // need access checks, then we haven't resolved the method and the class may |
| // again be finalizable. |
| QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized; |
| if (load_class->NeedsAccessCheck() || |
| klass == nullptr || // Finalizable/instantiable is unknown. |
| klass->IsFinalizable() || |
| klass.Get() == klass->GetClass() || // Classes cannot be allocated in code |
| !klass->IsInstantiable()) { |
| entrypoint = kQuickAllocObjectWithChecks; |
| } |
| // We will always be able to resolve the string class since it is in the BCP. |
| if (!klass.IsNull() && klass->IsStringClass()) { |
| entrypoint = kQuickAllocStringObject; |
| } |
| |
| // Consider classes we haven't resolved as potentially finalizable. |
| bool finalizable = (klass == nullptr) || klass->IsFinalizable(); |
| |
| HNewInstance* new_instance = new (allocator_) HNewInstance( |
| cls, |
| dex_pc, |
| type_index, |
| *dex_compilation_unit_->GetDexFile(), |
| finalizable, |
| entrypoint); |
| AppendInstruction(new_instance); |
| |
| return new_instance; |
| } |
| |
| void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) { |
| DCHECK(allocation != nullptr && |
| (allocation->IsNewInstance() || |
| allocation->IsNewArray())); // corresponding to "new" keyword in JLS. |
| |
| if (allocation->IsNewInstance()) { |
| // STRING SPECIAL HANDLING: |
| // ------------------------------- |
| // Strings have a real HNewInstance node but they end up always having 0 uses. |
| // All uses of a String HNewInstance are always transformed to replace their input |
| // of the HNewInstance with an input of the invoke to StringFactory. |
| // |
| // Do not emit an HConstructorFence here since it can inhibit some String new-instance |
| // optimizations (to pass checker tests that rely on those optimizations). |
| HNewInstance* new_inst = allocation->AsNewInstance(); |
| HLoadClass* load_class = new_inst->GetLoadClass(); |
| |
| Thread* self = Thread::Current(); |
| ScopedObjectAccess soa(self); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> klass = load_class->GetClass(); |
| if (klass != nullptr && klass->IsStringClass()) { |
| return; |
| // Note: Do not use allocation->IsStringAlloc which requires |
| // a valid ReferenceTypeInfo, but that doesn't get made until after reference type |
| // propagation (and instruction builder is too early). |
| } |
| // (In terms of correctness, the StringFactory needs to provide its own |
| // default initialization barrier, see below.) |
| } |
| |
| // JLS 17.4.5 "Happens-before Order" describes: |
| // |
| // The default initialization of any object happens-before any other actions (other than |
| // default-writes) of a program. |
| // |
| // In our implementation the default initialization of an object to type T means |
| // setting all of its initial data (object[0..size)) to 0, and setting the |
| // object's class header (i.e. object.getClass() == T.class). |
| // |
| // In practice this fence ensures that the writes to the object header |
| // are visible to other threads if this object escapes the current thread. |
| // (and in theory the 0-initializing, but that happens automatically |
| // when new memory pages are mapped in by the OS). |
| HConstructorFence* ctor_fence = |
| new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_); |
| AppendInstruction(ctor_fence); |
| MaybeRecordStat( |
| compilation_stats_, |
| MethodCompilationStat::kConstructorFenceGeneratedNew); |
| } |
| |
| static bool IsInBootImage(ObjPtr<mirror::Class> cls, const CompilerOptions& compiler_options) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls)) { |
| return true; |
| } |
| if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) { |
| std::string temp; |
| const char* descriptor = cls->GetDescriptor(&temp); |
| return compiler_options.IsImageClass(descriptor); |
| } else { |
| return false; |
| } |
| } |
| |
| static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); |
| } |
| |
| static bool HasTrivialClinit(ObjPtr<mirror::Class> klass, PointerSize pointer_size) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Check if the class has encoded fields that trigger bytecode execution. |
| // (Encoded fields are just a different representation of <clinit>.) |
| if (klass->NumStaticFields() != 0u) { |
| DCHECK(klass->GetClassDef() != nullptr); |
| EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef()); |
| for (; it.HasNext(); it.Next()) { |
| switch (it.GetValueType()) { |
| case EncodedArrayValueIterator::ValueType::kBoolean: |
| case EncodedArrayValueIterator::ValueType::kByte: |
| case EncodedArrayValueIterator::ValueType::kShort: |
| case EncodedArrayValueIterator::ValueType::kChar: |
| case EncodedArrayValueIterator::ValueType::kInt: |
| case EncodedArrayValueIterator::ValueType::kLong: |
| case EncodedArrayValueIterator::ValueType::kFloat: |
| case EncodedArrayValueIterator::ValueType::kDouble: |
| case EncodedArrayValueIterator::ValueType::kNull: |
| case EncodedArrayValueIterator::ValueType::kString: |
| // Primitive, null or j.l.String initialization is permitted. |
| break; |
| case EncodedArrayValueIterator::ValueType::kType: |
| // Type initialization can load classes and execute bytecode through a class loader |
| // which can execute arbitrary bytecode. We do not optimize for known class loaders; |
| // kType is rarely used (if ever). |
| return false; |
| default: |
| // Other types in the encoded static field list are rejected by the DexFileVerifier. |
| LOG(FATAL) << "Unexpected type " << it.GetValueType(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| // Check if the class has <clinit> that executes arbitrary code. |
| // Initialization of static fields of the class itself with constants is allowed. |
| ArtMethod* clinit = klass->FindClassInitializer(pointer_size); |
| if (clinit != nullptr) { |
| const DexFile& dex_file = *clinit->GetDexFile(); |
| CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem()); |
| for (DexInstructionPcPair it : accessor) { |
| switch (it->Opcode()) { |
| case Instruction::CONST_4: |
| case Instruction::CONST_16: |
| case Instruction::CONST: |
| case Instruction::CONST_HIGH16: |
| case Instruction::CONST_WIDE_16: |
| case Instruction::CONST_WIDE_32: |
| case Instruction::CONST_WIDE: |
| case Instruction::CONST_WIDE_HIGH16: |
| case Instruction::CONST_STRING: |
| case Instruction::CONST_STRING_JUMBO: |
| // Primitive, null or j.l.String initialization is permitted. |
| break; |
| case Instruction::RETURN_VOID: |
| break; |
| case Instruction::SPUT: |
| case Instruction::SPUT_WIDE: |
| case Instruction::SPUT_OBJECT: |
| case Instruction::SPUT_BOOLEAN: |
| case Instruction::SPUT_BYTE: |
| case Instruction::SPUT_CHAR: |
| case Instruction::SPUT_SHORT: |
| // Only initialization of a static field of the same class is permitted. |
| if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) { |
| return false; |
| } |
| break; |
| case Instruction::NEW_ARRAY: |
| // Only primitive arrays are permitted. |
| if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId( |
| dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) { |
| return false; |
| } |
| break; |
| case Instruction::APUT: |
| case Instruction::APUT_WIDE: |
| case Instruction::APUT_BOOLEAN: |
| case Instruction::APUT_BYTE: |
| case Instruction::APUT_CHAR: |
| case Instruction::APUT_SHORT: |
| case Instruction::FILL_ARRAY_DATA: |
| case Instruction::NOP: |
| // Allow initialization of primitive arrays (only constants can be stored). |
| // Note: We expect NOPs used for fill-array-data-payload but accept all NOPs |
| // (even unreferenced switch payloads if they make it through the verifier). |
| break; |
| default: |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| static bool HasTrivialInitialization(ObjPtr<mirror::Class> cls, |
| const CompilerOptions& compiler_options) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| Runtime* runtime = Runtime::Current(); |
| PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); |
| |
| // Check the superclass chain. |
| for (ObjPtr<mirror::Class> klass = cls; klass != nullptr; klass = klass->GetSuperClass()) { |
| if (klass->IsInitialized() && IsInBootImage(klass, compiler_options)) { |
| break; // `klass` and its superclasses are already initialized in the boot image. |
| } |
| if (!HasTrivialClinit(klass, pointer_size)) { |
| return false; |
| } |
| } |
| |
| // Also check interfaces with default methods as they need to be initialized as well. |
| ObjPtr<mirror::IfTable> iftable = cls->GetIfTable(); |
| DCHECK(iftable != nullptr); |
| for (int32_t i = 0, count = iftable->Count(); i != count; ++i) { |
| ObjPtr<mirror::Class> iface = iftable->GetInterface(i); |
| if (!iface->HasDefaultMethods()) { |
| continue; // Initializing `cls` does not initialize this interface. |
| } |
| if (iface->IsInitialized() && IsInBootImage(iface, compiler_options)) { |
| continue; // This interface is already initialized in the boot image. |
| } |
| if (!HasTrivialClinit(iface, pointer_size)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool HInstructionBuilder::IsInitialized(ObjPtr<mirror::Class> cls) const { |
| if (cls == nullptr) { |
| return false; |
| } |
| |
| // Check if the class will be initialized at runtime. |
| if (cls->IsInitialized()) { |
| const CompilerOptions& compiler_options = code_generator_->GetCompilerOptions(); |
| if (compiler_options.IsAotCompiler()) { |
| // Assume loaded only if klass is in the boot image. App classes cannot be assumed |
| // loaded because we don't even know what class loader will be used to load them. |
| if (IsInBootImage(cls, compiler_options)) { |
| return true; |
| } |
| } else { |
| DCHECK(compiler_options.IsJitCompiler()); |
| if (Runtime::Current()->GetJit()->CanAssumeInitialized( |
| cls, |
| compiler_options.IsJitCompilerForSharedCode())) { |
| // For JIT, the class cannot revert to an uninitialized state. |
| return true; |
| } |
| } |
| } |
| |
| // We can avoid the class initialization check for `cls` in static methods and constructors |
| // in the very same class; invoking a static method involves a class initialization check |
| // and so does the instance allocation that must be executed before invoking a constructor. |
| // Other instance methods of the same class can run on an escaped instance |
| // of an erroneous class. Even a superclass may need to be checked as the subclass |
| // can be completely initialized while the superclass is initializing and the subclass |
| // remains initialized when the superclass initializer throws afterwards. b/62478025 |
| // Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply. |
| auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u && |
| compilation_unit.GetCompilingClass().Get() == cls; |
| }; |
| if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) || |
| // Check also the innermost method. Though excessive copies of ClinitCheck can be |
| // eliminated by GVN, that happens only after the decision whether to inline the |
| // graph or not and that may depend on the presence of the ClinitCheck. |
| // TODO: We should walk over the entire inlined method chain, but we don't pass that |
| // information to the builder. |
| is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) { |
| return true; |
| } |
| |
| // Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being |
| // compiled here (anywhere in the inlining chain) as the `cls` must have started initializing |
| // before calling any `cls` or subclass methods. Static methods require a clinit check and |
| // instance methods require an instance which cannot be created before doing a clinit check. |
| // When a subclass of `cls` starts initializing, it starts initializing its superclass |
| // chain up to `cls` without running any bytecode, i.e. without any opportunity for circular |
| // initialization weirdness. |
| // |
| // If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces |
| // with default methods initialize only their own static fields using constant values), it must |
| // complete, either successfully or by throwing and marking `cls` erroneous, without allocating |
| // any instances of `cls` or subclasses (or any other class) and without calling any methods. |
| // If it completes by throwing, no instances of `cls` shall be created and no subclass method |
| // bytecode shall execute (see above), therefore the instruction we're building shall be |
| // unreachable. By reaching the instruction, we know that `cls` was initialized successfully. |
| // |
| // TODO: We should walk over the entire inlined methods chain, but we don't pass that |
| // information to the builder. (We could also check if we're guaranteed a non-null instance |
| // of `cls` at this location but that's outside the scope of the instruction builder.) |
| bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls); |
| if (dex_compilation_unit_ != outer_compilation_unit_) { |
| is_subclass = is_subclass || |
| IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls); |
| } |
| if (is_subclass && HasTrivialInitialization(cls, code_generator_->GetCompilerOptions())) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke( |
| uint32_t dex_pc, |
| ArtMethod* resolved_method, |
| HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { |
| ScopedObjectAccess soa(Thread::Current()); |
| ObjPtr<mirror::Class> klass = resolved_method->GetDeclaringClass(); |
| |
| HClinitCheck* clinit_check = nullptr; |
| if (IsInitialized(klass)) { |
| *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; |
| } else { |
| Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass); |
| HLoadClass* cls = BuildLoadClass(h_klass->GetDexTypeIndex(), |
| h_klass->GetDexFile(), |
| h_klass, |
| dex_pc, |
| /* needs_access_check= */ false); |
| if (cls != nullptr) { |
| *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; |
| clinit_check = new (allocator_) HClinitCheck(cls, dex_pc); |
| AppendInstruction(clinit_check); |
| } else { |
| // Let the invoke handle this with an implicit class initialization check. |
| *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; |
| } |
| } |
| return clinit_check; |
| } |
| |
| bool HInstructionBuilder::SetupInvokeArguments(HInstruction* invoke, |
| const InstructionOperands& operands, |
| const char* shorty, |
| ReceiverArg receiver_arg) { |
| // Note: The `invoke` can be an intrinsic replacement, so not necessaritly HInvoke. |
| // In that case, do not log errors, they shall be reported when we try to build the HInvoke. |
| uint32_t shorty_index = 1; // Skip the return type. |
| const size_t number_of_operands = operands.GetNumberOfOperands(); |
| bool argument_length_error = false; |
| |
| size_t start_index = 0u; |
| size_t argument_index = 0u; |
| if (receiver_arg != ReceiverArg::kNone) { |
| if (number_of_operands == 0u) { |
| argument_length_error = true; |
| } else { |
| start_index = 1u; |
| if (receiver_arg != ReceiverArg::kIgnored) { |
| uint32_t obj_reg = operands.GetOperand(0u); |
| HInstruction* arg = (receiver_arg == ReceiverArg::kPlainArg) |
| ? LoadLocal(obj_reg, DataType::Type::kReference) |
| : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc()); |
| if (receiver_arg != ReceiverArg::kNullCheckedOnly) { |
| invoke->SetRawInputAt(0u, arg); |
| argument_index = 1u; |
| } |
| } |
| } |
| } |
| |
| for (size_t i = start_index; i < number_of_operands; ++i, ++argument_index) { |
| // Make sure we don't go over the expected arguments or over the number of |
| // dex registers given. If the instruction was seen as dead by the verifier, |
| // it hasn't been properly checked. |
| if (UNLIKELY(shorty[shorty_index] == 0)) { |
| argument_length_error = true; |
| break; |
| } |
| DataType::Type type = DataType::FromShorty(shorty[shorty_index++]); |
| bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64); |
| if (is_wide && ((i + 1 == number_of_operands) || |
| (operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) { |
| if (invoke->IsInvoke()) { |
| // Longs and doubles should be in pairs, that is, sequential registers. The verifier should |
| // reject any class where this is violated. However, the verifier only does these checks |
| // on non trivially dead instructions, so we just bailout the compilation. |
| VLOG(compiler) << "Did not compile " |
| << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) |
| << " because of non-sequential dex register pair in wide argument"; |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kNotCompiledMalformedOpcode); |
| } |
| return false; |
| } |
| HInstruction* arg = LoadLocal(operands.GetOperand(i), type); |
| DCHECK(invoke->InputAt(argument_index) == nullptr); |
| invoke->SetRawInputAt(argument_index, arg); |
| if (is_wide) { |
| ++i; |
| } |
| } |
| |
| argument_length_error = argument_length_error || shorty[shorty_index] != 0; |
| if (argument_length_error) { |
| if (invoke->IsInvoke()) { |
| VLOG(compiler) << "Did not compile " |
| << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) |
| << " because of wrong number of arguments in invoke instruction"; |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kNotCompiledMalformedOpcode); |
| } |
| return false; |
| } |
| |
| if (invoke->IsInvokeStaticOrDirect() && |
| HInvokeStaticOrDirect::NeedsCurrentMethodInput( |
| invoke->AsInvokeStaticOrDirect()->GetDispatchInfo())) { |
| DCHECK_EQ(argument_index, invoke->AsInvokeStaticOrDirect()->GetCurrentMethodIndex()); |
| DCHECK(invoke->InputAt(argument_index) == nullptr); |
| invoke->SetRawInputAt(argument_index, graph_->GetCurrentMethod()); |
| } |
| |
| if (invoke->IsInvokeInterface() && |
| (invoke->AsInvokeInterface()->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive)) { |
| invoke->SetRawInputAt(invoke->AsInvokeInterface()->GetNumberOfArguments() - 1, |
| graph_->GetCurrentMethod()); |
| } |
| |
| return true; |
| } |
| |
| bool HInstructionBuilder::HandleInvoke(HInvoke* invoke, |
| const InstructionOperands& operands, |
| const char* shorty, |
| bool is_unresolved) { |
| DCHECK_IMPLIES(invoke->IsInvokeStaticOrDirect(), |
| !invoke->AsInvokeStaticOrDirect()->IsStringInit()); |
| |
| ReceiverArg receiver_arg = (invoke->GetInvokeType() == InvokeType::kStatic) |
| ? ReceiverArg::kNone |
| : (is_unresolved ? ReceiverArg::kPlainArg : ReceiverArg::kNullCheckedArg); |
| if (!SetupInvokeArguments(invoke, operands, shorty, receiver_arg)) { |
| return false; |
| } |
| |
| AppendInstruction(invoke); |
| latest_result_ = invoke; |
| |
| return true; |
| } |
| |
| bool HInstructionBuilder::BuildSimpleIntrinsic(ArtMethod* method, |
| uint32_t dex_pc, |
| const InstructionOperands& operands, |
| const char* shorty) { |
| Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic()); |
| DCHECK_NE(intrinsic, Intrinsics::kNone); |
| constexpr DataType::Type kInt32 = DataType::Type::kInt32; |
| constexpr DataType::Type kInt64 = DataType::Type::kInt64; |
| constexpr DataType::Type kFloat32 = DataType::Type::kFloat32; |
| constexpr DataType::Type kFloat64 = DataType::Type::kFloat64; |
| ReceiverArg receiver_arg = method->IsStatic() ? ReceiverArg::kNone : ReceiverArg::kNullCheckedArg; |
| HInstruction* instruction = nullptr; |
| switch (intrinsic) { |
| case Intrinsics::kIntegerRotateRight: |
| case Intrinsics::kIntegerRotateLeft: |
| // For rotate left, we negate the distance below. |
| instruction = new (allocator_) HRor(kInt32, /*value=*/ nullptr, /*distance=*/ nullptr); |
| break; |
| case Intrinsics::kLongRotateRight: |
| case Intrinsics::kLongRotateLeft: |
| // For rotate left, we negate the distance below. |
| instruction = new (allocator_) HRor(kInt64, /*value=*/ nullptr, /*distance=*/ nullptr); |
| break; |
| case Intrinsics::kIntegerCompare: |
| instruction = new (allocator_) HCompare( |
| kInt32, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc); |
| break; |
| case Intrinsics::kLongCompare: |
| instruction = new (allocator_) HCompare( |
| kInt64, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc); |
| break; |
| case Intrinsics::kIntegerSignum: |
| instruction = new (allocator_) HCompare( |
| kInt32, /*first=*/ nullptr, graph_->GetIntConstant(0), ComparisonBias::kNoBias, dex_pc); |
| break; |
| case Intrinsics::kLongSignum: |
| instruction = new (allocator_) HCompare( |
| kInt64, /*first=*/ nullptr, graph_->GetLongConstant(0), ComparisonBias::kNoBias, dex_pc); |
| break; |
| case Intrinsics::kFloatIsNaN: |
| case Intrinsics::kDoubleIsNaN: { |
| // IsNaN(x) is the same as x != x. |
| instruction = new (allocator_) HNotEqual(/*first=*/ nullptr, /*second=*/ nullptr, dex_pc); |
| instruction->AsCondition()->SetBias(ComparisonBias::kLtBias); |
| break; |
| } |
| case Intrinsics::kStringCharAt: |
| // We treat String as an array to allow DCE and BCE to seamlessly work on strings. |
| instruction = new (allocator_) HArrayGet(/*array=*/ nullptr, |
| /*index=*/ nullptr, |
| DataType::Type::kUint16, |
| SideEffects::None(), // Strings are immutable. |
| dex_pc, |
| /*is_string_char_at=*/ true); |
| break; |
| case Intrinsics::kStringIsEmpty: |
| case Intrinsics::kStringLength: |
| // We treat String as an array to allow DCE and BCE to seamlessly work on strings. |
| // For String.isEmpty(), we add a comparison with 0 below. |
| instruction = |
| new (allocator_) HArrayLength(/*array=*/ nullptr, dex_pc, /* is_string_length= */ true); |
| break; |
| case Intrinsics::kUnsafeLoadFence: |
| case Intrinsics::kJdkUnsafeLoadFence: |
| receiver_arg = ReceiverArg::kNullCheckedOnly; |
| instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); |
| break; |
| case Intrinsics::kUnsafeStoreFence: |
| case Intrinsics::kJdkUnsafeStoreFence: |
| receiver_arg = ReceiverArg::kNullCheckedOnly; |
| instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc); |
| break; |
| case Intrinsics::kUnsafeFullFence: |
| case Intrinsics::kJdkUnsafeFullFence: |
| receiver_arg = ReceiverArg::kNullCheckedOnly; |
| instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc); |
| break; |
| case Intrinsics::kVarHandleFullFence: |
| instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc); |
| break; |
| case Intrinsics::kVarHandleAcquireFence: |
| instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); |
| break; |
| case Intrinsics::kVarHandleReleaseFence: |
| instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc); |
| break; |
| case Intrinsics::kVarHandleLoadLoadFence: |
| instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); |
| break; |
| case Intrinsics::kVarHandleStoreStoreFence: |
| instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kStoreStore, dex_pc); |
| break; |
| case Intrinsics::kMathMinIntInt: |
| instruction = new (allocator_) HMin(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathMinLongLong: |
| instruction = new (allocator_) HMin(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathMinFloatFloat: |
| instruction = new (allocator_) HMin(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathMinDoubleDouble: |
| instruction = new (allocator_) HMin(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathMaxIntInt: |
| instruction = new (allocator_) HMax(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathMaxLongLong: |
| instruction = new (allocator_) HMax(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathMaxFloatFloat: |
| instruction = new (allocator_) HMax(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathMaxDoubleDouble: |
| instruction = new (allocator_) HMax(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathAbsInt: |
| instruction = new (allocator_) HAbs(kInt32, /*input=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathAbsLong: |
| instruction = new (allocator_) HAbs(kInt64, /*input=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathAbsFloat: |
| instruction = new (allocator_) HAbs(kFloat32, /*input=*/ nullptr, dex_pc); |
| break; |
| case Intrinsics::kMathAbsDouble: |
| instruction = new (allocator_) HAbs(kFloat64, /*input=*/ nullptr, dex_pc); |
| break; |
| default: |
| // We do not have intermediate representation for other intrinsics. |
| return false; |
| } |
| DCHECK(instruction != nullptr); |
| if (!SetupInvokeArguments(instruction, operands, shorty, receiver_arg)) { |
| return false; |
| } |
| |
| switch (intrinsic) { |
| case Intrinsics::kIntegerRotateLeft: |
| case Intrinsics::kLongRotateLeft: { |
| // Negate the distance value for rotate left. |
| DCHECK(instruction->IsRor()); |
| HNeg* neg = new (allocator_) HNeg(kInt32, instruction->InputAt(1u)); |
| AppendInstruction(neg); |
| instruction->SetRawInputAt(1u, neg); |
| break; |
| } |
| case Intrinsics::kFloatIsNaN: |
| case Intrinsics::kDoubleIsNaN: |
| // Set the second input to be the same as first. |
| DCHECK(instruction->IsNotEqual()); |
| DCHECK(instruction->InputAt(1u) == nullptr); |
| instruction->SetRawInputAt(1u, instruction->InputAt(0u)); |
| break; |
| case Intrinsics::kStringCharAt: { |
| // Add bounds check. |
| HInstruction* array = instruction->InputAt(0u); |
| HInstruction* index = instruction->InputAt(1u); |
| HInstruction* length = |
| new (allocator_) HArrayLength(array, dex_pc, /*is_string_length=*/ true); |
| AppendInstruction(length); |
| HBoundsCheck* bounds_check = |
| new (allocator_) HBoundsCheck(index, length, dex_pc, /*is_string_char_at=*/ true); |
| AppendInstruction(bounds_check); |
| graph_->SetHasBoundsChecks(true); |
| instruction->SetRawInputAt(1u, bounds_check); |
| break; |
| } |
| case Intrinsics::kStringIsEmpty: { |
| // Compare the length with 0. |
| DCHECK(instruction->IsArrayLength()); |
| AppendInstruction(instruction); |
| HEqual* equal = new (allocator_) HEqual(instruction, graph_->GetIntConstant(0), dex_pc); |
| instruction = equal; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| AppendInstruction(instruction); |
| latest_result_ = instruction; |
| |
| return true; |
| } |
| |
| bool HInstructionBuilder::HandleStringInit(HInvoke* invoke, |
| const InstructionOperands& operands, |
| const char* shorty) { |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); |
| |
| if (!SetupInvokeArguments(invoke, operands, shorty, ReceiverArg::kIgnored)) { |
| return false; |
| } |
| |
| AppendInstruction(invoke); |
| |
| // This is a StringFactory call, not an actual String constructor. Its result |
| // replaces the empty String pre-allocated by NewInstance. |
| uint32_t orig_this_reg = operands.GetOperand(0); |
| HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference); |
| |
| // Replacing the NewInstance might render it redundant. Keep a list of these |
| // to be visited once it is clear whether it has remaining uses. |
| if (arg_this->IsNewInstance()) { |
| ssa_builder_->AddUninitializedString(arg_this->AsNewInstance()); |
| } else { |
| DCHECK(arg_this->IsPhi()); |
| // We can get a phi as input of a String.<init> if there is a loop between the |
| // allocation and the String.<init> call. As we don't know which other phis might alias |
| // with `arg_this`, we keep a record of those invocations so we can later replace |
| // the allocation with the invocation. |
| // Add the actual 'this' input so the analysis knows what is the allocation instruction. |
| // The input will be removed during the analysis. |
| invoke->AddInput(arg_this); |
| ssa_builder_->AddUninitializedStringPhi(invoke); |
| } |
| // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. |
| for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { |
| if ((*current_locals_)[vreg] == arg_this) { |
| (*current_locals_)[vreg] = invoke; |
| } |
| } |
| return true; |
| } |
| |
| static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { |
| const dex::FieldId& field_id = dex_file.GetFieldId(field_index); |
| const char* type = dex_file.GetFieldTypeDescriptor(field_id); |
| return DataType::FromShorty(type[0]); |
| } |
| |
| bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put) { |
| uint32_t source_or_dest_reg = instruction.VRegA_22c(); |
| uint32_t obj_reg = instruction.VRegB_22c(); |
| uint16_t field_index = instruction.VRegC_22c(); |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put); |
| |
| // Generate an explicit null check on the reference, unless the field access |
| // is unresolved. In that case, we rely on the runtime to perform various |
| // checks first, followed by a null check. |
| HInstruction* object = (resolved_field == nullptr) |
| ? LoadLocal(obj_reg, DataType::Type::kReference) |
| : LoadNullCheckedLocal(obj_reg, dex_pc); |
| |
| DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); |
| if (is_put) { |
| HInstruction* value = LoadLocal(source_or_dest_reg, field_type); |
| HInstruction* field_set = nullptr; |
| if (resolved_field == nullptr) { |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedField); |
| field_set = new (allocator_) HUnresolvedInstanceFieldSet(object, |
| value, |
| field_type, |
| field_index, |
| dex_pc); |
| } else { |
| uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); |
| field_set = new (allocator_) HInstanceFieldSet(object, |
| value, |
| resolved_field, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| class_def_index, |
| *dex_file_, |
| dex_pc); |
| } |
| AppendInstruction(field_set); |
| } else { |
| HInstruction* field_get = nullptr; |
| if (resolved_field == nullptr) { |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedField); |
| field_get = new (allocator_) HUnresolvedInstanceFieldGet(object, |
| field_type, |
| field_index, |
| dex_pc); |
| } else { |
| uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); |
| field_get = new (allocator_) HInstanceFieldGet(object, |
| resolved_field, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| class_def_index, |
| *dex_file_, |
| dex_pc); |
| } |
| AppendInstruction(field_get); |
| UpdateLocal(source_or_dest_reg, field_get); |
| } |
| |
| return true; |
| } |
| |
| void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put, |
| DataType::Type field_type) { |
| uint32_t source_or_dest_reg = instruction.VRegA_21c(); |
| uint16_t field_index = instruction.VRegB_21c(); |
| |
| if (is_put) { |
| HInstruction* value = LoadLocal(source_or_dest_reg, field_type); |
| AppendInstruction( |
| new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); |
| } else { |
| AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| } |
| |
| ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) { |
| ScopedObjectAccess soa(Thread::Current()); |
| |
| ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); |
| Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); |
| |
| ArtField* resolved_field = class_linker->ResolveFieldJLS(field_idx, |
| dex_compilation_unit_->GetDexCache(), |
| class_loader); |
| DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending()) |
| << "field=" |
| << ((resolved_field == nullptr) ? "null" : resolved_field->PrettyField()) |
| << ", exception=" |
| << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "null"); |
| if (UNLIKELY(resolved_field == nullptr)) { |
| // Clean up any exception left by field resolution. |
| soa.Self()->ClearException(); |
| return nullptr; |
| } |
| |
| if (UNLIKELY(resolved_field->IsStatic() != is_static)) { |
| return nullptr; |
| } |
| |
| // Check access. |
| Handle<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass(); |
| if (compiling_class == nullptr) { |
| // Check if the declaring class or referencing class is accessible. |
| SamePackageCompare same_package(*dex_compilation_unit_); |
| ObjPtr<mirror::Class> declaring_class = resolved_field->GetDeclaringClass(); |
| bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class); |
| if (!declaring_class_accessible) { |
| // It is possible to access members from an inaccessible superclass |
| // by referencing them through an accessible subclass. |
| ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType( |
| dex_compilation_unit_->GetDexFile()->GetFieldId(field_idx).class_idx_, |
| dex_compilation_unit_->GetDexCache().Get(), |
| class_loader.Get()); |
| DCHECK(referenced_class != nullptr); // Must have been resolved when resolving the field. |
| if (!referenced_class->IsPublic() && !same_package(referenced_class)) { |
| return nullptr; |
| } |
| } |
| // Check whether the field itself is accessible. |
| // Since the referrer is unresolved but the field is resolved, it cannot be |
| // inside the same class, so a private field is known to be inaccessible. |
| // And without a resolved referrer, we cannot check for protected member access |
| // in superlass, so we handle only access to public member or within the package. |
| if (resolved_field->IsPrivate() || |
| (!resolved_field->IsPublic() && !declaring_class_accessible)) { |
| return nullptr; |
| } |
| } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(), |
| resolved_field, |
| dex_compilation_unit_->GetDexCache().Get(), |
| field_idx)) { |
| return nullptr; |
| } |
| |
| if (is_put) { |
| if (resolved_field->IsFinal() && |
| (compiling_class.Get() != resolved_field->GetDeclaringClass())) { |
| // Final fields can only be updated within their own class. |
| // TODO: Only allow it in constructors. b/34966607. |
| return nullptr; |
| } |
| |
| // Note: We do not need to resolve the field type for `get` opcodes. |
| StackArtFieldHandleScope<1> rhs(soa.Self()); |
| ReflectiveHandle<ArtField> resolved_field_handle(rhs.NewHandle(resolved_field)); |
| if (resolved_field->ResolveType().IsNull()) { |
| // ArtField::ResolveType() may fail as evidenced with a dexing bug (b/78788577). |
| soa.Self()->ClearException(); |
| return nullptr; // Failure |
| } |
| resolved_field = resolved_field_handle.Get(); |
| } |
| |
| return resolved_field; |
| } |
| |
| void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put) { |
| uint32_t source_or_dest_reg = instruction.VRegA_21c(); |
| uint16_t field_index = instruction.VRegB_21c(); |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put); |
| |
| if (resolved_field == nullptr) { |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedField); |
| DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); |
| BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); |
| return; |
| } |
| |
| DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); |
| |
| Handle<mirror::Class> klass = |
| graph_->GetHandleCache()->NewHandle(resolved_field->GetDeclaringClass()); |
| HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(), |
| klass->GetDexFile(), |
| klass, |
| dex_pc, |
| /* needs_access_check= */ false); |
| |
| if (constant == nullptr) { |
| // The class cannot be referenced from this compiled code. Generate |
| // an unresolved access. |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedFieldNotAFastAccess); |
| BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); |
| return; |
| } |
| |
| HInstruction* cls = constant; |
| if (!IsInitialized(klass.Get())) { |
| cls = new (allocator_) HClinitCheck(constant, dex_pc); |
| AppendInstruction(cls); |
| } |
| |
| uint16_t class_def_index = klass->GetDexClassDefIndex(); |
| if (is_put) { |
| // We need to keep the class alive before loading the value. |
| HInstruction* value = LoadLocal(source_or_dest_reg, field_type); |
| DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type)); |
| AppendInstruction(new (allocator_) HStaticFieldSet(cls, |
| value, |
| resolved_field, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| class_def_index, |
| *dex_file_, |
| dex_pc)); |
| } else { |
| AppendInstruction(new (allocator_) HStaticFieldGet(cls, |
| resolved_field, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| class_def_index, |
| *dex_file_, |
| dex_pc)); |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| } |
| |
| void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg, |
| uint16_t first_vreg, |
| int64_t second_vreg_or_constant, |
| uint32_t dex_pc, |
| DataType::Type type, |
| bool second_is_constant, |
| bool isDiv) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| HInstruction* first = LoadLocal(first_vreg, type); |
| HInstruction* second = nullptr; |
| if (second_is_constant) { |
| if (type == DataType::Type::kInt32) { |
| second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); |
| } else { |
| second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); |
| } |
| } else { |
| second = LoadLocal(second_vreg_or_constant, type); |
| } |
| |
| if (!second_is_constant || |
| (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0) || |
| (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) { |
| second = new (allocator_) HDivZeroCheck(second, dex_pc); |
| AppendInstruction(second); |
| } |
| |
| if (isDiv) { |
| AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc)); |
| } else { |
| AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc)); |
| } |
| UpdateLocal(out_vreg, current_block_->GetLastInstruction()); |
| } |
| |
| void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put, |
| DataType::Type anticipated_type) { |
| uint8_t source_or_dest_reg = instruction.VRegA_23x(); |
| uint8_t array_reg = instruction.VRegB_23x(); |
| uint8_t index_reg = instruction.VRegC_23x(); |
| |
| HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc); |
| HInstruction* length = new (allocator_) HArrayLength(object, dex_pc); |
| AppendInstruction(length); |
| HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32); |
| index = new (allocator_) HBoundsCheck(index, length, dex_pc); |
| AppendInstruction(index); |
| if (is_put) { |
| HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); |
| // TODO: Insert a type check node if the type is Object. |
| HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArraySet(aset); |
| AppendInstruction(aset); |
| } else { |
| HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArrayGet(aget); |
| AppendInstruction(aget); |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| graph_->SetHasBoundsChecks(true); |
| } |
| |
| HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc, |
| dex::TypeIndex type_index, |
| HInstruction* length) { |
| HLoadClass* cls = BuildLoadClass(type_index, dex_pc); |
| |
| const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index)); |
| DCHECK_EQ(descriptor[0], '['); |
| size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1])); |
| |
| HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift); |
| AppendInstruction(new_array); |
| return new_array; |
| } |
| |
| HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc, |
| dex::TypeIndex type_index, |
| const InstructionOperands& operands) { |
| const size_t number_of_operands = operands.GetNumberOfOperands(); |
| HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc); |
| |
| HNewArray* new_array = BuildNewArray(dex_pc, type_index, length); |
| const char* descriptor = dex_file_->StringByTypeIdx(type_index); |
| DCHECK_EQ(descriptor[0], '[') << descriptor; |
| char primitive = descriptor[1]; |
| DCHECK(primitive == 'I' |
| || primitive == 'L' |
| || primitive == '[') << descriptor; |
| bool is_reference_array = (primitive == 'L') || (primitive == '['); |
| DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32; |
| |
| for (size_t i = 0; i < number_of_operands; ++i) { |
| HInstruction* value = LoadLocal(operands.GetOperand(i), type); |
| HInstruction* index = graph_->GetIntConstant(i, dex_pc); |
| HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArraySet(aset); |
| AppendInstruction(aset); |
| } |
| latest_result_ = new_array; |
| |
| return new_array; |
| } |
| |
| template <typename T> |
| void HInstructionBuilder::BuildFillArrayData(HInstruction* object, |
| const T* data, |
| uint32_t element_count, |
| DataType::Type anticipated_type, |
| uint32_t dex_pc) { |
| for (uint32_t i = 0; i < element_count; ++i) { |
| HInstruction* index = graph_->GetIntConstant(i, dex_pc); |
| HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); |
| HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArraySet(aset); |
| AppendInstruction(aset); |
| } |
| } |
| |
| void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { |
| HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc); |
| |
| int32_t payload_offset = instruction.VRegB_31t() + dex_pc; |
| const Instruction::ArrayDataPayload* payload = |
| reinterpret_cast<const Instruction::ArrayDataPayload*>( |
| code_item_accessor_.Insns() + payload_offset); |
| const uint8_t* data = payload->data; |
| uint32_t element_count = payload->element_count; |
| |
| if (element_count == 0u) { |
| // For empty payload we emit only the null check above. |
| return; |
| } |
| |
| HInstruction* length = new (allocator_) HArrayLength(array, dex_pc); |
| AppendInstruction(length); |
| |
| // Implementation of this DEX instruction seems to be that the bounds check is |
| // done before doing any stores. |
| HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); |
| AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc)); |
| |
| switch (payload->element_width) { |
| case 1: |
| BuildFillArrayData(array, |
| reinterpret_cast<const int8_t*>(data), |
| element_count, |
| DataType::Type::kInt8, |
| dex_pc); |
| break; |
| case 2: |
| BuildFillArrayData(array, |
| reinterpret_cast<const int16_t*>(data), |
| element_count, |
| DataType::Type::kInt16, |
| dex_pc); |
| break; |
| case 4: |
| BuildFillArrayData(array, |
| reinterpret_cast<const int32_t*>(data), |
| element_count, |
| DataType::Type::kInt32, |
| dex_pc); |
| break; |
| case 8: |
| BuildFillWideArrayData(array, |
| reinterpret_cast<const int64_t*>(data), |
| element_count, |
| dex_pc); |
| break; |
| default: |
| LOG(FATAL) << "Unknown element width for " << payload->element_width; |
| } |
| graph_->SetHasBoundsChecks(true); |
| } |
| |
| void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object, |
| const int64_t* data, |
| uint32_t element_count, |
| uint32_t dex_pc) { |
| for (uint32_t i = 0; i < element_count; ++i) { |
| HInstruction* index = graph_->GetIntConstant(i, dex_pc); |
| HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); |
| HArraySet* aset = |
| new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArraySet(aset); |
| AppendInstruction(aset); |
| } |
| } |
| |
| void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) { |
| HLoadString* load_string = |
| new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc); |
| HSharpening::ProcessLoadString(load_string, |
| code_generator_, |
| *dex_compilation_unit_, |
| graph_->GetHandleCache()->GetHandles()); |
| AppendInstruction(load_string); |
| } |
| |
| HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) { |
| ScopedObjectAccess soa(Thread::Current()); |
| const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); |
| Handle<mirror::Class> klass = ResolveClass(soa, type_index); |
| bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get()); |
| return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check); |
| } |
| |
| HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, |
| const DexFile& dex_file, |
| Handle<mirror::Class> klass, |
| uint32_t dex_pc, |
| bool needs_access_check) { |
| // Try to find a reference in the compiling dex file. |
| const DexFile* actual_dex_file = &dex_file; |
| if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) { |
| dex::TypeIndex local_type_index = |
| klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile()); |
| if (local_type_index.IsValid()) { |
| type_index = local_type_index; |
| actual_dex_file = dex_compilation_unit_->GetDexFile(); |
| } |
| } |
| |
| // We cannot use the referrer's class load kind if we need to do an access check. |
| // If the `klass` is unresolved, we need access check with the exception of the referrer's |
| // class, see LoadClassNeedsAccessCheck(), so the `!needs_access_check` check is enough. |
| // Otherwise, also check if the `klass` is the same as the compiling class, which also |
| // conveniently rejects the case of unresolved compiling class. |
| bool is_referrers_class = |
| !needs_access_check && |
| (klass == nullptr || outer_compilation_unit_->GetCompilingClass().Get() == klass.Get()); |
| // Note: `klass` must be from `graph_->GetHandleCache()`. |
| HLoadClass* load_class = new (allocator_) HLoadClass( |
| graph_->GetCurrentMethod(), |
| type_index, |
| *actual_dex_file, |
| klass, |
| is_referrers_class, |
| dex_pc, |
| needs_access_check); |
| |
| HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class, |
| code_generator_, |
| *dex_compilation_unit_); |
| |
| if (load_kind == HLoadClass::LoadKind::kInvalid) { |
| // We actually cannot reference this class, we're forced to bail. |
| return nullptr; |
| } |
| // Load kind must be set before inserting the instruction into the graph. |
| load_class->SetLoadKind(load_kind); |
| AppendInstruction(load_class); |
| return load_class; |
| } |
| |
| Handle<mirror::Class> HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa, |
| dex::TypeIndex type_index) { |
| auto it = class_cache_.find(type_index); |
| if (it != class_cache_.end()) { |
| return it->second; |
| } |
| |
| ObjPtr<mirror::Class> klass = dex_compilation_unit_->GetClassLinker()->ResolveType( |
| type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader()); |
| DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending()); |
| soa.Self()->ClearException(); // Clean up the exception left by type resolution if any. |
| |
| Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass); |
| class_cache_.Put(type_index, h_klass); |
| return h_klass; |
| } |
| |
| bool HInstructionBuilder::LoadClassNeedsAccessCheck(dex::TypeIndex type_index, |
| ObjPtr<mirror::Class> klass) { |
| if (klass == nullptr) { |
| // If the class is unresolved, we can avoid access checks only for references to |
| // the compiling class as determined by checking the descriptor and ClassLoader. |
| if (outer_compilation_unit_->GetCompilingClass() != nullptr) { |
| // Compiling class is resolved, so different from the unresolved class. |
| return true; |
| } |
| if (dex_compilation_unit_->GetClassLoader().Get() != |
| outer_compilation_unit_->GetClassLoader().Get()) { |
| // Resolving the same descriptor in a different ClassLoader than the |
| // defining loader of the compiling class shall either fail to find |
| // the class definition, or find a different one. |
| // (Assuming no custom ClassLoader hierarchy with circular delegation.) |
| return true; |
| } |
| // Check if the class is the outer method's class. |
| // For the same dex file compare type indexes, otherwise descriptors. |
| const DexFile* outer_dex_file = outer_compilation_unit_->GetDexFile(); |
| const DexFile* inner_dex_file = dex_compilation_unit_->GetDexFile(); |
| const dex::ClassDef& outer_class_def = |
| outer_dex_file->GetClassDef(outer_compilation_unit_->GetClassDefIndex()); |
| if (IsSameDexFile(*inner_dex_file, *outer_dex_file)) { |
| if (type_index != outer_class_def.class_idx_) { |
| return true; |
| } |
| } else { |
| uint32_t outer_utf16_length; |
| const char* outer_descriptor = |
| outer_dex_file->StringByTypeIdx(outer_class_def.class_idx_, &outer_utf16_length); |
| uint32_t target_utf16_length; |
| const char* target_descriptor = |
| inner_dex_file->StringByTypeIdx(type_index, &target_utf16_length); |
| if (outer_utf16_length != target_utf16_length || |
| strcmp(outer_descriptor, target_descriptor) != 0) { |
| return true; |
| } |
| } |
| // For inlined methods we also need to check if the compiling class |
| // is public or in the same package as the inlined method's class. |
| if (dex_compilation_unit_ != outer_compilation_unit_ && |
| (outer_class_def.access_flags_ & kAccPublic) == 0) { |
| DCHECK(dex_compilation_unit_->GetCompilingClass() != nullptr); |
| SamePackageCompare same_package(*outer_compilation_unit_); |
| if (!same_package(dex_compilation_unit_->GetCompilingClass().Get())) { |
| return true; |
| } |
| } |
| return false; |
| } else if (klass->IsPublic()) { |
| return false; |
| } else if (dex_compilation_unit_->GetCompilingClass() != nullptr) { |
| return !dex_compilation_unit_->GetCompilingClass()->CanAccess(klass); |
| } else { |
| SamePackageCompare same_package(*dex_compilation_unit_); |
| return !same_package(klass); |
| } |
| } |
| |
| void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) { |
| const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); |
| HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle( |
| graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc); |
| AppendInstruction(load_method_handle); |
| } |
| |
| void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) { |
| const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); |
| HLoadMethodType* load_method_type = |
| new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc); |
| AppendInstruction(load_method_type); |
| } |
| |
| void HInstructionBuilder::BuildTypeCheck(bool is_instance_of, |
| HInstruction* object, |
| dex::TypeIndex type_index, |
| uint32_t dex_pc) { |
| ScopedObjectAccess soa(Thread::Current()); |
| const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); |
| Handle<mirror::Class> klass = ResolveClass(soa, type_index); |
| bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get()); |
| TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind( |
| klass.Get(), code_generator_, needs_access_check); |
| |
| HInstruction* class_or_null = nullptr; |
| HIntConstant* bitstring_path_to_root = nullptr; |
| HIntConstant* bitstring_mask = nullptr; |
| if (check_kind == TypeCheckKind::kBitstringCheck) { |
| // TODO: Allow using the bitstring check also if we need an access check. |
| DCHECK(!needs_access_check); |
| class_or_null = graph_->GetNullConstant(dex_pc); |
| MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); |
| uint32_t path_to_root = |
| SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootForTarget(klass.Get()); |
| uint32_t mask = SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootMask(klass.Get()); |
| bitstring_path_to_root = graph_->GetIntConstant(static_cast<int32_t>(path_to_root), dex_pc); |
| bitstring_mask = graph_->GetIntConstant(static_cast<int32_t>(mask), dex_pc); |
| } else { |
| class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check); |
| } |
| DCHECK(class_or_null != nullptr); |
| |
| if (is_instance_of) { |
| AppendInstruction(new (allocator_) HInstanceOf(object, |
| class_or_null, |
| check_kind, |
| klass, |
| dex_pc, |
| allocator_, |
| bitstring_path_to_root, |
| bitstring_mask)); |
| } else { |
| // We emit a CheckCast followed by a BoundType. CheckCast is a statement |
| // which may throw. If it succeeds BoundType sets the new type of `object` |
| // for all subsequent uses. |
| AppendInstruction( |
| new (allocator_) HCheckCast(object, |
| class_or_null, |
| check_kind, |
| klass, |
| dex_pc, |
| allocator_, |
| bitstring_path_to_root, |
| bitstring_mask)); |
| AppendInstruction(new (allocator_) HBoundType(object, dex_pc)); |
| } |
| } |
| |
| void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction, |
| uint8_t destination, |
| uint8_t reference, |
| dex::TypeIndex type_index, |
| uint32_t dex_pc) { |
| HInstruction* object = LoadLocal(reference, DataType::Type::kReference); |
| bool is_instance_of = instruction.Opcode() == Instruction::INSTANCE_OF; |
| |
| BuildTypeCheck(is_instance_of, object, type_index, dex_pc); |
| |
| if (is_instance_of) { |
| UpdateLocal(destination, current_block_->GetLastInstruction()); |
| } else { |
| DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); |
| UpdateLocal(reference, current_block_->GetLastInstruction()); |
| } |
| } |
| |
| bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) { |
| switch (instruction.Opcode()) { |
| case Instruction::CONST_4: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_16: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_HIGH16: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_16: { |
| int32_t register_index = instruction.VRegA(); |
| // Get 16 bits of constant value, sign extended to 64 bits. |
| int64_t value = instruction.VRegB_21s(); |
| value <<= 48; |
| value >>= 48; |
| HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_32: { |
| int32_t register_index = instruction.VRegA(); |
| // Get 32 bits of constant value, sign extended to 64 bits. |
| int64_t value = instruction.VRegB_31i(); |
| value <<= 32; |
| value >>= 32; |
| HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE: { |
| int32_t register_index = instruction.VRegA(); |
| HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_HIGH16: { |
| int32_t register_index = instruction.VRegA(); |
| int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; |
| HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| // Note that the SSA building will refine the types. |
| case Instruction::MOVE: |
| case Instruction::MOVE_FROM16: |
| case Instruction::MOVE_16: { |
| HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| // Note that the SSA building will refine the types. |
| case Instruction::MOVE_WIDE: |
| case Instruction::MOVE_WIDE_FROM16: |
| case Instruction::MOVE_WIDE_16: { |
| HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64); |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE_OBJECT_16: |
| case Instruction::MOVE_OBJECT_FROM16: { |
| // The verifier has no notion of a null type, so a move-object of constant 0 |
| // will lead to the same constant 0 in the destination register. To mimic |
| // this behavior, we just pretend we haven't seen a type change (int to reference) |
| // for the 0 constant and phis. We rely on our type propagation to eventually get the |
| // types correct. |
| uint32_t reg_number = instruction.VRegB(); |
| HInstruction* value = (*current_locals_)[reg_number]; |
| if (value->IsIntConstant()) { |
| DCHECK_EQ(value->AsIntConstant()->GetValue(), 0); |
| } else if (value->IsPhi()) { |
| DCHECK(value->GetType() == DataType::Type::kInt32 || |
| value->GetType() == DataType::Type::kReference); |
| } else { |
| value = LoadLocal(reg_number, DataType::Type::kReference); |
| } |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| case Instruction::RETURN_VOID: { |
| BuildReturn(instruction, DataType::Type::kVoid, dex_pc); |
| break; |
| } |
| |
| #define IF_XX(comparison, cond) \ |
| case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ |
| case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break |
| |
| IF_XX(HEqual, EQ); |
| IF_XX(HNotEqual, NE); |
| IF_XX(HLessThan, LT); |
| IF_XX(HLessThanOrEqual, LE); |
| IF_XX(HGreaterThan, GT); |
| IF_XX(HGreaterThanOrEqual, GE); |
| |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: { |
| AppendInstruction(new (allocator_) HGoto(dex_pc)); |
| current_block_ = nullptr; |
| break; |
| } |
| |
| case Instruction::RETURN: { |
| BuildReturn(instruction, return_type_, dex_pc); |
| break; |
| } |
| |
| case Instruction::RETURN_OBJECT: { |
| BuildReturn(instruction, return_type_, dex_pc); |
| break; |
| } |
| |
| case Instruction::RETURN_WIDE: { |
| BuildReturn(instruction, return_type_, dex_pc); |
| break; |
| } |
| |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_VIRTUAL: { |
| uint16_t method_idx = instruction.VRegB_35c(); |
| uint32_t args[5]; |
| uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); |
| VarArgsInstructionOperands operands(args, number_of_vreg_arguments); |
| if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::INVOKE_DIRECT_RANGE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| case Instruction::INVOKE_STATIC_RANGE: |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_VIRTUAL_RANGE: { |
| uint16_t method_idx = instruction.VRegB_3rc(); |
| RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc()); |
| if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::INVOKE_POLYMORPHIC: { |
| uint16_t method_idx = instruction.VRegB_45cc(); |
| dex::ProtoIndex proto_idx(instruction.VRegH_45cc()); |
| uint32_t args[5]; |
| uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); |
| VarArgsInstructionOperands operands(args, number_of_vreg_arguments); |
| return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands); |
| } |
| |
| case Instruction::INVOKE_POLYMORPHIC_RANGE: { |
| uint16_t method_idx = instruction.VRegB_4rcc(); |
| dex::ProtoIndex proto_idx(instruction.VRegH_4rcc()); |
| RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc()); |
| return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands); |
| } |
| |
| case Instruction::INVOKE_CUSTOM: { |
| uint16_t call_site_idx = instruction.VRegB_35c(); |
| uint32_t args[5]; |
| uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); |
| VarArgsInstructionOperands operands(args, number_of_vreg_arguments); |
| return BuildInvokeCustom(dex_pc, call_site_idx, operands); |
| } |
| |
| case Instruction::INVOKE_CUSTOM_RANGE: { |
| uint16_t call_site_idx = instruction.VRegB_3rc(); |
| RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc()); |
| return BuildInvokeCustom(dex_pc, call_site_idx, operands); |
| } |
| |
| case Instruction::NEG_INT: { |
| Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::NEG_LONG: { |
| Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::NEG_FLOAT: { |
| Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::NEG_DOUBLE: { |
| Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::NOT_INT: { |
| Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::NOT_LONG: { |
| Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_LONG: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_FLOAT: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_DOUBLE: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_INT: { |
| Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_FLOAT: { |
| Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_DOUBLE: { |
| Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_INT: { |
| Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_LONG: { |
| Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_DOUBLE: { |
| Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_INT: { |
| Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_LONG: { |
| Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_FLOAT: { |
| Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_BYTE: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_SHORT: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_CHAR: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT: { |
| Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_LONG: { |
| Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_DOUBLE: { |
| Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_FLOAT: { |
| Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_INT: { |
| Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_LONG: { |
| Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_FLOAT: { |
| Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_DOUBLE: { |
| Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT_2ADDR: { |
| Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_INT: { |
| Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_LONG: { |
| Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_FLOAT: { |
| Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_DOUBLE: { |
| Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_INT: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt32, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_LONG: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt64, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_FLOAT: { |
| Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_DOUBLE: { |
| Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_INT: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt32, false, false); |
| break; |
| } |
| |
| case Instruction::REM_LONG: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt64, false, false); |
| break; |
| } |
| |
| case Instruction::REM_FLOAT: { |
| Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_DOUBLE: { |
| Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT: { |
| Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_LONG: { |
| Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_INT: { |
| Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_LONG: { |
| Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_INT: { |
| Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_LONG: { |
| Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_INT: { |
| Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_LONG: { |
| Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_INT: { |
| Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_LONG: { |
| Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_INT: { |
| Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_LONG: { |
| Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_LONG_2ADDR: { |
| Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_DOUBLE_2ADDR: { |
| Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_FLOAT_2ADDR: { |
| Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_INT_2ADDR: { |
| Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_LONG_2ADDR: { |
| Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_FLOAT_2ADDR: { |
| Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_DOUBLE_2ADDR: { |
| Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_INT_2ADDR: { |
| Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_LONG_2ADDR: { |
| Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_FLOAT_2ADDR: { |
| Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_DOUBLE_2ADDR: { |
| Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_INT_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, DataType::Type::kInt32, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_LONG_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, DataType::Type::kInt64, false, true); |
| break; |
| } |
| |
| case Instruction::REM_INT_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, DataType::Type::kInt32, false, false); |
| break; |
| } |
| |
| case Instruction::REM_LONG_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, DataType::Type::kInt64, false, false); |
| break; |
| } |
| |
| case Instruction::REM_FLOAT_2ADDR: { |
| Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_DOUBLE_2ADDR: { |
| Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_INT_2ADDR: { |
| Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_LONG_2ADDR: { |
| Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_INT_2ADDR: { |
| Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_LONG_2ADDR: { |
| Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_INT_2ADDR: { |
| Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_LONG_2ADDR: { |
| Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_FLOAT_2ADDR: { |
| Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_DOUBLE_2ADDR: { |
| Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT_2ADDR: { |
| Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_LONG_2ADDR: { |
| Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_INT_2ADDR: { |
| Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_LONG_2ADDR: { |
| Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_INT_2ADDR: { |
| Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_LONG_2ADDR: { |
| Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT_LIT16: { |
| Binop_22s<HAdd>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT_LIT16: { |
| Binop_22s<HAnd>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_INT_LIT16: { |
| Binop_22s<HOr>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_INT_LIT16: { |
| Binop_22s<HXor>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::RSUB_INT: { |
| Binop_22s<HSub>(instruction, true, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_INT_LIT16: { |
| Binop_22s<HMul>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT_LIT8: { |
| Binop_22b<HAdd>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT_LIT8: { |
| Binop_22b<HAnd>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_INT_LIT8: { |
| Binop_22b<HOr>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_INT_LIT8: { |
| Binop_22b<HXor>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::RSUB_INT_LIT8: { |
| Binop_22b<HSub>(instruction, true, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_INT_LIT8: { |
| Binop_22b<HMul>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::DIV_INT_LIT8: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt32, true, true); |
| break; |
| } |
| |
| case Instruction::REM_INT_LIT16: |
| case Instruction::REM_INT_LIT8: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt32, true, false); |
| break; |
| } |
| |
| case Instruction::SHL_INT_LIT8: { |
| Binop_22b<HShl>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_INT_LIT8: { |
| Binop_22b<HShr>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_INT_LIT8: { |
| Binop_22b<HUShr>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::NEW_INSTANCE: { |
| HNewInstance* new_instance = |
| BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc); |
| DCHECK(new_instance != nullptr); |
| |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| BuildConstructorFenceForAllocation(new_instance); |
| break; |
| } |
| |
| case Instruction::NEW_ARRAY: { |
| dex::TypeIndex type_index(instruction.VRegC_22c()); |
| HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32); |
| HNewArray* new_array = BuildNewArray(dex_pc, type_index, length); |
| |
| UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); |
| BuildConstructorFenceForAllocation(new_array); |
| break; |
| } |
| |
| case Instruction::FILLED_NEW_ARRAY: { |
| dex::TypeIndex type_index(instruction.VRegB_35c()); |
| uint32_t args[5]; |
| uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); |
| VarArgsInstructionOperands operands(args, number_of_vreg_arguments); |
| HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands); |
| BuildConstructorFenceForAllocation(new_array); |
| break; |
| } |
| |
| case Instruction::FILLED_NEW_ARRAY_RANGE: { |
| dex::TypeIndex type_index(instruction.VRegB_3rc()); |
| RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc()); |
| HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands); |
| BuildConstructorFenceForAllocation(new_array); |
| break; |
| } |
| |
| case Instruction::FILL_ARRAY_DATA: { |
| BuildFillArrayData(instruction, dex_pc); |
| break; |
| } |
| |
| case Instruction::MOVE_RESULT: |
| case Instruction::MOVE_RESULT_WIDE: |
| case Instruction::MOVE_RESULT_OBJECT: { |
| DCHECK(latest_result_ != nullptr); |
| UpdateLocal(instruction.VRegA(), latest_result_); |
| latest_result_ = nullptr; |
| break; |
| } |
| |
| case Instruction::CMP_LONG: { |
| Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPG_FLOAT: { |
| Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPG_DOUBLE: { |
| Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPL_FLOAT: { |
| Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPL_DOUBLE: { |
| Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::NOP: |
| break; |
| |
| case Instruction::IGET: |
| case Instruction::IGET_WIDE: |
| case Instruction::IGET_OBJECT: |
| case Instruction::IGET_BOOLEAN: |
| case Instruction::IGET_BYTE: |
| case Instruction::IGET_CHAR: |
| case Instruction::IGET_SHORT: { |
| if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::IPUT: |
| case Instruction::IPUT_WIDE: |
| case Instruction::IPUT_OBJECT: |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_SHORT: { |
| if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::SGET: |
| case Instruction::SGET_WIDE: |
| case Instruction::SGET_OBJECT: |
| case Instruction::SGET_BOOLEAN: |
| case Instruction::SGET_BYTE: |
| case Instruction::SGET_CHAR: |
| case Instruction::SGET_SHORT: { |
| BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false); |
| break; |
| } |
| |
| case Instruction::SPUT: |
| case Instruction::SPUT_WIDE: |
| case Instruction::SPUT_OBJECT: |
| case Instruction::SPUT_BOOLEAN: |
| case Instruction::SPUT_BYTE: |
| case Instruction::SPUT_CHAR: |
| case Instruction::SPUT_SHORT: { |
| BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true); |
| break; |
| } |
| |
| #define ARRAY_XX(kind, anticipated_type) \ |
| case Instruction::AGET##kind: { \ |
| BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \ |
| break; \ |
| } \ |
| case Instruction::APUT##kind: { \ |
| BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \ |
| break; \ |
| } |
| |
| ARRAY_XX(, DataType::Type::kInt32); |
| ARRAY_XX(_WIDE, DataType::Type::kInt64); |
| ARRAY_XX(_OBJECT, DataType::Type::kReference); |
| ARRAY_XX(_BOOLEAN, DataType::Type::kBool); |
| ARRAY_XX(_BYTE, DataType::Type::kInt8); |
| ARRAY_XX(_CHAR, DataType::Type::kUint16); |
| ARRAY_XX(_SHORT, DataType::Type::kInt16); |
| |
| case Instruction::ARRAY_LENGTH: { |
| HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc); |
| AppendInstruction(new (allocator_) HArrayLength(object, dex_pc)); |
| UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_STRING: { |
| dex::StringIndex string_index(instruction.VRegB_21c()); |
| BuildLoadString(string_index, dex_pc); |
| UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_STRING_JUMBO: { |
| dex::StringIndex string_index(instruction.VRegB_31c()); |
| BuildLoadString(string_index, dex_pc); |
| UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_CLASS: { |
| dex::TypeIndex type_index(instruction.VRegB_21c()); |
| BuildLoadClass(type_index, dex_pc); |
| UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_METHOD_HANDLE: { |
| uint16_t method_handle_idx = instruction.VRegB_21c(); |
| BuildLoadMethodHandle(method_handle_idx, dex_pc); |
| UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_METHOD_TYPE: { |
| dex::ProtoIndex proto_idx(instruction.VRegB_21c()); |
| BuildLoadMethodType(proto_idx, dex_pc); |
| UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::MOVE_EXCEPTION: { |
| AppendInstruction(new (allocator_) HLoadException(dex_pc)); |
| UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); |
| AppendInstruction(new (allocator_) HClearException(dex_pc)); |
| break; |
| } |
| |
| case Instruction::THROW: { |
| HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference); |
| AppendInstruction(new (allocator_) HThrow(exception, dex_pc)); |
| // We finished building this block. Set the current block to null to avoid |
| // adding dead instructions to it. |
| current_block_ = nullptr; |
| break; |
| } |
| |
| case Instruction::INSTANCE_OF: { |
| uint8_t destination = instruction.VRegA_22c(); |
| uint8_t reference = instruction.VRegB_22c(); |
| dex::TypeIndex type_index(instruction.VRegC_22c()); |
| BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); |
| break; |
| } |
| |
| case Instruction::CHECK_CAST: { |
| uint8_t reference = instruction.VRegA_21c(); |
| dex::TypeIndex type_index(instruction.VRegB_21c()); |
| BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); |
| break; |
| } |
| |
| case Instruction::MONITOR_ENTER: { |
| AppendInstruction(new (allocator_) HMonitorOperation( |
| LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference), |
| HMonitorOperation::OperationKind::kEnter, |
| dex_pc)); |
| graph_->SetHasMonitorOperations(true); |
| break; |
| } |
| |
| case Instruction::MONITOR_EXIT: { |
| AppendInstruction(new (allocator_) HMonitorOperation( |
| LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference), |
| HMonitorOperation::OperationKind::kExit, |
| dex_pc)); |
| graph_->SetHasMonitorOperations(true); |
| break; |
| } |
| |
| case Instruction::SPARSE_SWITCH: |
| case Instruction::PACKED_SWITCH: { |
| BuildSwitch(instruction, dex_pc); |
| break; |
| } |
| |
| case Instruction::UNUSED_3E ... Instruction::UNUSED_43: |
| case Instruction::UNUSED_73: |
| case Instruction::UNUSED_79: |
| case Instruction::UNUSED_7A: |
| case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9: { |
| VLOG(compiler) << "Did not compile " |
| << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) |
| << " because of unhandled instruction " |
| << instruction.Name(); |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kNotCompiledUnhandledInstruction); |
| return false; |
| } |
| } |
| return true; |
| } // NOLINT(readability/fn_size) |
| |
| ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType( |
| dex::TypeIndex type_index, |
| const DexCompilationUnit& compilation_unit) const { |
| return compilation_unit.GetClassLinker()->LookupResolvedType( |
| type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); |
| } |
| |
| ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const { |
| // TODO: Cache the result in a Handle<mirror::Class>. |
| const dex::MethodId& method_id = |
| dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); |
| return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_); |
| } |
| |
| } // namespace art |