blob: fd599f789e28623b03dec884e98fad74473dd5a9 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "instruction_builder.h"
#include "art_method-inl.h"
#include "base/arena_bit_vector.h"
#include "base/bit_vector-inl.h"
#include "base/logging.h"
#include "block_builder.h"
#include "class_linker-inl.h"
#include "code_generator.h"
#include "data_type-inl.h"
#include "dex/bytecode_utils.h"
#include "dex/dex_instruction-inl.h"
#include "driver/dex_compilation_unit.h"
#include "driver/compiler_options.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "imtable-inl.h"
#include "intrinsics.h"
#include "intrinsics_utils.h"
#include "jit/jit.h"
#include "mirror/dex_cache.h"
#include "oat_file.h"
#include "optimizing_compiler_stats.h"
#include "reflective_handle_scope-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "sharpening.h"
#include "ssa_builder.h"
#include "well_known_classes.h"
namespace art HIDDEN {
namespace {
class SamePackageCompare {
public:
explicit SamePackageCompare(const DexCompilationUnit& dex_compilation_unit)
: dex_compilation_unit_(dex_compilation_unit) {}
bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
if (klass->GetClassLoader() != dex_compilation_unit_.GetClassLoader().Get()) {
return false;
}
if (referrers_descriptor_ == nullptr) {
const DexFile* dex_file = dex_compilation_unit_.GetDexFile();
uint32_t referrers_method_idx = dex_compilation_unit_.GetDexMethodIndex();
referrers_descriptor_ =
dex_file->StringByTypeIdx(dex_file->GetMethodId(referrers_method_idx).class_idx_);
referrers_package_length_ = PackageLength(referrers_descriptor_);
}
std::string temp;
const char* klass_descriptor = klass->GetDescriptor(&temp);
size_t klass_package_length = PackageLength(klass_descriptor);
return (referrers_package_length_ == klass_package_length) &&
memcmp(referrers_descriptor_, klass_descriptor, referrers_package_length_) == 0;
};
private:
static size_t PackageLength(const char* descriptor) {
const char* slash_pos = strrchr(descriptor, '/');
return (slash_pos != nullptr) ? static_cast<size_t>(slash_pos - descriptor) : 0u;
}
const DexCompilationUnit& dex_compilation_unit_;
const char* referrers_descriptor_ = nullptr;
size_t referrers_package_length_ = 0u;
};
} // anonymous namespace
HInstructionBuilder::HInstructionBuilder(HGraph* graph,
HBasicBlockBuilder* block_builder,
SsaBuilder* ssa_builder,
const DexFile* dex_file,
const CodeItemDebugInfoAccessor& accessor,
DataType::Type return_type,
const DexCompilationUnit* dex_compilation_unit,
const DexCompilationUnit* outer_compilation_unit,
CodeGenerator* code_generator,
OptimizingCompilerStats* compiler_stats,
ScopedArenaAllocator* local_allocator)
: allocator_(graph->GetAllocator()),
graph_(graph),
dex_file_(dex_file),
code_item_accessor_(accessor),
return_type_(return_type),
block_builder_(block_builder),
ssa_builder_(ssa_builder),
code_generator_(code_generator),
dex_compilation_unit_(dex_compilation_unit),
outer_compilation_unit_(outer_compilation_unit),
compilation_stats_(compiler_stats),
local_allocator_(local_allocator),
locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
current_block_(nullptr),
current_locals_(nullptr),
latest_result_(nullptr),
current_this_parameter_(nullptr),
loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
class_cache_(std::less<dex::TypeIndex>(), local_allocator->Adapter(kArenaAllocGraphBuilder)) {
loop_headers_.reserve(kDefaultNumberOfLoops);
}
HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
return block_builder_->GetBlockAt(dex_pc);
}
inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
const size_t vregs = graph_->GetNumberOfVRegs();
if (locals->size() == vregs) {
return locals;
}
return GetLocalsForWithAllocation(block, locals, vregs);
}
ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
HBasicBlock* block,
ScopedArenaVector<HInstruction*>* locals,
const size_t vregs) {
DCHECK_NE(locals->size(), vregs);
locals->resize(vregs, nullptr);
if (block->IsCatchBlock()) {
// We record incoming inputs of catch phis at throwing instructions and
// must therefore eagerly create the phis. Phis for undefined vregs will
// be deleted when the first throwing instruction with the vreg undefined
// is encountered. Unused phis will be removed by dead phi analysis.
for (size_t i = 0; i < vregs; ++i) {
// No point in creating the catch phi if it is already undefined at
// the first throwing instruction.
HInstruction* current_local_value = (*current_locals_)[i];
if (current_local_value != nullptr) {
HPhi* phi = new (allocator_) HPhi(
allocator_,
i,
0,
current_local_value->GetType());
block->AddPhi(phi);
(*locals)[i] = phi;
}
}
}
return locals;
}
inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block);
return (*locals)[local];
}
void HInstructionBuilder::InitializeBlockLocals() {
current_locals_ = GetLocalsFor(current_block_);
if (current_block_->IsCatchBlock()) {
// Catch phis were already created and inputs collected from throwing sites.
if (kIsDebugBuild) {
// Make sure there was at least one throwing instruction which initialized
// locals (guaranteed by HGraphBuilder) and that all try blocks have been
// visited already (from HTryBoundary scoping and reverse post order).
bool catch_block_visited = false;
for (HBasicBlock* current : graph_->GetReversePostOrder()) {
if (current == current_block_) {
catch_block_visited = true;
} else if (current->IsTryBlock()) {
const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
if (try_entry.HasExceptionHandler(*current_block_)) {
DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
}
}
}
DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
<< "No instructions throwing into a live catch block.";
}
} else if (current_block_->IsLoopHeader()) {
// If the block is a loop header, we know we only have visited the pre header
// because we are visiting in reverse post order. We create phis for all initialized
// locals from the pre header. Their inputs will be populated at the end of
// the analysis.
for (size_t local = 0; local < current_locals_->size(); ++local) {
HInstruction* incoming =
ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
if (incoming != nullptr) {
HPhi* phi = new (allocator_) HPhi(
allocator_,
local,
0,
incoming->GetType());
current_block_->AddPhi(phi);
(*current_locals_)[local] = phi;
}
}
// Save the loop header so that the last phase of the analysis knows which
// blocks need to be updated.
loop_headers_.push_back(current_block_);
} else if (current_block_->GetPredecessors().size() > 0) {
// All predecessors have already been visited because we are visiting in reverse post order.
// We merge the values of all locals, creating phis if those values differ.
for (size_t local = 0; local < current_locals_->size(); ++local) {
bool one_predecessor_has_no_value = false;
bool is_different = false;
HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
HInstruction* current = ValueOfLocalAt(predecessor, local);
if (current == nullptr) {
one_predecessor_has_no_value = true;
break;
} else if (current != value) {
is_different = true;
}
}
if (one_predecessor_has_no_value) {
// If one predecessor has no value for this local, we trust the verifier has
// successfully checked that there is a store dominating any read after this block.
continue;
}
if (is_different) {
HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
HPhi* phi = new (allocator_) HPhi(
allocator_,
local,
current_block_->GetPredecessors().size(),
first_input->GetType());
for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
phi->SetRawInputAt(i, pred_value);
}
current_block_->AddPhi(phi);
value = phi;
}
(*current_locals_)[local] = value;
}
}
}
void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
DCHECK_EQ(handler_locals->size(), current_locals_->size());
for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
HInstruction* handler_value = (*handler_locals)[vreg];
if (handler_value == nullptr) {
// Vreg was undefined at a previously encountered throwing instruction
// and the catch phi was deleted. Do not record the local value.
continue;
}
DCHECK(handler_value->IsPhi());
HInstruction* local_value = (*current_locals_)[vreg];
if (local_value == nullptr) {
// This is the first instruction throwing into `catch_block` where
// `vreg` is undefined. Delete the catch phi.
catch_block->RemovePhi(handler_value->AsPhi());
(*handler_locals)[vreg] = nullptr;
} else {
// Vreg has been defined at all instructions throwing into `catch_block`
// encountered so far. Record the local value in the catch phi.
handler_value->AsPhi()->AddInput(local_value);
}
}
}
}
void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
current_block_->AddInstruction(instruction);
InitializeInstruction(instruction);
}
void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
if (current_block_->GetInstructions().IsEmpty()) {
current_block_->AddInstruction(instruction);
} else {
current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
}
InitializeInstruction(instruction);
}
void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
if (instruction->NeedsEnvironment()) {
HEnvironment* environment = new (allocator_) HEnvironment(
allocator_,
current_locals_->size(),
graph_->GetArtMethod(),
instruction->GetDexPc(),
instruction);
environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_));
instruction->SetRawEnvironment(environment);
}
}
HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference);
if (!ref->CanBeNull()) {
return ref;
}
HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc);
AppendInstruction(null_check);
return null_check;
}
void HInstructionBuilder::SetLoopHeaderPhiInputs() {
for (size_t i = loop_headers_.size(); i > 0; --i) {
HBasicBlock* block = loop_headers_[i - 1];
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
size_t vreg = phi->GetRegNumber();
for (HBasicBlock* predecessor : block->GetPredecessors()) {
HInstruction* value = ValueOfLocalAt(predecessor, vreg);
if (value == nullptr) {
// Vreg is undefined at this predecessor. Mark it dead and leave with
// fewer inputs than predecessors. SsaChecker will fail if not removed.
phi->SetDead();
break;
} else {
phi->AddInput(value);
}
}
}
}
}
static bool IsBlockPopulated(HBasicBlock* block) {
if (block->IsLoopHeader()) {
// Suspend checks were inserted into loop headers during building of dominator tree.
DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
return block->GetFirstInstruction() != block->GetLastInstruction();
} else if (block->IsCatchBlock()) {
// Nops were inserted into the beginning of catch blocks.
DCHECK(block->GetFirstInstruction()->IsNop());
return block->GetFirstInstruction() != block->GetLastInstruction();
} else {
return !block->GetInstructions().IsEmpty();
}
}
bool HInstructionBuilder::Build() {
DCHECK(code_item_accessor_.HasCodeItem());
locals_for_.resize(
graph_->GetBlocks().size(),
ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
// Find locations where we want to generate extra stackmaps for native debugging.
// This allows us to generate the info only at interesting points (for example,
// at start of java statement) rather than before every dex instruction.
const bool native_debuggable = code_generator_ != nullptr &&
code_generator_->GetCompilerOptions().GetNativeDebuggable();
ArenaBitVector* native_debug_info_locations = nullptr;
if (native_debuggable) {
native_debug_info_locations = FindNativeDebugInfoLocations();
}
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
current_block_ = block;
uint32_t block_dex_pc = current_block_->GetDexPc();
InitializeBlockLocals();
if (current_block_->IsEntryBlock()) {
InitializeParameters();
AppendInstruction(new (allocator_) HSuspendCheck(0u));
if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
AppendInstruction(new (allocator_) HMethodEntryHook(0u));
}
AppendInstruction(new (allocator_) HGoto(0u));
continue;
} else if (current_block_->IsExitBlock()) {
AppendInstruction(new (allocator_) HExit());
continue;
} else if (current_block_->IsLoopHeader()) {
HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc());
current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
// This is slightly odd because the loop header might not be empty (TryBoundary).
// But we're still creating the environment with locals from the top of the block.
InsertInstructionAtTop(suspend_check);
} else if (current_block_->IsCatchBlock()) {
// We add an environment emitting instruction at the beginning of each catch block, in order
// to support try catch inlining.
// This is slightly odd because the catch block might not be empty (TryBoundary).
InsertInstructionAtTop(new (allocator_) HNop(block_dex_pc, /* needs_environment= */ true));
}
if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
// Synthetic block that does not need to be populated.
DCHECK(IsBlockPopulated(current_block_));
continue;
}
DCHECK(!IsBlockPopulated(current_block_));
for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) {
if (current_block_ == nullptr) {
// The previous instruction ended this block.
break;
}
const uint32_t dex_pc = pair.DexPc();
if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
// This dex_pc starts a new basic block.
break;
}
if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) {
PropagateLocalsToCatchBlocks();
}
if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
AppendInstruction(new (allocator_) HNop(dex_pc, /* needs_environment= */ true));
}
// Note: There may be no Thread for gtests.
DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
<< dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
<< " " << pair.Inst().Name() << "@" << dex_pc;
if (!ProcessDexInstruction(pair.Inst(), dex_pc)) {
return false;
}
DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
<< dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
<< " " << pair.Inst().Name() << "@" << dex_pc;
}
if (current_block_ != nullptr) {
// Branching instructions clear current_block, so we know the last
// instruction of the current block is not a branching instruction.
// We add an unconditional Goto to the next block.
DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
AppendInstruction(new (allocator_) HGoto());
}
}
SetLoopHeaderPhiInputs();
return true;
}
void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) {
DCHECK(!code_item_accessor_.HasCodeItem());
DCHECK(method->IsIntrinsic());
if (kIsDebugBuild) {
ScopedObjectAccess soa(Thread::Current());
CHECK(!method->IsSignaturePolymorphic());
}
locals_for_.resize(
graph_->GetBlocks().size(),
ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
// Fill the entry block. Do not add suspend check, we do not want a suspend
// check in intrinsics; intrinsic methods are supposed to be fast.
current_block_ = graph_->GetEntryBlock();
InitializeBlockLocals();
InitializeParameters();
if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
AppendInstruction(new (allocator_) HMethodEntryHook(0u));
}
AppendInstruction(new (allocator_) HGoto(0u));
// Fill the body.
current_block_ = current_block_->GetSingleSuccessor();
InitializeBlockLocals();
DCHECK(!IsBlockPopulated(current_block_));
// Add the intermediate representation, if available, or invoke instruction.
size_t in_vregs = graph_->GetNumberOfInVRegs();
size_t number_of_arguments =
in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr);
uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex();
const char* shorty = dex_file_->GetMethodShorty(method_idx);
RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs);
if (!BuildSimpleIntrinsic(method, kNoDexPc, operands, shorty)) {
// Some intrinsics without intermediate representation still yield a leaf method,
// so build the invoke. Use HInvokeStaticOrDirect even for methods that would
// normally use an HInvokeVirtual (sharpen the call).
MethodReference target_method(dex_file_, method_idx);
HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
MethodLoadKind::kRuntimeCall,
CodePtrLocation::kCallArtMethod,
/* method_load_data= */ 0u
};
InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect;
HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect(
allocator_,
number_of_arguments,
return_type_,
kNoDexPc,
target_method,
method,
dispatch_info,
invoke_type,
target_method,
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone,
!graph_->IsDebuggable());
HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
}
// Add the return instruction.
if (return_type_ == DataType::Type::kVoid) {
if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
AppendInstruction(new (allocator_) HMethodExitHook(graph_->GetNullConstant(), kNoDexPc));
}
AppendInstruction(new (allocator_) HReturnVoid());
} else {
if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
AppendInstruction(new (allocator_) HMethodExitHook(latest_result_, kNoDexPc));
}
AppendInstruction(new (allocator_) HReturn(latest_result_));
}
// Fill the exit block.
DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock());
current_block_ = graph_->GetExitBlock();
InitializeBlockLocals();
AppendInstruction(new (allocator_) HExit());
}
ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() {
ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_,
code_item_accessor_.InsnsSizeInCodeUnits(),
/* expandable= */ false,
kArenaAllocGraphBuilder);
locations->ClearAllBits();
// The visitor gets called when the line number changes.
// In other words, it marks the start of new java statement.
code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) {
locations->SetBit(entry.address_);
return false;
});
// Instruction-specific tweaks.
for (const DexInstructionPcPair& inst : code_item_accessor_) {
switch (inst->Opcode()) {
case Instruction::MOVE_EXCEPTION: {
// Stop in native debugger after the exception has been moved.
// The compiler also expects the move at the start of basic block so
// we do not want to interfere by inserting native-debug-info before it.
locations->ClearBit(inst.DexPc());
DexInstructionIterator next = std::next(DexInstructionIterator(inst));
DCHECK(next.DexPc() != inst.DexPc());
if (next != code_item_accessor_.end()) {
locations->SetBit(next.DexPc());
}
break;
}
default:
break;
}
}
return locations;
}
HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const {
HInstruction* value = (*current_locals_)[reg_number];
DCHECK(value != nullptr);
// If the operation requests a specific type, we make sure its input is of that type.
if (type != value->GetType()) {
if (DataType::IsFloatingPointType(type)) {
value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
} else if (type == DataType::Type::kReference) {
value = ssa_builder_->GetReferenceTypeEquivalent(value);
}
DCHECK(value != nullptr);
}
return value;
}
void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
DataType::Type stored_type = stored_value->GetType();
DCHECK_NE(stored_type, DataType::Type::kVoid);
// Storing into vreg `reg_number` may implicitly invalidate the surrounding
// registers. Consider the following cases:
// (1) Storing a wide value must overwrite previous values in both `reg_number`
// and `reg_number+1`. We store `nullptr` in `reg_number+1`.
// (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
// must invalidate it. We store `nullptr` in `reg_number-1`.
// Consequently, storing a wide value into the high vreg of another wide value
// will invalidate both `reg_number-1` and `reg_number+1`.
if (reg_number != 0) {
HInstruction* local_low = (*current_locals_)[reg_number - 1];
if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) {
// The vreg we are storing into was previously the high vreg of a pair.
// We need to invalidate its low vreg.
DCHECK((*current_locals_)[reg_number] == nullptr);
(*current_locals_)[reg_number - 1] = nullptr;
}
}
(*current_locals_)[reg_number] = stored_value;
if (DataType::Is64BitType(stored_type)) {
// We are storing a pair. Invalidate the instruction in the high vreg.
(*current_locals_)[reg_number + 1] = nullptr;
}
}
void HInstructionBuilder::InitializeParameters() {
DCHECK(current_block_->IsEntryBlock());
// outer_compilation_unit_ is null only when unit testing.
if (outer_compilation_unit_ == nullptr) {
return;
}
const char* shorty = dex_compilation_unit_->GetShorty();
uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
uint16_t parameter_index = 0;
const dex::MethodId& referrer_method_id =
dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
if (!dex_compilation_unit_->IsStatic()) {
// Add the implicit 'this' argument, not expressed in the signature.
HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_,
referrer_method_id.class_idx_,
parameter_index++,
DataType::Type::kReference,
/* is_this= */ true);
AppendInstruction(parameter);
UpdateLocal(locals_index++, parameter);
number_of_parameters--;
current_this_parameter_ = parameter;
} else {
DCHECK(current_this_parameter_ == nullptr);
}
const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
HParameterValue* parameter = new (allocator_) HParameterValue(
*dex_file_,
arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
parameter_index++,
DataType::FromShorty(shorty[shorty_pos]),
/* is_this= */ false);
++shorty_pos;
AppendInstruction(parameter);
// Store the parameter value in the local that the dex code will use
// to reference that parameter.
UpdateLocal(locals_index++, parameter);
if (DataType::Is64BitType(parameter->GetType())) {
i++;
locals_index++;
parameter_index++;
}
}
}
template<typename T>
void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
T* comparison = new (allocator_) T(first, second, dex_pc);
AppendInstruction(comparison);
AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
current_block_ = nullptr;
}
template<typename T>
void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
AppendInstruction(comparison);
AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
current_block_ = nullptr;
}
template<typename T>
void HInstructionBuilder::Unop_12x(const Instruction& instruction,
DataType::Type type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
AppendInstruction(new (allocator_) T(type, first, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
DataType::Type input_type,
DataType::Type result_type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HInstructionBuilder::Binop_23x(const Instruction& instruction,
DataType::Type type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
HInstruction* second = LoadLocal(instruction.VRegC(), type);
AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
DataType::Type type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32);
AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
DataType::Type type,
ComparisonBias bias,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
HInstruction* second = LoadLocal(instruction.VRegC(), type);
AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
DataType::Type type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegA(), type);
HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HInstructionBuilder::Binop_12x(const Instruction& instruction,
DataType::Type type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegA(), type);
HInstruction* second = LoadLocal(instruction.VRegB(), type);
AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
if (reverse) {
std::swap(first, second);
}
AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
if (reverse) {
std::swap(first, second);
}
AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
// Does the method being compiled need any constructor barriers being inserted?
// (Always 'false' for methods that aren't <init>.)
static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) {
// Can be null in unit tests only.
if (UNLIKELY(cu == nullptr)) {
return false;
}
// Constructor barriers are applicable only for <init> methods.
if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) {
return false;
}
return cu->RequiresConstructorBarrier();
}
// Returns true if `block` has only one successor which starts at the next
// dex_pc after `instruction` at `dex_pc`.
static bool IsFallthroughInstruction(const Instruction& instruction,
uint32_t dex_pc,
HBasicBlock* block) {
uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
}
void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
DexSwitchTable table(instruction, dex_pc);
if (table.GetNumEntries() == 0) {
// Empty Switch. Code falls through to the next block.
DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
AppendInstruction(new (allocator_) HGoto(dex_pc));
} else if (table.ShouldBuildDecisionTree()) {
for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc);
AppendInstruction(comparison);
AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
if (!it.IsLast()) {
current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
}
}
} else {
AppendInstruction(
new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
}
current_block_ = nullptr;
}
void HInstructionBuilder::BuildReturn(const Instruction& instruction,
DataType::Type type,
uint32_t dex_pc) {
if (type == DataType::Type::kVoid) {
// Only <init> (which is a return-void) could possibly have a constructor fence.
// This may insert additional redundant constructor fences from the super constructors.
// TODO: remove redundant constructor fences (b/36656456).
if (RequiresConstructorBarrier(dex_compilation_unit_)) {
// Compiling instance constructor.
DCHECK_STREQ("<init>", graph_->GetMethodName());
HInstruction* fence_target = current_this_parameter_;
DCHECK(fence_target != nullptr);
AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_));
MaybeRecordStat(
compilation_stats_,
MethodCompilationStat::kConstructorFenceGeneratedFinal);
}
if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
// Return value is not used for void functions. We pass NullConstant to
// avoid special cases when generating code.
AppendInstruction(new (allocator_) HMethodExitHook(graph_->GetNullConstant(), dex_pc));
}
AppendInstruction(new (allocator_) HReturnVoid(dex_pc));
} else {
DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_));
HInstruction* value = LoadLocal(instruction.VRegA(), type);
if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
AppendInstruction(new (allocator_) HMethodExitHook(value, dex_pc));
}
AppendInstruction(new (allocator_) HReturn(value, dex_pc));
}
current_block_ = nullptr;
}
static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
switch (opcode) {
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_STATIC_RANGE:
return kStatic;
case Instruction::INVOKE_DIRECT:
case Instruction::INVOKE_DIRECT_RANGE:
return kDirect;
case Instruction::INVOKE_VIRTUAL:
case Instruction::INVOKE_VIRTUAL_RANGE:
return kVirtual;
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_INTERFACE_RANGE:
return kInterface;
case Instruction::INVOKE_SUPER_RANGE:
case Instruction::INVOKE_SUPER:
return kSuper;
default:
LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
UNREACHABLE();
}
}
// Try to resolve a method using the class linker. Return null if a method could
// not be resolved or the resolved method cannot be used for some reason.
// Also retrieve method data needed for creating the invoke intermediate
// representation while we hold the mutator lock here.
static ArtMethod* ResolveMethod(uint16_t method_idx,
ArtMethod* referrer,
const DexCompilationUnit& dex_compilation_unit,
/*inout*/InvokeType* invoke_type,
/*out*/MethodReference* resolved_method_info,
/*out*/uint16_t* imt_or_vtable_index,
/*out*/bool* is_string_constructor) {
ScopedObjectAccess soa(Thread::Current());
ClassLinker* class_linker = dex_compilation_unit.GetClassLinker();
Handle<mirror::ClassLoader> class_loader = dex_compilation_unit.GetClassLoader();
ArtMethod* resolved_method =
class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
method_idx,
dex_compilation_unit.GetDexCache(),
class_loader,
referrer,
*invoke_type);
if (UNLIKELY(resolved_method == nullptr)) {
// Clean up any exception left by type resolution.
soa.Self()->ClearException();
return nullptr;
}
DCHECK(!soa.Self()->IsExceptionPending());
// The referrer may be unresolved for AOT if we're compiling a class that cannot be
// resolved because, for example, we don't find a superclass in the classpath.
if (referrer == nullptr) {
// The class linker cannot check access without a referrer, so we have to do it.
// Check if the declaring class or referencing class is accessible.
SamePackageCompare same_package(dex_compilation_unit);
ObjPtr<mirror::Class> declaring_class = resolved_method->GetDeclaringClass();
bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class);
if (!declaring_class_accessible) {
// It is possible to access members from an inaccessible superclass
// by referencing them through an accessible subclass.
ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_,
dex_compilation_unit.GetDexCache().Get(),
class_loader.Get());
DCHECK(referenced_class != nullptr); // Must have been resolved when resolving the method.
if (!referenced_class->IsPublic() && !same_package(referenced_class)) {
return nullptr;
}
}
// Check whether the method itself is accessible.
// Since the referrer is unresolved but the method is resolved, it cannot be
// inside the same class, so a private method is known to be inaccessible.
// And without a resolved referrer, we cannot check for protected member access
// in superlass, so we handle only access to public member or within the package.
if (resolved_method->IsPrivate() ||
(!resolved_method->IsPublic() && !declaring_class_accessible)) {
return nullptr;
}
}
// We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
// We need to look at the referrer's super class vtable. We need to do this to know if we need to
// make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
// which require runtime handling.
if (*invoke_type == kSuper) {
if (referrer == nullptr) {
// We could not determine the method's class we need to wait until runtime.
DCHECK(Runtime::Current()->IsAotCompiler());
return nullptr;
}
ArtMethod* actual_method = FindSuperMethodToCall</*access_check=*/true>(
method_idx, resolved_method, referrer, soa.Self());
if (actual_method == nullptr) {
// Clean up any exception left by method resolution.
soa.Self()->ClearException();
return nullptr;
}
if (!actual_method->IsInvokable()) {
// Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
// could resolve the callee to the wrong method.
return nullptr;
}
// Call GetCanonicalMethod in case the resolved method is a copy: for super calls, the encoding
// of ArtMethod in BSS relies on not having copies there.
resolved_method = actual_method->GetCanonicalMethod(class_linker->GetImagePointerSize());
}
if (*invoke_type == kInterface) {
if (resolved_method->GetDeclaringClass()->IsObjectClass()) {
// If the resolved method is from j.l.Object, emit a virtual call instead.
// The IMT conflict stub only handles interface methods.
*invoke_type = kVirtual;
} else {
DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
}
}
*resolved_method_info =
MethodReference(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex());
if (*invoke_type == kVirtual) {
// For HInvokeVirtual we need the vtable index.
*imt_or_vtable_index = resolved_method->GetVtableIndex();
} else if (*invoke_type == kInterface) {
// For HInvokeInterface we need the IMT index.
*imt_or_vtable_index = resolved_method->GetImtIndex();
DCHECK_EQ(*imt_or_vtable_index, ImTable::GetImtIndex(resolved_method));
}
*is_string_constructor = resolved_method->IsStringConstructor();
return resolved_method;
}
bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
uint32_t dex_pc,
uint32_t method_idx,
const InstructionOperands& operands) {
InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
const char* shorty = dex_file_->GetMethodShorty(method_idx);
DataType::Type return_type = DataType::FromShorty(shorty[0]);
// Remove the return type from the 'proto'.
size_t number_of_arguments = strlen(shorty) - 1;
if (invoke_type != kStatic) { // instance call
// One extra argument for 'this'.
number_of_arguments++;
}
MethodReference resolved_method_reference(nullptr, 0u);
bool is_string_constructor = false;
uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16;
ArtMethod* resolved_method = ResolveMethod(method_idx,
graph_->GetArtMethod(),
*dex_compilation_unit_,
&invoke_type,
&resolved_method_reference,
&imt_or_vtable_index,
&is_string_constructor);
MethodReference method_reference(&graph_->GetDexFile(), method_idx);
if (UNLIKELY(resolved_method == nullptr)) {
DCHECK(!Thread::Current()->IsExceptionPending());
MaybeRecordStat(compilation_stats_,
MethodCompilationStat::kUnresolvedMethod);
HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_,
number_of_arguments,
return_type,
dex_pc,
method_reference,
invoke_type);
return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true);
}
// Replace calls to String.<init> with StringFactory.
if (is_string_constructor) {
uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
MethodLoadKind::kStringInit,
CodePtrLocation::kCallArtMethod,
dchecked_integral_cast<uint64_t>(string_init_entry_point)
};
// We pass null for the resolved_method to ensure optimizations
// don't rely on it.
HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect(
allocator_,
number_of_arguments - 1,
/* return_type= */ DataType::Type::kReference,
dex_pc,
method_reference,
/* resolved_method= */ nullptr,
dispatch_info,
invoke_type,
resolved_method_reference,
HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit,
!graph_->IsDebuggable());
return HandleStringInit(invoke, operands, shorty);
}
// Potential class initialization check, in the case of a static method call.
HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement =
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
HClinitCheck* clinit_check = nullptr;
if (invoke_type == kStatic) {
clinit_check = ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement);
}
// Try to build an HIR replacement for the intrinsic.
if (UNLIKELY(resolved_method->IsIntrinsic()) && !graph_->IsDebuggable()) {
// All intrinsics are in the primary boot image, so their class can always be referenced
// and we do not need to rely on the implicit class initialization check. The class should
// be initialized but we do not require that here.
DCHECK_NE(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
if (BuildSimpleIntrinsic(resolved_method, dex_pc, operands, shorty)) {
return true;
}
}
HInvoke* invoke = nullptr;
if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
// For sharpening, we create another MethodReference, to account for the
// kSuper case below where we cannot find a dex method index.
bool has_method_id = true;
if (invoke_type == kSuper) {
uint32_t dex_method_index = method_reference.index;
if (IsSameDexFile(*resolved_method_reference.dex_file,
*dex_compilation_unit_->GetDexFile())) {
// Update the method index to the one resolved. Note that this may be a no-op if
// we resolved to the method referenced by the instruction.
dex_method_index = resolved_method_reference.index;
} else {
// Try to find a dex method index in this caller's dex file.
ScopedObjectAccess soa(Thread::Current());
dex_method_index = resolved_method->FindDexMethodIndexInOtherDexFile(
*dex_compilation_unit_->GetDexFile(), method_idx);
}
if (dex_method_index == dex::kDexNoIndex) {
has_method_id = false;
} else {
method_reference.index = dex_method_index;
}
}
HInvokeStaticOrDirect::DispatchInfo dispatch_info =
HSharpening::SharpenLoadMethod(resolved_method,
has_method_id,
/* for_interface_call= */ false,
code_generator_);
if (dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) {
graph_->SetHasDirectCriticalNativeCall(true);
}
invoke = new (allocator_) HInvokeStaticOrDirect(allocator_,
number_of_arguments,
return_type,
dex_pc,
method_reference,
resolved_method,
dispatch_info,
invoke_type,
resolved_method_reference,
clinit_check_requirement,
!graph_->IsDebuggable());
if (clinit_check != nullptr) {
// Add the class initialization check as last input of `invoke`.
DCHECK_EQ(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
size_t clinit_check_index = invoke->InputCount() - 1u;
DCHECK(invoke->InputAt(clinit_check_index) == nullptr);
invoke->SetArgumentAt(clinit_check_index, clinit_check);
}
} else if (invoke_type == kVirtual) {
invoke = new (allocator_) HInvokeVirtual(allocator_,
number_of_arguments,
return_type,
dex_pc,
method_reference,
resolved_method,
resolved_method_reference,
/*vtable_index=*/ imt_or_vtable_index,
!graph_->IsDebuggable());
} else {
DCHECK_EQ(invoke_type, kInterface);
if (kIsDebugBuild) {
ScopedObjectAccess soa(Thread::Current());
DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
}
MethodLoadKind load_kind = HSharpening::SharpenLoadMethod(
resolved_method,
/* has_method_id= */ true,
/* for_interface_call= */ true,
code_generator_)
.method_load_kind;
invoke = new (allocator_) HInvokeInterface(allocator_,
number_of_arguments,
return_type,
dex_pc,
method_reference,
resolved_method,
resolved_method_reference,
/*imt_index=*/ imt_or_vtable_index,
load_kind,
!graph_->IsDebuggable());
}
return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
}
static bool VarHandleAccessorNeedsReturnTypeCheck(HInvoke* invoke, DataType::Type return_type) {
mirror::VarHandle::AccessModeTemplate access_mode_template =
mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic());
switch (access_mode_template) {
case mirror::VarHandle::AccessModeTemplate::kGet:
case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate:
case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange:
return return_type == DataType::Type::kReference;
case mirror::VarHandle::AccessModeTemplate::kSet:
case mirror::VarHandle::AccessModeTemplate::kCompareAndSet:
return false;
}
}
// This function initializes `VarHandleOptimizations`, does a number of static checks and disables
// the intrinsic if some of the checks fail. This is necessary for the code generator to work (for
// both the baseline and the optimizing compiler).
static void DecideVarHandleIntrinsic(HInvoke* invoke) {
switch (invoke->GetIntrinsic()) {
case Intrinsics::kVarHandleCompareAndExchange:
case Intrinsics::kVarHandleCompareAndExchangeAcquire:
case Intrinsics::kVarHandleCompareAndExchangeRelease:
case Intrinsics::kVarHandleCompareAndSet:
case Intrinsics::kVarHandleGet:
case Intrinsics::kVarHandleGetAcquire:
case Intrinsics::kVarHandleGetAndAdd:
case Intrinsics::kVarHandleGetAndAddAcquire:
case Intrinsics::kVarHandleGetAndAddRelease:
case Intrinsics::kVarHandleGetAndBitwiseAnd:
case Intrinsics::kVarHandleGetAndBitwiseAndAcquire:
case Intrinsics::kVarHandleGetAndBitwiseAndRelease:
case Intrinsics::kVarHandleGetAndBitwiseOr:
case Intrinsics::kVarHandleGetAndBitwiseOrAcquire:
case Intrinsics::kVarHandleGetAndBitwiseOrRelease:
case Intrinsics::kVarHandleGetAndBitwiseXor:
case Intrinsics::kVarHandleGetAndBitwiseXorAcquire:
case Intrinsics::kVarHandleGetAndBitwiseXorRelease:
case Intrinsics::kVarHandleGetAndSet:
case Intrinsics::kVarHandleGetAndSetAcquire:
case Intrinsics::kVarHandleGetAndSetRelease:
case Intrinsics::kVarHandleGetOpaque:
case Intrinsics::kVarHandleGetVolatile:
case Intrinsics::kVarHandleSet:
case Intrinsics::kVarHandleSetOpaque:
case Intrinsics::kVarHandleSetRelease:
case Intrinsics::kVarHandleSetVolatile:
case Intrinsics::kVarHandleWeakCompareAndSet:
case Intrinsics::kVarHandleWeakCompareAndSetAcquire:
case Intrinsics::kVarHandleWeakCompareAndSetPlain:
case Intrinsics::kVarHandleWeakCompareAndSetRelease:
break;
default:
return; // Not a VarHandle intrinsic, skip.
}
DCHECK(invoke->IsInvokePolymorphic());
VarHandleOptimizations optimizations(invoke);
// Do only simple static checks here (those for which we have enough information). More complex
// checks should be done in instruction simplifier, which runs after other optimization passes
// that may provide useful information.
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
if (expected_coordinates_count > 2u) {
optimizations.SetDoNotIntrinsify();
return;
}
if (expected_coordinates_count != 0u) {
// Except for static fields (no coordinates), the first coordinate must be a reference.
// Do not intrinsify if the reference is null as we would always go to slow path anyway.
HInstruction* object = invoke->InputAt(1);
if (object->GetType() != DataType::Type::kReference || object->IsNullConstant()) {
optimizations.SetDoNotIntrinsify();
return;
}
}
if (expected_coordinates_count == 2u) {
// For arrays and views, the second coordinate must be convertible to `int`.
// In this context, `boolean` is not convertible but we have to look at the shorty
// as compiler transformations can give the invoke a valid boolean input.
DataType::Type index_type = GetDataTypeFromShorty(invoke, 2);
if (index_type == DataType::Type::kBool ||
DataType::Kind(index_type) != DataType::Type::kInt32) {
optimizations.SetDoNotIntrinsify();
return;
}
}
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
DataType::Type return_type = invoke->GetType();
mirror::VarHandle::AccessModeTemplate access_mode_template =
mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic());
switch (access_mode_template) {
case mirror::VarHandle::AccessModeTemplate::kGet:
// The return type should be the same as varType, so it shouldn't be void.
if (return_type == DataType::Type::kVoid) {
optimizations.SetDoNotIntrinsify();
return;
}
break;
case mirror::VarHandle::AccessModeTemplate::kSet:
if (return_type != DataType::Type::kVoid) {
optimizations.SetDoNotIntrinsify();
return;
}
break;
case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: {
if (return_type != DataType::Type::kBool) {
optimizations.SetDoNotIntrinsify();
return;
}
uint32_t expected_value_index = number_of_arguments - 2;
uint32_t new_value_index = number_of_arguments - 1;
DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index);
DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index);
if (expected_value_type != new_value_type) {
optimizations.SetDoNotIntrinsify();
return;
}
break;
}
case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: {
uint32_t expected_value_index = number_of_arguments - 2;
uint32_t new_value_index = number_of_arguments - 1;
DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index);
DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index);
if (expected_value_type != new_value_type || return_type != expected_value_type) {
optimizations.SetDoNotIntrinsify();
return;
}
break;
}
case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: {
DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1);
if (IsVarHandleGetAndAdd(invoke) &&
(value_type == DataType::Type::kReference || value_type == DataType::Type::kBool)) {
// We should only add numerical types.
//
// For byte array views floating-point types are not allowed, see javadoc comments for
// java.lang.invoke.MethodHandles.byteArrayViewVarHandle(). But ART treats them as numeric
// types in ByteArrayViewVarHandle::Access(). Consequently we do generate intrinsic code,
// but it always fails access mode check at runtime.
optimizations.SetDoNotIntrinsify();
return;
} else if (IsVarHandleGetAndBitwiseOp(invoke) && !DataType::IsIntegralType(value_type)) {
// We can only apply operators to bitwise integral types.
// Note that bitwise VarHandle operations accept a non-integral boolean type and
// perform the appropriate logical operation. However, the result is the same as
// using the bitwise operation on our boolean representation and this fits well
// with DataType::IsIntegralType() treating the compiler type kBool as integral.
optimizations.SetDoNotIntrinsify();
return;
}
if (value_type != return_type) {
optimizations.SetDoNotIntrinsify();
return;
}
break;
}
}
}
bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc,
uint32_t method_idx,
dex::ProtoIndex proto_idx,
const InstructionOperands& operands) {
const char* shorty = dex_file_->GetShorty(proto_idx);
DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands());
DataType::Type return_type = DataType::FromShorty(shorty[0]);
size_t number_of_arguments = strlen(shorty);
// We use ResolveMethod which is also used in BuildInvoke in order to
// not duplicate code. As such, we need to provide is_string_constructor
// even if we don't need it afterwards.
InvokeType invoke_type = InvokeType::kPolymorphic;
bool is_string_constructor = false;
uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16;
MethodReference resolved_method_reference(nullptr, 0u);
ArtMethod* resolved_method = ResolveMethod(method_idx,
graph_->GetArtMethod(),
*dex_compilation_unit_,
&invoke_type,
&resolved_method_reference,
&imt_or_vtable_index,
&is_string_constructor);
MethodReference method_reference(&graph_->GetDexFile(), method_idx);
HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_,
number_of_arguments,
return_type,
dex_pc,
method_reference,
resolved_method,
resolved_method_reference,
proto_idx);
if (!HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false)) {
return false;
}
if (invoke->GetIntrinsic() != Intrinsics::kNone &&
invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvoke &&
invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvokeExact &&
VarHandleAccessorNeedsReturnTypeCheck(invoke, return_type)) {
// Type check is needed because VarHandle intrinsics do not type check the retrieved reference.
ScopedObjectAccess soa(Thread::Current());
ArtMethod* referrer = graph_->GetArtMethod();
dex::TypeIndex return_type_index =
referrer->GetDexFile()->GetProtoId(proto_idx).return_type_idx_;
BuildTypeCheck(/* is_instance_of= */ false, invoke, return_type_index, dex_pc);
latest_result_ = current_block_->GetLastInstruction();
}
DecideVarHandleIntrinsic(invoke);
return true;
}
bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc,
uint32_t call_site_idx,
const InstructionOperands& operands) {
dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
const char* shorty = dex_file_->GetShorty(proto_idx);
DataType::Type return_type = DataType::FromShorty(shorty[0]);
size_t number_of_arguments = strlen(shorty) - 1;
// HInvokeCustom takes a DexNoNoIndex method reference.
MethodReference method_reference(&graph_->GetDexFile(), dex::kDexNoIndex);
HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_,
number_of_arguments,
call_site_idx,
return_type,
dex_pc,
method_reference,
!graph_->IsDebuggable());
return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
}
HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
ScopedObjectAccess soa(Thread::Current());
HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
HInstruction* cls = load_class;
Handle<mirror::Class> klass = load_class->GetClass();
if (!IsInitialized(klass.Get())) {
cls = new (allocator_) HClinitCheck(load_class, dex_pc);
AppendInstruction(cls);
}
// Only the access check entrypoint handles the finalizable class case. If we
// need access checks, then we haven't resolved the method and the class may
// again be finalizable.
QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
if (load_class->NeedsAccessCheck() ||
klass == nullptr || // Finalizable/instantiable is unknown.
klass->IsFinalizable() ||
klass.Get() == klass->GetClass() || // Classes cannot be allocated in code
!klass->IsInstantiable()) {
entrypoint = kQuickAllocObjectWithChecks;
}
// We will always be able to resolve the string class since it is in the BCP.
if (!klass.IsNull() && klass->IsStringClass()) {
entrypoint = kQuickAllocStringObject;
}
// Consider classes we haven't resolved as potentially finalizable.
bool finalizable = (klass == nullptr) || klass->IsFinalizable();
HNewInstance* new_instance = new (allocator_) HNewInstance(
cls,
dex_pc,
type_index,
*dex_compilation_unit_->GetDexFile(),
finalizable,
entrypoint);
AppendInstruction(new_instance);
return new_instance;
}
void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) {
DCHECK(allocation != nullptr &&
(allocation->IsNewInstance() ||
allocation->IsNewArray())); // corresponding to "new" keyword in JLS.
if (allocation->IsNewInstance()) {
// STRING SPECIAL HANDLING:
// -------------------------------
// Strings have a real HNewInstance node but they end up always having 0 uses.
// All uses of a String HNewInstance are always transformed to replace their input
// of the HNewInstance with an input of the invoke to StringFactory.
//
// Do not emit an HConstructorFence here since it can inhibit some String new-instance
// optimizations (to pass checker tests that rely on those optimizations).
HNewInstance* new_inst = allocation->AsNewInstance();
HLoadClass* load_class = new_inst->GetLoadClass();
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass = load_class->GetClass();
if (klass != nullptr && klass->IsStringClass()) {
return;
// Note: Do not use allocation->IsStringAlloc which requires
// a valid ReferenceTypeInfo, but that doesn't get made until after reference type
// propagation (and instruction builder is too early).
}
// (In terms of correctness, the StringFactory needs to provide its own
// default initialization barrier, see below.)
}
// JLS 17.4.5 "Happens-before Order" describes:
//
// The default initialization of any object happens-before any other actions (other than
// default-writes) of a program.
//
// In our implementation the default initialization of an object to type T means
// setting all of its initial data (object[0..size)) to 0, and setting the
// object's class header (i.e. object.getClass() == T.class).
//
// In practice this fence ensures that the writes to the object header
// are visible to other threads if this object escapes the current thread.
// (and in theory the 0-initializing, but that happens automatically
// when new memory pages are mapped in by the OS).
HConstructorFence* ctor_fence =
new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_);
AppendInstruction(ctor_fence);
MaybeRecordStat(
compilation_stats_,
MethodCompilationStat::kConstructorFenceGeneratedNew);
}
static bool IsInBootImage(ObjPtr<mirror::Class> cls, const CompilerOptions& compiler_options)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls)) {
return true;
}
if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
std::string temp;
const char* descriptor = cls->GetDescriptor(&temp);
return compiler_options.IsImageClass(descriptor);
} else {
return false;
}
}
static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class)
REQUIRES_SHARED(Locks::mutator_lock_) {
return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
}
static bool HasTrivialClinit(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Check if the class has encoded fields that trigger bytecode execution.
// (Encoded fields are just a different representation of <clinit>.)
if (klass->NumStaticFields() != 0u) {
DCHECK(klass->GetClassDef() != nullptr);
EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef());
for (; it.HasNext(); it.Next()) {
switch (it.GetValueType()) {
case EncodedArrayValueIterator::ValueType::kBoolean:
case EncodedArrayValueIterator::ValueType::kByte:
case EncodedArrayValueIterator::ValueType::kShort:
case EncodedArrayValueIterator::ValueType::kChar:
case EncodedArrayValueIterator::ValueType::kInt:
case EncodedArrayValueIterator::ValueType::kLong:
case EncodedArrayValueIterator::ValueType::kFloat:
case EncodedArrayValueIterator::ValueType::kDouble:
case EncodedArrayValueIterator::ValueType::kNull:
case EncodedArrayValueIterator::ValueType::kString:
// Primitive, null or j.l.String initialization is permitted.
break;
case EncodedArrayValueIterator::ValueType::kType:
// Type initialization can load classes and execute bytecode through a class loader
// which can execute arbitrary bytecode. We do not optimize for known class loaders;
// kType is rarely used (if ever).
return false;
default:
// Other types in the encoded static field list are rejected by the DexFileVerifier.
LOG(FATAL) << "Unexpected type " << it.GetValueType();
UNREACHABLE();
}
}
}
// Check if the class has <clinit> that executes arbitrary code.
// Initialization of static fields of the class itself with constants is allowed.
ArtMethod* clinit = klass->FindClassInitializer(pointer_size);
if (clinit != nullptr) {
const DexFile& dex_file = *clinit->GetDexFile();
CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem());
for (DexInstructionPcPair it : accessor) {
switch (it->Opcode()) {
case Instruction::CONST_4:
case Instruction::CONST_16:
case Instruction::CONST:
case Instruction::CONST_HIGH16:
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
case Instruction::CONST_WIDE:
case Instruction::CONST_WIDE_HIGH16:
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
// Primitive, null or j.l.String initialization is permitted.
break;
case Instruction::RETURN_VOID:
break;
case Instruction::SPUT:
case Instruction::SPUT_WIDE:
case Instruction::SPUT_OBJECT:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT:
// Only initialization of a static field of the same class is permitted.
if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) {
return false;
}
break;
case Instruction::NEW_ARRAY:
// Only primitive arrays are permitted.
if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId(
dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) {
return false;
}
break;
case Instruction::APUT:
case Instruction::APUT_WIDE:
case Instruction::APUT_BOOLEAN:
case Instruction::APUT_BYTE:
case Instruction::APUT_CHAR:
case Instruction::APUT_SHORT:
case Instruction::FILL_ARRAY_DATA:
case Instruction::NOP:
// Allow initialization of primitive arrays (only constants can be stored).
// Note: We expect NOPs used for fill-array-data-payload but accept all NOPs
// (even unreferenced switch payloads if they make it through the verifier).
break;
default:
return false;
}
}
}
return true;
}
static bool HasTrivialInitialization(ObjPtr<mirror::Class> cls,
const CompilerOptions& compiler_options)
REQUIRES_SHARED(Locks::mutator_lock_) {
Runtime* runtime = Runtime::Current();
PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
// Check the superclass chain.
for (ObjPtr<mirror::Class> klass = cls; klass != nullptr; klass = klass->GetSuperClass()) {
if (klass->IsInitialized() && IsInBootImage(klass, compiler_options)) {
break; // `klass` and its superclasses are already initialized in the boot image.
}
if (!HasTrivialClinit(klass, pointer_size)) {
return false;
}
}
// Also check interfaces with default methods as they need to be initialized as well.
ObjPtr<mirror::IfTable> iftable = cls->GetIfTable();
DCHECK(iftable != nullptr);
for (int32_t i = 0, count = iftable->Count(); i != count; ++i) {
ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
if (!iface->HasDefaultMethods()) {
continue; // Initializing `cls` does not initialize this interface.
}
if (iface->IsInitialized() && IsInBootImage(iface, compiler_options)) {
continue; // This interface is already initialized in the boot image.
}
if (!HasTrivialClinit(iface, pointer_size)) {
return false;
}
}
return true;
}
bool HInstructionBuilder::IsInitialized(ObjPtr<mirror::Class> cls) const {
if (cls == nullptr) {
return false;
}
// Check if the class will be initialized at runtime.
if (cls->IsInitialized()) {
const CompilerOptions& compiler_options = code_generator_->GetCompilerOptions();
if (compiler_options.IsAotCompiler()) {
// Assume loaded only if klass is in the boot image. App classes cannot be assumed
// loaded because we don't even know what class loader will be used to load them.
if (IsInBootImage(cls, compiler_options)) {
return true;
}
} else {
DCHECK(compiler_options.IsJitCompiler());
if (Runtime::Current()->GetJit()->CanAssumeInitialized(
cls,
compiler_options.IsJitCompilerForSharedCode())) {
// For JIT, the class cannot revert to an uninitialized state.
return true;
}
}
}
// We can avoid the class initialization check for `cls` in static methods and constructors
// in the very same class; invoking a static method involves a class initialization check
// and so does the instance allocation that must be executed before invoking a constructor.
// Other instance methods of the same class can run on an escaped instance
// of an erroneous class. Even a superclass may need to be checked as the subclass
// can be completely initialized while the superclass is initializing and the subclass
// remains initialized when the superclass initializer throws afterwards. b/62478025
// Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply.
auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit)
REQUIRES_SHARED(Locks::mutator_lock_) {
return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u &&
compilation_unit.GetCompilingClass().Get() == cls;
};
if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) ||
// Check also the innermost method. Though excessive copies of ClinitCheck can be
// eliminated by GVN, that happens only after the decision whether to inline the
// graph or not and that may depend on the presence of the ClinitCheck.
// TODO: We should walk over the entire inlined method chain, but we don't pass that
// information to the builder.
is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) {
return true;
}
// Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being
// compiled here (anywhere in the inlining chain) as the `cls` must have started initializing
// before calling any `cls` or subclass methods. Static methods require a clinit check and
// instance methods require an instance which cannot be created before doing a clinit check.
// When a subclass of `cls` starts initializing, it starts initializing its superclass
// chain up to `cls` without running any bytecode, i.e. without any opportunity for circular
// initialization weirdness.
//
// If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces
// with default methods initialize only their own static fields using constant values), it must
// complete, either successfully or by throwing and marking `cls` erroneous, without allocating
// any instances of `cls` or subclasses (or any other class) and without calling any methods.
// If it completes by throwing, no instances of `cls` shall be created and no subclass method
// bytecode shall execute (see above), therefore the instruction we're building shall be
// unreachable. By reaching the instruction, we know that `cls` was initialized successfully.
//
// TODO: We should walk over the entire inlined methods chain, but we don't pass that
// information to the builder. (We could also check if we're guaranteed a non-null instance
// of `cls` at this location but that's outside the scope of the instruction builder.)
bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls);
if (dex_compilation_unit_ != outer_compilation_unit_) {
is_subclass = is_subclass ||
IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls);
}
if (is_subclass && HasTrivialInitialization(cls, code_generator_->GetCompilerOptions())) {
return true;
}
return false;
}
HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
uint32_t dex_pc,
ArtMethod* resolved_method,
HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
ScopedObjectAccess soa(Thread::Current());
ObjPtr<mirror::Class> klass = resolved_method->GetDeclaringClass();
HClinitCheck* clinit_check = nullptr;
if (IsInitialized(klass)) {
*clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
} else {
Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
HLoadClass* cls = BuildLoadClass(h_klass->GetDexTypeIndex(),
h_klass->GetDexFile(),
h_klass,
dex_pc,
/* needs_access_check= */ false);
if (cls != nullptr) {
*clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
clinit_check = new (allocator_) HClinitCheck(cls, dex_pc);
AppendInstruction(clinit_check);
} else {
// Let the invoke handle this with an implicit class initialization check.
*clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
}
}
return clinit_check;
}
bool HInstructionBuilder::SetupInvokeArguments(HInstruction* invoke,
const InstructionOperands& operands,
const char* shorty,
ReceiverArg receiver_arg) {
// Note: The `invoke` can be an intrinsic replacement, so not necessaritly HInvoke.
// In that case, do not log errors, they shall be reported when we try to build the HInvoke.
uint32_t shorty_index = 1; // Skip the return type.
const size_t number_of_operands = operands.GetNumberOfOperands();
bool argument_length_error = false;
size_t start_index = 0u;
size_t argument_index = 0u;
if (receiver_arg != ReceiverArg::kNone) {
if (number_of_operands == 0u) {
argument_length_error = true;
} else {
start_index = 1u;
if (receiver_arg != ReceiverArg::kIgnored) {
uint32_t obj_reg = operands.GetOperand(0u);
HInstruction* arg = (receiver_arg == ReceiverArg::kPlainArg)
? LoadLocal(obj_reg, DataType::Type::kReference)
: LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
if (receiver_arg != ReceiverArg::kNullCheckedOnly) {
invoke->SetRawInputAt(0u, arg);
argument_index = 1u;
}
}
}
}
for (size_t i = start_index; i < number_of_operands; ++i, ++argument_index) {
// Make sure we don't go over the expected arguments or over the number of
// dex registers given. If the instruction was seen as dead by the verifier,
// it hasn't been properly checked.
if (UNLIKELY(shorty[shorty_index] == 0)) {
argument_length_error = true;
break;
}
DataType::Type type = DataType::FromShorty(shorty[shorty_index++]);
bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
if (is_wide && ((i + 1 == number_of_operands) ||
(operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) {
if (invoke->IsInvoke()) {
// Longs and doubles should be in pairs, that is, sequential registers. The verifier should
// reject any class where this is violated. However, the verifier only does these checks
// on non trivially dead instructions, so we just bailout the compilation.
VLOG(compiler) << "Did not compile "
<< dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
<< " because of non-sequential dex register pair in wide argument";
MaybeRecordStat(compilation_stats_,
MethodCompilationStat::kNotCompiledMalformedOpcode);
}
return false;
}
HInstruction* arg = LoadLocal(operands.GetOperand(i), type);
DCHECK(invoke->InputAt(argument_index) == nullptr);
invoke->SetRawInputAt(argument_index, arg);
if (is_wide) {
++i;
}
}
argument_length_error = argument_length_error || shorty[shorty_index] != 0;
if (argument_length_error) {
if (invoke->IsInvoke()) {
VLOG(compiler) << "Did not compile "
<< dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
<< " because of wrong number of arguments in invoke instruction";
MaybeRecordStat(compilation_stats_,
MethodCompilationStat::kNotCompiledMalformedOpcode);
}
return false;
}
if (invoke->IsInvokeStaticOrDirect() &&
HInvokeStaticOrDirect::NeedsCurrentMethodInput(
invoke->AsInvokeStaticOrDirect()->GetDispatchInfo())) {
DCHECK_EQ(argument_index, invoke->AsInvokeStaticOrDirect()->GetCurrentMethodIndex());
DCHECK(invoke->InputAt(argument_index) == nullptr);
invoke->SetRawInputAt(argument_index, graph_->GetCurrentMethod());
}
if (invoke->IsInvokeInterface() &&
(invoke->AsInvokeInterface()->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive)) {
invoke->SetRawInputAt(invoke->AsInvokeInterface()->GetNumberOfArguments() - 1,
graph_->GetCurrentMethod());
}
return true;
}
bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
const InstructionOperands& operands,
const char* shorty,
bool is_unresolved) {
DCHECK_IMPLIES(invoke->IsInvokeStaticOrDirect(),
!invoke->AsInvokeStaticOrDirect()->IsStringInit());
ReceiverArg receiver_arg = (invoke->GetInvokeType() == InvokeType::kStatic)
? ReceiverArg::kNone
: (is_unresolved ? ReceiverArg::kPlainArg : ReceiverArg::kNullCheckedArg);
if (!SetupInvokeArguments(invoke, operands, shorty, receiver_arg)) {
return false;
}
AppendInstruction(invoke);
latest_result_ = invoke;
return true;
}
bool HInstructionBuilder::BuildSimpleIntrinsic(ArtMethod* method,
uint32_t dex_pc,
const InstructionOperands& operands,
const char* shorty) {
Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic());
DCHECK_NE(intrinsic, Intrinsics::kNone);
constexpr DataType::Type kInt32 = DataType::Type::kInt32;
constexpr DataType::Type kInt64 = DataType::Type::kInt64;
constexpr DataType::Type kFloat32 = DataType::Type::kFloat32;
constexpr DataType::Type kFloat64 = DataType::Type::kFloat64;
ReceiverArg receiver_arg = method->IsStatic() ? ReceiverArg::kNone : ReceiverArg::kNullCheckedArg;
HInstruction* instruction = nullptr;
switch (intrinsic) {
case Intrinsics::kIntegerRotateRight:
case Intrinsics::kIntegerRotateLeft:
// For rotate left, we negate the distance below.
instruction = new (allocator_) HRor(kInt32, /*value=*/ nullptr, /*distance=*/ nullptr);
break;
case Intrinsics::kLongRotateRight:
case Intrinsics::kLongRotateLeft:
// For rotate left, we negate the distance below.
instruction = new (allocator_) HRor(kInt64, /*value=*/ nullptr, /*distance=*/ nullptr);
break;
case Intrinsics::kIntegerCompare:
instruction = new (allocator_) HCompare(
kInt32, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
break;
case Intrinsics::kLongCompare:
instruction = new (allocator_) HCompare(
kInt64, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
break;
case Intrinsics::kIntegerSignum:
instruction = new (allocator_) HCompare(
kInt32, /*first=*/ nullptr, graph_->GetIntConstant(0), ComparisonBias::kNoBias, dex_pc);
break;
case Intrinsics::kLongSignum:
instruction = new (allocator_) HCompare(
kInt64, /*first=*/ nullptr, graph_->GetLongConstant(0), ComparisonBias::kNoBias, dex_pc);
break;
case Intrinsics::kFloatIsNaN:
case Intrinsics::kDoubleIsNaN: {
// IsNaN(x) is the same as x != x.
instruction = new (allocator_) HNotEqual(/*first=*/ nullptr, /*second=*/ nullptr, dex_pc);
instruction->AsCondition()->SetBias(ComparisonBias::kLtBias);
break;
}
case Intrinsics::kStringCharAt:
// We treat String as an array to allow DCE and BCE to seamlessly work on strings.
instruction = new (allocator_) HArrayGet(/*array=*/ nullptr,
/*index=*/ nullptr,
DataType::Type::kUint16,
SideEffects::None(), // Strings are immutable.
dex_pc,
/*is_string_char_at=*/ true);
break;
case Intrinsics::kStringIsEmpty:
case Intrinsics::kStringLength:
// We treat String as an array to allow DCE and BCE to seamlessly work on strings.
// For String.isEmpty(), we add a comparison with 0 below.
instruction =
new (allocator_) HArrayLength(/*array=*/ nullptr, dex_pc, /* is_string_length= */ true);
break;
case Intrinsics::kUnsafeLoadFence:
case Intrinsics::kJdkUnsafeLoadFence:
receiver_arg = ReceiverArg::kNullCheckedOnly;
instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
break;
case Intrinsics::kUnsafeStoreFence:
case Intrinsics::kJdkUnsafeStoreFence:
receiver_arg = ReceiverArg::kNullCheckedOnly;
instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
break;
case Intrinsics::kUnsafeFullFence:
case Intrinsics::kJdkUnsafeFullFence:
receiver_arg = ReceiverArg::kNullCheckedOnly;
instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
break;
case Intrinsics::kVarHandleFullFence:
instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
break;
case Intrinsics::kVarHandleAcquireFence:
instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
break;
case Intrinsics::kVarHandleReleaseFence:
instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
break;
case Intrinsics::kVarHandleLoadLoadFence:
instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
break;
case Intrinsics::kVarHandleStoreStoreFence:
instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kStoreStore, dex_pc);
break;
case Intrinsics::kMathMinIntInt:
instruction = new (allocator_) HMin(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathMinLongLong:
instruction = new (allocator_) HMin(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathMinFloatFloat:
instruction = new (allocator_) HMin(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathMinDoubleDouble:
instruction = new (allocator_) HMin(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathMaxIntInt:
instruction = new (allocator_) HMax(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathMaxLongLong:
instruction = new (allocator_) HMax(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathMaxFloatFloat:
instruction = new (allocator_) HMax(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathMaxDoubleDouble:
instruction = new (allocator_) HMax(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathAbsInt:
instruction = new (allocator_) HAbs(kInt32, /*input=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathAbsLong:
instruction = new (allocator_) HAbs(kInt64, /*input=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathAbsFloat:
instruction = new (allocator_) HAbs(kFloat32, /*input=*/ nullptr, dex_pc);
break;
case Intrinsics::kMathAbsDouble:
instruction = new (allocator_) HAbs(kFloat64, /*input=*/ nullptr, dex_pc);
break;
default:
// We do not have intermediate representation for other intrinsics.
return false;
}
DCHECK(instruction != nullptr);
if (!SetupInvokeArguments(instruction, operands, shorty, receiver_arg)) {
return false;
}
switch (intrinsic) {
case Intrinsics::kIntegerRotateLeft:
case Intrinsics::kLongRotateLeft: {
// Negate the distance value for rotate left.
DCHECK(instruction->IsRor());
HNeg* neg = new (allocator_) HNeg(kInt32, instruction->InputAt(1u));
AppendInstruction(neg);
instruction->SetRawInputAt(1u, neg);
break;
}
case Intrinsics::kFloatIsNaN:
case Intrinsics::kDoubleIsNaN:
// Set the second input to be the same as first.
DCHECK(instruction->IsNotEqual());
DCHECK(instruction->InputAt(1u) == nullptr);
instruction->SetRawInputAt(1u, instruction->InputAt(0u));
break;
case Intrinsics::kStringCharAt: {
// Add bounds check.
HInstruction* array = instruction->InputAt(0u);
HInstruction* index = instruction->InputAt(1u);
HInstruction* length =
new (allocator_) HArrayLength(array, dex_pc, /*is_string_length=*/ true);
AppendInstruction(length);
HBoundsCheck* bounds_check =
new (allocator_) HBoundsCheck(index, length, dex_pc, /*is_string_char_at=*/ true);
AppendInstruction(bounds_check);
graph_->SetHasBoundsChecks(true);
instruction->SetRawInputAt(1u, bounds_check);
break;
}
case Intrinsics::kStringIsEmpty: {
// Compare the length with 0.
DCHECK(instruction->IsArrayLength());
AppendInstruction(instruction);
HEqual* equal = new (allocator_) HEqual(instruction, graph_->GetIntConstant(0), dex_pc);
instruction = equal;
break;
}
default:
break;
}
AppendInstruction(instruction);
latest_result_ = instruction;
return true;
}
bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
const InstructionOperands& operands,
const char* shorty) {
DCHECK(invoke->IsInvokeStaticOrDirect());
DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
if (!SetupInvokeArguments(invoke, operands, shorty, ReceiverArg::kIgnored)) {
return false;
}
AppendInstruction(invoke);
// This is a StringFactory call, not an actual String constructor. Its result
// replaces the empty String pre-allocated by NewInstance.
uint32_t orig_this_reg = operands.GetOperand(0);
HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference);
// Replacing the NewInstance might render it redundant. Keep a list of these
// to be visited once it is clear whether it has remaining uses.
if (arg_this->IsNewInstance()) {
ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
} else {
DCHECK(arg_this->IsPhi());
// We can get a phi as input of a String.<init> if there is a loop between the
// allocation and the String.<init> call. As we don't know which other phis might alias
// with `arg_this`, we keep a record of those invocations so we can later replace
// the allocation with the invocation.
// Add the actual 'this' input so the analysis knows what is the allocation instruction.
// The input will be removed during the analysis.
invoke->AddInput(arg_this);
ssa_builder_->AddUninitializedStringPhi(invoke);
}
// Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
if ((*current_locals_)[vreg] == arg_this) {
(*current_locals_)[vreg] = invoke;
}
}
return true;
}
static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
const dex::FieldId& field_id = dex_file.GetFieldId(field_index);
const char* type = dex_file.GetFieldTypeDescriptor(field_id);
return DataType::FromShorty(type[0]);
}
bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
uint32_t dex_pc,
bool is_put) {
uint32_t source_or_dest_reg = instruction.VRegA_22c();
uint32_t obj_reg = instruction.VRegB_22c();
uint16_t field_index = instruction.VRegC_22c();
ScopedObjectAccess soa(Thread::Current());
ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put);
// Generate an explicit null check on the reference, unless the field access
// is unresolved. In that case, we rely on the runtime to perform various
// checks first, followed by a null check.
HInstruction* object = (resolved_field == nullptr)
? LoadLocal(obj_reg, DataType::Type::kReference)
: LoadNullCheckedLocal(obj_reg, dex_pc);
DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
if (is_put) {
HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
HInstruction* field_set = nullptr;
if (resolved_field == nullptr) {
MaybeRecordStat(compilation_stats_,
MethodCompilationStat::kUnresolvedField);
field_set = new (allocator_) HUnresolvedInstanceFieldSet(object,
value,
field_type,
field_index,
dex_pc);
} else {
uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
field_set = new (allocator_) HInstanceFieldSet(object,
value,
resolved_field,
field_type,
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
class_def_index,
*dex_file_,
dex_pc);
}
AppendInstruction(field_set);
} else {
HInstruction* field_get = nullptr;
if (resolved_field == nullptr) {
MaybeRecordStat(compilation_stats_,
MethodCompilationStat::kUnresolvedField);
field_get = new (allocator_) HUnresolvedInstanceFieldGet(object,
field_type,
field_index,
dex_pc);
} else {
uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
field_get = new (allocator_) HInstanceFieldGet(object,
resolved_field,
field_type,
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
class_def_index,
*dex_file_,
dex_pc);
}
AppendInstruction(field_get);
UpdateLocal(source_or_dest_reg, field_get);
}
return true;
}
void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
uint32_t dex_pc,
bool is_put,
DataType::Type field_type) {
uint32_t source_or_dest_reg = instruction.VRegA_21c();
uint16_t field_index = instruction.VRegB_21c();
if (is_put) {
HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
AppendInstruction(
new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
} else {
AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
}
}
ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
ScopedObjectAccess soa(Thread::Current());
ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
ArtField* resolved_field = class_linker->ResolveFieldJLS(field_idx,
dex_compilation_unit_->GetDexCache(),
class_loader);
DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending())
<< "field="
<< ((resolved_field == nullptr) ? "null" : resolved_field->PrettyField())
<< ", exception="
<< (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "null");
if (UNLIKELY(resolved_field == nullptr)) {
// Clean up any exception left by field resolution.
soa.Self()->ClearException();
return nullptr;
}
if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
return nullptr;
}
// Check access.
Handle<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass();
if (compiling_class == nullptr) {
// Check if the declaring class or referencing class is accessible.
SamePackageCompare same_package(*dex_compilation_unit_);
ObjPtr<mirror::Class> declaring_class = resolved_field->GetDeclaringClass();
bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class);
if (!declaring_class_accessible) {
// It is possible to access members from an inaccessible superclass
// by referencing them through an accessible subclass.
ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
dex_compilation_unit_->GetDexFile()->GetFieldId(field_idx).class_idx_,
dex_compilation_unit_->GetDexCache().Get(),
class_loader.Get());
DCHECK(referenced_class != nullptr); // Must have been resolved when resolving the field.
if (!referenced_class->IsPublic() && !same_package(referenced_class)) {
return nullptr;
}
}
// Check whether the field itself is accessible.
// Since the referrer is unresolved but the field is resolved, it cannot be
// inside the same class, so a private field is known to be inaccessible.
// And without a resolved referrer, we cannot check for protected member access
// in superlass, so we handle only access to public member or within the package.
if (resolved_field->IsPrivate() ||
(!resolved_field->IsPublic() && !declaring_class_accessible)) {
return nullptr;
}
} else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
resolved_field,
dex_compilation_unit_->GetDexCache().Get(),
field_idx)) {
return nullptr;
}
if (is_put) {
if (resolved_field->IsFinal() &&
(compiling_class.Get() != resolved_field->GetDeclaringClass())) {
// Final fields can only be updated within their own class.
// TODO: Only allow it in constructors. b/34966607.
return nullptr;
}
// Note: We do not need to resolve the field type for `get` opcodes.
StackArtFieldHandleScope<1> rhs(soa.Self());
ReflectiveHandle<ArtField> resolved_field_handle(rhs.NewHandle(resolved_field));
if (resolved_field->ResolveType().IsNull()) {
// ArtField::ResolveType() may fail as evidenced with a dexing bug (b/78788577).
soa.Self()->ClearException();
return nullptr; // Failure
}
resolved_field = resolved_field_handle.Get();
}
return resolved_field;
}
void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
uint32_t dex_pc,
bool is_put) {
uint32_t source_or_dest_reg = instruction.VRegA_21c();
uint16_t field_index = instruction.VRegB_21c();
ScopedObjectAccess soa(Thread::Current());
ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put);
if (resolved_field == nullptr) {
MaybeRecordStat(compilation_stats_,
MethodCompilationStat::kUnresolvedField);
DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
return;
}
DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
Handle<mirror::Class> klass =
graph_->GetHandleCache()->NewHandle(resolved_field->GetDeclaringClass());
HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
klass->GetDexFile(),
klass,
dex_pc,
/* needs_access_check= */ false);
if (constant == nullptr) {
// The class cannot be referenced from this compiled code. Generate
// an unresolved access.
MaybeRecordStat(compilation_stats_,
MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
return;
}
HInstruction* cls = constant;
if (!IsInitialized(klass.Get())) {
cls = new (allocator_) HClinitCheck(constant, dex_pc);
AppendInstruction(cls);
}
uint16_t class_def_index = klass->GetDexClassDefIndex();
if (is_put) {
// We need to keep the class alive before loading the value.
HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
AppendInstruction(new (allocator_) HStaticFieldSet(cls,
value,
resolved_field,
field_type,
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
class_def_index,
*dex_file_,
dex_pc));
} else {
AppendInstruction(new (allocator_) HStaticFieldGet(cls,
resolved_field,
field_type,
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
class_def_index,
*dex_file_,
dex_pc));
UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
}
}
void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
uint16_t first_vreg,
int64_t second_vreg_or_constant,
uint32_t dex_pc,
DataType::Type type,
bool second_is_constant,
bool isDiv) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
HInstruction* first = LoadLocal(first_vreg, type);
HInstruction* second = nullptr;
if (second_is_constant) {
if (type == DataType::Type::kInt32) {
second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
} else {
second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
}
} else {
second = LoadLocal(second_vreg_or_constant, type);
}
if (!second_is_constant ||
(type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0) ||
(type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) {
second = new (allocator_) HDivZeroCheck(second, dex_pc);
AppendInstruction(second);
}
if (isDiv) {
AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc));
} else {
AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc));
}
UpdateLocal(out_vreg, current_block_->GetLastInstruction());
}
void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
uint32_t dex_pc,
bool is_put,
DataType::Type anticipated_type) {
uint8_t source_or_dest_reg = instruction.VRegA_23x();
uint8_t array_reg = instruction.VRegB_23x();
uint8_t index_reg = instruction.VRegC_23x();
HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
HInstruction* length = new (allocator_) HArrayLength(object, dex_pc);
AppendInstruction(length);
HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32);
index = new (allocator_) HBoundsCheck(index, length, dex_pc);
AppendInstruction(index);
if (is_put) {
HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
// TODO: Insert a type check node if the type is Object.
HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
ssa_builder_->MaybeAddAmbiguousArraySet(aset);
AppendInstruction(aset);
} else {
HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc);
ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
AppendInstruction(aget);
UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
}
graph_->SetHasBoundsChecks(true);
}
HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc,
dex::TypeIndex type_index,
HInstruction* length) {
HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index));
DCHECK_EQ(descriptor[0], '[');
size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1]));
HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift);
AppendInstruction(new_array);
return new_array;
}
HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
dex::TypeIndex type_index,
const InstructionOperands& operands) {
const size_t number_of_operands = operands.GetNumberOfOperands();
HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc);
HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
const char* descriptor = dex_file_->StringByTypeIdx(type_index);
DCHECK_EQ(descriptor[0], '[') << descriptor;
char primitive = descriptor[1];
DCHECK(primitive == 'I'
|| primitive == 'L'
|| primitive == '[') << descriptor;
bool is_reference_array = (primitive == 'L') || (primitive == '[');
DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32;
for (size_t i = 0; i < number_of_operands; ++i) {
HInstruction* value = LoadLocal(operands.GetOperand(i), type);
HInstruction* index = graph_->GetIntConstant(i, dex_pc);
HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc);
ssa_builder_->MaybeAddAmbiguousArraySet(aset);
AppendInstruction(aset);
}
latest_result_ = new_array;
return new_array;
}
template <typename T>
void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
const T* data,
uint32_t element_count,
DataType::Type anticipated_type,
uint32_t dex_pc) {
for (uint32_t i = 0; i < element_count; ++i) {
HInstruction* index = graph_->GetIntConstant(i, dex_pc);
HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
ssa_builder_->MaybeAddAmbiguousArraySet(aset);
AppendInstruction(aset);
}
}
void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
const Instruction::ArrayDataPayload* payload =
reinterpret_cast<const Instruction::ArrayDataPayload*>(
code_item_accessor_.Insns() + payload_offset);
const uint8_t* data = payload->data;
uint32_t element_count = payload->element_count;
if (element_count == 0u) {
// For empty payload we emit only the null check above.
return;
}
HInstruction* length = new (allocator_) HArrayLength(array, dex_pc);
AppendInstruction(length);
// Implementation of this DEX instruction seems to be that the bounds check is
// done before doing any stores.
HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc));
switch (payload->element_width) {
case 1:
BuildFillArrayData(array,
reinterpret_cast<const int8_t*>(data),
element_count,
DataType::Type::kInt8,
dex_pc);
break;
case 2:
BuildFillArrayData(array,
reinterpret_cast<const int16_t*>(data),
element_count,
DataType::Type::kInt16,
dex_pc);
break;
case 4:
BuildFillArrayData(array,
reinterpret_cast<const int32_t*>(data),
element_count,
DataType::Type::kInt32,
dex_pc);
break;
case 8:
BuildFillWideArrayData(array,
reinterpret_cast<const int64_t*>(data),
element_count,
dex_pc);
break;
default:
LOG(FATAL) << "Unknown element width for " << payload->element_width;
}
graph_->SetHasBoundsChecks(true);
}
void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
const int64_t* data,
uint32_t element_count,
uint32_t dex_pc) {
for (uint32_t i = 0; i < element_count; ++i) {
HInstruction* index = graph_->GetIntConstant(i, dex_pc);
HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
HArraySet* aset =
new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc);
ssa_builder_->MaybeAddAmbiguousArraySet(aset);
AppendInstruction(aset);
}
}
void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) {
HLoadString* load_string =
new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc);
HSharpening::ProcessLoadString(load_string,
code_generator_,
*dex_compilation_unit_,
graph_->GetHandleCache()->GetHandles());
AppendInstruction(load_string);
}
HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
ScopedObjectAccess soa(Thread::Current());
const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
Handle<mirror::Class> klass = ResolveClass(soa, type_index);
bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get());
return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
}
HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
const DexFile& dex_file,
Handle<mirror::Class> klass,
uint32_t dex_pc,
bool needs_access_check) {
// Try to find a reference in the compiling dex file.
const DexFile* actual_dex_file = &dex_file;
if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
dex::TypeIndex local_type_index =
klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
if (local_type_index.IsValid()) {
type_index = local_type_index;
actual_dex_file = dex_compilation_unit_->GetDexFile();
}
}
// We cannot use the referrer's class load kind if we need to do an access check.
// If the `klass` is unresolved, we need access check with the exception of the referrer's
// class, see LoadClassNeedsAccessCheck(), so the `!needs_access_check` check is enough.
// Otherwise, also check if the `klass` is the same as the compiling class, which also
// conveniently rejects the case of unresolved compiling class.
bool is_referrers_class =
!needs_access_check &&
(klass == nullptr || outer_compilation_unit_->GetCompilingClass().Get() == klass.Get());
// Note: `klass` must be from `graph_->GetHandleCache()`.
HLoadClass* load_class = new (allocator_) HLoadClass(
graph_->GetCurrentMethod(),
type_index,
*actual_dex_file,
klass,
is_referrers_class,
dex_pc,
needs_access_check);
HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
code_generator_,
*dex_compilation_unit_);
if (load_kind == HLoadClass::LoadKind::kInvalid) {
// We actually cannot reference this class, we're forced to bail.
return nullptr;
}
// Load kind must be set before inserting the instruction into the graph.
load_class->SetLoadKind(load_kind);
AppendInstruction(load_class);
return load_class;
}
Handle<mirror::Class> HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa,
dex::TypeIndex type_index) {
auto it = class_cache_.find(type_index);
if (it != class_cache_.end()) {
return it->second;
}
ObjPtr<mirror::Class> klass = dex_compilation_unit_->GetClassLinker()->ResolveType(
type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader());
DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending());
soa.Self()->ClearException(); // Clean up the exception left by type resolution if any.
Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
class_cache_.Put(type_index, h_klass);
return h_klass;
}
bool HInstructionBuilder::LoadClassNeedsAccessCheck(dex::TypeIndex type_index,
ObjPtr<mirror::Class> klass) {
if (klass == nullptr) {
// If the class is unresolved, we can avoid access checks only for references to
// the compiling class as determined by checking the descriptor and ClassLoader.
if (outer_compilation_unit_->GetCompilingClass() != nullptr) {
// Compiling class is resolved, so different from the unresolved class.
return true;
}
if (dex_compilation_unit_->GetClassLoader().Get() !=
outer_compilation_unit_->GetClassLoader().Get()) {
// Resolving the same descriptor in a different ClassLoader than the
// defining loader of the compiling class shall either fail to find
// the class definition, or find a different one.
// (Assuming no custom ClassLoader hierarchy with circular delegation.)
return true;
}
// Check if the class is the outer method's class.
// For the same dex file compare type indexes, otherwise descriptors.
const DexFile* outer_dex_file = outer_compilation_unit_->GetDexFile();
const DexFile* inner_dex_file = dex_compilation_unit_->GetDexFile();
const dex::ClassDef& outer_class_def =
outer_dex_file->GetClassDef(outer_compilation_unit_->GetClassDefIndex());
if (IsSameDexFile(*inner_dex_file, *outer_dex_file)) {
if (type_index != outer_class_def.class_idx_) {
return true;
}
} else {
uint32_t outer_utf16_length;
const char* outer_descriptor =
outer_dex_file->StringByTypeIdx(outer_class_def.class_idx_, &outer_utf16_length);
uint32_t target_utf16_length;
const char* target_descriptor =
inner_dex_file->StringByTypeIdx(type_index, &target_utf16_length);
if (outer_utf16_length != target_utf16_length ||
strcmp(outer_descriptor, target_descriptor) != 0) {
return true;
}
}
// For inlined methods we also need to check if the compiling class
// is public or in the same package as the inlined method's class.
if (dex_compilation_unit_ != outer_compilation_unit_ &&
(outer_class_def.access_flags_ & kAccPublic) == 0) {
DCHECK(dex_compilation_unit_->GetCompilingClass() != nullptr);
SamePackageCompare same_package(*outer_compilation_unit_);
if (!same_package(dex_compilation_unit_->GetCompilingClass().Get())) {
return true;
}
}
return false;
} else if (klass->IsPublic()) {
return false;
} else if (dex_compilation_unit_->GetCompilingClass() != nullptr) {
return !dex_compilation_unit_->GetCompilingClass()->CanAccess(klass);
} else {
SamePackageCompare same_package(*dex_compilation_unit_);
return !same_package(klass);
}
}
void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) {
const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle(
graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc);
AppendInstruction(load_method_handle);
}
void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) {
const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
HLoadMethodType* load_method_type =
new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc);
AppendInstruction(load_method_type);
}
void HInstructionBuilder::BuildTypeCheck(bool is_instance_of,
HInstruction* object,
dex::TypeIndex type_index,
uint32_t dex_pc) {
ScopedObjectAccess soa(Thread::Current());
const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
Handle<mirror::Class> klass = ResolveClass(soa, type_index);
bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get());
TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind(
klass.Get(), code_generator_, needs_access_check);
HInstruction* class_or_null = nullptr;
HIntConstant* bitstring_path_to_root = nullptr;
HIntConstant* bitstring_mask = nullptr;
if (check_kind == TypeCheckKind::kBitstringCheck) {
// TODO: Allow using the bitstring check also if we need an access check.
DCHECK(!needs_access_check);
class_or_null = graph_->GetNullConstant(dex_pc);
MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
uint32_t path_to_root =
SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootForTarget(klass.Get());
uint32_t mask = SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootMask(klass.Get());
bitstring_path_to_root = graph_->GetIntConstant(static_cast<int32_t>(path_to_root), dex_pc);
bitstring_mask = graph_->GetIntConstant(static_cast<int32_t>(mask), dex_pc);
} else {
class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
}
DCHECK(class_or_null != nullptr);
if (is_instance_of) {
AppendInstruction(new (allocator_) HInstanceOf(object,
class_or_null,
check_kind,
klass,
dex_pc,
allocator_,
bitstring_path_to_root,
bitstring_mask));
} else {
// We emit a CheckCast followed by a BoundType. CheckCast is a statement
// which may throw. If it succeeds BoundType sets the new type of `object`
// for all subsequent uses.
AppendInstruction(
new (allocator_) HCheckCast(object,
class_or_null,
check_kind,
klass,
dex_pc,
allocator_,
bitstring_path_to_root,
bitstring_mask));
AppendInstruction(new (allocator_) HBoundType(object, dex_pc));
}
}
void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
uint8_t destination,
uint8_t reference,
dex::TypeIndex type_index,
uint32_t dex_pc) {
HInstruction* object = LoadLocal(reference, DataType::Type::kReference);
bool is_instance_of = instruction.Opcode() == Instruction::INSTANCE_OF;
BuildTypeCheck(is_instance_of, object, type_index, dex_pc);
if (is_instance_of) {
UpdateLocal(destination, current_block_->GetLastInstruction());
} else {
DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
UpdateLocal(reference, current_block_->GetLastInstruction());
}
}
bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
switch (instruction.Opcode()) {
case Instruction::CONST_4: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_16: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_HIGH16: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_16: {
int32_t register_index = instruction.VRegA();
// Get 16 bits of constant value, sign extended to 64 bits.
int64_t value = instruction.VRegB_21s();
value <<= 48;
value >>= 48;
HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_32: {
int32_t register_index = instruction.VRegA();
// Get 32 bits of constant value, sign extended to 64 bits.
int64_t value = instruction.VRegB_31i();
value <<= 32;
value >>= 32;
HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE: {
int32_t register_index = instruction.VRegA();
HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_HIGH16: {
int32_t register_index = instruction.VRegA();
int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
UpdateLocal(register_index, constant);
break;
}
// Note that the SSA building will refine the types.
case Instruction::MOVE:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_16: {
HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
UpdateLocal(instruction.VRegA(), value);
break;
}
// Note that the SSA building will refine the types.
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_FROM16:
case Instruction::MOVE_WIDE_16: {
HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64);
UpdateLocal(instruction.VRegA(), value);
break;
}
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_OBJECT_FROM16: {
// The verifier has no notion of a null type, so a move-object of constant 0
// will lead to the same constant 0 in the destination register. To mimic
// this behavior, we just pretend we haven't seen a type change (int to reference)
// for the 0 constant and phis. We rely on our type propagation to eventually get the
// types correct.
uint32_t reg_number = instruction.VRegB();
HInstruction* value = (*current_locals_)[reg_number];
if (value->IsIntConstant()) {
DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
} else if (value->IsPhi()) {
DCHECK(value->GetType() == DataType::Type::kInt32 ||
value->GetType() == DataType::Type::kReference);
} else {
value = LoadLocal(reg_number, DataType::Type::kReference);
}
UpdateLocal(instruction.VRegA(), value);
break;
}
case Instruction::RETURN_VOID: {
BuildReturn(instruction, DataType::Type::kVoid, dex_pc);
break;
}
#define IF_XX(comparison, cond) \
case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
IF_XX(HEqual, EQ);
IF_XX(HNotEqual, NE);
IF_XX(HLessThan, LT);
IF_XX(HLessThanOrEqual, LE);
IF_XX(HGreaterThan, GT);
IF_XX(HGreaterThanOrEqual, GE);
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32: {
AppendInstruction(new (allocator_) HGoto(dex_pc));
current_block_ = nullptr;
break;
}
case Instruction::RETURN: {
BuildReturn(instruction, return_type_, dex_pc);
break;
}
case Instruction::RETURN_OBJECT: {
BuildReturn(instruction, return_type_, dex_pc);
break;
}
case Instruction::RETURN_WIDE: {
BuildReturn(instruction, return_type_, dex_pc);
break;
}
case Instruction::INVOKE_DIRECT:
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_SUPER:
case Instruction::INVOKE_VIRTUAL: {
uint16_t method_idx = instruction.VRegB_35c();
uint32_t args[5];
uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
return false;
}
break;
}
case Instruction::INVOKE_DIRECT_RANGE:
case Instruction::INVOKE_INTERFACE_RANGE:
case Instruction::INVOKE_STATIC_RANGE:
case Instruction::INVOKE_SUPER_RANGE:
case Instruction::INVOKE_VIRTUAL_RANGE: {
uint16_t method_idx = instruction.VRegB_3rc();
RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc());
if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
return false;
}
break;
}
case Instruction::INVOKE_POLYMORPHIC: {
uint16_t method_idx = instruction.VRegB_45cc();
dex::ProtoIndex proto_idx(instruction.VRegH_45cc());
uint32_t args[5];
uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
}
case Instruction::INVOKE_POLYMORPHIC_RANGE: {
uint16_t method_idx = instruction.VRegB_4rcc();
dex::ProtoIndex proto_idx(instruction.VRegH_4rcc());
RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc());
return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
}
case Instruction::INVOKE_CUSTOM: {
uint16_t call_site_idx = instruction.VRegB_35c();
uint32_t args[5];
uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
return BuildInvokeCustom(dex_pc, call_site_idx, operands);
}
case Instruction::INVOKE_CUSTOM_RANGE: {
uint16_t call_site_idx = instruction.VRegB_3rc();
RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
return BuildInvokeCustom(dex_pc, call_site_idx, operands);
}
case Instruction::NEG_INT: {
Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::NEG_LONG: {
Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::NEG_FLOAT: {
Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::NEG_DOUBLE: {
Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::NOT_INT: {
Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::NOT_LONG: {
Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::INT_TO_LONG: {
Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::INT_TO_FLOAT: {
Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::INT_TO_DOUBLE: {
Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::LONG_TO_INT: {
Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::LONG_TO_FLOAT: {
Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::LONG_TO_DOUBLE: {
Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::FLOAT_TO_INT: {
Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::FLOAT_TO_LONG: {
Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::FLOAT_TO_DOUBLE: {
Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::DOUBLE_TO_INT: {
Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::DOUBLE_TO_LONG: {
Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::DOUBLE_TO_FLOAT: {
Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::INT_TO_BYTE: {
Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc);
break;
}
case Instruction::INT_TO_SHORT: {
Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc);
break;
}
case Instruction::INT_TO_CHAR: {
Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc);
break;
}
case Instruction::ADD_INT: {
Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::ADD_LONG: {
Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::ADD_DOUBLE: {
Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::ADD_FLOAT: {
Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::SUB_INT: {
Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::SUB_LONG: {
Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::SUB_FLOAT: {
Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::SUB_DOUBLE: {
Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::ADD_INT_2ADDR: {
Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::MUL_INT: {
Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::MUL_LONG: {
Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::MUL_FLOAT: {
Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::MUL_DOUBLE: {
Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::DIV_INT: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, DataType::Type::kInt32, false, true);
break;
}
case Instruction::DIV_LONG: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, DataType::Type::kInt64, false, true);
break;
}
case Instruction::DIV_FLOAT: {
Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::DIV_DOUBLE: {
Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::REM_INT: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, DataType::Type::kInt32, false, false);
break;
}
case Instruction::REM_LONG: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, DataType::Type::kInt64, false, false);
break;
}
case Instruction::REM_FLOAT: {
Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::REM_DOUBLE: {
Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::AND_INT: {
Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::AND_LONG: {
Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::SHL_INT: {
Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::SHL_LONG: {
Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::SHR_INT: {
Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::SHR_LONG: {
Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::USHR_INT: {
Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::USHR_LONG: {
Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::OR_INT: {
Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::OR_LONG: {
Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::XOR_INT: {
Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::XOR_LONG: {
Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::ADD_LONG_2ADDR: {
Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::ADD_DOUBLE_2ADDR: {
Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::ADD_FLOAT_2ADDR: {
Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::SUB_INT_2ADDR: {
Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::SUB_LONG_2ADDR: {
Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::SUB_FLOAT_2ADDR: {
Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::SUB_DOUBLE_2ADDR: {
Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::MUL_INT_2ADDR: {
Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::MUL_LONG_2ADDR: {
Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::MUL_FLOAT_2ADDR: {
Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::MUL_DOUBLE_2ADDR: {
Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::DIV_INT_2ADDR: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
dex_pc, DataType::Type::kInt32, false, true);
break;
}
case Instruction::DIV_LONG_2ADDR: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
dex_pc, DataType::Type::kInt64, false, true);
break;
}
case Instruction::REM_INT_2ADDR: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
dex_pc, DataType::Type::kInt32, false, false);
break;
}
case Instruction::REM_LONG_2ADDR: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
dex_pc, DataType::Type::kInt64, false, false);
break;
}
case Instruction::REM_FLOAT_2ADDR: {
Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::REM_DOUBLE_2ADDR: {
Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::SHL_INT_2ADDR: {
Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::SHL_LONG_2ADDR: {
Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::SHR_INT_2ADDR: {
Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::SHR_LONG_2ADDR: {
Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::USHR_INT_2ADDR: {
Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::USHR_LONG_2ADDR: {
Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::DIV_FLOAT_2ADDR: {
Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
break;
}
case Instruction::DIV_DOUBLE_2ADDR: {
Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
break;
}
case Instruction::AND_INT_2ADDR: {
Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::AND_LONG_2ADDR: {
Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::OR_INT_2ADDR: {
Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::OR_LONG_2ADDR: {
Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::XOR_INT_2ADDR: {
Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
break;
}
case Instruction::XOR_LONG_2ADDR: {
Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
break;
}
case Instruction::ADD_INT_LIT16: {
Binop_22s<HAdd>(instruction, false, dex_pc);
break;
}
case Instruction::AND_INT_LIT16: {
Binop_22s<HAnd>(instruction, false, dex_pc);
break;
}
case Instruction::OR_INT_LIT16: {
Binop_22s<HOr>(instruction, false, dex_pc);
break;
}
case Instruction::XOR_INT_LIT16: {
Binop_22s<HXor>(instruction, false, dex_pc);
break;
}
case Instruction::RSUB_INT: {
Binop_22s<HSub>(instruction, true, dex_pc);
break;
}
case Instruction::MUL_INT_LIT16: {
Binop_22s<HMul>(instruction, false, dex_pc);
break;
}
case Instruction::ADD_INT_LIT8: {
Binop_22b<HAdd>(instruction, false, dex_pc);
break;
}
case Instruction::AND_INT_LIT8: {
Binop_22b<HAnd>(instruction, false, dex_pc);
break;
}
case Instruction::OR_INT_LIT8: {
Binop_22b<HOr>(instruction, false, dex_pc);
break;
}
case Instruction::XOR_INT_LIT8: {
Binop_22b<HXor>(instruction, false, dex_pc);
break;
}
case Instruction::RSUB_INT_LIT8: {
Binop_22b<HSub>(instruction, true, dex_pc);
break;
}
case Instruction::MUL_INT_LIT8: {
Binop_22b<HMul>(instruction, false, dex_pc);
break;
}
case Instruction::DIV_INT_LIT16:
case Instruction::DIV_INT_LIT8: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, DataType::Type::kInt32, true, true);
break;
}
case Instruction::REM_INT_LIT16:
case Instruction::REM_INT_LIT8: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, DataType::Type::kInt32, true, false);
break;
}
case Instruction::SHL_INT_LIT8: {
Binop_22b<HShl>(instruction, false, dex_pc);
break;
}
case Instruction::SHR_INT_LIT8: {
Binop_22b<HShr>(instruction, false, dex_pc);
break;
}
case Instruction::USHR_INT_LIT8: {
Binop_22b<HUShr>(instruction, false, dex_pc);
break;
}
case Instruction::NEW_INSTANCE: {
HNewInstance* new_instance =
BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc);
DCHECK(new_instance != nullptr);
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
BuildConstructorFenceForAllocation(new_instance);
break;
}
case Instruction::NEW_ARRAY: {
dex::TypeIndex type_index(instruction.VRegC_22c());
HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32);
HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
BuildConstructorFenceForAllocation(new_array);
break;
}
case Instruction::FILLED_NEW_ARRAY: {
dex::TypeIndex type_index(instruction.VRegB_35c());
uint32_t args[5];
uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
BuildConstructorFenceForAllocation(new_array);
break;
}
case Instruction::FILLED_NEW_ARRAY_RANGE: {
dex::TypeIndex type_index(instruction.VRegB_3rc());
RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
BuildConstructorFenceForAllocation(new_array);
break;
}
case Instruction::FILL_ARRAY_DATA: {
BuildFillArrayData(instruction, dex_pc);
break;
}
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_WIDE:
case Instruction::MOVE_RESULT_OBJECT: {
DCHECK(latest_result_ != nullptr);
UpdateLocal(instruction.VRegA(), latest_result_);
latest_result_ = nullptr;
break;
}
case Instruction::CMP_LONG: {
Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc);
break;
}
case Instruction::CMPG_FLOAT: {
Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc);
break;
}
case Instruction::CMPG_DOUBLE: {
Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc);
break;
}
case Instruction::CMPL_FLOAT: {
Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc);
break;
}
case Instruction::CMPL_DOUBLE: {
Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc);
break;
}
case Instruction::NOP:
break;
case Instruction::IGET:
case Instruction::IGET_WIDE:
case Instruction::IGET_OBJECT:
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
case Instruction::IGET_CHAR:
case Instruction::IGET_SHORT: {
if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false)) {
return false;
}
break;
}
case Instruction::IPUT:
case Instruction::IPUT_WIDE:
case Instruction::IPUT_OBJECT:
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
case Instruction::IPUT_CHAR:
case Instruction::IPUT_SHORT: {
if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true)) {
return false;
}
break;
}
case Instruction::SGET:
case Instruction::SGET_WIDE:
case Instruction::SGET_OBJECT:
case Instruction::SGET_BOOLEAN:
case Instruction::SGET_BYTE:
case Instruction::SGET_CHAR:
case Instruction::SGET_SHORT: {
BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false);
break;
}
case Instruction::SPUT:
case Instruction::SPUT_WIDE:
case Instruction::SPUT_OBJECT:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT: {
BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true);
break;
}
#define ARRAY_XX(kind, anticipated_type) \
case Instruction::AGET##kind: { \
BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \
break; \
} \
case Instruction::APUT##kind: { \
BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \
break; \
}
ARRAY_XX(, DataType::Type::kInt32);
ARRAY_XX(_WIDE, DataType::Type::kInt64);
ARRAY_XX(_OBJECT, DataType::Type::kReference);
ARRAY_XX(_BOOLEAN, DataType::Type::kBool);
ARRAY_XX(_BYTE, DataType::Type::kInt8);
ARRAY_XX(_CHAR, DataType::Type::kUint16);
ARRAY_XX(_SHORT, DataType::Type::kInt16);
case Instruction::ARRAY_LENGTH: {
HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
AppendInstruction(new (allocator_) HArrayLength(object, dex_pc));
UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
break;
}
case Instruction::CONST_STRING: {
dex::StringIndex string_index(instruction.VRegB_21c());
BuildLoadString(string_index, dex_pc);
UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
break;
}
case Instruction::CONST_STRING_JUMBO: {
dex::StringIndex string_index(instruction.VRegB_31c());
BuildLoadString(string_index, dex_pc);
UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
break;
}
case Instruction::CONST_CLASS: {
dex::TypeIndex type_index(instruction.VRegB_21c());
BuildLoadClass(type_index, dex_pc);
UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
break;
}
case Instruction::CONST_METHOD_HANDLE: {
uint16_t method_handle_idx = instruction.VRegB_21c();
BuildLoadMethodHandle(method_handle_idx, dex_pc);
UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
break;
}
case Instruction::CONST_METHOD_TYPE: {
dex::ProtoIndex proto_idx(instruction.VRegB_21c());
BuildLoadMethodType(proto_idx, dex_pc);
UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
break;
}
case Instruction::MOVE_EXCEPTION: {
AppendInstruction(new (allocator_) HLoadException(dex_pc));
UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
AppendInstruction(new (allocator_) HClearException(dex_pc));
break;
}
case Instruction::THROW: {
HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference);
AppendInstruction(new (allocator_) HThrow(exception, dex_pc));
// We finished building this block. Set the current block to null to avoid
// adding dead instructions to it.
current_block_ = nullptr;
break;
}
case Instruction::INSTANCE_OF: {
uint8_t destination = instruction.VRegA_22c();
uint8_t reference = instruction.VRegB_22c();
dex::TypeIndex type_index(instruction.VRegC_22c());
BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
break;
}
case Instruction::CHECK_CAST: {
uint8_t reference = instruction.VRegA_21c();
dex::TypeIndex type_index(instruction.VRegB_21c());
BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
break;
}
case Instruction::MONITOR_ENTER: {
AppendInstruction(new (allocator_) HMonitorOperation(
LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
HMonitorOperation::OperationKind::kEnter,
dex_pc));
graph_->SetHasMonitorOperations(true);
break;
}
case Instruction::MONITOR_EXIT: {
AppendInstruction(new (allocator_) HMonitorOperation(
LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
HMonitorOperation::OperationKind::kExit,
dex_pc));
graph_->SetHasMonitorOperations(true);
break;
}
case Instruction::SPARSE_SWITCH:
case Instruction::PACKED_SWITCH: {
BuildSwitch(instruction, dex_pc);
break;
}
case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
case Instruction::UNUSED_73:
case Instruction::UNUSED_79:
case Instruction::UNUSED_7A:
case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9: {
VLOG(compiler) << "Did not compile "
<< dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
<< " because of unhandled instruction "
<< instruction.Name();
MaybeRecordStat(compilation_stats_,
MethodCompilationStat::kNotCompiledUnhandledInstruction);
return false;
}
}
return true;
} // NOLINT(readability/fn_size)
ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
dex::TypeIndex type_index,
const DexCompilationUnit& compilation_unit) const {
return compilation_unit.GetClassLinker()->LookupResolvedType(
type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
}
ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
// TODO: Cache the result in a Handle<mirror::Class>.
const dex::MethodId& method_id =
dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
}
} // namespace art