blob: 33b5bd51692bba9893fd0ce8d90b394e9c0f07df [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_sinking.h"
#include <sstream>
#include "android-base/logging.h"
#include "base/arena_bit_vector.h"
#include "base/array_ref.h"
#include "base/bit_vector-inl.h"
#include "base/globals.h"
#include "base/logging.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "common_dominator.h"
#include "nodes.h"
namespace art HIDDEN {
bool CodeSinking::Run() {
if (graph_->GetExitBlock() == nullptr) {
// Infinite loop, just bail.
return false;
}
UncommonBranchSinking();
ReturnSinking();
return true;
}
void CodeSinking::UncommonBranchSinking() {
HBasicBlock* exit = graph_->GetExitBlock();
DCHECK(exit != nullptr);
// TODO(ngeoffray): we do not profile branches yet, so use throw instructions
// as an indicator of an uncommon branch.
for (HBasicBlock* exit_predecessor : exit->GetPredecessors()) {
HInstruction* last = exit_predecessor->GetLastInstruction();
// TryBoundary instructions are sometimes inserted between the last instruction (e.g. Throw,
// Return) and Exit. We don't want to use that instruction for our "uncommon branch" heuristic
// because they are not as good an indicator as throwing branches, so we skip them and fetch the
// actual last instruction.
if (last->IsTryBoundary()) {
// We have an exit try boundary. Fetch the previous instruction.
DCHECK(!last->AsTryBoundary()->IsEntry());
if (last->GetPrevious() == nullptr) {
DCHECK(exit_predecessor->IsSingleTryBoundary());
exit_predecessor = exit_predecessor->GetSinglePredecessor();
last = exit_predecessor->GetLastInstruction();
} else {
last = last->GetPrevious();
}
}
// Any predecessor of the exit that does not return, throws an exception.
if (!last->IsReturn() && !last->IsReturnVoid()) {
SinkCodeToUncommonBranch(exit_predecessor);
}
}
}
static bool IsInterestingInstruction(HInstruction* instruction) {
// Instructions from the entry graph (for example constants) are never interesting to move.
if (instruction->GetBlock() == instruction->GetBlock()->GetGraph()->GetEntryBlock()) {
return false;
}
// We want to move moveable instructions that cannot throw, as well as
// heap stores and allocations.
// Volatile stores cannot be moved.
if (instruction->IsInstanceFieldSet()) {
if (instruction->AsInstanceFieldSet()->IsVolatile()) {
return false;
}
}
// Check allocations and strings first, as they can throw, but it is safe to move them.
if (instruction->IsNewInstance() || instruction->IsNewArray() || instruction->IsLoadString()) {
return true;
}
// Check it is safe to move ConstructorFence.
// (Safe to move ConstructorFence for only protecting the new-instance but not for finals.)
if (instruction->IsConstructorFence()) {
HConstructorFence* ctor_fence = instruction->AsConstructorFence();
// A fence with "0" inputs is dead and should've been removed in a prior pass.
DCHECK_NE(0u, ctor_fence->InputCount());
// TODO: this should be simplified to 'return true' since it's
// potentially pessimizing any code sinking for inlined constructors with final fields.
// TODO: double check that if the final field assignments are not moved,
// then the fence is not moved either.
return ctor_fence->GetAssociatedAllocation() != nullptr;
}
// All other instructions that can throw cannot be moved.
if (instruction->CanThrow()) {
return false;
}
// We can only store on local allocations. Other heap references can
// be escaping. Note that allocations can escape too, but we only move
// allocations if their users can move too, or are in the list of
// post dominated blocks.
if (instruction->IsInstanceFieldSet()) {
if (!instruction->InputAt(0)->IsNewInstance()) {
return false;
}
}
if (instruction->IsArraySet()) {
if (!instruction->InputAt(0)->IsNewArray()) {
return false;
}
}
// Heap accesses cannot go past instructions that have memory side effects, which
// we are not tracking here. Note that the load/store elimination optimization
// runs before this optimization, and should have removed interesting ones.
// In theory, we could handle loads of local allocations, but this is currently
// hard to test, as LSE removes them.
if (instruction->IsStaticFieldGet() ||
instruction->IsInstanceFieldGet() ||
instruction->IsPredicatedInstanceFieldGet() ||
instruction->IsArrayGet()) {
return false;
}
if (instruction->IsInstanceFieldSet() ||
instruction->IsArraySet() ||
instruction->CanBeMoved()) {
return true;
}
return false;
}
static void AddInstruction(HInstruction* instruction,
const ArenaBitVector& processed_instructions,
const ArenaBitVector& discard_blocks,
ScopedArenaVector<HInstruction*>* worklist) {
// Add to the work list if the instruction is not in the list of blocks
// to discard, hasn't been already processed and is of interest.
if (!discard_blocks.IsBitSet(instruction->GetBlock()->GetBlockId()) &&
!processed_instructions.IsBitSet(instruction->GetId()) &&
IsInterestingInstruction(instruction)) {
worklist->push_back(instruction);
}
}
static void AddInputs(HInstruction* instruction,
const ArenaBitVector& processed_instructions,
const ArenaBitVector& discard_blocks,
ScopedArenaVector<HInstruction*>* worklist) {
for (HInstruction* input : instruction->GetInputs()) {
AddInstruction(input, processed_instructions, discard_blocks, worklist);
}
}
static void AddInputs(HBasicBlock* block,
const ArenaBitVector& processed_instructions,
const ArenaBitVector& discard_blocks,
ScopedArenaVector<HInstruction*>* worklist) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
AddInputs(it.Current(), processed_instructions, discard_blocks, worklist);
}
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
AddInputs(it.Current(), processed_instructions, discard_blocks, worklist);
}
}
static bool ShouldFilterUse(HInstruction* instruction,
HInstruction* user,
const ArenaBitVector& post_dominated) {
if (instruction->IsNewInstance()) {
return (user->IsInstanceFieldSet() || user->IsConstructorFence()) &&
(user->InputAt(0) == instruction) &&
!post_dominated.IsBitSet(user->GetBlock()->GetBlockId());
} else if (instruction->IsNewArray()) {
return (user->IsArraySet() || user->IsConstructorFence()) &&
(user->InputAt(0) == instruction) &&
!post_dominated.IsBitSet(user->GetBlock()->GetBlockId());
}
return false;
}
// Find the ideal position for moving `instruction`. If `filter` is true,
// we filter out store instructions to that instruction, which are processed
// first in the step (3) of the sinking algorithm.
// This method is tailored to the sinking algorithm, unlike
// the generic HInstruction::MoveBeforeFirstUserAndOutOfLoops.
static HInstruction* FindIdealPosition(HInstruction* instruction,
const ArenaBitVector& post_dominated,
bool filter = false) {
DCHECK(!instruction->IsPhi()); // Makes no sense for Phi.
// Find the target block.
CommonDominator finder(/* block= */ nullptr);
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
HInstruction* user = use.GetUser();
if (!(filter && ShouldFilterUse(instruction, user, post_dominated))) {
HBasicBlock* block = user->GetBlock();
if (user->IsPhi()) {
// Special case phis by taking the incoming block for regular ones,
// or the dominator for catch phis.
block = user->AsPhi()->IsCatchPhi()
? block->GetDominator()
: block->GetPredecessors()[use.GetIndex()];
}
finder.Update(block);
}
}
for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
DCHECK(!use.GetUser()->GetHolder()->IsPhi());
DCHECK_IMPLIES(filter,
!ShouldFilterUse(instruction, use.GetUser()->GetHolder(), post_dominated));
finder.Update(use.GetUser()->GetHolder()->GetBlock());
}
HBasicBlock* target_block = finder.Get();
if (target_block == nullptr) {
// No user we can go next to? Likely a LSE or DCE limitation.
return nullptr;
}
// Move to the first dominator not in a loop, if we can. We only do this if we are trying to hoist
// `instruction` out of a loop it wasn't a part of.
const HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation();
while (target_block->IsInLoop() && target_block->GetLoopInformation() != loop_info) {
if (!post_dominated.IsBitSet(target_block->GetDominator()->GetBlockId())) {
break;
}
target_block = target_block->GetDominator();
DCHECK(target_block != nullptr);
}
if (instruction->CanThrow()) {
// Consistency check: We shouldn't land in a loop if we weren't in one before traversing up the
// dominator tree regarding try catches.
const bool was_in_loop = target_block->IsInLoop();
// We cannot move an instruction that can throw into a try that said instruction is not a part
// of already, as that would mean it will throw into a different catch block. In short, for
// throwing instructions:
// * If the throwing instruction is part of a try, they should only be sunk into that same try.
// * If the throwing instruction is not part of any try, they shouldn't be sunk to any try.
if (instruction->GetBlock()->IsTryBlock()) {
const HTryBoundary& try_entry =
instruction->GetBlock()->GetTryCatchInformation()->GetTryEntry();
while (!(target_block->IsTryBlock() &&
try_entry.HasSameExceptionHandlersAs(
target_block->GetTryCatchInformation()->GetTryEntry()))) {
target_block = target_block->GetDominator();
if (!post_dominated.IsBitSet(target_block->GetBlockId())) {
// We couldn't find a suitable block.
return nullptr;
}
}
} else {
// Search for the first block also not in a try block
while (target_block->IsTryBlock()) {
target_block = target_block->GetDominator();
if (!post_dominated.IsBitSet(target_block->GetBlockId())) {
// We couldn't find a suitable block.
return nullptr;
}
}
}
DCHECK_IMPLIES(target_block->IsInLoop(), was_in_loop);
}
// Find insertion position. No need to filter anymore, as we have found a
// target block.
HInstruction* insert_pos = nullptr;
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
if (use.GetUser()->GetBlock() == target_block &&
(insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
insert_pos = use.GetUser();
}
}
for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
HEnvironment* env = use.GetUser();
HInstruction* user = env->GetHolder();
if (user->GetBlock() == target_block &&
(insert_pos == nullptr || user->StrictlyDominates(insert_pos))) {
if (target_block->IsCatchBlock() && target_block->GetFirstInstruction() == user) {
// We can sink the instructions past the environment setting Nop. If we do that, we have to
// remove said instruction from the environment. Since we know that we will be sinking the
// instruction to this block and there are no more instructions to consider, we can safely
// remove it from the environment now.
DCHECK(target_block->GetFirstInstruction()->IsNop());
env->RemoveAsUserOfInput(use.GetIndex());
env->SetRawEnvAt(use.GetIndex(), /*instruction=*/ nullptr);
} else {
insert_pos = user;
}
}
}
if (insert_pos == nullptr) {
// No user in `target_block`, insert before the control flow instruction.
insert_pos = target_block->GetLastInstruction();
DCHECK(insert_pos->IsControlFlow());
// Avoid splitting HCondition from HIf to prevent unnecessary materialization.
if (insert_pos->IsIf()) {
HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
if (if_input == insert_pos->GetPrevious()) {
insert_pos = if_input;
}
}
}
DCHECK(!insert_pos->IsPhi());
return insert_pos;
}
void CodeSinking::SinkCodeToUncommonBranch(HBasicBlock* end_block) {
// Local allocator to discard data structures created below at the end of this optimization.
ScopedArenaAllocator allocator(graph_->GetArenaStack());
size_t number_of_instructions = graph_->GetCurrentInstructionId();
ScopedArenaVector<HInstruction*> worklist(allocator.Adapter(kArenaAllocMisc));
ArenaBitVector processed_instructions(&allocator, number_of_instructions, /* expandable= */ false);
processed_instructions.ClearAllBits();
ArenaBitVector post_dominated(&allocator, graph_->GetBlocks().size(), /* expandable= */ false);
post_dominated.ClearAllBits();
// Step (1): Visit post order to get a subset of blocks post dominated by `end_block`.
// TODO(ngeoffray): Getting the full set of post-dominated should be done by
// computing the post dominator tree, but that could be too time consuming. Also,
// we should start the analysis from blocks dominated by an uncommon branch, but we
// don't profile branches yet.
bool found_block = false;
for (HBasicBlock* block : graph_->GetPostOrder()) {
if (block == end_block) {
found_block = true;
post_dominated.SetBit(block->GetBlockId());
} else if (found_block) {
bool is_post_dominated = true;
DCHECK_NE(block, graph_->GetExitBlock())
<< "We shouldn't encounter the exit block after `end_block`.";
// BasicBlock that are try entries look like this:
// BasicBlock i:
// instr 1
// ...
// instr N
// TryBoundary kind:entry ---Try begins here---
//
// Due to how our BasicBlocks are structured, BasicBlock i will have an xhandler successor
// since we are starting a try. If we use `GetSuccessors` for this case, we will check if
// the catch block is post_dominated.
//
// However, this catch block doesn't matter: when we sink the instruction into that
// BasicBlock i, we do it before the TryBoundary (i.e. outside of the try and outside the
// catch's domain). We can ignore catch blocks using `GetNormalSuccessors` to sink code
// right before the start of a try block.
//
// On the other side of the coin, BasicBlock that are try exits look like this:
// BasicBlock j:
// instr 1
// ...
// instr N
// TryBoundary kind:exit ---Try ends here---
//
// If we sink to these basic blocks we would be sinking inside of the try so we would like
// to check the catch block for post dominance.
const bool ends_with_try_boundary_entry =
block->EndsWithTryBoundary() && block->GetLastInstruction()->AsTryBoundary()->IsEntry();
ArrayRef<HBasicBlock* const> successors =
ends_with_try_boundary_entry ? block->GetNormalSuccessors() :
ArrayRef<HBasicBlock* const>(block->GetSuccessors());
for (HBasicBlock* successor : successors) {
if (!post_dominated.IsBitSet(successor->GetBlockId())) {
is_post_dominated = false;
break;
}
}
if (is_post_dominated) {
post_dominated.SetBit(block->GetBlockId());
}
}
}
// Now that we have found a subset of post-dominated blocks, add to the worklist all inputs
// of instructions in these blocks that are not themselves in these blocks.
// Also find the common dominator of the found post dominated blocks, to help filtering
// out un-movable uses in step (2).
CommonDominator finder(end_block);
for (size_t i = 0, e = graph_->GetBlocks().size(); i < e; ++i) {
if (post_dominated.IsBitSet(i)) {
finder.Update(graph_->GetBlocks()[i]);
AddInputs(graph_->GetBlocks()[i], processed_instructions, post_dominated, &worklist);
}
}
HBasicBlock* common_dominator = finder.Get();
// Step (2): iterate over the worklist to find sinking candidates.
ArenaBitVector instructions_that_can_move(
&allocator, number_of_instructions, /* expandable= */ false);
instructions_that_can_move.ClearAllBits();
ScopedArenaVector<ScopedArenaVector<HInstruction*>> instructions_to_move(
graph_->GetBlocks().size(),
ScopedArenaVector<HInstruction*>(allocator.Adapter(kArenaAllocMisc)),
allocator.Adapter(kArenaAllocMisc));
while (!worklist.empty()) {
HInstruction* instruction = worklist.back();
if (processed_instructions.IsBitSet(instruction->GetId())) {
// The instruction has already been processed, continue. This happens
// when the instruction is the input/user of multiple instructions.
worklist.pop_back();
continue;
}
bool all_users_in_post_dominated_blocks = true;
bool can_move = true;
// Check users of the instruction.
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
HInstruction* user = use.GetUser();
if (!post_dominated.IsBitSet(user->GetBlock()->GetBlockId()) &&
!instructions_that_can_move.IsBitSet(user->GetId())) {
all_users_in_post_dominated_blocks = false;
// If we've already processed this user, or the user cannot be moved, or
// is not dominating the post dominated blocks, bail.
// TODO(ngeoffray): The domination check is an approximation. We should
// instead check if the dominated blocks post dominate the user's block,
// but we do not have post dominance information here.
if (processed_instructions.IsBitSet(user->GetId()) ||
!IsInterestingInstruction(user) ||
!user->GetBlock()->Dominates(common_dominator)) {
can_move = false;
break;
}
}
}
// Check environment users of the instruction. Some of these users require
// the instruction not to move.
if (all_users_in_post_dominated_blocks) {
for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
HEnvironment* environment = use.GetUser();
HInstruction* user = environment->GetHolder();
if (!post_dominated.IsBitSet(user->GetBlock()->GetBlockId())) {
if (graph_->IsDebuggable() ||
user->IsDeoptimize() ||
user->CanThrowIntoCatchBlock() ||
(user->IsSuspendCheck() && graph_->IsCompilingOsr())) {
can_move = false;
break;
}
}
}
}
if (!can_move) {
// Instruction cannot be moved, mark it as processed and remove it from the work
// list.
processed_instructions.SetBit(instruction->GetId());
worklist.pop_back();
} else if (all_users_in_post_dominated_blocks) {
// Instruction is a candidate for being sunk. Mark it as such, remove it from the
// work list, and add its inputs to the work list.
instructions_that_can_move.SetBit(instruction->GetId());
instructions_to_move[instruction->GetBlock()->GetBlockId()].push_back(instruction);
processed_instructions.SetBit(instruction->GetId());
worklist.pop_back();
AddInputs(instruction, processed_instructions, post_dominated, &worklist);
// Drop the environment use not in the list of post-dominated block. This is
// to help step (3) of this optimization, when we start moving instructions
// closer to their use.
for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
HEnvironment* environment = use.GetUser();
HInstruction* user = environment->GetHolder();
if (!post_dominated.IsBitSet(user->GetBlock()->GetBlockId())) {
environment->RemoveAsUserOfInput(use.GetIndex());
environment->SetRawEnvAt(use.GetIndex(), nullptr);
}
}
} else {
// The information we have on the users was not enough to decide whether the
// instruction could be moved.
// Add the users to the work list, and keep the instruction in the work list
// to process it again once all users have been processed.
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
AddInstruction(use.GetUser(), processed_instructions, post_dominated, &worklist);
}
}
}
// We want to process the instructions in reverse dominated order. This is required for heap
// stores. To guarantee this (including the transitivity of incomparability) we have some extra
// bookkeeping.
ScopedArenaVector<HInstruction*> instructions_to_move_sorted(allocator.Adapter(kArenaAllocMisc));
for (HBasicBlock* block : graph_->GetPostOrder()) {
const int block_id = block->GetBlockId();
// Order the block itself first.
std::sort(instructions_to_move[block_id].begin(),
instructions_to_move[block_id].end(),
[&block](HInstruction* a, HInstruction* b) {
return block->GetInstructions().FoundBefore(b, a);
});
for (HInstruction* instruction : instructions_to_move[block_id]) {
instructions_to_move_sorted.push_back(instruction);
}
}
if (kIsDebugBuild) {
// We should have ordered the instructions in reverse dominated order. This means that
// instructions shouldn't dominate instructions that come after it in the vector.
for (size_t i = 0; i < instructions_to_move_sorted.size(); ++i) {
for (size_t j = i + 1; j < instructions_to_move_sorted.size(); ++j) {
if (instructions_to_move_sorted[i]->StrictlyDominates(instructions_to_move_sorted[j])) {
std::stringstream ss;
graph_->Dump(ss, nullptr);
ss << "\n"
<< "{";
for (HInstruction* instr : instructions_to_move_sorted) {
ss << *instr << " in block: " << instr->GetBlock() << ", ";
}
ss << "}\n";
ss << "i = " << i << " which is " << *instructions_to_move_sorted[i]
<< "strictly dominates j = " << j << " which is " << *instructions_to_move_sorted[j]
<< "\n";
LOG(FATAL) << "Unexpected ordering of code sinking instructions: " << ss.str();
}
}
}
}
// Step (3): Try to move sinking candidates.
for (HInstruction* instruction : instructions_to_move_sorted) {
HInstruction* position = nullptr;
if (instruction->IsArraySet()
|| instruction->IsInstanceFieldSet()
|| instruction->IsConstructorFence()) {
if (!instructions_that_can_move.IsBitSet(instruction->InputAt(0)->GetId())) {
// A store can trivially move, but it can safely do so only if the heap
// location it stores to can also move.
// TODO(ngeoffray): Handle allocation/store cycles by pruning these instructions
// from the set and all their inputs.
continue;
}
// Find the position of the instruction we're storing into, filtering out this
// store and all other stores to that instruction.
position = FindIdealPosition(instruction->InputAt(0), post_dominated, /* filter= */ true);
// The position needs to be dominated by the store, in order for the store to move there.
if (position == nullptr || !instruction->GetBlock()->Dominates(position->GetBlock())) {
continue;
}
} else {
// Find the ideal position within the post dominated blocks.
position = FindIdealPosition(instruction, post_dominated);
if (position == nullptr) {
continue;
}
}
// Bail if we could not find a position in the post dominated blocks (for example,
// if there are multiple users whose common dominator is not in the list of
// post dominated blocks).
if (!post_dominated.IsBitSet(position->GetBlock()->GetBlockId())) {
continue;
}
MaybeRecordStat(stats_, MethodCompilationStat::kInstructionSunk);
instruction->MoveBefore(position, /* do_checks= */ false);
}
}
void CodeSinking::ReturnSinking() {
HBasicBlock* exit = graph_->GetExitBlock();
DCHECK(exit != nullptr);
int number_of_returns = 0;
bool saw_return = false;
for (HBasicBlock* pred : exit->GetPredecessors()) {
// TODO(solanes): We might have Return/ReturnVoid->TryBoundary->Exit. We can theoretically
// handle them and move them out of the TryBoundary. However, it is a border case and it adds
// codebase complexity.
if (pred->GetLastInstruction()->IsReturn() || pred->GetLastInstruction()->IsReturnVoid()) {
saw_return |= pred->GetLastInstruction()->IsReturn();
++number_of_returns;
}
}
if (number_of_returns < 2) {
// Nothing to do.
return;
}
// `new_block` will coalesce the Return instructions into Phi+Return, or the ReturnVoid
// instructions into a ReturnVoid.
HBasicBlock* new_block = new (graph_->GetAllocator()) HBasicBlock(graph_, exit->GetDexPc());
if (saw_return) {
HPhi* new_phi = nullptr;
for (size_t i = 0; i < exit->GetPredecessors().size(); /*++i in loop*/) {
HBasicBlock* pred = exit->GetPredecessors()[i];
if (!pred->GetLastInstruction()->IsReturn()) {
++i;
continue;
}
HReturn* ret = pred->GetLastInstruction()->AsReturn();
if (new_phi == nullptr) {
// Create the new_phi, if we haven't done so yet. We do it here since we need to know the
// type to assign to it.
new_phi = new (graph_->GetAllocator()) HPhi(graph_->GetAllocator(),
kNoRegNumber,
/*number_of_inputs=*/0,
ret->InputAt(0)->GetType());
new_block->AddPhi(new_phi);
}
new_phi->AddInput(ret->InputAt(0));
pred->ReplaceAndRemoveInstructionWith(ret,
new (graph_->GetAllocator()) HGoto(ret->GetDexPc()));
pred->ReplaceSuccessor(exit, new_block);
// Since we are removing a predecessor, there's no need to increment `i`.
}
new_block->AddInstruction(new (graph_->GetAllocator()) HReturn(new_phi, exit->GetDexPc()));
} else {
for (size_t i = 0; i < exit->GetPredecessors().size(); /*++i in loop*/) {
HBasicBlock* pred = exit->GetPredecessors()[i];
if (!pred->GetLastInstruction()->IsReturnVoid()) {
++i;
continue;
}
HReturnVoid* ret = pred->GetLastInstruction()->AsReturnVoid();
pred->ReplaceAndRemoveInstructionWith(ret,
new (graph_->GetAllocator()) HGoto(ret->GetDexPc()));
pred->ReplaceSuccessor(exit, new_block);
// Since we are removing a predecessor, there's no need to increment `i`.
}
new_block->AddInstruction(new (graph_->GetAllocator()) HReturnVoid(exit->GetDexPc()));
}
new_block->AddSuccessor(exit);
graph_->AddBlock(new_block);
// Recompute dominance since we added a new block.
graph_->ClearDominanceInformation();
graph_->ComputeDominanceInformation();
}
} // namespace art