blob: 7f80dbccf7bdf4d6e999bae365c7fb6034bdba4f [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_
#define ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_
#include <vector>
#include "arch/x86_64/instruction_set_features_x86_64.h"
#include "base/arena_containers.h"
#include "base/array_ref.h"
#include "base/bit_utils.h"
#include "base/globals.h"
#include "base/macros.h"
#include "constants_x86_64.h"
#include "heap_poisoning.h"
#include "managed_register_x86_64.h"
#include "offsets.h"
#include "utils/assembler.h"
namespace art HIDDEN {
namespace x86_64 {
// Encodes an immediate value for operands.
//
// Note: Immediates can be 64b on x86-64 for certain instructions, but are often restricted
// to 32b.
//
// Note: As we support cross-compilation, the value type must be int64_t. Please be aware of
// conversion rules in expressions regarding negation, especially size_t on 32b.
class Immediate : public ValueObject {
public:
explicit Immediate(int64_t value_in) : value_(value_in) {}
int64_t value() const { return value_; }
bool is_int8() const { return IsInt<8>(value_); }
bool is_uint8() const { return IsUint<8>(value_); }
bool is_int16() const { return IsInt<16>(value_); }
bool is_uint16() const { return IsUint<16>(value_); }
bool is_int32() const { return IsInt<32>(value_); }
private:
const int64_t value_;
};
class Operand : public ValueObject {
public:
uint8_t mod() const {
return (encoding_at(0) >> 6) & 3;
}
Register rm() const {
return static_cast<Register>(encoding_at(0) & 7);
}
ScaleFactor scale() const {
return static_cast<ScaleFactor>((encoding_at(1) >> 6) & 3);
}
Register index() const {
return static_cast<Register>((encoding_at(1) >> 3) & 7);
}
Register base() const {
return static_cast<Register>(encoding_at(1) & 7);
}
CpuRegister cpu_rm() const {
int ext = (rex_ & 1) != 0 ? x86_64::R8 : x86_64::RAX;
return static_cast<CpuRegister>(rm() + ext);
}
CpuRegister cpu_index() const {
int ext = (rex_ & 2) != 0 ? x86_64::R8 : x86_64::RAX;
return static_cast<CpuRegister>(index() + ext);
}
CpuRegister cpu_base() const {
int ext = (rex_ & 1) != 0 ? x86_64::R8 : x86_64::RAX;
return static_cast<CpuRegister>(base() + ext);
}
uint8_t rex() const {
return rex_;
}
int8_t disp8() const {
CHECK_GE(length_, 2);
return static_cast<int8_t>(encoding_[length_ - 1]);
}
int32_t disp32() const {
CHECK_GE(length_, 5);
int32_t value;
memcpy(&value, &encoding_[length_ - 4], sizeof(value));
return value;
}
int32_t disp() const {
switch (mod()) {
case 0:
// With mod 00b RBP is special and means disp32 (either in r/m or in SIB base).
return (rm() == RBP || (rm() == RSP && base() == RBP)) ? disp32() : 0;
case 1:
return disp8();
case 2:
return disp32();
default:
// Mod 11b means reg/reg, so there is no address and consequently no displacement.
DCHECK(false) << "there is no displacement in x86_64 reg/reg operand";
UNREACHABLE();
}
}
bool IsRegister(CpuRegister reg) const {
return ((encoding_[0] & 0xF8) == 0xC0) // Addressing mode is register only.
&& ((encoding_[0] & 0x07) == reg.LowBits()) // Register codes match.
&& (reg.NeedsRex() == ((rex_ & 1) != 0)); // REX.000B bits match.
}
AssemblerFixup* GetFixup() const {
return fixup_;
}
inline bool operator==(const Operand &op) const {
return rex_ == op.rex_ &&
length_ == op.length_ &&
memcmp(encoding_, op.encoding_, length_) == 0 &&
fixup_ == op.fixup_;
}
protected:
// Operand can be sub classed (e.g: Address).
Operand() : rex_(0), length_(0), fixup_(nullptr) { }
void SetModRM(uint8_t mod_in, CpuRegister rm_in) {
CHECK_EQ(mod_in & ~3, 0);
if (rm_in.NeedsRex()) {
rex_ |= 0x41; // REX.000B
}
encoding_[0] = (mod_in << 6) | rm_in.LowBits();
length_ = 1;
}
void SetSIB(ScaleFactor scale_in, CpuRegister index_in, CpuRegister base_in) {
CHECK_EQ(length_, 1);
CHECK_EQ(scale_in & ~3, 0);
if (base_in.NeedsRex()) {
rex_ |= 0x41; // REX.000B
}
if (index_in.NeedsRex()) {
rex_ |= 0x42; // REX.00X0
}
encoding_[1] = (scale_in << 6) | (static_cast<uint8_t>(index_in.LowBits()) << 3) |
static_cast<uint8_t>(base_in.LowBits());
length_ = 2;
}
void SetDisp8(int8_t disp) {
CHECK(length_ == 1 || length_ == 2);
encoding_[length_++] = static_cast<uint8_t>(disp);
}
void SetDisp32(int32_t disp) {
CHECK(length_ == 1 || length_ == 2);
int disp_size = sizeof(disp);
memmove(&encoding_[length_], &disp, disp_size);
length_ += disp_size;
}
void SetFixup(AssemblerFixup* fixup) {
fixup_ = fixup;
}
private:
uint8_t rex_;
uint8_t length_;
uint8_t encoding_[6];
AssemblerFixup* fixup_;
explicit Operand(CpuRegister reg) : rex_(0), length_(0), fixup_(nullptr) { SetModRM(3, reg); }
// Get the operand encoding byte at the given index.
uint8_t encoding_at(int index_in) const {
CHECK_GE(index_in, 0);
CHECK_LT(index_in, length_);
return encoding_[index_in];
}
friend class X86_64Assembler;
};
class Address : public Operand {
public:
Address(CpuRegister base_in, int32_t disp) {
Init(base_in, disp);
}
Address(CpuRegister base_in, Offset disp) {
Init(base_in, disp.Int32Value());
}
Address(CpuRegister base_in, FrameOffset disp) {
CHECK_EQ(base_in.AsRegister(), RSP);
Init(CpuRegister(RSP), disp.Int32Value());
}
Address(CpuRegister base_in, MemberOffset disp) {
Init(base_in, disp.Int32Value());
}
void Init(CpuRegister base_in, int32_t disp) {
if (disp == 0 && base_in.LowBits() != RBP) {
SetModRM(0, base_in);
if (base_in.LowBits() == RSP) {
SetSIB(TIMES_1, CpuRegister(RSP), base_in);
}
} else if (disp >= -128 && disp <= 127) {
SetModRM(1, base_in);
if (base_in.LowBits() == RSP) {
SetSIB(TIMES_1, CpuRegister(RSP), base_in);
}
SetDisp8(disp);
} else {
SetModRM(2, base_in);
if (base_in.LowBits() == RSP) {
SetSIB(TIMES_1, CpuRegister(RSP), base_in);
}
SetDisp32(disp);
}
}
Address(CpuRegister index_in, ScaleFactor scale_in, int32_t disp) {
CHECK_NE(index_in.AsRegister(), RSP); // Illegal addressing mode.
SetModRM(0, CpuRegister(RSP));
SetSIB(scale_in, index_in, CpuRegister(RBP));
SetDisp32(disp);
}
Address(CpuRegister base_in, CpuRegister index_in, ScaleFactor scale_in, int32_t disp) {
CHECK_NE(index_in.AsRegister(), RSP); // Illegal addressing mode.
if (disp == 0 && base_in.LowBits() != RBP) {
SetModRM(0, CpuRegister(RSP));
SetSIB(scale_in, index_in, base_in);
} else if (disp >= -128 && disp <= 127) {
SetModRM(1, CpuRegister(RSP));
SetSIB(scale_in, index_in, base_in);
SetDisp8(disp);
} else {
SetModRM(2, CpuRegister(RSP));
SetSIB(scale_in, index_in, base_in);
SetDisp32(disp);
}
}
// If no_rip is true then the Absolute address isn't RIP relative.
static Address Absolute(uintptr_t addr, bool no_rip = false) {
Address result;
if (no_rip) {
result.SetModRM(0, CpuRegister(RSP));
result.SetSIB(TIMES_1, CpuRegister(RSP), CpuRegister(RBP));
result.SetDisp32(addr);
} else {
// RIP addressing is done using RBP as the base register.
// The value in RBP isn't used. Instead the offset is added to RIP.
result.SetModRM(0, CpuRegister(RBP));
result.SetDisp32(addr);
}
return result;
}
// An RIP relative address that will be fixed up later.
static Address RIP(AssemblerFixup* fixup) {
Address result;
// RIP addressing is done using RBP as the base register.
// The value in RBP isn't used. Instead the offset is added to RIP.
result.SetModRM(0, CpuRegister(RBP));
result.SetDisp32(0);
result.SetFixup(fixup);
return result;
}
// If no_rip is true then the Absolute address isn't RIP relative.
static Address Absolute(ThreadOffset64 addr, bool no_rip = false) {
return Absolute(addr.Int32Value(), no_rip);
}
// Break the address into pieces and reassemble it again with a new displacement.
// Note that it may require a new addressing mode if displacement size is changed.
static Address displace(const Address &addr, int32_t disp) {
const int32_t new_disp = addr.disp() + disp;
const bool sib = addr.rm() == RSP;
const bool rbp = RBP == (sib ? addr.base() : addr.rm());
Address new_addr;
if (addr.mod() == 0 && rbp) {
// Special case: mod 00b and RBP in r/m or SIB base => 32-bit displacement.
// This case includes RIP-relative addressing.
new_addr.SetModRM(0, addr.cpu_rm());
if (sib) {
new_addr.SetSIB(addr.scale(), addr.cpu_index(), addr.cpu_base());
}
new_addr.SetDisp32(new_disp);
} else if (new_disp == 0 && !rbp) {
// Mod 00b (excluding a special case for RBP) => no displacement.
new_addr.SetModRM(0, addr.cpu_rm());
if (sib) {
new_addr.SetSIB(addr.scale(), addr.cpu_index(), addr.cpu_base());
}
} else if (new_disp >= -128 && new_disp <= 127) {
// Mod 01b => 8-bit displacement.
new_addr.SetModRM(1, addr.cpu_rm());
if (sib) {
new_addr.SetSIB(addr.scale(), addr.cpu_index(), addr.cpu_base());
}
new_addr.SetDisp8(new_disp);
} else {
// Mod 10b => 32-bit displacement.
new_addr.SetModRM(2, addr.cpu_rm());
if (sib) {
new_addr.SetSIB(addr.scale(), addr.cpu_index(), addr.cpu_base());
}
new_addr.SetDisp32(new_disp);
}
new_addr.SetFixup(addr.GetFixup());
return new_addr;
}
inline bool operator==(const Address& addr) const {
return static_cast<const Operand&>(*this) == static_cast<const Operand&>(addr);
}
private:
Address() {}
};
std::ostream& operator<<(std::ostream& os, const Address& addr);
/**
* Class to handle constant area values.
*/
class ConstantArea {
public:
explicit ConstantArea(ArenaAllocator* allocator)
: buffer_(allocator->Adapter(kArenaAllocAssembler)) {}
// Add a double to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddDouble(double v);
// Add a float to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddFloat(float v);
// Add an int32_t to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddInt32(int32_t v);
// Add an int32_t to the end of the constant area, returning the offset into
// the constant area where the literal resides.
size_t AppendInt32(int32_t v);
// Add an int64_t to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddInt64(int64_t v);
size_t GetSize() const {
return buffer_.size() * elem_size_;
}
ArrayRef<const int32_t> GetBuffer() const {
return ArrayRef<const int32_t>(buffer_);
}
private:
static constexpr size_t elem_size_ = sizeof(int32_t);
ArenaVector<int32_t> buffer_;
};
// This is equivalent to the Label class, used in a slightly different context. We
// inherit the functionality of the Label class, but prevent unintended
// derived-to-base conversions by making the base class private.
class NearLabel : private Label {
public:
NearLabel() : Label() {}
// Expose the Label routines that we need.
using Label::Position;
using Label::LinkPosition;
using Label::IsBound;
using Label::IsUnused;
using Label::IsLinked;
private:
using Label::BindTo;
using Label::LinkTo;
friend class x86_64::X86_64Assembler;
DISALLOW_COPY_AND_ASSIGN(NearLabel);
};
class X86_64Assembler final : public Assembler {
public:
explicit X86_64Assembler(ArenaAllocator* allocator,
const X86_64InstructionSetFeatures* instruction_set_features = nullptr)
: Assembler(allocator),
constant_area_(allocator),
has_AVX_(instruction_set_features != nullptr ? instruction_set_features->HasAVX(): false),
has_AVX2_(instruction_set_features != nullptr ? instruction_set_features->HasAVX2() : false) {}
virtual ~X86_64Assembler() {}
/*
* Emit Machine Instructions.
*/
void call(CpuRegister reg);
void call(const Address& address);
void call(Label* label);
void pushq(CpuRegister reg);
void pushq(const Address& address);
void pushq(const Immediate& imm);
void popq(CpuRegister reg);
void popq(const Address& address);
void movq(CpuRegister dst, const Immediate& src);
void movl(CpuRegister dst, const Immediate& src);
void movq(CpuRegister dst, CpuRegister src);
void movl(CpuRegister dst, CpuRegister src);
void movntl(const Address& dst, CpuRegister src);
void movntq(const Address& dst, CpuRegister src);
void movq(CpuRegister dst, const Address& src);
void movl(CpuRegister dst, const Address& src);
void movq(const Address& dst, CpuRegister src);
void movq(const Address& dst, const Immediate& imm);
void movl(const Address& dst, CpuRegister src);
void movl(const Address& dst, const Immediate& imm);
void cmov(Condition c, CpuRegister dst, CpuRegister src); // This is the 64b version.
void cmov(Condition c, CpuRegister dst, CpuRegister src, bool is64bit);
void cmov(Condition c, CpuRegister dst, const Address& src, bool is64bit);
void movzxb(CpuRegister dst, CpuRegister src);
void movzxb(CpuRegister dst, const Address& src);
void movsxb(CpuRegister dst, CpuRegister src);
void movsxb(CpuRegister dst, const Address& src);
void movb(CpuRegister dst, const Address& src);
void movb(const Address& dst, CpuRegister src);
void movb(const Address& dst, const Immediate& imm);
void movzxw(CpuRegister dst, CpuRegister src);
void movzxw(CpuRegister dst, const Address& src);
void movsxw(CpuRegister dst, CpuRegister src);
void movsxw(CpuRegister dst, const Address& src);
void movw(CpuRegister dst, const Address& src);
void movw(const Address& dst, CpuRegister src);
void movw(const Address& dst, const Immediate& imm);
void leaq(CpuRegister dst, const Address& src);
void leal(CpuRegister dst, const Address& src);
void movaps(XmmRegister dst, XmmRegister src); // move
void movaps(XmmRegister dst, const Address& src); // load aligned
void movups(XmmRegister dst, const Address& src); // load unaligned
void movaps(const Address& dst, XmmRegister src); // store aligned
void movups(const Address& dst, XmmRegister src); // store unaligned
void vmovaps(XmmRegister dst, XmmRegister src); // move
void vmovaps(XmmRegister dst, const Address& src); // load aligned
void vmovaps(const Address& dst, XmmRegister src); // store aligned
void vmovups(XmmRegister dst, const Address& src); // load unaligned
void vmovups(const Address& dst, XmmRegister src); // store unaligned
void movss(XmmRegister dst, const Address& src);
void movss(const Address& dst, XmmRegister src);
void movss(XmmRegister dst, XmmRegister src);
void movsxd(CpuRegister dst, CpuRegister src);
void movsxd(CpuRegister dst, const Address& src);
void movd(XmmRegister dst, CpuRegister src); // Note: this is the r64 version, formally movq.
void movd(CpuRegister dst, XmmRegister src); // Note: this is the r64 version, formally movq.
void movd(XmmRegister dst, CpuRegister src, bool is64bit);
void movd(CpuRegister dst, XmmRegister src, bool is64bit);
void addss(XmmRegister dst, XmmRegister src);
void addss(XmmRegister dst, const Address& src);
void subss(XmmRegister dst, XmmRegister src);
void subss(XmmRegister dst, const Address& src);
void mulss(XmmRegister dst, XmmRegister src);
void mulss(XmmRegister dst, const Address& src);
void divss(XmmRegister dst, XmmRegister src);
void divss(XmmRegister dst, const Address& src);
void addps(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void subps(XmmRegister dst, XmmRegister src);
void mulps(XmmRegister dst, XmmRegister src);
void divps(XmmRegister dst, XmmRegister src);
void vmulps(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vmulpd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vdivps(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vdivpd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vaddps(XmmRegister dst, XmmRegister add_left, XmmRegister add_right);
void vsubps(XmmRegister dst, XmmRegister add_left, XmmRegister add_right);
void vsubpd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right);
void vaddpd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right);
void vfmadd213ss(XmmRegister accumulator, XmmRegister left, XmmRegister right);
void vfmadd213sd(XmmRegister accumulator, XmmRegister left, XmmRegister right);
void movapd(XmmRegister dst, XmmRegister src); // move
void movapd(XmmRegister dst, const Address& src); // load aligned
void movupd(XmmRegister dst, const Address& src); // load unaligned
void movapd(const Address& dst, XmmRegister src); // store aligned
void movupd(const Address& dst, XmmRegister src); // store unaligned
void vmovapd(XmmRegister dst, XmmRegister src); // move
void vmovapd(XmmRegister dst, const Address& src); // load aligned
void vmovapd(const Address& dst, XmmRegister src); // store aligned
void vmovupd(XmmRegister dst, const Address& src); // load unaligned
void vmovupd(const Address& dst, XmmRegister src); // store unaligned
void movsd(XmmRegister dst, const Address& src);
void movsd(const Address& dst, XmmRegister src);
void movsd(XmmRegister dst, XmmRegister src);
void addsd(XmmRegister dst, XmmRegister src);
void addsd(XmmRegister dst, const Address& src);
void subsd(XmmRegister dst, XmmRegister src);
void subsd(XmmRegister dst, const Address& src);
void mulsd(XmmRegister dst, XmmRegister src);
void mulsd(XmmRegister dst, const Address& src);
void divsd(XmmRegister dst, XmmRegister src);
void divsd(XmmRegister dst, const Address& src);
void addpd(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void subpd(XmmRegister dst, XmmRegister src);
void mulpd(XmmRegister dst, XmmRegister src);
void divpd(XmmRegister dst, XmmRegister src);
void movdqa(XmmRegister dst, XmmRegister src); // move
void movdqa(XmmRegister dst, const Address& src); // load aligned
void movdqu(XmmRegister dst, const Address& src); // load unaligned
void movdqa(const Address& dst, XmmRegister src); // store aligned
void movdqu(const Address& dst, XmmRegister src); // store unaligned
void vmovdqa(XmmRegister dst, XmmRegister src); // move
void vmovdqa(XmmRegister dst, const Address& src); // load aligned
void vmovdqa(const Address& dst, XmmRegister src); // store aligned
void vmovdqu(XmmRegister dst, const Address& src); // load unaligned
void vmovdqu(const Address& dst, XmmRegister src); // store unaligned
void paddb(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void psubb(XmmRegister dst, XmmRegister src);
void vpaddb(XmmRegister dst, XmmRegister add_left, XmmRegister add_right);
void vpaddw(XmmRegister dst, XmmRegister add_left, XmmRegister add_right);
void paddw(XmmRegister dst, XmmRegister src);
void psubw(XmmRegister dst, XmmRegister src);
void pmullw(XmmRegister dst, XmmRegister src);
void vpmullw(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vpsubb(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vpsubw(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vpsubd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void paddd(XmmRegister dst, XmmRegister src);
void psubd(XmmRegister dst, XmmRegister src);
void pmulld(XmmRegister dst, XmmRegister src);
void vpmulld(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vpaddd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void paddq(XmmRegister dst, XmmRegister src);
void psubq(XmmRegister dst, XmmRegister src);
void vpaddq(XmmRegister dst, XmmRegister add_left, XmmRegister add_right);
void vpsubq(XmmRegister dst, XmmRegister add_left, XmmRegister add_right);
void paddusb(XmmRegister dst, XmmRegister src);
void paddsb(XmmRegister dst, XmmRegister src);
void paddusw(XmmRegister dst, XmmRegister src);
void paddsw(XmmRegister dst, XmmRegister src);
void psubusb(XmmRegister dst, XmmRegister src);
void psubsb(XmmRegister dst, XmmRegister src);
void psubusw(XmmRegister dst, XmmRegister src);
void psubsw(XmmRegister dst, XmmRegister src);
void cvtsi2ss(XmmRegister dst, CpuRegister src); // Note: this is the r/m32 version.
void cvtsi2ss(XmmRegister dst, CpuRegister src, bool is64bit);
void cvtsi2ss(XmmRegister dst, const Address& src, bool is64bit);
void cvtsi2sd(XmmRegister dst, CpuRegister src); // Note: this is the r/m32 version.
void cvtsi2sd(XmmRegister dst, CpuRegister src, bool is64bit);
void cvtsi2sd(XmmRegister dst, const Address& src, bool is64bit);
void cvtss2si(CpuRegister dst, XmmRegister src); // Note: this is the r32 version.
void cvtss2sd(XmmRegister dst, XmmRegister src);
void cvtss2sd(XmmRegister dst, const Address& src);
void cvtsd2si(CpuRegister dst, XmmRegister src); // Note: this is the r32 version.
void cvtsd2ss(XmmRegister dst, XmmRegister src);
void cvtsd2ss(XmmRegister dst, const Address& src);
void cvttss2si(CpuRegister dst, XmmRegister src); // Note: this is the r32 version.
void cvttss2si(CpuRegister dst, XmmRegister src, bool is64bit);
void cvttsd2si(CpuRegister dst, XmmRegister src); // Note: this is the r32 version.
void cvttsd2si(CpuRegister dst, XmmRegister src, bool is64bit);
void cvtdq2ps(XmmRegister dst, XmmRegister src);
void cvtdq2pd(XmmRegister dst, XmmRegister src);
void comiss(XmmRegister a, XmmRegister b);
void comiss(XmmRegister a, const Address& b);
void comisd(XmmRegister a, XmmRegister b);
void comisd(XmmRegister a, const Address& b);
void ucomiss(XmmRegister a, XmmRegister b);
void ucomiss(XmmRegister a, const Address& b);
void ucomisd(XmmRegister a, XmmRegister b);
void ucomisd(XmmRegister a, const Address& b);
void roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm);
void roundss(XmmRegister dst, XmmRegister src, const Immediate& imm);
void sqrtsd(XmmRegister dst, XmmRegister src);
void sqrtss(XmmRegister dst, XmmRegister src);
void xorpd(XmmRegister dst, const Address& src);
void xorpd(XmmRegister dst, XmmRegister src);
void xorps(XmmRegister dst, const Address& src);
void xorps(XmmRegister dst, XmmRegister src);
void pxor(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void vpxor(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vxorps(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vxorpd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void andpd(XmmRegister dst, const Address& src);
void andpd(XmmRegister dst, XmmRegister src);
void andps(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void pand(XmmRegister dst, XmmRegister src);
void vpand(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vandps(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vandpd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void andn(CpuRegister dst, CpuRegister src1, CpuRegister src2);
void andnpd(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void andnps(XmmRegister dst, XmmRegister src);
void pandn(XmmRegister dst, XmmRegister src);
void vpandn(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vandnps(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vandnpd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void orpd(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void orps(XmmRegister dst, XmmRegister src);
void por(XmmRegister dst, XmmRegister src);
void vpor(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vorps(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void vorpd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void pavgb(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void pavgw(XmmRegister dst, XmmRegister src);
void psadbw(XmmRegister dst, XmmRegister src);
void pmaddwd(XmmRegister dst, XmmRegister src);
void vpmaddwd(XmmRegister dst, XmmRegister src1, XmmRegister src2);
void phaddw(XmmRegister dst, XmmRegister src);
void phaddd(XmmRegister dst, XmmRegister src);
void haddps(XmmRegister dst, XmmRegister src);
void haddpd(XmmRegister dst, XmmRegister src);
void phsubw(XmmRegister dst, XmmRegister src);
void phsubd(XmmRegister dst, XmmRegister src);
void hsubps(XmmRegister dst, XmmRegister src);
void hsubpd(XmmRegister dst, XmmRegister src);
void pminsb(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void pmaxsb(XmmRegister dst, XmmRegister src);
void pminsw(XmmRegister dst, XmmRegister src);
void pmaxsw(XmmRegister dst, XmmRegister src);
void pminsd(XmmRegister dst, XmmRegister src);
void pmaxsd(XmmRegister dst, XmmRegister src);
void pminub(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void pmaxub(XmmRegister dst, XmmRegister src);
void pminuw(XmmRegister dst, XmmRegister src);
void pmaxuw(XmmRegister dst, XmmRegister src);
void pminud(XmmRegister dst, XmmRegister src);
void pmaxud(XmmRegister dst, XmmRegister src);
void minps(XmmRegister dst, XmmRegister src); // no addr variant (for now)
void maxps(XmmRegister dst, XmmRegister src);
void minpd(XmmRegister dst, XmmRegister src);
void maxpd(XmmRegister dst, XmmRegister src);
void pcmpeqb(XmmRegister dst, XmmRegister src);
void pcmpeqw(XmmRegister dst, XmmRegister src);
void pcmpeqd(XmmRegister dst, XmmRegister src);
void pcmpeqq(XmmRegister dst, XmmRegister src);
void pcmpgtb(XmmRegister dst, XmmRegister src);
void pcmpgtw(XmmRegister dst, XmmRegister src);
void pcmpgtd(XmmRegister dst, XmmRegister src);
void pcmpgtq(XmmRegister dst, XmmRegister src); // SSE4.2
void shufpd(XmmRegister dst, XmmRegister src, const Immediate& imm);
void shufps(XmmRegister dst, XmmRegister src, const Immediate& imm);
void pshufd(XmmRegister dst, XmmRegister src, const Immediate& imm);
void punpcklbw(XmmRegister dst, XmmRegister src);
void punpcklwd(XmmRegister dst, XmmRegister src);
void punpckldq(XmmRegister dst, XmmRegister src);
void punpcklqdq(XmmRegister dst, XmmRegister src);
void punpckhbw(XmmRegister dst, XmmRegister src);
void punpckhwd(XmmRegister dst, XmmRegister src);
void punpckhdq(XmmRegister dst, XmmRegister src);
void punpckhqdq(XmmRegister dst, XmmRegister src);
void psllw(XmmRegister reg, const Immediate& shift_count);
void pslld(XmmRegister reg, const Immediate& shift_count);
void psllq(XmmRegister reg, const Immediate& shift_count);
void psraw(XmmRegister reg, const Immediate& shift_count);
void psrad(XmmRegister reg, const Immediate& shift_count);
// no psraq
void psrlw(XmmRegister reg, const Immediate& shift_count);
void psrld(XmmRegister reg, const Immediate& shift_count);
void psrlq(XmmRegister reg, const Immediate& shift_count);
void psrldq(XmmRegister reg, const Immediate& shift_count);
void flds(const Address& src);
void fstps(const Address& dst);
void fsts(const Address& dst);
void fldl(const Address& src);
void fstpl(const Address& dst);
void fstl(const Address& dst);
void fstsw();
void fucompp();
void fnstcw(const Address& dst);
void fldcw(const Address& src);
void fistpl(const Address& dst);
void fistps(const Address& dst);
void fildl(const Address& src);
void filds(const Address& src);
void fincstp();
void ffree(const Immediate& index);
void fsin();
void fcos();
void fptan();
void fprem();
void xchgb(CpuRegister dst, CpuRegister src);
void xchgb(CpuRegister reg, const Address& address);
void xchgw(CpuRegister dst, CpuRegister src);
void xchgw(CpuRegister reg, const Address& address);
void xchgl(CpuRegister dst, CpuRegister src);
void xchgl(CpuRegister reg, const Address& address);
void xchgq(CpuRegister dst, CpuRegister src);
void xchgq(CpuRegister reg, const Address& address);
void xaddb(CpuRegister dst, CpuRegister src);
void xaddb(const Address& address, CpuRegister reg);
void xaddw(CpuRegister dst, CpuRegister src);
void xaddw(const Address& address, CpuRegister reg);
void xaddl(CpuRegister dst, CpuRegister src);
void xaddl(const Address& address, CpuRegister reg);
void xaddq(CpuRegister dst, CpuRegister src);
void xaddq(const Address& address, CpuRegister reg);
void cmpb(const Address& address, const Immediate& imm);
void cmpw(const Address& address, const Immediate& imm);
void cmpl(CpuRegister reg, const Immediate& imm);
void cmpl(CpuRegister reg0, CpuRegister reg1);
void cmpl(CpuRegister reg, const Address& address);
void cmpl(const Address& address, CpuRegister reg);
void cmpl(const Address& address, const Immediate& imm);
void cmpq(CpuRegister reg0, CpuRegister reg1);
void cmpq(CpuRegister reg0, const Immediate& imm);
void cmpq(CpuRegister reg0, const Address& address);
void cmpq(const Address& address, const Immediate& imm);
void testl(CpuRegister reg1, CpuRegister reg2);
void testl(CpuRegister reg, const Address& address);
void testl(CpuRegister reg, const Immediate& imm);
void testq(CpuRegister reg1, CpuRegister reg2);
void testq(CpuRegister reg, const Address& address);
void testb(const Address& address, const Immediate& imm);
void testl(const Address& address, const Immediate& imm);
void andl(CpuRegister dst, const Immediate& imm);
void andl(CpuRegister dst, CpuRegister src);
void andl(CpuRegister reg, const Address& address);
void andq(CpuRegister dst, const Immediate& imm);
void andq(CpuRegister dst, CpuRegister src);
void andq(CpuRegister reg, const Address& address);
void andw(const Address& address, const Immediate& imm);
void orl(CpuRegister dst, const Immediate& imm);
void orl(CpuRegister dst, CpuRegister src);
void orl(CpuRegister reg, const Address& address);
void orq(CpuRegister dst, CpuRegister src);
void orq(CpuRegister dst, const Immediate& imm);
void orq(CpuRegister reg, const Address& address);
void xorl(CpuRegister dst, CpuRegister src);
void xorl(CpuRegister dst, const Immediate& imm);
void xorl(CpuRegister reg, const Address& address);
void xorq(CpuRegister dst, const Immediate& imm);
void xorq(CpuRegister dst, CpuRegister src);
void xorq(CpuRegister reg, const Address& address);
void addl(CpuRegister dst, CpuRegister src);
void addl(CpuRegister reg, const Immediate& imm);
void addl(CpuRegister reg, const Address& address);
void addl(const Address& address, CpuRegister reg);
void addl(const Address& address, const Immediate& imm);
void addw(CpuRegister reg, const Immediate& imm);
void addw(const Address& address, const Immediate& imm);
void addw(const Address& address, CpuRegister reg);
void addq(CpuRegister reg, const Immediate& imm);
void addq(CpuRegister dst, CpuRegister src);
void addq(CpuRegister dst, const Address& address);
void subl(CpuRegister dst, CpuRegister src);
void subl(CpuRegister reg, const Immediate& imm);
void subl(CpuRegister reg, const Address& address);
void subq(CpuRegister reg, const Immediate& imm);
void subq(CpuRegister dst, CpuRegister src);
void subq(CpuRegister dst, const Address& address);
void cdq();
void cqo();
void idivl(CpuRegister reg);
void idivq(CpuRegister reg);
void divl(CpuRegister reg);
void divq(CpuRegister reg);
void imull(CpuRegister dst, CpuRegister src);
void imull(CpuRegister reg, const Immediate& imm);
void imull(CpuRegister dst, CpuRegister src, const Immediate& imm);
void imull(CpuRegister reg, const Address& address);
void imulq(CpuRegister src);
void imulq(CpuRegister dst, CpuRegister src);
void imulq(CpuRegister reg, const Immediate& imm);
void imulq(CpuRegister reg, const Address& address);
void imulq(CpuRegister dst, CpuRegister reg, const Immediate& imm);
void imull(CpuRegister reg);
void imull(const Address& address);
void mull(CpuRegister reg);
void mull(const Address& address);
void shll(CpuRegister reg, const Immediate& imm);
void shll(CpuRegister operand, CpuRegister shifter);
void shrl(CpuRegister reg, const Immediate& imm);
void shrl(CpuRegister operand, CpuRegister shifter);
void sarl(CpuRegister reg, const Immediate& imm);
void sarl(CpuRegister operand, CpuRegister shifter);
void shlq(CpuRegister reg, const Immediate& imm);
void shlq(CpuRegister operand, CpuRegister shifter);
void shrq(CpuRegister reg, const Immediate& imm);
void shrq(CpuRegister operand, CpuRegister shifter);
void sarq(CpuRegister reg, const Immediate& imm);
void sarq(CpuRegister operand, CpuRegister shifter);
void negl(CpuRegister reg);
void negq(CpuRegister reg);
void notl(CpuRegister reg);
void notq(CpuRegister reg);
void enter(const Immediate& imm);
void leave();
void ret();
void ret(const Immediate& imm);
void nop();
void int3();
void hlt();
void j(Condition condition, Label* label);
void j(Condition condition, NearLabel* label);
void jrcxz(NearLabel* label);
void jmp(CpuRegister reg);
void jmp(const Address& address);
void jmp(Label* label);
void jmp(NearLabel* label);
X86_64Assembler* lock();
void cmpxchgb(const Address& address, CpuRegister reg);
void cmpxchgw(const Address& address, CpuRegister reg);
void cmpxchgl(const Address& address, CpuRegister reg);
void cmpxchgq(const Address& address, CpuRegister reg);
void mfence();
X86_64Assembler* gs();
void setcc(Condition condition, CpuRegister dst);
void bswapl(CpuRegister dst);
void bswapq(CpuRegister dst);
void bsfl(CpuRegister dst, CpuRegister src);
void bsfl(CpuRegister dst, const Address& src);
void bsfq(CpuRegister dst, CpuRegister src);
void bsfq(CpuRegister dst, const Address& src);
void blsi(CpuRegister dst, CpuRegister src); // no addr variant (for now)
void blsmsk(CpuRegister dst, CpuRegister src); // no addr variant (for now)
void blsr(CpuRegister dst, CpuRegister src); // no addr variant (for now)
void bsrl(CpuRegister dst, CpuRegister src);
void bsrl(CpuRegister dst, const Address& src);
void bsrq(CpuRegister dst, CpuRegister src);
void bsrq(CpuRegister dst, const Address& src);
void popcntl(CpuRegister dst, CpuRegister src);
void popcntl(CpuRegister dst, const Address& src);
void popcntq(CpuRegister dst, CpuRegister src);
void popcntq(CpuRegister dst, const Address& src);
void rdtsc();
void rorl(CpuRegister reg, const Immediate& imm);
void rorl(CpuRegister operand, CpuRegister shifter);
void roll(CpuRegister reg, const Immediate& imm);
void roll(CpuRegister operand, CpuRegister shifter);
void rorq(CpuRegister reg, const Immediate& imm);
void rorq(CpuRegister operand, CpuRegister shifter);
void rolq(CpuRegister reg, const Immediate& imm);
void rolq(CpuRegister operand, CpuRegister shifter);
void repne_scasb();
void repne_scasw();
void repe_cmpsw();
void repe_cmpsl();
void repe_cmpsq();
void rep_movsw();
void rep_movsb();
void rep_movsl();
void ud2();
//
// Macros for High-level operations.
//
void AddImmediate(CpuRegister reg, const Immediate& imm);
void LoadDoubleConstant(XmmRegister dst, double value);
void LockCmpxchgb(const Address& address, CpuRegister reg) {
lock()->cmpxchgb(address, reg);
}
void LockCmpxchgw(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// We make sure that the operand size override bytecode is emited before the lock bytecode.
// We test against clang which enforces this bytecode order.
EmitOperandSizeOverride();
EmitUint8(0xF0);
EmitOptionalRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xB1);
EmitOperand(reg.LowBits(), address);
}
void LockCmpxchgl(const Address& address, CpuRegister reg) {
lock()->cmpxchgl(address, reg);
}
void LockCmpxchgq(const Address& address, CpuRegister reg) {
lock()->cmpxchgq(address, reg);
}
void LockXaddb(const Address& address, CpuRegister reg) {
lock()->xaddb(address, reg);
}
void LockXaddw(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// We make sure that the operand size override bytecode is emited before the lock bytecode.
// We test against clang which enforces this bytecode order.
EmitOperandSizeOverride();
EmitUint8(0xF0);
EmitOptionalRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xC1);
EmitOperand(reg.LowBits(), address);
}
void LockXaddl(const Address& address, CpuRegister reg) {
lock()->xaddl(address, reg);
}
void LockXaddq(const Address& address, CpuRegister reg) {
lock()->xaddq(address, reg);
}
//
// Misc. functionality
//
int PreferredLoopAlignment() { return 16; }
void Align(int alignment, int offset);
void Bind(Label* label) override;
void Jump(Label* label) override {
jmp(label);
}
void Bind(NearLabel* label);
// Add a double to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddDouble(double v) { return constant_area_.AddDouble(v); }
// Add a float to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddFloat(float v) { return constant_area_.AddFloat(v); }
// Add an int32_t to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddInt32(int32_t v) {
return constant_area_.AddInt32(v);
}
// Add an int32_t to the end of the constant area, returning the offset into
// the constant area where the literal resides.
size_t AppendInt32(int32_t v) {
return constant_area_.AppendInt32(v);
}
// Add an int64_t to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddInt64(int64_t v) { return constant_area_.AddInt64(v); }
// Add the contents of the constant area to the assembler buffer.
void AddConstantArea();
// Is the constant area empty? Return true if there are no literals in the constant area.
bool IsConstantAreaEmpty() const { return constant_area_.GetSize() == 0; }
// Return the current size of the constant area.
size_t ConstantAreaSize() const { return constant_area_.GetSize(); }
//
// Heap poisoning.
//
// Poison a heap reference contained in `reg`.
void PoisonHeapReference(CpuRegister reg) { negl(reg); }
// Unpoison a heap reference contained in `reg`.
void UnpoisonHeapReference(CpuRegister reg) { negl(reg); }
// Poison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybePoisonHeapReference(CpuRegister reg) {
if (kPoisonHeapReferences) {
PoisonHeapReference(reg);
}
}
// Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybeUnpoisonHeapReference(CpuRegister reg) {
if (kPoisonHeapReferences) {
UnpoisonHeapReference(reg);
}
}
bool CpuHasAVXorAVX2FeatureFlag();
private:
void EmitUint8(uint8_t value);
void EmitInt32(int32_t value);
void EmitInt64(int64_t value);
void EmitRegisterOperand(uint8_t rm, uint8_t reg);
void EmitXmmRegisterOperand(uint8_t rm, XmmRegister reg);
void EmitFixup(AssemblerFixup* fixup);
void EmitOperandSizeOverride();
void EmitOperand(uint8_t rm, const Operand& operand);
void EmitImmediate(const Immediate& imm, bool is_16_op = false);
void EmitComplex(
uint8_t rm, const Operand& operand, const Immediate& immediate, bool is_16_op = false);
void EmitLabel(Label* label, int instruction_size);
void EmitLabelLink(Label* label);
void EmitLabelLink(NearLabel* label);
void EmitGenericShift(bool wide, int rm, CpuRegister reg, const Immediate& imm);
void EmitGenericShift(bool wide, int rm, CpuRegister operand, CpuRegister shifter);
// If any input is not false, output the necessary rex prefix.
void EmitOptionalRex(bool force, bool w, bool r, bool x, bool b);
// Emit a rex prefix byte if necessary for reg. ie if reg is a register in the range R8 to R15.
void EmitOptionalRex32(CpuRegister reg);
void EmitOptionalRex32(CpuRegister dst, CpuRegister src);
void EmitOptionalRex32(XmmRegister dst, XmmRegister src);
void EmitOptionalRex32(CpuRegister dst, XmmRegister src);
void EmitOptionalRex32(XmmRegister dst, CpuRegister src);
void EmitOptionalRex32(const Operand& operand);
void EmitOptionalRex32(CpuRegister dst, const Operand& operand);
void EmitOptionalRex32(XmmRegister dst, const Operand& operand);
// Emit a REX.W prefix plus necessary register bit encodings.
void EmitRex64();
void EmitRex64(CpuRegister reg);
void EmitRex64(const Operand& operand);
void EmitRex64(CpuRegister dst, CpuRegister src);
void EmitRex64(CpuRegister dst, const Operand& operand);
void EmitRex64(XmmRegister dst, const Operand& operand);
void EmitRex64(XmmRegister dst, CpuRegister src);
void EmitRex64(CpuRegister dst, XmmRegister src);
// Emit a REX prefix to normalize byte registers plus necessary register bit encodings.
// `normalize_both` parameter controls if the REX prefix is checked only for the `src` register
// (which is the case for instructions like `movzxb rax, bpl`), or for both `src` and `dst`
// registers (which is the case of instructions like `xchg bpl, al`). By default only `src` is
// used to decide if REX is needed.
void EmitOptionalByteRegNormalizingRex32(CpuRegister dst,
CpuRegister src,
bool normalize_both = false);
void EmitOptionalByteRegNormalizingRex32(CpuRegister dst, const Operand& operand);
uint8_t EmitVexPrefixByteZero(bool is_twobyte_form);
uint8_t EmitVexPrefixByteOne(bool R, bool X, bool B, int SET_VEX_M);
uint8_t EmitVexPrefixByteOne(bool R,
X86_64ManagedRegister operand,
int SET_VEX_L,
int SET_VEX_PP);
uint8_t EmitVexPrefixByteTwo(bool W,
X86_64ManagedRegister operand,
int SET_VEX_L,
int SET_VEX_PP);
uint8_t EmitVexPrefixByteTwo(bool W,
int SET_VEX_L,
int SET_VEX_PP);
// Helper function to emit a shorter variant of XCHG if at least one operand is RAX/EAX/AX.
bool try_xchg_rax(CpuRegister dst,
CpuRegister src,
void (X86_64Assembler::*prefix_fn)(CpuRegister));
ConstantArea constant_area_;
bool has_AVX_; // x86 256bit SIMD AVX.
bool has_AVX2_; // x86 256bit SIMD AVX 2.0.
DISALLOW_COPY_AND_ASSIGN(X86_64Assembler);
};
inline void X86_64Assembler::EmitUint8(uint8_t value) {
buffer_.Emit<uint8_t>(value);
}
inline void X86_64Assembler::EmitInt32(int32_t value) {
buffer_.Emit<int32_t>(value);
}
inline void X86_64Assembler::EmitInt64(int64_t value) {
// Write this 64-bit value as two 32-bit words for alignment reasons
// (this is essentially when running on ARM, which does not allow
// 64-bit unaligned accesses). We assume little-endianness here.
EmitInt32(Low32Bits(value));
EmitInt32(High32Bits(value));
}
inline void X86_64Assembler::EmitRegisterOperand(uint8_t rm, uint8_t reg) {
CHECK_GE(rm, 0);
CHECK_LT(rm, 8);
buffer_.Emit<uint8_t>((0xC0 | (reg & 7)) + (rm << 3));
}
inline void X86_64Assembler::EmitXmmRegisterOperand(uint8_t rm, XmmRegister reg) {
EmitRegisterOperand(rm, static_cast<uint8_t>(reg.AsFloatRegister()));
}
inline void X86_64Assembler::EmitFixup(AssemblerFixup* fixup) {
buffer_.EmitFixup(fixup);
}
inline void X86_64Assembler::EmitOperandSizeOverride() {
EmitUint8(0x66);
}
} // namespace x86_64
} // namespace art
#endif // ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_