blob: 5c77b96a5f71317ca1332736ae7faa9a4595033a [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "interpreter_common.h"
#include "field_helper.h"
#include "mirror/array-inl.h"
namespace art {
namespace interpreter {
void ThrowNullPointerExceptionFromInterpreter(const ShadowFrame& shadow_frame) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
}
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) {
const bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead);
const uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f = FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
Object* obj;
if (is_static) {
obj = f->GetDeclaringClass();
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(shadow_frame.GetCurrentLocationForThrow(), f, true);
return false;
}
}
f->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self);
// Report this field access to instrumentation if needed.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldReadListeners())) {
Object* this_object = f->IsStatic() ? nullptr : obj;
instrumentation->FieldReadEvent(self, this_object, shadow_frame.GetMethod(),
shadow_frame.GetDexPC(), f);
}
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, f->GetBoolean(obj));
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, f->GetByte(obj));
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, f->GetChar(obj));
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, f->GetShort(obj));
break;
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, f->GetInt(obj));
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, f->GetLong(obj));
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, f->GetObject(obj));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoFieldGet functions.
#define EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, _do_check) \
template bool DoFieldGet<_find_type, _field_type, _do_check>(Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data)
#define EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(_find_type, _field_type) \
EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, false); \
EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, true);
// iget-XXX
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstanceObjectRead, Primitive::kPrimNot)
// sget-XXX
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticObjectRead, Primitive::kPrimNot)
#undef EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL
// Handles iget-quick, iget-wide-quick and iget-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type>
bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) {
Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
// Report this field access to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldReadListeners())) {
ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
field_offset.Uint32Value());
DCHECK(f != nullptr);
DCHECK(!f->IsStatic());
instrumentation->FieldReadEvent(Thread::Current(), obj, shadow_frame.GetMethod(),
shadow_frame.GetDexPC(), f);
}
// Note: iget-x-quick instructions are only for non-volatile fields.
const uint32_t vregA = inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset)));
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset)));
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object>(field_offset));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoIGetQuick functions.
#define EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(_field_type) \
template bool DoIGetQuick<_field_type>(ShadowFrame& shadow_frame, const Instruction* inst, \
uint16_t inst_data)
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimInt); // iget-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimLong); // iget-wide-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimNot); // iget-object-quick.
#undef EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL
template<Primitive::Type field_type>
static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
JValue field_value;
switch (field_type) {
case Primitive::kPrimBoolean:
field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimByte:
field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimChar:
field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimShort:
field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimInt:
field_value.SetI(shadow_frame.GetVReg(vreg));
break;
case Primitive::kPrimLong:
field_value.SetJ(shadow_frame.GetVRegLong(vreg));
break;
case Primitive::kPrimNot:
field_value.SetL(shadow_frame.GetVRegReference(vreg));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return field_value;
}
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active>
bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) {
bool do_assignability_check = do_access_check;
bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite);
uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f = FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
Object* obj;
if (is_static) {
obj = f->GetDeclaringClass();
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(shadow_frame.GetCurrentLocationForThrow(),
f, false);
return false;
}
}
f->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self);
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
// Report this field access to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldWriteListeners())) {
JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA);
Object* this_object = f->IsStatic() ? nullptr : obj;
instrumentation->FieldWriteEvent(self, this_object, shadow_frame.GetMethod(),
shadow_frame.GetDexPC(), f, field_value);
}
switch (field_type) {
case Primitive::kPrimBoolean:
f->SetBoolean<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimByte:
f->SetByte<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimChar:
f->SetChar<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimShort:
f->SetShort<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimInt:
f->SetInt<transaction_active>(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimLong:
f->SetLong<transaction_active>(obj, shadow_frame.GetVRegLong(vregA));
break;
case Primitive::kPrimNot: {
Object* reg = shadow_frame.GetVRegReference(vregA);
if (do_assignability_check && reg != nullptr) {
// FieldHelper::GetType can resolve classes, use a handle wrapper which will restore the
// object in the destructor.
Class* field_class;
{
StackHandleScope<3> hs(self);
HandleWrapper<mirror::ArtField> h_f(hs.NewHandleWrapper(&f));
HandleWrapper<mirror::Object> h_reg(hs.NewHandleWrapper(&reg));
HandleWrapper<mirror::Object> h_obj(hs.NewHandleWrapper(&obj));
FieldHelper fh(h_f);
field_class = fh.GetType();
}
if (!reg->VerifierInstanceOf(field_class)) {
// This should never happen.
std::string temp1, temp2, temp3;
self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(),
"Ljava/lang/VirtualMachineError;",
"Put '%s' that is not instance of field '%s' in '%s'",
reg->GetClass()->GetDescriptor(&temp1),
field_class->GetDescriptor(&temp2),
f->GetDeclaringClass()->GetDescriptor(&temp3));
return false;
}
}
f->SetObj<transaction_active>(obj, reg);
break;
}
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoFieldPut functions.
#define EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, _do_check, _transaction_active) \
template bool DoFieldPut<_find_type, _field_type, _do_check, _transaction_active>(Thread* self, \
const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data)
#define EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(_find_type, _field_type) \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, false); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, false); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, true); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, true);
// iput-XXX
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstanceObjectWrite, Primitive::kPrimNot)
// sput-XXX
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticObjectWrite, Primitive::kPrimNot)
#undef EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL
template<Primitive::Type field_type, bool transaction_active>
bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) {
Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
const uint32_t vregA = inst->VRegA_22c(inst_data);
// Report this field modification to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldWriteListeners())) {
ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
field_offset.Uint32Value());
DCHECK(f != nullptr);
DCHECK(!f->IsStatic());
JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA);
instrumentation->FieldWriteEvent(Thread::Current(), obj, shadow_frame.GetMethod(),
shadow_frame.GetDexPC(), f, field_value);
}
// Note: iput-x-quick instructions are only for non-volatile fields.
switch (field_type) {
case Primitive::kPrimBoolean:
obj->SetFieldBoolean<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimByte:
obj->SetFieldByte<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimChar:
obj->SetFieldChar<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimShort:
obj->SetFieldShort<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimInt:
obj->SetField32<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimLong:
obj->SetField64<transaction_active>(field_offset, shadow_frame.GetVRegLong(vregA));
break;
case Primitive::kPrimNot:
obj->SetFieldObject<transaction_active>(field_offset, shadow_frame.GetVRegReference(vregA));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoIPutQuick functions.
#define EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, _transaction_active) \
template bool DoIPutQuick<_field_type, _transaction_active>(const ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data)
#define EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(_field_type) \
EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, false); \
EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, true);
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimInt) // iput-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimBoolean) // iput-boolean-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimByte) // iput-byte-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimChar) // iput-char-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimShort) // iput-short-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimLong) // iput-wide-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimNot) // iput-object-quick.
#undef EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL
/**
* Finds the location where this exception will be caught. We search until we reach either the top
* frame or a native frame, in which cases this exception is considered uncaught.
*/
class CatchLocationFinder : public StackVisitor {
public:
explicit CatchLocationFinder(Thread* self, Handle<mirror::Throwable>* exception)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: StackVisitor(self, nullptr), self_(self), handle_scope_(self), exception_(exception),
catch_method_(handle_scope_.NewHandle<mirror::ArtMethod>(nullptr)),
catch_dex_pc_(DexFile::kDexNoIndex), clear_exception_(false) {
}
bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtMethod* method = GetMethod();
if (method == nullptr) {
return true;
}
if (method->IsRuntimeMethod()) {
// Ignore callee save method.
DCHECK(method->IsCalleeSaveMethod());
return true;
}
if (method->IsNative()) {
return false; // End stack walk.
}
DCHECK(!method->IsNative());
uint32_t dex_pc = GetDexPc();
if (dex_pc != DexFile::kDexNoIndex) {
uint32_t found_dex_pc;
{
StackHandleScope<3> hs(self_);
Handle<mirror::Class> exception_class(hs.NewHandle((*exception_)->GetClass()));
Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
found_dex_pc = mirror::ArtMethod::FindCatchBlock(h_method, exception_class, dex_pc,
&clear_exception_);
}
if (found_dex_pc != DexFile::kDexNoIndex) {
catch_method_.Assign(method);
catch_dex_pc_ = found_dex_pc;
return false; // End stack walk.
}
}
return true; // Continue stack walk.
}
ArtMethod* GetCatchMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return catch_method_.Get();
}
uint32_t GetCatchDexPc() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return catch_dex_pc_;
}
bool NeedClearException() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return clear_exception_;
}
private:
Thread* const self_;
StackHandleScope<1> handle_scope_;
Handle<mirror::Throwable>* exception_;
MutableHandle<mirror::ArtMethod> catch_method_;
uint32_t catch_dex_pc_;
bool clear_exception_;
DISALLOW_COPY_AND_ASSIGN(CatchLocationFinder);
};
uint32_t FindNextInstructionFollowingException(Thread* self,
ShadowFrame& shadow_frame,
uint32_t dex_pc,
const instrumentation::Instrumentation* instrumentation) {
self->VerifyStack();
ThrowLocation throw_location;
StackHandleScope<3> hs(self);
Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException(&throw_location)));
if (!self->IsExceptionReportedToInstrumentation() && instrumentation->HasExceptionCaughtListeners()) {
CatchLocationFinder clf(self, &exception);
clf.WalkStack(false);
instrumentation->ExceptionCaughtEvent(self, throw_location, clf.GetCatchMethod(),
clf.GetCatchDexPc(), exception.Get());
self->SetExceptionReportedToInstrumentation(true);
}
bool clear_exception = false;
uint32_t found_dex_pc;
{
Handle<mirror::Class> exception_class(hs.NewHandle(exception->GetClass()));
Handle<mirror::ArtMethod> h_method(hs.NewHandle(shadow_frame.GetMethod()));
found_dex_pc = mirror::ArtMethod::FindCatchBlock(h_method, exception_class, dex_pc,
&clear_exception);
}
if (found_dex_pc == DexFile::kDexNoIndex) {
instrumentation->MethodUnwindEvent(self, shadow_frame.GetThisObject(),
shadow_frame.GetMethod(), dex_pc);
} else {
if (self->IsExceptionReportedToInstrumentation()) {
instrumentation->MethodUnwindEvent(self, shadow_frame.GetThisObject(),
shadow_frame.GetMethod(), dex_pc);
}
if (clear_exception) {
self->ClearException();
}
}
return found_dex_pc;
}
void UnexpectedOpcode(const Instruction* inst, MethodHelper& mh) {
LOG(FATAL) << "Unexpected instruction: " << inst->DumpString(mh.GetMethod()->GetDexFile());
exit(0); // Unreachable, keep GCC happy.
}
static void UnstartedRuntimeInvoke(Thread* self, MethodHelper* mh,
const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame,
JValue* result, size_t arg_offset)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Assign register 'src_reg' from shadow_frame to register 'dest_reg' into new_shadow_frame.
static inline void AssignRegister(ShadowFrame* new_shadow_frame, const ShadowFrame& shadow_frame,
size_t dest_reg, size_t src_reg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// If both register locations contains the same value, the register probably holds a reference.
// Uint required, so that sign extension does not make this wrong on 64b systems
uint32_t src_value = shadow_frame.GetVReg(src_reg);
mirror::Object* o = shadow_frame.GetVRegReference<kVerifyNone>(src_reg);
if (src_value == reinterpret_cast<uintptr_t>(o)) {
new_shadow_frame->SetVRegReference(dest_reg, o);
} else {
new_shadow_frame->SetVReg(dest_reg, src_value);
}
}
void AbortTransaction(Thread* self, const char* fmt, ...) {
CHECK(Runtime::Current()->IsActiveTransaction());
// Throw an exception so we can abort the transaction and undo every change.
va_list args;
va_start(args, fmt);
self->ThrowNewExceptionV(self->GetCurrentLocationForThrow(), "Ljava/lang/InternalError;", fmt,
args);
va_end(args);
}
template<bool is_range, bool do_assignability_check>
bool DoCall(ArtMethod* method, Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data, JValue* result) {
// Compute method information.
const DexFile::CodeItem* code_item = method->GetCodeItem();
const uint16_t num_ins = (is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data);
uint16_t num_regs;
if (LIKELY(code_item != NULL)) {
num_regs = code_item->registers_size_;
DCHECK_EQ(num_ins, code_item->ins_size_);
} else {
DCHECK(method->IsNative() || method->IsProxyMethod());
num_regs = num_ins;
}
// Allocate shadow frame on the stack.
const char* old_cause = self->StartAssertNoThreadSuspension("DoCall");
void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
ShadowFrame* new_shadow_frame(ShadowFrame::Create(num_regs, &shadow_frame, method, 0, memory));
// Initialize new shadow frame.
const size_t first_dest_reg = num_regs - num_ins;
StackHandleScope<1> hs(self);
MethodHelper mh(hs.NewHandle(method));
if (do_assignability_check) {
// Slow path.
// We might need to do class loading, which incurs a thread state change to kNative. So
// register the shadow frame as under construction and allow suspension again.
self->SetShadowFrameUnderConstruction(new_shadow_frame);
self->EndAssertNoThreadSuspension(old_cause);
// We need to do runtime check on reference assignment. We need to load the shorty
// to get the exact type of each reference argument.
const DexFile::TypeList* params = mh.Get()->GetParameterTypeList();
uint32_t shorty_len = 0;
const char* shorty = mh.Get()->GetShorty(&shorty_len);
// TODO: find a cleaner way to separate non-range and range information without duplicating code.
uint32_t arg[5]; // only used in invoke-XXX.
uint32_t vregC; // only used in invoke-XXX-range.
if (is_range) {
vregC = inst->VRegC_3rc();
} else {
inst->GetVarArgs(arg, inst_data);
}
// Handle receiver apart since it's not part of the shorty.
size_t dest_reg = first_dest_reg;
size_t arg_offset = 0;
if (!mh.Get()->IsStatic()) {
size_t receiver_reg = is_range ? vregC : arg[0];
new_shadow_frame->SetVRegReference(dest_reg, shadow_frame.GetVRegReference(receiver_reg));
++dest_reg;
++arg_offset;
}
for (uint32_t shorty_pos = 0; dest_reg < num_regs; ++shorty_pos, ++dest_reg, ++arg_offset) {
DCHECK_LT(shorty_pos + 1, shorty_len);
const size_t src_reg = (is_range) ? vregC + arg_offset : arg[arg_offset];
switch (shorty[shorty_pos + 1]) {
case 'L': {
Object* o = shadow_frame.GetVRegReference(src_reg);
if (do_assignability_check && o != NULL) {
Class* arg_type = mh.GetClassFromTypeIdx(params->GetTypeItem(shorty_pos).type_idx_);
if (arg_type == NULL) {
CHECK(self->IsExceptionPending());
return false;
}
if (!o->VerifierInstanceOf(arg_type)) {
// This should never happen.
std::string temp1, temp2;
self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(),
"Ljava/lang/VirtualMachineError;",
"Invoking %s with bad arg %d, type '%s' not instance of '%s'",
mh.Get()->GetName(), shorty_pos,
o->GetClass()->GetDescriptor(&temp1),
arg_type->GetDescriptor(&temp2));
return false;
}
}
new_shadow_frame->SetVRegReference(dest_reg, o);
break;
}
case 'J': case 'D': {
uint64_t wide_value = (static_cast<uint64_t>(shadow_frame.GetVReg(src_reg + 1)) << 32) |
static_cast<uint32_t>(shadow_frame.GetVReg(src_reg));
new_shadow_frame->SetVRegLong(dest_reg, wide_value);
++dest_reg;
++arg_offset;
break;
}
default:
new_shadow_frame->SetVReg(dest_reg, shadow_frame.GetVReg(src_reg));
break;
}
}
// We're done with the construction.
self->ClearShadowFrameUnderConstruction();
} else {
// Fast path: no extra checks.
if (is_range) {
const uint16_t first_src_reg = inst->VRegC_3rc();
for (size_t src_reg = first_src_reg, dest_reg = first_dest_reg; dest_reg < num_regs;
++dest_reg, ++src_reg) {
AssignRegister(new_shadow_frame, shadow_frame, dest_reg, src_reg);
}
} else {
DCHECK_LE(num_ins, 5U);
uint16_t regList = inst->Fetch16(2);
uint16_t count = num_ins;
if (count == 5) {
AssignRegister(new_shadow_frame, shadow_frame, first_dest_reg + 4U, (inst_data >> 8) & 0x0f);
--count;
}
for (size_t arg_index = 0; arg_index < count; ++arg_index, regList >>= 4) {
AssignRegister(new_shadow_frame, shadow_frame, first_dest_reg + arg_index, regList & 0x0f);
}
}
self->EndAssertNoThreadSuspension(old_cause);
}
// Do the call now.
if (LIKELY(Runtime::Current()->IsStarted())) {
if (kIsDebugBuild && mh.Get()->GetEntryPointFromInterpreter() == nullptr) {
LOG(FATAL) << "Attempt to invoke non-executable method: " << PrettyMethod(mh.Get());
}
if (kIsDebugBuild && Runtime::Current()->GetInstrumentation()->IsForcedInterpretOnly() &&
!mh.Get()->IsNative() && !mh.Get()->IsProxyMethod() &&
mh.Get()->GetEntryPointFromInterpreter() == artInterpreterToCompiledCodeBridge) {
LOG(FATAL) << "Attempt to call compiled code when -Xint: " << PrettyMethod(mh.Get());
}
(mh.Get()->GetEntryPointFromInterpreter())(self, &mh, code_item, new_shadow_frame, result);
} else {
UnstartedRuntimeInvoke(self, &mh, code_item, new_shadow_frame, result, first_dest_reg);
}
return !self->IsExceptionPending();
}
template <bool is_range, bool do_access_check, bool transaction_active>
bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame,
Thread* self, JValue* result) {
DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY ||
inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE);
const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c();
if (!is_range) {
// Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments.
CHECK_LE(length, 5);
}
if (UNLIKELY(length < 0)) {
ThrowNegativeArraySizeException(length);
return false;
}
uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
Class* arrayClass = ResolveVerifyAndClinit(type_idx, shadow_frame.GetMethod(),
self, false, do_access_check);
if (UNLIKELY(arrayClass == NULL)) {
DCHECK(self->IsExceptionPending());
return false;
}
CHECK(arrayClass->IsArrayClass());
Class* componentClass = arrayClass->GetComponentType();
if (UNLIKELY(componentClass->IsPrimitive() && !componentClass->IsPrimitiveInt())) {
if (componentClass->IsPrimitiveLong() || componentClass->IsPrimitiveDouble()) {
ThrowRuntimeException("Bad filled array request for type %s",
PrettyDescriptor(componentClass).c_str());
} else {
self->ThrowNewExceptionF(shadow_frame.GetCurrentLocationForThrow(),
"Ljava/lang/InternalError;",
"Found type %s; filled-new-array not implemented for anything but 'int'",
PrettyDescriptor(componentClass).c_str());
}
return false;
}
Object* newArray = Array::Alloc<true>(self, arrayClass, length,
arrayClass->GetComponentSizeShift(),
Runtime::Current()->GetHeap()->GetCurrentAllocator());
if (UNLIKELY(newArray == NULL)) {
DCHECK(self->IsExceptionPending());
return false;
}
uint32_t arg[5]; // only used in filled-new-array.
uint32_t vregC; // only used in filled-new-array-range.
if (is_range) {
vregC = inst->VRegC_3rc();
} else {
inst->GetVarArgs(arg);
}
const bool is_primitive_int_component = componentClass->IsPrimitiveInt();
for (int32_t i = 0; i < length; ++i) {
size_t src_reg = is_range ? vregC + i : arg[i];
if (is_primitive_int_component) {
newArray->AsIntArray()->SetWithoutChecks<transaction_active>(i, shadow_frame.GetVReg(src_reg));
} else {
newArray->AsObjectArray<Object>()->SetWithoutChecks<transaction_active>(i, shadow_frame.GetVRegReference(src_reg));
}
}
result->SetL(newArray);
return true;
}
// TODO fix thread analysis: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_).
template<typename T>
static void RecordArrayElementsInTransactionImpl(mirror::PrimitiveArray<T>* array, int32_t count)
NO_THREAD_SAFETY_ANALYSIS {
Runtime* runtime = Runtime::Current();
for (int32_t i = 0; i < count; ++i) {
runtime->RecordWriteArray(array, i, array->GetWithoutChecks(i));
}
}
void RecordArrayElementsInTransaction(mirror::Array* array, int32_t count)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(Runtime::Current()->IsActiveTransaction());
DCHECK(array != nullptr);
DCHECK_LE(count, array->GetLength());
Primitive::Type primitive_component_type = array->GetClass()->GetComponentType()->GetPrimitiveType();
switch (primitive_component_type) {
case Primitive::kPrimBoolean:
RecordArrayElementsInTransactionImpl(array->AsBooleanArray(), count);
break;
case Primitive::kPrimByte:
RecordArrayElementsInTransactionImpl(array->AsByteArray(), count);
break;
case Primitive::kPrimChar:
RecordArrayElementsInTransactionImpl(array->AsCharArray(), count);
break;
case Primitive::kPrimShort:
RecordArrayElementsInTransactionImpl(array->AsShortArray(), count);
break;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
RecordArrayElementsInTransactionImpl(array->AsIntArray(), count);
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
RecordArrayElementsInTransactionImpl(array->AsLongArray(), count);
break;
default:
LOG(FATAL) << "Unsupported primitive type " << primitive_component_type
<< " in fill-array-data";
break;
}
}
// Helper function to deal with class loading in an unstarted runtime.
static void UnstartedRuntimeFindClass(Thread* self, Handle<mirror::String> className,
Handle<mirror::ClassLoader> class_loader, JValue* result,
const std::string& method_name, bool initialize_class,
bool abort_if_not_found)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(className.Get() != nullptr);
std::string descriptor(DotToDescriptor(className->ToModifiedUtf8().c_str()));
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Class* found = class_linker->FindClass(self, descriptor.c_str(), class_loader);
if (found == nullptr && abort_if_not_found) {
if (!self->IsExceptionPending()) {
AbortTransaction(self, "%s failed in un-started runtime for class: %s",
method_name.c_str(), PrettyDescriptor(descriptor.c_str()).c_str());
}
return;
}
if (found != nullptr && initialize_class) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(found));
if (!class_linker->EnsureInitialized(self, h_class, true, true)) {
CHECK(self->IsExceptionPending());
return;
}
}
result->SetL(found);
}
static void UnstartedRuntimeInvoke(Thread* self, MethodHelper* mh,
const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame,
JValue* result, size_t arg_offset) {
// In a runtime that's not started we intercept certain methods to avoid complicated dependency
// problems in core libraries.
std::string name(PrettyMethod(shadow_frame->GetMethod()));
if (name == "java.lang.Class java.lang.Class.forName(java.lang.String)") {
// TODO: Support for the other variants that take more arguments should also be added.
mirror::String* class_name = shadow_frame->GetVRegReference(arg_offset)->AsString();
StackHandleScope<1> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
UnstartedRuntimeFindClass(self, h_class_name, NullHandle<mirror::ClassLoader>(), result, name,
true, true);
} else if (name == "java.lang.Class java.lang.VMClassLoader.loadClass(java.lang.String, boolean)") {
mirror::String* class_name = shadow_frame->GetVRegReference(arg_offset)->AsString();
StackHandleScope<1> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
UnstartedRuntimeFindClass(self, h_class_name, NullHandle<mirror::ClassLoader>(), result, name,
false, true);
} else if (name == "java.lang.Class java.lang.VMClassLoader.findLoadedClass(java.lang.ClassLoader, java.lang.String)") {
mirror::String* class_name = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
mirror::ClassLoader* class_loader =
down_cast<mirror::ClassLoader*>(shadow_frame->GetVRegReference(arg_offset));
StackHandleScope<2> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
UnstartedRuntimeFindClass(self, h_class_name, h_class_loader, result, name, false, false);
} else if (name == "java.lang.Class java.lang.Void.lookupType()") {
result->SetL(Runtime::Current()->GetClassLinker()->FindPrimitiveClass('V'));
} else if (name == "java.lang.Object java.lang.Class.newInstance()") {
Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
ArtMethod* c = klass->FindDeclaredDirectMethod("<init>", "()V");
CHECK(c != NULL);
StackHandleScope<1> hs(self);
Handle<Object> obj(hs.NewHandle(klass->AllocObject(self)));
CHECK(obj.Get() != NULL);
EnterInterpreterFromInvoke(self, c, obj.Get(), NULL, NULL);
result->SetL(obj.Get());
} else if (name == "java.lang.reflect.Field java.lang.Class.getDeclaredField(java.lang.String)") {
// Special managed code cut-out to allow field lookup in a un-started runtime that'd fail
// going the reflective Dex way.
Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
String* name = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
ArtField* found = NULL;
ObjectArray<ArtField>* fields = klass->GetIFields();
for (int32_t i = 0; i < fields->GetLength() && found == NULL; ++i) {
ArtField* f = fields->Get(i);
if (name->Equals(f->GetName())) {
found = f;
}
}
if (found == NULL) {
fields = klass->GetSFields();
for (int32_t i = 0; i < fields->GetLength() && found == NULL; ++i) {
ArtField* f = fields->Get(i);
if (name->Equals(f->GetName())) {
found = f;
}
}
}
CHECK(found != NULL)
<< "Failed to find field in Class.getDeclaredField in un-started runtime. name="
<< name->ToModifiedUtf8() << " class=" << PrettyDescriptor(klass);
// TODO: getDeclaredField calls GetType once the field is found to ensure a
// NoClassDefFoundError is thrown if the field's type cannot be resolved.
Class* jlr_Field = self->DecodeJObject(WellKnownClasses::java_lang_reflect_Field)->AsClass();
StackHandleScope<1> hs(self);
Handle<Object> field(hs.NewHandle(jlr_Field->AllocNonMovableObject(self)));
CHECK(field.Get() != NULL);
ArtMethod* c = jlr_Field->FindDeclaredDirectMethod("<init>", "(Ljava/lang/reflect/ArtField;)V");
uint32_t args[1];
args[0] = StackReference<mirror::Object>::FromMirrorPtr(found).AsVRegValue();
EnterInterpreterFromInvoke(self, c, field.Get(), args, NULL);
result->SetL(field.Get());
} else if (name == "int java.lang.Object.hashCode()") {
Object* obj = shadow_frame->GetVRegReference(arg_offset);
result->SetI(obj->IdentityHashCode());
} else if (name == "java.lang.String java.lang.reflect.ArtMethod.getMethodName(java.lang.reflect.ArtMethod)") {
mirror::ArtMethod* method = shadow_frame->GetVRegReference(arg_offset)->AsArtMethod();
result->SetL(method->GetNameAsString(self));
} else if (name == "void java.lang.System.arraycopy(java.lang.Object, int, java.lang.Object, int, int)" ||
name == "void java.lang.System.arraycopy(char[], int, char[], int, int)") {
// Special case array copying without initializing System.
Class* ctype = shadow_frame->GetVRegReference(arg_offset)->GetClass()->GetComponentType();
jint srcPos = shadow_frame->GetVReg(arg_offset + 1);
jint dstPos = shadow_frame->GetVReg(arg_offset + 3);
jint length = shadow_frame->GetVReg(arg_offset + 4);
if (!ctype->IsPrimitive()) {
ObjectArray<Object>* src = shadow_frame->GetVRegReference(arg_offset)->AsObjectArray<Object>();
ObjectArray<Object>* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsObjectArray<Object>();
for (jint i = 0; i < length; ++i) {
dst->Set(dstPos + i, src->Get(srcPos + i));
}
} else if (ctype->IsPrimitiveChar()) {
CharArray* src = shadow_frame->GetVRegReference(arg_offset)->AsCharArray();
CharArray* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsCharArray();
for (jint i = 0; i < length; ++i) {
dst->Set(dstPos + i, src->Get(srcPos + i));
}
} else if (ctype->IsPrimitiveInt()) {
IntArray* src = shadow_frame->GetVRegReference(arg_offset)->AsIntArray();
IntArray* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsIntArray();
for (jint i = 0; i < length; ++i) {
dst->Set(dstPos + i, src->Get(srcPos + i));
}
} else {
self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(), "Ljava/lang/InternalError;",
"Unimplemented System.arraycopy for type '%s'",
PrettyDescriptor(ctype).c_str());
}
} else if (name == "java.lang.Object java.lang.ThreadLocal.get()") {
std::string caller(PrettyMethod(shadow_frame->GetLink()->GetMethod()));
if (caller == "java.lang.String java.lang.IntegralToString.convertInt(java.lang.AbstractStringBuilder, int)") {
// Allocate non-threadlocal buffer.
result->SetL(mirror::CharArray::Alloc(self, 11));
} else {
self->ThrowNewException(self->GetCurrentLocationForThrow(), "Ljava/lang/InternalError;",
"Unimplemented ThreadLocal.get");
}
} else {
// Not special, continue with regular interpreter execution.
artInterpreterToInterpreterBridge(self, mh, code_item, shadow_frame, result);
}
}
// Explicit DoCall template function declarations.
#define EXPLICIT_DO_CALL_TEMPLATE_DECL(_is_range, _do_assignability_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
bool DoCall<_is_range, _do_assignability_check>(ArtMethod* method, Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, uint16_t inst_data, \
JValue* result)
EXPLICIT_DO_CALL_TEMPLATE_DECL(false, false);
EXPLICIT_DO_CALL_TEMPLATE_DECL(false, true);
EXPLICIT_DO_CALL_TEMPLATE_DECL(true, false);
EXPLICIT_DO_CALL_TEMPLATE_DECL(true, true);
#undef EXPLICIT_DO_CALL_TEMPLATE_DECL
// Explicit DoFilledNewArray template function declarations.
#define EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(_is_range_, _check, _transaction_active) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
bool DoFilledNewArray<_is_range_, _check, _transaction_active>(const Instruction* inst, \
const ShadowFrame& shadow_frame, \
Thread* self, JValue* result)
#define EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(_transaction_active) \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, false, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, true, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, false, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, true, _transaction_active)
EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(false);
EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(true);
#undef EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL
} // namespace interpreter
} // namespace art