| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "builder.h" |
| |
| #include "art_field-inl.h" |
| #include "base/logging.h" |
| #include "class_linker.h" |
| #include "dex/verified_method.h" |
| #include "dex_file-inl.h" |
| #include "dex_instruction-inl.h" |
| #include "dex/verified_method.h" |
| #include "driver/compiler_driver-inl.h" |
| #include "driver/compiler_options.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache.h" |
| #include "nodes.h" |
| #include "primitive.h" |
| #include "scoped_thread_state_change.h" |
| #include "thread.h" |
| |
| namespace art { |
| |
| /** |
| * Helper class to add HTemporary instructions. This class is used when |
| * converting a DEX instruction to multiple HInstruction, and where those |
| * instructions do not die at the following instruction, but instead spans |
| * multiple instructions. |
| */ |
| class Temporaries : public ValueObject { |
| public: |
| explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {} |
| |
| void Add(HInstruction* instruction) { |
| HInstruction* temp = new (graph_->GetArena()) HTemporary(index_); |
| instruction->GetBlock()->AddInstruction(temp); |
| |
| DCHECK(temp->GetPrevious() == instruction); |
| |
| size_t offset; |
| if (instruction->GetType() == Primitive::kPrimLong |
| || instruction->GetType() == Primitive::kPrimDouble) { |
| offset = 2; |
| } else { |
| offset = 1; |
| } |
| index_ += offset; |
| |
| graph_->UpdateTemporariesVRegSlots(index_); |
| } |
| |
| private: |
| HGraph* const graph_; |
| |
| // Current index in the temporary stack, updated by `Add`. |
| size_t index_; |
| }; |
| |
| class SwitchTable : public ValueObject { |
| public: |
| SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse) |
| : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) { |
| int32_t table_offset = instruction.VRegB_31t(); |
| const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset; |
| if (sparse) { |
| CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature)); |
| } else { |
| CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature)); |
| } |
| num_entries_ = table[1]; |
| values_ = reinterpret_cast<const int32_t*>(&table[2]); |
| } |
| |
| uint16_t GetNumEntries() const { |
| return num_entries_; |
| } |
| |
| void CheckIndex(size_t index) const { |
| if (sparse_) { |
| // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order. |
| DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_)); |
| } else { |
| // In a packed table, we have the starting key and num_entries_ values. |
| DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_)); |
| } |
| } |
| |
| int32_t GetEntryAt(size_t index) const { |
| CheckIndex(index); |
| return values_[index]; |
| } |
| |
| uint32_t GetDexPcForIndex(size_t index) const { |
| CheckIndex(index); |
| return dex_pc_ + |
| (reinterpret_cast<const int16_t*>(values_ + index) - |
| reinterpret_cast<const int16_t*>(&instruction_)); |
| } |
| |
| // Index of the first value in the table. |
| size_t GetFirstValueIndex() const { |
| if (sparse_) { |
| // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order. |
| return num_entries_; |
| } else { |
| // In a packed table, we have the starting key and num_entries_ values. |
| return 1; |
| } |
| } |
| |
| private: |
| const Instruction& instruction_; |
| const uint32_t dex_pc_; |
| |
| // Whether this is a sparse-switch table (or a packed-switch one). |
| const bool sparse_; |
| |
| // This can't be const as it needs to be computed off of the given instruction, and complicated |
| // expressions in the initializer list seemed very ugly. |
| uint16_t num_entries_; |
| |
| const int32_t* values_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SwitchTable); |
| }; |
| |
| void HGraphBuilder::InitializeLocals(uint16_t count) { |
| graph_->SetNumberOfVRegs(count); |
| locals_.SetSize(count); |
| for (int i = 0; i < count; i++) { |
| HLocal* local = new (arena_) HLocal(i); |
| entry_block_->AddInstruction(local); |
| locals_.Put(i, local); |
| } |
| } |
| |
| void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) { |
| // dex_compilation_unit_ is null only when unit testing. |
| if (dex_compilation_unit_ == nullptr) { |
| return; |
| } |
| |
| graph_->SetNumberOfInVRegs(number_of_parameters); |
| const char* shorty = dex_compilation_unit_->GetShorty(); |
| int locals_index = locals_.Size() - number_of_parameters; |
| int parameter_index = 0; |
| |
| if (!dex_compilation_unit_->IsStatic()) { |
| // Add the implicit 'this' argument, not expressed in the signature. |
| HParameterValue* parameter = |
| new (arena_) HParameterValue(parameter_index++, Primitive::kPrimNot, true); |
| entry_block_->AddInstruction(parameter); |
| HLocal* local = GetLocalAt(locals_index++); |
| entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter)); |
| number_of_parameters--; |
| } |
| |
| uint32_t pos = 1; |
| for (int i = 0; i < number_of_parameters; i++) { |
| HParameterValue* parameter = |
| new (arena_) HParameterValue(parameter_index++, Primitive::GetType(shorty[pos++])); |
| entry_block_->AddInstruction(parameter); |
| HLocal* local = GetLocalAt(locals_index++); |
| // Store the parameter value in the local that the dex code will use |
| // to reference that parameter. |
| entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter)); |
| bool is_wide = (parameter->GetType() == Primitive::kPrimLong) |
| || (parameter->GetType() == Primitive::kPrimDouble); |
| if (is_wide) { |
| i++; |
| locals_index++; |
| parameter_index++; |
| } |
| } |
| } |
| |
| template<typename T> |
| void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { |
| int32_t target_offset = instruction.GetTargetOffset(); |
| HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset); |
| HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); |
| DCHECK(branch_target != nullptr); |
| DCHECK(fallthrough_target != nullptr); |
| PotentiallyAddSuspendCheck(branch_target, dex_pc); |
| HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); |
| HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); |
| T* comparison = new (arena_) T(first, second); |
| current_block_->AddInstruction(comparison); |
| HInstruction* ifinst = new (arena_) HIf(comparison); |
| current_block_->AddInstruction(ifinst); |
| current_block_->AddSuccessor(branch_target); |
| current_block_->AddSuccessor(fallthrough_target); |
| current_block_ = nullptr; |
| } |
| |
| template<typename T> |
| void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { |
| int32_t target_offset = instruction.GetTargetOffset(); |
| HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset); |
| HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); |
| DCHECK(branch_target != nullptr); |
| DCHECK(fallthrough_target != nullptr); |
| PotentiallyAddSuspendCheck(branch_target, dex_pc); |
| HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); |
| T* comparison = new (arena_) T(value, graph_->GetIntConstant(0)); |
| current_block_->AddInstruction(comparison); |
| HInstruction* ifinst = new (arena_) HIf(comparison); |
| current_block_->AddInstruction(ifinst); |
| current_block_->AddSuccessor(branch_target); |
| current_block_->AddSuccessor(fallthrough_target); |
| current_block_ = nullptr; |
| } |
| |
| void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) { |
| if (compilation_stats_ != nullptr) { |
| compilation_stats_->RecordStat(compilation_stat); |
| } |
| } |
| |
| bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item, |
| size_t number_of_branches) { |
| const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions(); |
| CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter(); |
| if (compiler_filter == CompilerOptions::kEverything) { |
| return false; |
| } |
| |
| if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) { |
| VLOG(compiler) << "Skip compilation of huge method " |
| << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) |
| << ": " << code_item.insns_size_in_code_units_ << " code units"; |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod); |
| return true; |
| } |
| |
| // If it's large and contains no branches, it's likely to be machine generated initialization. |
| if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_) |
| && (number_of_branches == 0)) { |
| VLOG(compiler) << "Skip compilation of large method with no branch " |
| << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) |
| << ": " << code_item.insns_size_in_code_units_ << " code units"; |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool HGraphBuilder::IsBlockInPcRange(HBasicBlock* block, |
| uint32_t dex_pc_start, |
| uint32_t dex_pc_end) { |
| uint32_t dex_pc = block->GetDexPc(); |
| return block != entry_block_ |
| && block != exit_block_ |
| && dex_pc >= dex_pc_start |
| && dex_pc < dex_pc_end; |
| } |
| |
| void HGraphBuilder::CreateBlocksForTryCatch(const DexFile::CodeItem& code_item) { |
| if (code_item.tries_size_ == 0) { |
| return; |
| } |
| |
| // Create branch targets at the start/end of the TryItem range. These are |
| // places where the program might fall through into/out of the a block and |
| // where TryBoundary instructions will be inserted later. Other edges which |
| // enter/exit the try blocks are a result of branches/switches. |
| for (size_t idx = 0; idx < code_item.tries_size_; ++idx) { |
| const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx); |
| uint32_t dex_pc_start = try_item->start_addr_; |
| uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_; |
| FindOrCreateBlockStartingAt(dex_pc_start); |
| if (dex_pc_end < code_item.insns_size_in_code_units_) { |
| // TODO: Do not create block if the last instruction cannot fall through. |
| FindOrCreateBlockStartingAt(dex_pc_end); |
| } else { |
| // The TryItem spans until the very end of the CodeItem (or beyond if |
| // invalid) and therefore cannot have any code afterwards. |
| } |
| } |
| |
| // Create branch targets for exception handlers. |
| const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0); |
| uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| for (uint32_t idx = 0; idx < handlers_size; ++idx) { |
| CatchHandlerIterator iterator(handlers_ptr); |
| for (; iterator.HasNext(); iterator.Next()) { |
| uint32_t address = iterator.GetHandlerAddress(); |
| HBasicBlock* block = FindOrCreateBlockStartingAt(address); |
| block->SetIsCatchBlock(); |
| } |
| handlers_ptr = iterator.EndDataPointer(); |
| } |
| } |
| |
| void HGraphBuilder::SplitTryBoundaryEdge(HBasicBlock* predecessor, |
| HBasicBlock* successor, |
| HTryBoundary::BoundaryKind kind, |
| const DexFile::CodeItem& code_item, |
| const DexFile::TryItem& try_item) { |
| // Split the edge with a single TryBoundary instruction. |
| HTryBoundary* try_boundary = new (arena_) HTryBoundary(kind); |
| HBasicBlock* try_entry_block = graph_->SplitEdge(predecessor, successor); |
| try_entry_block->AddInstruction(try_boundary); |
| |
| // Link the TryBoundary to the handlers of `try_item`. |
| for (CatchHandlerIterator it(code_item, try_item); it.HasNext(); it.Next()) { |
| try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress())); |
| } |
| } |
| |
| void HGraphBuilder::InsertTryBoundaryBlocks(const DexFile::CodeItem& code_item) { |
| if (code_item.tries_size_ == 0) { |
| return; |
| } |
| |
| for (size_t idx = 0; idx < code_item.tries_size_; ++idx) { |
| const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx); |
| uint32_t try_start = try_item->start_addr_; |
| uint32_t try_end = try_start + try_item->insn_count_; |
| |
| // Iterate over all blocks in the dex pc range of the TryItem and: |
| // (a) split edges which enter/exit the try range, |
| // (b) create TryBoundary instructions in the new blocks, |
| // (c) link the new blocks to corresponding exception handlers. |
| for (uint32_t inner_pc = try_start; inner_pc < try_end; ++inner_pc) { |
| HBasicBlock* try_block = FindBlockStartingAt(inner_pc); |
| if (try_block == nullptr) { |
| continue; |
| } |
| |
| if (try_block->IsCatchBlock()) { |
| // Catch blocks are always considered an entry point into the TryItem in |
| // order to avoid splitting exceptional edges (they might not have been |
| // created yet). We separate the move-exception (if present) from the |
| // rest of the block and insert a TryBoundary after it, creating a |
| // landing pad for the exceptional edges. |
| HInstruction* first_insn = try_block->GetFirstInstruction(); |
| HInstruction* split_position = nullptr; |
| if (first_insn->IsLoadException()) { |
| // Catch block starts with a LoadException. Split the block after the |
| // StoreLocal that must come after the load. |
| DCHECK(first_insn->GetNext()->IsStoreLocal()); |
| split_position = first_insn->GetNext()->GetNext(); |
| } else { |
| // Catch block does not obtain the exception. Split at the beginning |
| // to create an empty catch block. |
| split_position = first_insn; |
| } |
| DCHECK(split_position != nullptr); |
| HBasicBlock* catch_block = try_block; |
| try_block = catch_block->SplitBefore(split_position); |
| SplitTryBoundaryEdge(catch_block, try_block, HTryBoundary::kEntry, code_item, *try_item); |
| } else { |
| // For non-catch blocks, find predecessors which are not covered by the |
| // same TryItem range. Such edges enter the try block and will have |
| // a TryBoundary inserted. |
| for (size_t i = 0; i < try_block->GetPredecessors().Size(); ++i) { |
| HBasicBlock* predecessor = try_block->GetPredecessors().Get(i); |
| if (predecessor->IsSingleTryBoundary()) { |
| // The edge was already split because of an exit from a neighbouring |
| // TryItem. We split it again and insert an entry point. |
| if (kIsDebugBuild) { |
| HTryBoundary* last_insn = predecessor->GetLastInstruction()->AsTryBoundary(); |
| DCHECK(!last_insn->IsEntry()); |
| DCHECK_EQ(last_insn->GetNormalFlowSuccessor(), try_block); |
| DCHECK(try_block->IsFirstIndexOfPredecessor(predecessor, i)); |
| DCHECK(!IsBlockInPcRange(predecessor->GetSinglePredecessor(), try_start, try_end)); |
| } |
| } else if (!IsBlockInPcRange(predecessor, try_start, try_end)) { |
| // This is an entry point into the TryItem and the edge has not been |
| // split yet. That means that `predecessor` is not in a TryItem, or |
| // it is in a different TryItem and we happened to iterate over this |
| // block first. We split the edge and insert an entry point. |
| } else { |
| // Not an edge on the boundary of the try block. |
| continue; |
| } |
| SplitTryBoundaryEdge(predecessor, try_block, HTryBoundary::kEntry, code_item, *try_item); |
| } |
| } |
| |
| // Find successors which are not covered by the same TryItem range. Such |
| // edges exit the try block and will have a TryBoundary inserted. |
| for (size_t i = 0; i < try_block->GetSuccessors().Size(); ++i) { |
| HBasicBlock* successor = try_block->GetSuccessors().Get(i); |
| if (successor->IsCatchBlock()) { |
| // A catch block is always considered an entry point into its TryItem. |
| // We therefore assume this is an exit point, regardless of whether |
| // the catch block is in a different TryItem or not. |
| } else if (successor->IsSingleTryBoundary()) { |
| // The edge was already split because of an entry into a neighbouring |
| // TryItem. We split it again and insert an exit. |
| if (kIsDebugBuild) { |
| HTryBoundary* last_insn = successor->GetLastInstruction()->AsTryBoundary(); |
| DCHECK_EQ(try_block, successor->GetSinglePredecessor()); |
| DCHECK(last_insn->IsEntry()); |
| DCHECK(!IsBlockInPcRange(last_insn->GetNormalFlowSuccessor(), try_start, try_end)); |
| } |
| } else if (!IsBlockInPcRange(successor, try_start, try_end)) { |
| // This is an exit out of the TryItem and the edge has not been split |
| // yet. That means that either `successor` is not in a TryItem, or it |
| // is in a different TryItem and we happened to iterate over this |
| // block first. We split the edge and insert an exit. |
| HInstruction* last_instruction = try_block->GetLastInstruction(); |
| if (last_instruction->IsReturn() || last_instruction->IsReturnVoid()) { |
| DCHECK_EQ(successor, exit_block_); |
| // Control flow exits the try block with a Return(Void). Because |
| // splitting the edge would invalidate the invariant that Return |
| // always jumps to Exit, we move the Return outside the try block. |
| successor = try_block->SplitBefore(last_instruction); |
| } |
| } else { |
| // Not an edge on the boundary of the try block. |
| continue; |
| } |
| SplitTryBoundaryEdge(try_block, successor, HTryBoundary::kExit, code_item, *try_item); |
| } |
| } |
| } |
| } |
| |
| bool HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) { |
| DCHECK(graph_->GetBlocks().IsEmpty()); |
| |
| const uint16_t* code_ptr = code_item.insns_; |
| const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_; |
| code_start_ = code_ptr; |
| |
| // Setup the graph with the entry block and exit block. |
| entry_block_ = new (arena_) HBasicBlock(graph_, 0); |
| graph_->AddBlock(entry_block_); |
| exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc); |
| graph_->SetEntryBlock(entry_block_); |
| graph_->SetExitBlock(exit_block_); |
| |
| InitializeLocals(code_item.registers_size_); |
| graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_); |
| |
| // Compute the number of dex instructions, blocks, and branches. We will |
| // check these values against limits given to the compiler. |
| size_t number_of_branches = 0; |
| |
| // To avoid splitting blocks, we compute ahead of time the instructions that |
| // start a new block, and create these blocks. |
| if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) { |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode); |
| return false; |
| } |
| |
| // Note that the compiler driver is null when unit testing. |
| if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) { |
| return false; |
| } |
| |
| CreateBlocksForTryCatch(code_item); |
| |
| InitializeParameters(code_item.ins_size_); |
| |
| size_t dex_pc = 0; |
| while (code_ptr < code_end) { |
| // Update the current block if dex_pc starts a new block. |
| MaybeUpdateCurrentBlock(dex_pc); |
| const Instruction& instruction = *Instruction::At(code_ptr); |
| if (!AnalyzeDexInstruction(instruction, dex_pc)) { |
| return false; |
| } |
| dex_pc += instruction.SizeInCodeUnits(); |
| code_ptr += instruction.SizeInCodeUnits(); |
| } |
| |
| // Add Exit to the exit block. |
| exit_block_->AddInstruction(new (arena_) HExit()); |
| // Add the suspend check to the entry block. |
| entry_block_->AddInstruction(new (arena_) HSuspendCheck(0)); |
| entry_block_->AddInstruction(new (arena_) HGoto()); |
| |
| // Iterate over blocks covered by TryItems and insert TryBoundaries at entry |
| // and exit points. This requires all control-flow instructions and |
| // non-exceptional edges to have been created. |
| InsertTryBoundaryBlocks(code_item); |
| |
| // Add the exit block at the end to give it the highest id. |
| graph_->AddBlock(exit_block_); |
| return true; |
| } |
| |
| void HGraphBuilder::MaybeUpdateCurrentBlock(size_t dex_pc) { |
| HBasicBlock* block = FindBlockStartingAt(dex_pc); |
| if (block == nullptr) { |
| return; |
| } |
| |
| if (current_block_ != nullptr) { |
| // Branching instructions clear current_block, so we know |
| // the last instruction of the current block is not a branching |
| // instruction. We add an unconditional goto to the found block. |
| current_block_->AddInstruction(new (arena_) HGoto()); |
| current_block_->AddSuccessor(block); |
| } |
| graph_->AddBlock(block); |
| current_block_ = block; |
| } |
| |
| bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr, |
| const uint16_t* code_end, |
| size_t* number_of_branches) { |
| branch_targets_.SetSize(code_end - code_ptr); |
| |
| // Create the first block for the dex instructions, single successor of the entry block. |
| HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0); |
| branch_targets_.Put(0, block); |
| entry_block_->AddSuccessor(block); |
| |
| // Iterate over all instructions and find branching instructions. Create blocks for |
| // the locations these instructions branch to. |
| uint32_t dex_pc = 0; |
| while (code_ptr < code_end) { |
| const Instruction& instruction = *Instruction::At(code_ptr); |
| if (instruction.IsBranch()) { |
| (*number_of_branches)++; |
| int32_t target = instruction.GetTargetOffset() + dex_pc; |
| // Create a block for the target instruction. |
| FindOrCreateBlockStartingAt(target); |
| |
| dex_pc += instruction.SizeInCodeUnits(); |
| code_ptr += instruction.SizeInCodeUnits(); |
| |
| if (instruction.CanFlowThrough()) { |
| if (code_ptr >= code_end) { |
| // In the normal case we should never hit this but someone can artificially forge a dex |
| // file to fall-through out the method code. In this case we bail out compilation. |
| return false; |
| } else { |
| FindOrCreateBlockStartingAt(dex_pc); |
| } |
| } |
| } else if (instruction.IsSwitch()) { |
| SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH); |
| |
| uint16_t num_entries = table.GetNumEntries(); |
| |
| // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the |
| // entry at index 0 is the first key, and values are after *all* keys. |
| size_t offset = table.GetFirstValueIndex(); |
| |
| // Use a larger loop counter type to avoid overflow issues. |
| for (size_t i = 0; i < num_entries; ++i) { |
| // The target of the case. |
| uint32_t target = dex_pc + table.GetEntryAt(i + offset); |
| FindOrCreateBlockStartingAt(target); |
| |
| // The next case gets its own block. |
| if (i < num_entries) { |
| block = new (arena_) HBasicBlock(graph_, target); |
| branch_targets_.Put(table.GetDexPcForIndex(i), block); |
| } |
| } |
| |
| // Fall-through. Add a block if there is more code afterwards. |
| dex_pc += instruction.SizeInCodeUnits(); |
| code_ptr += instruction.SizeInCodeUnits(); |
| if (code_ptr >= code_end) { |
| // In the normal case we should never hit this but someone can artificially forge a dex |
| // file to fall-through out the method code. In this case we bail out compilation. |
| // (A switch can fall-through so we don't need to check CanFlowThrough().) |
| return false; |
| } else { |
| FindOrCreateBlockStartingAt(dex_pc); |
| } |
| } else { |
| code_ptr += instruction.SizeInCodeUnits(); |
| dex_pc += instruction.SizeInCodeUnits(); |
| } |
| } |
| return true; |
| } |
| |
| HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t dex_pc) const { |
| DCHECK_GE(dex_pc, 0); |
| DCHECK_LT(static_cast<size_t>(dex_pc), branch_targets_.Size()); |
| return branch_targets_.Get(dex_pc); |
| } |
| |
| HBasicBlock* HGraphBuilder::FindOrCreateBlockStartingAt(int32_t dex_pc) { |
| HBasicBlock* block = FindBlockStartingAt(dex_pc); |
| if (block == nullptr) { |
| block = new (arena_) HBasicBlock(graph_, dex_pc); |
| branch_targets_.Put(dex_pc, block); |
| } |
| return block; |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Unop_12x(const Instruction& instruction, Primitive::Type type) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| current_block_->AddInstruction(new (arena_) T(type, first)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| void HGraphBuilder::Conversion_12x(const Instruction& instruction, |
| Primitive::Type input_type, |
| Primitive::Type result_type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), input_type); |
| current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), type); |
| current_block_->AddInstruction(new (arena_) T(type, first, second)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Binop_23x(const Instruction& instruction, |
| Primitive::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), type); |
| current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Binop_23x_shift(const Instruction& instruction, |
| Primitive::Type type) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt); |
| current_block_->AddInstruction(new (arena_) T(type, first, second)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction, |
| Primitive::Type type, |
| HCompare::Bias bias, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), type); |
| current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), type); |
| HInstruction* second = LoadLocal(instruction.VRegB(), type); |
| current_block_->AddInstruction(new (arena_) T(type, first, second)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), type); |
| HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); |
| current_block_->AddInstruction(new (arena_) T(type, first, second)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Binop_12x(const Instruction& instruction, |
| Primitive::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), type); |
| HInstruction* second = LoadLocal(instruction.VRegB(), type); |
| current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); |
| HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s()); |
| if (reverse) { |
| std::swap(first, second); |
| } |
| current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); |
| HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b()); |
| if (reverse) { |
| std::swap(first, second); |
| } |
| current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) { |
| Thread* self = Thread::Current(); |
| return cu->IsConstructor() |
| && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex()); |
| } |
| |
| void HGraphBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type) { |
| if (type == Primitive::kPrimVoid) { |
| if (graph_->ShouldGenerateConstructorBarrier()) { |
| // The compilation unit is null during testing. |
| if (dex_compilation_unit_ != nullptr) { |
| DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_)) |
| << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier."; |
| } |
| current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore)); |
| } |
| current_block_->AddInstruction(new (arena_) HReturnVoid()); |
| } else { |
| HInstruction* value = LoadLocal(instruction.VRegA(), type); |
| current_block_->AddInstruction(new (arena_) HReturn(value)); |
| } |
| current_block_->AddSuccessor(exit_block_); |
| current_block_ = nullptr; |
| } |
| |
| bool HGraphBuilder::BuildInvoke(const Instruction& instruction, |
| uint32_t dex_pc, |
| uint32_t method_idx, |
| uint32_t number_of_vreg_arguments, |
| bool is_range, |
| uint32_t* args, |
| uint32_t register_index) { |
| Instruction::Code opcode = instruction.Opcode(); |
| InvokeType invoke_type; |
| switch (opcode) { |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: |
| invoke_type = kStatic; |
| break; |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: |
| invoke_type = kDirect; |
| break; |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| invoke_type = kVirtual; |
| break; |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| invoke_type = kInterface; |
| break; |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_SUPER: |
| invoke_type = kSuper; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected invoke op: " << opcode; |
| return false; |
| } |
| |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(method_id.proto_idx_); |
| const char* descriptor = dex_file_->StringDataByIdx(proto_id.shorty_idx_); |
| Primitive::Type return_type = Primitive::GetType(descriptor[0]); |
| bool is_instance_call = invoke_type != kStatic; |
| // Remove the return type from the 'proto'. |
| size_t number_of_arguments = strlen(descriptor) - 1; |
| if (is_instance_call) { |
| // One extra argument for 'this'. |
| ++number_of_arguments; |
| } |
| |
| MethodReference target_method(dex_file_, method_idx); |
| uintptr_t direct_code; |
| uintptr_t direct_method; |
| int table_index; |
| InvokeType optimized_invoke_type = invoke_type; |
| |
| if (!compiler_driver_->ComputeInvokeInfo(dex_compilation_unit_, dex_pc, true, true, |
| &optimized_invoke_type, &target_method, &table_index, |
| &direct_code, &direct_method)) { |
| VLOG(compiler) << "Did not compile " |
| << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) |
| << " because a method call could not be resolved"; |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod); |
| return false; |
| } |
| DCHECK(optimized_invoke_type != kSuper); |
| |
| // By default, consider that the called method implicitly requires |
| // an initialization check of its declaring method. |
| HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement = |
| HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; |
| // Potential class initialization check, in the case of a static method call. |
| HClinitCheck* clinit_check = nullptr; |
| // Replace calls to String.<init> with StringFactory. |
| int32_t string_init_offset = 0; |
| bool is_string_init = compiler_driver_->IsStringInit(method_idx, dex_file_, &string_init_offset); |
| if (is_string_init) { |
| return_type = Primitive::kPrimNot; |
| is_instance_call = false; |
| number_of_arguments--; |
| invoke_type = kStatic; |
| optimized_invoke_type = kStatic; |
| } |
| |
| HInvoke* invoke = nullptr; |
| |
| if (optimized_invoke_type == kVirtual) { |
| invoke = new (arena_) HInvokeVirtual( |
| arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index); |
| } else if (optimized_invoke_type == kInterface) { |
| invoke = new (arena_) HInvokeInterface( |
| arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index); |
| } else { |
| DCHECK(optimized_invoke_type == kDirect || optimized_invoke_type == kStatic); |
| // Sharpening to kDirect only works if we compile PIC. |
| DCHECK((optimized_invoke_type == invoke_type) || (optimized_invoke_type != kDirect) |
| || compiler_driver_->GetCompilerOptions().GetCompilePic()); |
| bool is_recursive = |
| (target_method.dex_method_index == outer_compilation_unit_->GetDexMethodIndex()) |
| && (target_method.dex_file == outer_compilation_unit_->GetDexFile()); |
| |
| if (optimized_invoke_type == kStatic && !is_string_init) { |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<4> hs(soa.Self()); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle( |
| dex_compilation_unit_->GetClassLinker()->FindDexCache( |
| *dex_compilation_unit_->GetDexFile()))); |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle( |
| soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); |
| ArtMethod* resolved_method = compiler_driver_->ResolveMethod( |
| soa, dex_cache, class_loader, dex_compilation_unit_, method_idx, optimized_invoke_type); |
| |
| if (resolved_method == nullptr) { |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod); |
| return false; |
| } |
| |
| const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); |
| Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( |
| outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file))); |
| Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); |
| |
| // The index at which the method's class is stored in the DexCache's type array. |
| uint32_t storage_index = DexFile::kDexNoIndex; |
| bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get()); |
| if (is_outer_class) { |
| storage_index = outer_class->GetDexTypeIndex(); |
| } else if (outer_dex_cache.Get() == dex_cache.Get()) { |
| // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer. |
| compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(), |
| GetCompilingClass(), |
| resolved_method, |
| method_idx, |
| &storage_index); |
| } |
| |
| if (!outer_class->IsInterface() |
| && outer_class->IsSubClass(resolved_method->GetDeclaringClass())) { |
| // If the outer class is the declaring class or a subclass |
| // of the declaring class, no class initialization is needed |
| // before the static method call. |
| // Note that in case of inlining, we do not need to add clinit checks |
| // to calls that satisfy this subclass check with any inlined methods. This |
| // will be detected by the optimization passes. |
| clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; |
| } else if (storage_index != DexFile::kDexNoIndex) { |
| // If the method's class type index is available, check |
| // whether we should add an explicit class initialization |
| // check for its declaring class before the static method call. |
| |
| // TODO: find out why this check is needed. |
| bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache( |
| *outer_compilation_unit_->GetDexFile(), storage_index); |
| bool is_initialized = |
| resolved_method->GetDeclaringClass()->IsInitialized() && is_in_dex_cache; |
| |
| if (is_initialized) { |
| clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; |
| } else { |
| clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; |
| HLoadClass* load_class = new (arena_) HLoadClass( |
| graph_->GetCurrentMethod(), |
| storage_index, |
| *dex_compilation_unit_->GetDexFile(), |
| is_outer_class, |
| dex_pc); |
| current_block_->AddInstruction(load_class); |
| clinit_check = new (arena_) HClinitCheck(load_class, dex_pc); |
| current_block_->AddInstruction(clinit_check); |
| } |
| } |
| } |
| |
| invoke = new (arena_) HInvokeStaticOrDirect(arena_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| target_method.dex_method_index, |
| is_recursive, |
| string_init_offset, |
| invoke_type, |
| optimized_invoke_type, |
| clinit_check_requirement); |
| } |
| |
| size_t start_index = 0; |
| Temporaries temps(graph_); |
| if (is_instance_call) { |
| HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot); |
| HNullCheck* null_check = new (arena_) HNullCheck(arg, dex_pc); |
| current_block_->AddInstruction(null_check); |
| temps.Add(null_check); |
| invoke->SetArgumentAt(0, null_check); |
| start_index = 1; |
| } |
| |
| uint32_t descriptor_index = 1; // Skip the return type. |
| uint32_t argument_index = start_index; |
| if (is_string_init) { |
| start_index = 1; |
| } |
| for (size_t i = start_index; |
| // Make sure we don't go over the expected arguments or over the number of |
| // dex registers given. If the instruction was seen as dead by the verifier, |
| // it hasn't been properly checked. |
| (i < number_of_vreg_arguments) && (argument_index < number_of_arguments); |
| i++, argument_index++) { |
| Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]); |
| bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); |
| if (!is_range |
| && is_wide |
| && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) { |
| // Longs and doubles should be in pairs, that is, sequential registers. The verifier should |
| // reject any class where this is violated. However, the verifier only does these checks |
| // on non trivially dead instructions, so we just bailout the compilation. |
| VLOG(compiler) << "Did not compile " |
| << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) |
| << " because of non-sequential dex register pair in wide argument"; |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); |
| return false; |
| } |
| HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type); |
| invoke->SetArgumentAt(argument_index, arg); |
| if (is_wide) { |
| i++; |
| } |
| } |
| |
| if (argument_index != number_of_arguments) { |
| VLOG(compiler) << "Did not compile " |
| << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) |
| << " because of wrong number of arguments in invoke instruction"; |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); |
| return false; |
| } |
| |
| if (invoke->IsInvokeStaticOrDirect()) { |
| invoke->SetArgumentAt(argument_index, graph_->GetCurrentMethod()); |
| argument_index++; |
| } |
| |
| if (clinit_check_requirement == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit) { |
| // Add the class initialization check as last input of `invoke`. |
| DCHECK(clinit_check != nullptr); |
| invoke->SetArgumentAt(argument_index, clinit_check); |
| } |
| |
| current_block_->AddInstruction(invoke); |
| latest_result_ = invoke; |
| |
| // Add move-result for StringFactory method. |
| if (is_string_init) { |
| uint32_t orig_this_reg = is_range ? register_index : args[0]; |
| UpdateLocal(orig_this_reg, invoke); |
| const VerifiedMethod* verified_method = |
| compiler_driver_->GetVerifiedMethod(dex_file_, dex_compilation_unit_->GetDexMethodIndex()); |
| if (verified_method == nullptr) { |
| LOG(WARNING) << "No verified method for method calling String.<init>: " |
| << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_); |
| return false; |
| } |
| const SafeMap<uint32_t, std::set<uint32_t>>& string_init_map = |
| verified_method->GetStringInitPcRegMap(); |
| auto map_it = string_init_map.find(dex_pc); |
| if (map_it != string_init_map.end()) { |
| std::set<uint32_t> reg_set = map_it->second; |
| for (auto set_it = reg_set.begin(); set_it != reg_set.end(); ++set_it) { |
| HInstruction* load_local = LoadLocal(orig_this_reg, Primitive::kPrimNot); |
| UpdateLocal(*set_it, load_local); |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put) { |
| uint32_t source_or_dest_reg = instruction.VRegA_22c(); |
| uint32_t obj_reg = instruction.VRegB_22c(); |
| uint16_t field_index = instruction.VRegC_22c(); |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| ArtField* resolved_field = |
| compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa); |
| |
| if (resolved_field == nullptr) { |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField); |
| return false; |
| } |
| |
| Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); |
| |
| HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot); |
| current_block_->AddInstruction(new (arena_) HNullCheck(object, dex_pc)); |
| if (is_put) { |
| Temporaries temps(graph_); |
| HInstruction* null_check = current_block_->GetLastInstruction(); |
| // We need one temporary for the null check. |
| temps.Add(null_check); |
| HInstruction* value = LoadLocal(source_or_dest_reg, field_type); |
| current_block_->AddInstruction(new (arena_) HInstanceFieldSet( |
| null_check, |
| value, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| *dex_file_)); |
| } else { |
| current_block_->AddInstruction(new (arena_) HInstanceFieldGet( |
| current_block_->GetLastInstruction(), |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| *dex_file_)); |
| |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| return true; |
| } |
| |
| static mirror::Class* GetClassFrom(CompilerDriver* driver, |
| const DexCompilationUnit& compilation_unit) { |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<2> hs(soa.Self()); |
| const DexFile& dex_file = *compilation_unit.GetDexFile(); |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle( |
| soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader()))); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle( |
| compilation_unit.GetClassLinker()->FindDexCache(dex_file))); |
| |
| return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit); |
| } |
| |
| mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const { |
| return GetClassFrom(compiler_driver_, *outer_compilation_unit_); |
| } |
| |
| mirror::Class* HGraphBuilder::GetCompilingClass() const { |
| return GetClassFrom(compiler_driver_, *dex_compilation_unit_); |
| } |
| |
| bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const { |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<4> hs(soa.Self()); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle( |
| dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile()))); |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle( |
| soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); |
| Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass( |
| soa, dex_cache, class_loader, type_index, dex_compilation_unit_))); |
| Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); |
| |
| return outer_class.Get() == cls.Get(); |
| } |
| |
| bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put) { |
| uint32_t source_or_dest_reg = instruction.VRegA_21c(); |
| uint16_t field_index = instruction.VRegB_21c(); |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<4> hs(soa.Self()); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle( |
| dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile()))); |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle( |
| soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); |
| ArtField* resolved_field = compiler_driver_->ResolveField( |
| soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true); |
| |
| if (resolved_field == nullptr) { |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField); |
| return false; |
| } |
| |
| const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); |
| Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( |
| outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file))); |
| Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); |
| |
| // The index at which the field's class is stored in the DexCache's type array. |
| uint32_t storage_index; |
| bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass()); |
| if (is_outer_class) { |
| storage_index = outer_class->GetDexTypeIndex(); |
| } else if (outer_dex_cache.Get() != dex_cache.Get()) { |
| // The compiler driver cannot currently understand multiple dex caches involved. Just bailout. |
| return false; |
| } else { |
| std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField( |
| outer_dex_cache.Get(), |
| GetCompilingClass(), |
| resolved_field, |
| field_index, |
| &storage_index); |
| bool can_easily_access = is_put ? pair.second : pair.first; |
| if (!can_easily_access) { |
| return false; |
| } |
| } |
| |
| // TODO: find out why this check is needed. |
| bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache( |
| *outer_compilation_unit_->GetDexFile(), storage_index); |
| bool is_initialized = resolved_field->GetDeclaringClass()->IsInitialized() && is_in_dex_cache; |
| |
| HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(), |
| storage_index, |
| *dex_compilation_unit_->GetDexFile(), |
| is_outer_class, |
| dex_pc); |
| current_block_->AddInstruction(constant); |
| |
| HInstruction* cls = constant; |
| if (!is_initialized && !is_outer_class) { |
| cls = new (arena_) HClinitCheck(constant, dex_pc); |
| current_block_->AddInstruction(cls); |
| } |
| |
| Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); |
| if (is_put) { |
| // We need to keep the class alive before loading the value. |
| Temporaries temps(graph_); |
| temps.Add(cls); |
| HInstruction* value = LoadLocal(source_or_dest_reg, field_type); |
| DCHECK_EQ(value->GetType(), field_type); |
| current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls, |
| value, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| *dex_file_)); |
| } else { |
| current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| *dex_file_)); |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| return true; |
| } |
| |
| void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg, |
| uint16_t first_vreg, |
| int64_t second_vreg_or_constant, |
| uint32_t dex_pc, |
| Primitive::Type type, |
| bool second_is_constant, |
| bool isDiv) { |
| DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); |
| |
| HInstruction* first = LoadLocal(first_vreg, type); |
| HInstruction* second = nullptr; |
| if (second_is_constant) { |
| if (type == Primitive::kPrimInt) { |
| second = graph_->GetIntConstant(second_vreg_or_constant); |
| } else { |
| second = graph_->GetLongConstant(second_vreg_or_constant); |
| } |
| } else { |
| second = LoadLocal(second_vreg_or_constant, type); |
| } |
| |
| if (!second_is_constant |
| || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0) |
| || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) { |
| second = new (arena_) HDivZeroCheck(second, dex_pc); |
| Temporaries temps(graph_); |
| current_block_->AddInstruction(second); |
| temps.Add(current_block_->GetLastInstruction()); |
| } |
| |
| if (isDiv) { |
| current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc)); |
| } else { |
| current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc)); |
| } |
| UpdateLocal(out_vreg, current_block_->GetLastInstruction()); |
| } |
| |
| void HGraphBuilder::BuildArrayAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put, |
| Primitive::Type anticipated_type) { |
| uint8_t source_or_dest_reg = instruction.VRegA_23x(); |
| uint8_t array_reg = instruction.VRegB_23x(); |
| uint8_t index_reg = instruction.VRegC_23x(); |
| |
| // We need one temporary for the null check, one for the index, and one for the length. |
| Temporaries temps(graph_); |
| |
| HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot); |
| object = new (arena_) HNullCheck(object, dex_pc); |
| current_block_->AddInstruction(object); |
| temps.Add(object); |
| |
| HInstruction* length = new (arena_) HArrayLength(object); |
| current_block_->AddInstruction(length); |
| temps.Add(length); |
| HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt); |
| index = new (arena_) HBoundsCheck(index, length, dex_pc); |
| current_block_->AddInstruction(index); |
| temps.Add(index); |
| if (is_put) { |
| HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); |
| // TODO: Insert a type check node if the type is Object. |
| current_block_->AddInstruction(new (arena_) HArraySet( |
| object, index, value, anticipated_type, dex_pc)); |
| } else { |
| current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type)); |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| graph_->SetHasBoundsChecks(true); |
| } |
| |
| void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc, |
| uint32_t type_index, |
| uint32_t number_of_vreg_arguments, |
| bool is_range, |
| uint32_t* args, |
| uint32_t register_index) { |
| HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments); |
| QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index) |
| ? kQuickAllocArrayWithAccessCheck |
| : kQuickAllocArray; |
| HInstruction* object = new (arena_) HNewArray(length, |
| graph_->GetCurrentMethod(), |
| dex_pc, |
| type_index, |
| *dex_compilation_unit_->GetDexFile(), |
| entrypoint); |
| current_block_->AddInstruction(object); |
| |
| const char* descriptor = dex_file_->StringByTypeIdx(type_index); |
| DCHECK_EQ(descriptor[0], '[') << descriptor; |
| char primitive = descriptor[1]; |
| DCHECK(primitive == 'I' |
| || primitive == 'L' |
| || primitive == '[') << descriptor; |
| bool is_reference_array = (primitive == 'L') || (primitive == '['); |
| Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt; |
| |
| Temporaries temps(graph_); |
| temps.Add(object); |
| for (size_t i = 0; i < number_of_vreg_arguments; ++i) { |
| HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type); |
| HInstruction* index = graph_->GetIntConstant(i); |
| current_block_->AddInstruction( |
| new (arena_) HArraySet(object, index, value, type, dex_pc)); |
| } |
| latest_result_ = object; |
| } |
| |
| template <typename T> |
| void HGraphBuilder::BuildFillArrayData(HInstruction* object, |
| const T* data, |
| uint32_t element_count, |
| Primitive::Type anticipated_type, |
| uint32_t dex_pc) { |
| for (uint32_t i = 0; i < element_count; ++i) { |
| HInstruction* index = graph_->GetIntConstant(i); |
| HInstruction* value = graph_->GetIntConstant(data[i]); |
| current_block_->AddInstruction(new (arena_) HArraySet( |
| object, index, value, anticipated_type, dex_pc)); |
| } |
| } |
| |
| void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { |
| Temporaries temps(graph_); |
| HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot); |
| HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc); |
| current_block_->AddInstruction(null_check); |
| temps.Add(null_check); |
| |
| HInstruction* length = new (arena_) HArrayLength(null_check); |
| current_block_->AddInstruction(length); |
| |
| int32_t payload_offset = instruction.VRegB_31t() + dex_pc; |
| const Instruction::ArrayDataPayload* payload = |
| reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset); |
| const uint8_t* data = payload->data; |
| uint32_t element_count = payload->element_count; |
| |
| // Implementation of this DEX instruction seems to be that the bounds check is |
| // done before doing any stores. |
| HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1); |
| current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc)); |
| |
| switch (payload->element_width) { |
| case 1: |
| BuildFillArrayData(null_check, |
| reinterpret_cast<const int8_t*>(data), |
| element_count, |
| Primitive::kPrimByte, |
| dex_pc); |
| break; |
| case 2: |
| BuildFillArrayData(null_check, |
| reinterpret_cast<const int16_t*>(data), |
| element_count, |
| Primitive::kPrimShort, |
| dex_pc); |
| break; |
| case 4: |
| BuildFillArrayData(null_check, |
| reinterpret_cast<const int32_t*>(data), |
| element_count, |
| Primitive::kPrimInt, |
| dex_pc); |
| break; |
| case 8: |
| BuildFillWideArrayData(null_check, |
| reinterpret_cast<const int64_t*>(data), |
| element_count, |
| dex_pc); |
| break; |
| default: |
| LOG(FATAL) << "Unknown element width for " << payload->element_width; |
| } |
| graph_->SetHasBoundsChecks(true); |
| } |
| |
| void HGraphBuilder::BuildFillWideArrayData(HInstruction* object, |
| const int64_t* data, |
| uint32_t element_count, |
| uint32_t dex_pc) { |
| for (uint32_t i = 0; i < element_count; ++i) { |
| HInstruction* index = graph_->GetIntConstant(i); |
| HInstruction* value = graph_->GetLongConstant(data[i]); |
| current_block_->AddInstruction(new (arena_) HArraySet( |
| object, index, value, Primitive::kPrimLong, dex_pc)); |
| } |
| } |
| |
| bool HGraphBuilder::BuildTypeCheck(const Instruction& instruction, |
| uint8_t destination, |
| uint8_t reference, |
| uint16_t type_index, |
| uint32_t dex_pc) { |
| bool type_known_final; |
| bool type_known_abstract; |
| // `CanAccessTypeWithoutChecks` will tell whether the method being |
| // built is trying to access its own class, so that the generated |
| // code can optimize for this case. However, the optimization does not |
| // work for inlining, so we use `IsOutermostCompilingClass` instead. |
| bool dont_use_is_referrers_class; |
| bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( |
| dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, |
| &type_known_final, &type_known_abstract, &dont_use_is_referrers_class); |
| if (!can_access) { |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType); |
| return false; |
| } |
| HInstruction* object = LoadLocal(reference, Primitive::kPrimNot); |
| HLoadClass* cls = new (arena_) HLoadClass( |
| graph_->GetCurrentMethod(), |
| type_index, |
| *dex_compilation_unit_->GetDexFile(), |
| IsOutermostCompilingClass(type_index), |
| dex_pc); |
| current_block_->AddInstruction(cls); |
| // The class needs a temporary before being used by the type check. |
| Temporaries temps(graph_); |
| temps.Add(cls); |
| if (instruction.Opcode() == Instruction::INSTANCE_OF) { |
| current_block_->AddInstruction( |
| new (arena_) HInstanceOf(object, cls, type_known_final, dex_pc)); |
| UpdateLocal(destination, current_block_->GetLastInstruction()); |
| } else { |
| DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); |
| current_block_->AddInstruction( |
| new (arena_) HCheckCast(object, cls, type_known_final, dex_pc)); |
| } |
| return true; |
| } |
| |
| bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index) const { |
| return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks( |
| dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index); |
| } |
| |
| void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) { |
| // Verifier guarantees that the payload for PackedSwitch contains: |
| // (a) number of entries (may be zero) |
| // (b) first and lowest switch case value (entry 0, always present) |
| // (c) list of target pcs (entries 1 <= i <= N) |
| SwitchTable table(instruction, dex_pc, false); |
| |
| // Value to test against. |
| HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); |
| |
| // Retrieve number of entries. |
| uint16_t num_entries = table.GetNumEntries(); |
| if (num_entries == 0) { |
| return; |
| } |
| |
| // Chained cmp-and-branch, starting from starting_key. |
| int32_t starting_key = table.GetEntryAt(0); |
| |
| for (size_t i = 1; i <= num_entries; i++) { |
| BuildSwitchCaseHelper(instruction, i, i == num_entries, table, value, starting_key + i - 1, |
| table.GetEntryAt(i), dex_pc); |
| } |
| } |
| |
| void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) { |
| // Verifier guarantees that the payload for SparseSwitch contains: |
| // (a) number of entries (may be zero) |
| // (b) sorted key values (entries 0 <= i < N) |
| // (c) target pcs corresponding to the switch values (entries N <= i < 2*N) |
| SwitchTable table(instruction, dex_pc, true); |
| |
| // Value to test against. |
| HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); |
| |
| uint16_t num_entries = table.GetNumEntries(); |
| |
| for (size_t i = 0; i < num_entries; i++) { |
| BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value, |
| table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc); |
| } |
| } |
| |
| void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index, |
| bool is_last_case, const SwitchTable& table, |
| HInstruction* value, int32_t case_value_int, |
| int32_t target_offset, uint32_t dex_pc) { |
| HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset); |
| DCHECK(case_target != nullptr); |
| PotentiallyAddSuspendCheck(case_target, dex_pc); |
| |
| // The current case's value. |
| HInstruction* this_case_value = graph_->GetIntConstant(case_value_int); |
| |
| // Compare value and this_case_value. |
| HEqual* comparison = new (arena_) HEqual(value, this_case_value); |
| current_block_->AddInstruction(comparison); |
| HInstruction* ifinst = new (arena_) HIf(comparison); |
| current_block_->AddInstruction(ifinst); |
| |
| // Case hit: use the target offset to determine where to go. |
| current_block_->AddSuccessor(case_target); |
| |
| // Case miss: go to the next case (or default fall-through). |
| // When there is a next case, we use the block stored with the table offset representing this |
| // case (that is where we registered them in ComputeBranchTargets). |
| // When there is no next case, we use the following instruction. |
| // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use. |
| if (!is_last_case) { |
| HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index)); |
| DCHECK(next_case_target != nullptr); |
| current_block_->AddSuccessor(next_case_target); |
| |
| // Need to manually add the block, as there is no dex-pc transition for the cases. |
| graph_->AddBlock(next_case_target); |
| |
| current_block_ = next_case_target; |
| } else { |
| HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); |
| DCHECK(default_target != nullptr); |
| current_block_->AddSuccessor(default_target); |
| current_block_ = nullptr; |
| } |
| } |
| |
| void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) { |
| int32_t target_offset = target->GetDexPc() - dex_pc; |
| if (target_offset <= 0) { |
| // DX generates back edges to the first encountered return. We can save |
| // time of later passes by not adding redundant suspend checks. |
| HInstruction* last_in_target = target->GetLastInstruction(); |
| if (last_in_target != nullptr && |
| (last_in_target->IsReturn() || last_in_target->IsReturnVoid())) { |
| return; |
| } |
| |
| // Add a suspend check to backward branches which may potentially loop. We |
| // can remove them after we recognize loops in the graph. |
| current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc)); |
| } |
| } |
| |
| bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) { |
| if (current_block_ == nullptr) { |
| return true; // Dead code |
| } |
| |
| switch (instruction.Opcode()) { |
| case Instruction::CONST_4: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n()); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_16: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s()); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i()); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_HIGH16: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_16: { |
| int32_t register_index = instruction.VRegA(); |
| // Get 16 bits of constant value, sign extended to 64 bits. |
| int64_t value = instruction.VRegB_21s(); |
| value <<= 48; |
| value >>= 48; |
| HLongConstant* constant = graph_->GetLongConstant(value); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_32: { |
| int32_t register_index = instruction.VRegA(); |
| // Get 32 bits of constant value, sign extended to 64 bits. |
| int64_t value = instruction.VRegB_31i(); |
| value <<= 32; |
| value >>= 32; |
| HLongConstant* constant = graph_->GetLongConstant(value); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE: { |
| int32_t register_index = instruction.VRegA(); |
| HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l()); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_HIGH16: { |
| int32_t register_index = instruction.VRegA(); |
| int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; |
| HLongConstant* constant = graph_->GetLongConstant(value); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| // Note that the SSA building will refine the types. |
| case Instruction::MOVE: |
| case Instruction::MOVE_FROM16: |
| case Instruction::MOVE_16: { |
| HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| // Note that the SSA building will refine the types. |
| case Instruction::MOVE_WIDE: |
| case Instruction::MOVE_WIDE_FROM16: |
| case Instruction::MOVE_WIDE_16: { |
| HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong); |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE_OBJECT_16: |
| case Instruction::MOVE_OBJECT_FROM16: { |
| HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot); |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| case Instruction::RETURN_VOID: { |
| BuildReturn(instruction, Primitive::kPrimVoid); |
| break; |
| } |
| |
| #define IF_XX(comparison, cond) \ |
| case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ |
| case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break |
| |
| IF_XX(HEqual, EQ); |
| IF_XX(HNotEqual, NE); |
| IF_XX(HLessThan, LT); |
| IF_XX(HLessThanOrEqual, LE); |
| IF_XX(HGreaterThan, GT); |
| IF_XX(HGreaterThanOrEqual, GE); |
| |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: { |
| int32_t offset = instruction.GetTargetOffset(); |
| HBasicBlock* target = FindBlockStartingAt(offset + dex_pc); |
| DCHECK(target != nullptr); |
| PotentiallyAddSuspendCheck(target, dex_pc); |
| current_block_->AddInstruction(new (arena_) HGoto()); |
| current_block_->AddSuccessor(target); |
| current_block_ = nullptr; |
| break; |
| } |
| |
| case Instruction::RETURN: { |
| BuildReturn(instruction, return_type_); |
| break; |
| } |
| |
| case Instruction::RETURN_OBJECT: { |
| BuildReturn(instruction, return_type_); |
| break; |
| } |
| |
| case Instruction::RETURN_WIDE: { |
| BuildReturn(instruction, return_type_); |
| break; |
| } |
| |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_VIRTUAL: { |
| uint32_t method_idx = instruction.VRegB_35c(); |
| uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); |
| uint32_t args[5]; |
| instruction.GetVarArgs(args); |
| if (!BuildInvoke(instruction, dex_pc, method_idx, |
| number_of_vreg_arguments, false, args, -1)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::INVOKE_DIRECT_RANGE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| case Instruction::INVOKE_STATIC_RANGE: |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_VIRTUAL_RANGE: { |
| uint32_t method_idx = instruction.VRegB_3rc(); |
| uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); |
| uint32_t register_index = instruction.VRegC(); |
| if (!BuildInvoke(instruction, dex_pc, method_idx, |
| number_of_vreg_arguments, true, nullptr, register_index)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::NEG_INT: { |
| Unop_12x<HNeg>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::NEG_LONG: { |
| Unop_12x<HNeg>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::NEG_FLOAT: { |
| Unop_12x<HNeg>(instruction, Primitive::kPrimFloat); |
| break; |
| } |
| |
| case Instruction::NEG_DOUBLE: { |
| Unop_12x<HNeg>(instruction, Primitive::kPrimDouble); |
| break; |
| } |
| |
| case Instruction::NOT_INT: { |
| Unop_12x<HNot>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::NOT_LONG: { |
| Unop_12x<HNot>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::INT_TO_LONG: { |
| Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_FLOAT: { |
| Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_DOUBLE: { |
| Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_INT: { |
| Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_FLOAT: { |
| Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_DOUBLE: { |
| Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_INT: { |
| Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_LONG: { |
| Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_DOUBLE: { |
| Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_INT: { |
| Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_LONG: { |
| Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_FLOAT: { |
| Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_BYTE: { |
| Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_SHORT: { |
| Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_CHAR: { |
| Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT: { |
| Binop_23x<HAdd>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::ADD_LONG: { |
| Binop_23x<HAdd>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::ADD_DOUBLE: { |
| Binop_23x<HAdd>(instruction, Primitive::kPrimDouble); |
| break; |
| } |
| |
| case Instruction::ADD_FLOAT: { |
| Binop_23x<HAdd>(instruction, Primitive::kPrimFloat); |
| break; |
| } |
| |
| case Instruction::SUB_INT: { |
| Binop_23x<HSub>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::SUB_LONG: { |
| Binop_23x<HSub>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::SUB_FLOAT: { |
| Binop_23x<HSub>(instruction, Primitive::kPrimFloat); |
| break; |
| } |
| |
| case Instruction::SUB_DOUBLE: { |
| Binop_23x<HSub>(instruction, Primitive::kPrimDouble); |
| break; |
| } |
| |
| case Instruction::ADD_INT_2ADDR: { |
| Binop_12x<HAdd>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::MUL_INT: { |
| Binop_23x<HMul>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::MUL_LONG: { |
| Binop_23x<HMul>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::MUL_FLOAT: { |
| Binop_23x<HMul>(instruction, Primitive::kPrimFloat); |
| break; |
| } |
| |
| case Instruction::MUL_DOUBLE: { |
| Binop_23x<HMul>(instruction, Primitive::kPrimDouble); |
| break; |
| } |
| |
| case Instruction::DIV_INT: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, Primitive::kPrimInt, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_LONG: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, Primitive::kPrimLong, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_FLOAT: { |
| Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_DOUBLE: { |
| Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_INT: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, Primitive::kPrimInt, false, false); |
| break; |
| } |
| |
| case Instruction::REM_LONG: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, Primitive::kPrimLong, false, false); |
| break; |
| } |
| |
| case Instruction::REM_FLOAT: { |
| Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_DOUBLE: { |
| Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT: { |
| Binop_23x<HAnd>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::AND_LONG: { |
| Binop_23x<HAnd>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::SHL_INT: { |
| Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::SHL_LONG: { |
| Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::SHR_INT: { |
| Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::SHR_LONG: { |
| Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::USHR_INT: { |
| Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::USHR_LONG: { |
| Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::OR_INT: { |
| Binop_23x<HOr>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::OR_LONG: { |
| Binop_23x<HOr>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::XOR_INT: { |
| Binop_23x<HXor>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::XOR_LONG: { |
| Binop_23x<HXor>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::ADD_LONG_2ADDR: { |
| Binop_12x<HAdd>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::ADD_DOUBLE_2ADDR: { |
| Binop_12x<HAdd>(instruction, Primitive::kPrimDouble); |
| break; |
| } |
| |
| case Instruction::ADD_FLOAT_2ADDR: { |
| Binop_12x<HAdd>(instruction, Primitive::kPrimFloat); |
| break; |
| } |
| |
| case Instruction::SUB_INT_2ADDR: { |
| Binop_12x<HSub>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::SUB_LONG_2ADDR: { |
| Binop_12x<HSub>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::SUB_FLOAT_2ADDR: { |
| Binop_12x<HSub>(instruction, Primitive::kPrimFloat); |
| break; |
| } |
| |
| case Instruction::SUB_DOUBLE_2ADDR: { |
| Binop_12x<HSub>(instruction, Primitive::kPrimDouble); |
| break; |
| } |
| |
| case Instruction::MUL_INT_2ADDR: { |
| Binop_12x<HMul>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::MUL_LONG_2ADDR: { |
| Binop_12x<HMul>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::MUL_FLOAT_2ADDR: { |
| Binop_12x<HMul>(instruction, Primitive::kPrimFloat); |
| break; |
| } |
| |
| case Instruction::MUL_DOUBLE_2ADDR: { |
| Binop_12x<HMul>(instruction, Primitive::kPrimDouble); |
| break; |
| } |
| |
| case Instruction::DIV_INT_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, Primitive::kPrimInt, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_LONG_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, Primitive::kPrimLong, false, true); |
| break; |
| } |
| |
| case Instruction::REM_INT_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, Primitive::kPrimInt, false, false); |
| break; |
| } |
| |
| case Instruction::REM_LONG_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, Primitive::kPrimLong, false, false); |
| break; |
| } |
| |
| case Instruction::REM_FLOAT_2ADDR: { |
| Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_DOUBLE_2ADDR: { |
| Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_INT_2ADDR: { |
| Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::SHL_LONG_2ADDR: { |
| Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::SHR_INT_2ADDR: { |
| Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::SHR_LONG_2ADDR: { |
| Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::USHR_INT_2ADDR: { |
| Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::USHR_LONG_2ADDR: { |
| Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::DIV_FLOAT_2ADDR: { |
| Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_DOUBLE_2ADDR: { |
| Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT_2ADDR: { |
| Binop_12x<HAnd>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::AND_LONG_2ADDR: { |
| Binop_12x<HAnd>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::OR_INT_2ADDR: { |
| Binop_12x<HOr>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::OR_LONG_2ADDR: { |
| Binop_12x<HOr>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::XOR_INT_2ADDR: { |
| Binop_12x<HXor>(instruction, Primitive::kPrimInt); |
| break; |
| } |
| |
| case Instruction::XOR_LONG_2ADDR: { |
| Binop_12x<HXor>(instruction, Primitive::kPrimLong); |
| break; |
| } |
| |
| case Instruction::ADD_INT_LIT16: { |
| Binop_22s<HAdd>(instruction, false); |
| break; |
| } |
| |
| case Instruction::AND_INT_LIT16: { |
| Binop_22s<HAnd>(instruction, false); |
| break; |
| } |
| |
| case Instruction::OR_INT_LIT16: { |
| Binop_22s<HOr>(instruction, false); |
| break; |
| } |
| |
| case Instruction::XOR_INT_LIT16: { |
| Binop_22s<HXor>(instruction, false); |
| break; |
| } |
| |
| case Instruction::RSUB_INT: { |
| Binop_22s<HSub>(instruction, true); |
| break; |
| } |
| |
| case Instruction::MUL_INT_LIT16: { |
| Binop_22s<HMul>(instruction, false); |
| break; |
| } |
| |
| case Instruction::ADD_INT_LIT8: { |
| Binop_22b<HAdd>(instruction, false); |
| break; |
| } |
| |
| case Instruction::AND_INT_LIT8: { |
| Binop_22b<HAnd>(instruction, false); |
| break; |
| } |
| |
| case Instruction::OR_INT_LIT8: { |
| Binop_22b<HOr>(instruction, false); |
| break; |
| } |
| |
| case Instruction::XOR_INT_LIT8: { |
| Binop_22b<HXor>(instruction, false); |
| break; |
| } |
| |
| case Instruction::RSUB_INT_LIT8: { |
| Binop_22b<HSub>(instruction, true); |
| break; |
| } |
| |
| case Instruction::MUL_INT_LIT8: { |
| Binop_22b<HMul>(instruction, false); |
| break; |
| } |
| |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::DIV_INT_LIT8: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, Primitive::kPrimInt, true, true); |
| break; |
| } |
| |
| case Instruction::REM_INT_LIT16: |
| case Instruction::REM_INT_LIT8: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, Primitive::kPrimInt, true, false); |
| break; |
| } |
| |
| case Instruction::SHL_INT_LIT8: { |
| Binop_22b<HShl>(instruction, false); |
| break; |
| } |
| |
| case Instruction::SHR_INT_LIT8: { |
| Binop_22b<HShr>(instruction, false); |
| break; |
| } |
| |
| case Instruction::USHR_INT_LIT8: { |
| Binop_22b<HUShr>(instruction, false); |
| break; |
| } |
| |
| case Instruction::NEW_INSTANCE: { |
| uint16_t type_index = instruction.VRegB_21c(); |
| if (compiler_driver_->IsStringTypeIndex(type_index, dex_file_)) { |
| // Turn new-instance of string into a const 0. |
| int32_t register_index = instruction.VRegA(); |
| HNullConstant* constant = graph_->GetNullConstant(); |
| UpdateLocal(register_index, constant); |
| } else { |
| QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index) |
| ? kQuickAllocObjectWithAccessCheck |
| : kQuickAllocObject; |
| |
| current_block_->AddInstruction(new (arena_) HNewInstance( |
| graph_->GetCurrentMethod(), |
| dex_pc, |
| type_index, |
| *dex_compilation_unit_->GetDexFile(), |
| entrypoint)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| break; |
| } |
| |
| case Instruction::NEW_ARRAY: { |
| uint16_t type_index = instruction.VRegC_22c(); |
| HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt); |
| QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index) |
| ? kQuickAllocArrayWithAccessCheck |
| : kQuickAllocArray; |
| current_block_->AddInstruction(new (arena_) HNewArray(length, |
| graph_->GetCurrentMethod(), |
| dex_pc, |
| type_index, |
| *dex_compilation_unit_->GetDexFile(), |
| entrypoint)); |
| UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::FILLED_NEW_ARRAY: { |
| uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); |
| uint32_t type_index = instruction.VRegB_35c(); |
| uint32_t args[5]; |
| instruction.GetVarArgs(args); |
| BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0); |
| break; |
| } |
| |
| case Instruction::FILLED_NEW_ARRAY_RANGE: { |
| uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); |
| uint32_t type_index = instruction.VRegB_3rc(); |
| uint32_t register_index = instruction.VRegC_3rc(); |
| BuildFilledNewArray( |
| dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index); |
| break; |
| } |
| |
| case Instruction::FILL_ARRAY_DATA: { |
| BuildFillArrayData(instruction, dex_pc); |
| break; |
| } |
| |
| case Instruction::MOVE_RESULT: |
| case Instruction::MOVE_RESULT_WIDE: |
| case Instruction::MOVE_RESULT_OBJECT: { |
| if (latest_result_ == nullptr) { |
| // Only dead code can lead to this situation, where the verifier |
| // does not reject the method. |
| } else { |
| // An Invoke/FilledNewArray and its MoveResult could have landed in |
| // different blocks if there was a try/catch block boundary between |
| // them. For Invoke, we insert a StoreLocal after the instruction. For |
| // FilledNewArray, the local needs to be updated after the array was |
| // filled, otherwise we might overwrite an input vreg. |
| HStoreLocal* update_local = |
| new (arena_) HStoreLocal(GetLocalAt(instruction.VRegA()), latest_result_); |
| HBasicBlock* block = latest_result_->GetBlock(); |
| if (block == current_block_) { |
| // MoveResult and the previous instruction are in the same block. |
| current_block_->AddInstruction(update_local); |
| } else { |
| // The two instructions are in different blocks. Insert the MoveResult |
| // before the final control-flow instruction of the previous block. |
| DCHECK(block->EndsWithControlFlowInstruction()); |
| DCHECK(current_block_->GetInstructions().IsEmpty()); |
| block->InsertInstructionBefore(update_local, block->GetLastInstruction()); |
| } |
| latest_result_ = nullptr; |
| } |
| break; |
| } |
| |
| case Instruction::CMP_LONG: { |
| Binop_23x_cmp(instruction, Primitive::kPrimLong, HCompare::kNoBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPG_FLOAT: { |
| Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kGtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPG_DOUBLE: { |
| Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kGtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPL_FLOAT: { |
| Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kLtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPL_DOUBLE: { |
| Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kLtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::NOP: |
| break; |
| |
| case Instruction::IGET: |
| case Instruction::IGET_WIDE: |
| case Instruction::IGET_OBJECT: |
| case Instruction::IGET_BOOLEAN: |
| case Instruction::IGET_BYTE: |
| case Instruction::IGET_CHAR: |
| case Instruction::IGET_SHORT: { |
| if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::IPUT: |
| case Instruction::IPUT_WIDE: |
| case Instruction::IPUT_OBJECT: |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_SHORT: { |
| if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::SGET: |
| case Instruction::SGET_WIDE: |
| case Instruction::SGET_OBJECT: |
| case Instruction::SGET_BOOLEAN: |
| case Instruction::SGET_BYTE: |
| case Instruction::SGET_CHAR: |
| case Instruction::SGET_SHORT: { |
| if (!BuildStaticFieldAccess(instruction, dex_pc, false)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::SPUT: |
| case Instruction::SPUT_WIDE: |
| case Instruction::SPUT_OBJECT: |
| case Instruction::SPUT_BOOLEAN: |
| case Instruction::SPUT_BYTE: |
| case Instruction::SPUT_CHAR: |
| case Instruction::SPUT_SHORT: { |
| if (!BuildStaticFieldAccess(instruction, dex_pc, true)) { |
| return false; |
| } |
| break; |
| } |
| |
| #define ARRAY_XX(kind, anticipated_type) \ |
| case Instruction::AGET##kind: { \ |
| BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \ |
| break; \ |
| } \ |
| case Instruction::APUT##kind: { \ |
| BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \ |
| break; \ |
| } |
| |
| ARRAY_XX(, Primitive::kPrimInt); |
| ARRAY_XX(_WIDE, Primitive::kPrimLong); |
| ARRAY_XX(_OBJECT, Primitive::kPrimNot); |
| ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean); |
| ARRAY_XX(_BYTE, Primitive::kPrimByte); |
| ARRAY_XX(_CHAR, Primitive::kPrimChar); |
| ARRAY_XX(_SHORT, Primitive::kPrimShort); |
| |
| case Instruction::ARRAY_LENGTH: { |
| HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot); |
| // No need for a temporary for the null check, it is the only input of the following |
| // instruction. |
| object = new (arena_) HNullCheck(object, dex_pc); |
| current_block_->AddInstruction(object); |
| current_block_->AddInstruction(new (arena_) HArrayLength(object)); |
| UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_STRING: { |
| current_block_->AddInstruction( |
| new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_21c(), dex_pc)); |
| UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_STRING_JUMBO: { |
| current_block_->AddInstruction( |
| new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_31c(), dex_pc)); |
| UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_CLASS: { |
| uint16_t type_index = instruction.VRegB_21c(); |
| bool type_known_final; |
| bool type_known_abstract; |
| bool dont_use_is_referrers_class; |
| // `CanAccessTypeWithoutChecks` will tell whether the method being |
| // built is trying to access its own class, so that the generated |
| // code can optimize for this case. However, the optimization does not |
| // work for inlining, so we use `IsOutermostCompilingClass` instead. |
| bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( |
| dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, |
| &type_known_final, &type_known_abstract, &dont_use_is_referrers_class); |
| if (!can_access) { |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType); |
| return false; |
| } |
| current_block_->AddInstruction(new (arena_) HLoadClass( |
| graph_->GetCurrentMethod(), |
| type_index, |
| *dex_compilation_unit_->GetDexFile(), |
| IsOutermostCompilingClass(type_index), |
| dex_pc)); |
| UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::MOVE_EXCEPTION: { |
| current_block_->AddInstruction(new (arena_) HLoadException()); |
| UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::THROW: { |
| HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot); |
| current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc)); |
| // A throw instruction must branch to the exit block. |
| current_block_->AddSuccessor(exit_block_); |
| // We finished building this block. Set the current block to null to avoid |
| // adding dead instructions to it. |
| current_block_ = nullptr; |
| break; |
| } |
| |
| case Instruction::INSTANCE_OF: { |
| uint8_t destination = instruction.VRegA_22c(); |
| uint8_t reference = instruction.VRegB_22c(); |
| uint16_t type_index = instruction.VRegC_22c(); |
| if (!BuildTypeCheck(instruction, destination, reference, type_index, dex_pc)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::CHECK_CAST: { |
| uint8_t reference = instruction.VRegA_21c(); |
| uint16_t type_index = instruction.VRegB_21c(); |
| if (!BuildTypeCheck(instruction, -1, reference, type_index, dex_pc)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::MONITOR_ENTER: { |
| current_block_->AddInstruction(new (arena_) HMonitorOperation( |
| LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), |
| HMonitorOperation::kEnter, |
| dex_pc)); |
| break; |
| } |
| |
| case Instruction::MONITOR_EXIT: { |
| current_block_->AddInstruction(new (arena_) HMonitorOperation( |
| LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), |
| HMonitorOperation::kExit, |
| dex_pc)); |
| break; |
| } |
| |
| case Instruction::PACKED_SWITCH: { |
| BuildPackedSwitch(instruction, dex_pc); |
| break; |
| } |
| |
| case Instruction::SPARSE_SWITCH: { |
| BuildSparseSwitch(instruction, dex_pc); |
| break; |
| } |
| |
| default: |
| VLOG(compiler) << "Did not compile " |
| << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) |
| << " because of unhandled instruction " |
| << instruction.Name(); |
| MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction); |
| return false; |
| } |
| return true; |
| } // NOLINT(readability/fn_size) |
| |
| HLocal* HGraphBuilder::GetLocalAt(int register_index) const { |
| return locals_.Get(register_index); |
| } |
| |
| void HGraphBuilder::UpdateLocal(int register_index, HInstruction* instruction) const { |
| HLocal* local = GetLocalAt(register_index); |
| current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction)); |
| } |
| |
| HInstruction* HGraphBuilder::LoadLocal(int register_index, Primitive::Type type) const { |
| HLocal* local = GetLocalAt(register_index); |
| current_block_->AddInstruction(new (arena_) HLoadLocal(local, type)); |
| return current_block_->GetLastInstruction(); |
| } |
| |
| } // namespace art |