| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* This file contains codegen for the Thumb2 ISA. */ |
| |
| #include "arm_lir.h" |
| #include "codegen_arm.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| |
| namespace art { |
| |
| /* |
| * The sparse table in the literal pool is an array of <key,displacement> |
| * pairs. For each set, we'll load them as a pair using ldmia. |
| * This means that the register number of the temp we use for the key |
| * must be lower than the reg for the displacement. |
| * |
| * The test loop will look something like: |
| * |
| * adr r_base, <table> |
| * ldr r_val, [rARM_SP, v_reg_off] |
| * mov r_idx, #table_size |
| * lp: |
| * ldmia r_base!, {r_key, r_disp} |
| * sub r_idx, #1 |
| * cmp r_val, r_key |
| * ifeq |
| * add rARM_PC, r_disp ; This is the branch from which we compute displacement |
| * cbnz r_idx, lp |
| */ |
| void ArmMir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset, |
| RegLocation rl_src) { |
| const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; |
| if (cu_->verbose) { |
| DumpSparseSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable *tab_rec = |
| static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| uint32_t size = table[1]; |
| tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR)); |
| switch_tables_.Insert(tab_rec); |
| |
| // Get the switch value |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegStorage r_base = AllocTemp(); |
| /* Allocate key and disp temps */ |
| RegStorage r_key = AllocTemp(); |
| RegStorage r_disp = AllocTemp(); |
| // Make sure r_key's register number is less than r_disp's number for ldmia |
| if (r_key.GetReg() > r_disp.GetReg()) { |
| RegStorage tmp = r_disp; |
| r_disp = r_key; |
| r_key = tmp; |
| } |
| // Materialize a pointer to the switch table |
| NewLIR3(kThumb2Adr, r_base.GetReg(), 0, WrapPointer(tab_rec)); |
| // Set up r_idx |
| RegStorage r_idx = AllocTemp(); |
| LoadConstant(r_idx, size); |
| // Establish loop branch target |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| // Load next key/disp |
| NewLIR2(kThumb2LdmiaWB, r_base.GetReg(), (1 << r_key.GetRegNum()) | (1 << r_disp.GetRegNum())); |
| OpRegReg(kOpCmp, r_key, rl_src.reg); |
| // Go if match. NOTE: No instruction set switch here - must stay Thumb2 |
| LIR* it = OpIT(kCondEq, ""); |
| LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp.GetReg()); |
| OpEndIT(it); |
| tab_rec->anchor = switch_branch; |
| // Needs to use setflags encoding here |
| OpRegRegImm(kOpSub, r_idx, r_idx, 1); // For value == 1, this should set flags. |
| DCHECK(last_lir_insn_->u.m.def_mask & ENCODE_CCODE); |
| OpCondBranch(kCondNe, target); |
| } |
| |
| |
| void ArmMir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset, |
| RegLocation rl_src) { |
| const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; |
| if (cu_->verbose) { |
| DumpPackedSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable *tab_rec = |
| static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| uint32_t size = table[1]; |
| tab_rec->targets = |
| static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR)); |
| switch_tables_.Insert(tab_rec); |
| |
| // Get the switch value |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegStorage table_base = AllocTemp(); |
| // Materialize a pointer to the switch table |
| NewLIR3(kThumb2Adr, table_base.GetReg(), 0, WrapPointer(tab_rec)); |
| int low_key = s4FromSwitchData(&table[2]); |
| RegStorage keyReg; |
| // Remove the bias, if necessary |
| if (low_key == 0) { |
| keyReg = rl_src.reg; |
| } else { |
| keyReg = AllocTemp(); |
| OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key); |
| } |
| // Bounds check - if < 0 or >= size continue following switch |
| OpRegImm(kOpCmp, keyReg, size-1); |
| LIR* branch_over = OpCondBranch(kCondHi, NULL); |
| |
| // Load the displacement from the switch table |
| RegStorage disp_reg = AllocTemp(); |
| LoadBaseIndexed(table_base, keyReg, disp_reg, 2, k32); |
| |
| // ..and go! NOTE: No instruction set switch here - must stay Thumb2 |
| LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg.GetReg()); |
| tab_rec->anchor = switch_branch; |
| |
| /* branch_over target here */ |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = target; |
| } |
| |
| /* |
| * Array data table format: |
| * ushort ident = 0x0300 magic value |
| * ushort width width of each element in the table |
| * uint size number of elements in the table |
| * ubyte data[size*width] table of data values (may contain a single-byte |
| * padding at the end) |
| * |
| * Total size is 4+(width * size + 1)/2 16-bit code units. |
| */ |
| void ArmMir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) { |
| const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; |
| // Add the table to the list - we'll process it later |
| FillArrayData *tab_rec = |
| static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), kArenaAllocData)); |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| uint16_t width = tab_rec->table[1]; |
| uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16); |
| tab_rec->size = (size * width) + 8; |
| |
| fill_array_data_.Insert(tab_rec); |
| |
| // Making a call - use explicit registers |
| FlushAllRegs(); /* Everything to home location */ |
| LoadValueDirectFixed(rl_src, rs_r0); |
| LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pHandleFillArrayData).Int32Value(), |
| rs_rARM_LR); |
| // Materialize a pointer to the fill data image |
| NewLIR3(kThumb2Adr, rs_r1.GetReg(), 0, WrapPointer(tab_rec)); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR); |
| MarkSafepointPC(call_inst); |
| } |
| |
| /* |
| * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more |
| * details see monitor.cc. |
| */ |
| void ArmMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { |
| FlushAllRegs(); |
| // FIXME: need separate LoadValues for object references. |
| LoadValueDirectFixed(rl_src, rs_r0); // Get obj |
| LockCallTemps(); // Prepare for explicit register usage |
| constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15. |
| if (kArchVariantHasGoodBranchPredictor) { |
| LIR* null_check_branch = nullptr; |
| if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { |
| null_check_branch = nullptr; // No null check. |
| } else { |
| // If the null-check fails its handled by the slow-path to reduce exception related meta-data. |
| if (Runtime::Current()->ExplicitNullChecks()) { |
| null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, NULL); |
| } |
| } |
| Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); |
| NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| MarkPossibleNullPointerException(opt_flags); |
| LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_r1, 0, NULL); |
| NewLIR4(kThumb2Strex, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_r1, 0, NULL); |
| |
| |
| LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); |
| not_unlocked_branch->target = slow_path_target; |
| if (null_check_branch != nullptr) { |
| null_check_branch->target = slow_path_target; |
| } |
| // TODO: move to a slow path. |
| // Go expensive route - artLockObjectFromCode(obj); |
| LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR); |
| MarkSafepointPC(call_inst); |
| |
| LIR* success_target = NewLIR0(kPseudoTargetLabel); |
| lock_success_branch->target = success_target; |
| GenMemBarrier(kLoadLoad); |
| } else { |
| // Explicit null-check as slow-path is entered using an IT. |
| GenNullCheck(rs_r0, opt_flags); |
| Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); |
| NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| MarkPossibleNullPointerException(opt_flags); |
| OpRegImm(kOpCmp, rs_r1, 0); |
| LIR* it = OpIT(kCondEq, ""); |
| NewLIR4(kThumb2Strex/*eq*/, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| OpEndIT(it); |
| OpRegImm(kOpCmp, rs_r1, 0); |
| it = OpIT(kCondNe, "T"); |
| // Go expensive route - artLockObjectFromCode(self, obj); |
| LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), |
| rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR); |
| OpEndIT(it); |
| MarkSafepointPC(call_inst); |
| GenMemBarrier(kLoadLoad); |
| } |
| } |
| |
| /* |
| * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more |
| * details see monitor.cc. Note the code below doesn't use ldrex/strex as the code holds the lock |
| * and can only give away ownership if its suspended. |
| */ |
| void ArmMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { |
| FlushAllRegs(); |
| LoadValueDirectFixed(rl_src, rs_r0); // Get obj |
| LockCallTemps(); // Prepare for explicit register usage |
| LIR* null_check_branch = nullptr; |
| Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); |
| constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15. |
| if (kArchVariantHasGoodBranchPredictor) { |
| if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { |
| null_check_branch = nullptr; // No null check. |
| } else { |
| // If the null-check fails its handled by the slow-path to reduce exception related meta-data. |
| if (Runtime::Current()->ExplicitNullChecks()) { |
| null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, NULL); |
| } |
| } |
| Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); |
| MarkPossibleNullPointerException(opt_flags); |
| LoadConstantNoClobber(rs_r3, 0); |
| LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_r1, rs_r2, NULL); |
| GenMemBarrier(kStoreLoad); |
| Store32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r3); |
| LIR* unlock_success_branch = OpUnconditionalBranch(NULL); |
| |
| LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); |
| slow_unlock_branch->target = slow_path_target; |
| if (null_check_branch != nullptr) { |
| null_check_branch->target = slow_path_target; |
| } |
| // TODO: move to a slow path. |
| // Go expensive route - artUnlockObjectFromCode(obj); |
| LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR); |
| MarkSafepointPC(call_inst); |
| |
| LIR* success_target = NewLIR0(kPseudoTargetLabel); |
| unlock_success_branch->target = success_target; |
| } else { |
| // Explicit null-check as slow-path is entered using an IT. |
| GenNullCheck(rs_r0, opt_flags); |
| Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); // Get lock |
| MarkPossibleNullPointerException(opt_flags); |
| Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); |
| LoadConstantNoClobber(rs_r3, 0); |
| // Is lock unheld on lock or held by us (==thread_id) on unlock? |
| OpRegReg(kOpCmp, rs_r1, rs_r2); |
| |
| LIR* it = OpIT(kCondEq, "EE"); |
| if (GenMemBarrier(kStoreLoad)) { |
| UpdateIT(it, "TEE"); |
| } |
| Store32Disp/*eq*/(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r3); |
| // Go expensive route - UnlockObjectFromCode(obj); |
| LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), |
| rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR); |
| OpEndIT(it); |
| MarkSafepointPC(call_inst); |
| } |
| } |
| |
| void ArmMir2Lir::GenMoveException(RegLocation rl_dest) { |
| int ex_offset = Thread::ExceptionOffset<4>().Int32Value(); |
| RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); |
| RegStorage reset_reg = AllocTempRef(); |
| LoadRefDisp(rs_rARM_SELF, ex_offset, rl_result.reg); |
| LoadConstant(reset_reg, 0); |
| StoreRefDisp(rs_rARM_SELF, ex_offset, reset_reg); |
| FreeTemp(reset_reg); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| /* |
| * Mark garbage collection card. Skip if the value we're storing is null. |
| */ |
| void ArmMir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) { |
| RegStorage reg_card_base = AllocTemp(); |
| RegStorage reg_card_no = AllocTemp(); |
| LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL); |
| LoadWordDisp(rs_rARM_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base); |
| OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); |
| StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte); |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = target; |
| FreeTemp(reg_card_base); |
| FreeTemp(reg_card_no); |
| } |
| |
| void ArmMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { |
| int spill_count = num_core_spills_ + num_fp_spills_; |
| /* |
| * On entry, r0, r1, r2 & r3 are live. Let the register allocation |
| * mechanism know so it doesn't try to use any of them when |
| * expanding the frame or flushing. This leaves the utility |
| * code with a single temp: r12. This should be enough. |
| */ |
| LockTemp(rs_r0); |
| LockTemp(rs_r1); |
| LockTemp(rs_r2); |
| LockTemp(rs_r3); |
| |
| /* |
| * We can safely skip the stack overflow check if we're |
| * a leaf *and* our frame size < fudge factor. |
| */ |
| bool skip_overflow_check = (mir_graph_->MethodIsLeaf() && |
| (static_cast<size_t>(frame_size_) < |
| Thread::kStackOverflowReservedBytes)); |
| NewLIR0(kPseudoMethodEntry); |
| bool large_frame = (static_cast<size_t>(frame_size_) > Thread::kStackOverflowReservedUsableBytes); |
| if (!skip_overflow_check) { |
| if (Runtime::Current()->ExplicitStackOverflowChecks()) { |
| if (!large_frame) { |
| /* Load stack limit */ |
| LockTemp(rs_r12); |
| Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12); |
| } |
| } else { |
| // Implicit stack overflow check. |
| // Generate a load from [sp, #-overflowsize]. If this is in the stack |
| // redzone we will get a segmentation fault. |
| // |
| // Caveat coder: if someone changes the kStackOverflowReservedBytes value |
| // we need to make sure that it's loadable in an immediate field of |
| // a sub instruction. Otherwise we will get a temp allocation and the |
| // code size will increase. |
| // |
| // This is done before the callee save instructions to avoid any possibility |
| // of these overflowing. This uses r12 and that's never saved in a callee |
| // save. |
| OpRegRegImm(kOpSub, rs_r12, rs_rARM_SP, Thread::kStackOverflowReservedBytes); |
| Load32Disp(rs_r12, 0, rs_r12); |
| MarkPossibleStackOverflowException(); |
| } |
| } |
| /* Spill core callee saves */ |
| NewLIR1(kThumb2Push, core_spill_mask_); |
| /* Need to spill any FP regs? */ |
| if (num_fp_spills_) { |
| /* |
| * NOTE: fp spills are a little different from core spills in that |
| * they are pushed as a contiguous block. When promoting from |
| * the fp set, we must allocate all singles from s16..highest-promoted |
| */ |
| NewLIR1(kThumb2VPushCS, num_fp_spills_); |
| } |
| |
| const int spill_size = spill_count * 4; |
| const int frame_size_without_spills = frame_size_ - spill_size; |
| if (!skip_overflow_check) { |
| if (Runtime::Current()->ExplicitStackOverflowChecks()) { |
| class StackOverflowSlowPath : public LIRSlowPath { |
| public: |
| StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, bool restore_lr, size_t sp_displace) |
| : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr), restore_lr_(restore_lr), |
| sp_displace_(sp_displace) { |
| } |
| void Compile() OVERRIDE { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoThrowTarget); |
| if (restore_lr_) { |
| m2l_->LoadWordDisp(rs_rARM_SP, sp_displace_ - 4, rs_rARM_LR); |
| } |
| m2l_->OpRegImm(kOpAdd, rs_rARM_SP, sp_displace_); |
| m2l_->ClobberCallerSave(); |
| ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pThrowStackOverflow); |
| // Load the entrypoint directly into the pc instead of doing a load + branch. Assumes |
| // codegen and target are in thumb2 mode. |
| // NOTE: native pointer. |
| m2l_->LoadWordDisp(rs_rARM_SELF, func_offset.Int32Value(), rs_rARM_PC); |
| } |
| |
| private: |
| const bool restore_lr_; |
| const size_t sp_displace_; |
| }; |
| if (large_frame) { |
| // Note: may need a temp reg, and we only have r12 free at this point. |
| OpRegRegImm(kOpSub, rs_rARM_LR, rs_rARM_SP, frame_size_without_spills); |
| Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12); |
| LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_LR, rs_r12, nullptr); |
| // Need to restore LR since we used it as a temp. |
| AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, true, spill_size)); |
| OpRegCopy(rs_rARM_SP, rs_rARM_LR); // Establish stack |
| } else { |
| /* |
| * If the frame is small enough we are guaranteed to have enough space that remains to |
| * handle signals on the user stack. However, we may not have any free temp |
| * registers at this point, so we'll temporarily add LR to the temp pool. |
| */ |
| DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp()); |
| MarkTemp(rs_rARM_LR); |
| FreeTemp(rs_rARM_LR); |
| OpRegRegImm(kOpSub, rs_rARM_SP, rs_rARM_SP, frame_size_without_spills); |
| Clobber(rs_rARM_LR); |
| UnmarkTemp(rs_rARM_LR); |
| LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_SP, rs_r12, nullptr); |
| AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, false, frame_size_)); |
| } |
| } else { |
| // Implicit stack overflow check has already been done. Just make room on the |
| // stack for the frame now. |
| OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills); |
| } |
| } else { |
| OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills); |
| } |
| |
| FlushIns(ArgLocs, rl_method); |
| |
| FreeTemp(rs_r0); |
| FreeTemp(rs_r1); |
| FreeTemp(rs_r2); |
| FreeTemp(rs_r3); |
| FreeTemp(rs_r12); |
| } |
| |
| void ArmMir2Lir::GenExitSequence() { |
| int spill_count = num_core_spills_ + num_fp_spills_; |
| /* |
| * In the exit path, r0/r1 are live - make sure they aren't |
| * allocated by the register utilities as temps. |
| */ |
| LockTemp(rs_r0); |
| LockTemp(rs_r1); |
| |
| NewLIR0(kPseudoMethodExit); |
| OpRegImm(kOpAdd, rs_rARM_SP, frame_size_ - (spill_count * 4)); |
| /* Need to restore any FP callee saves? */ |
| if (num_fp_spills_) { |
| NewLIR1(kThumb2VPopCS, num_fp_spills_); |
| } |
| if (core_spill_mask_ & (1 << rs_rARM_LR.GetRegNum())) { |
| /* Unspill rARM_LR to rARM_PC */ |
| core_spill_mask_ &= ~(1 << rs_rARM_LR.GetRegNum()); |
| core_spill_mask_ |= (1 << rs_rARM_PC.GetRegNum()); |
| } |
| NewLIR1(kThumb2Pop, core_spill_mask_); |
| if (!(core_spill_mask_ & (1 << rs_rARM_PC.GetRegNum()))) { |
| /* We didn't pop to rARM_PC, so must do a bv rARM_LR */ |
| NewLIR1(kThumbBx, rs_rARM_LR.GetReg()); |
| } |
| } |
| |
| void ArmMir2Lir::GenSpecialExitSequence() { |
| NewLIR1(kThumbBx, rs_rARM_LR.GetReg()); |
| } |
| |
| } // namespace art |