| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "image_writer.h" |
| |
| #include <lz4.h> |
| #include <lz4hc.h> |
| #include <sys/stat.h> |
| #include <zlib.h> |
| |
| #include <memory> |
| #include <numeric> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/callee_save_type.h" |
| #include "base/enums.h" |
| #include "base/globals.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/stl_util.h" |
| #include "base/unix_file/fd_file.h" |
| #include "class_linker-inl.h" |
| #include "class_root.h" |
| #include "compiled_method.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_file_types.h" |
| #include "driver/compiler_options.h" |
| #include "elf_file.h" |
| #include "elf_utils.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/accounting/heap_bitmap.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/collector/concurrent_copying.h" |
| #include "gc/heap-visit-objects-inl.h" |
| #include "gc/heap.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/region_space.h" |
| #include "gc/space/space-inl.h" |
| #include "gc/verification.h" |
| #include "handle_scope-inl.h" |
| #include "image.h" |
| #include "imt_conflict_table.h" |
| #include "intern_table-inl.h" |
| #include "jni/jni_internal.h" |
| #include "linear_alloc.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_ext.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache-inl.h" |
| #include "mirror/dex_cache.h" |
| #include "mirror/executable.h" |
| #include "mirror/method.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object-refvisitor-inl.h" |
| #include "mirror/object_array-alloc-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/string-inl.h" |
| #include "oat.h" |
| #include "oat_file.h" |
| #include "oat_file_manager.h" |
| #include "optimizing/intrinsic_objects.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "subtype_check.h" |
| #include "utils/dex_cache_arrays_layout-inl.h" |
| #include "well_known_classes.h" |
| |
| using ::art::mirror::Class; |
| using ::art::mirror::DexCache; |
| using ::art::mirror::Object; |
| using ::art::mirror::ObjectArray; |
| using ::art::mirror::String; |
| |
| namespace art { |
| namespace linker { |
| |
| static ArrayRef<const uint8_t> MaybeCompressData(ArrayRef<const uint8_t> source, |
| ImageHeader::StorageMode image_storage_mode, |
| /*out*/ std::vector<uint8_t>* storage) { |
| const uint64_t compress_start_time = NanoTime(); |
| |
| switch (image_storage_mode) { |
| case ImageHeader::kStorageModeLZ4: { |
| storage->resize(LZ4_compressBound(source.size())); |
| size_t data_size = LZ4_compress_default( |
| reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())), |
| reinterpret_cast<char*>(storage->data()), |
| source.size(), |
| storage->size()); |
| storage->resize(data_size); |
| break; |
| } |
| case ImageHeader::kStorageModeLZ4HC: { |
| // Bound is same as non HC. |
| storage->resize(LZ4_compressBound(source.size())); |
| size_t data_size = LZ4_compress_HC( |
| reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())), |
| reinterpret_cast<char*>(storage->data()), |
| source.size(), |
| storage->size(), |
| LZ4HC_CLEVEL_MAX); |
| storage->resize(data_size); |
| break; |
| } |
| case ImageHeader::kStorageModeUncompressed: { |
| return source; |
| } |
| default: { |
| LOG(FATAL) << "Unsupported"; |
| UNREACHABLE(); |
| } |
| } |
| |
| DCHECK(image_storage_mode == ImageHeader::kStorageModeLZ4 || |
| image_storage_mode == ImageHeader::kStorageModeLZ4HC); |
| VLOG(compiler) << "Compressed from " << source.size() << " to " << storage->size() << " in " |
| << PrettyDuration(NanoTime() - compress_start_time); |
| if (kIsDebugBuild) { |
| std::vector<uint8_t> decompressed(source.size()); |
| const size_t decompressed_size = LZ4_decompress_safe( |
| reinterpret_cast<char*>(storage->data()), |
| reinterpret_cast<char*>(decompressed.data()), |
| storage->size(), |
| decompressed.size()); |
| CHECK_EQ(decompressed_size, decompressed.size()); |
| CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode; |
| } |
| return ArrayRef<const uint8_t>(*storage); |
| } |
| |
| // Separate objects into multiple bins to optimize dirty memory use. |
| static constexpr bool kBinObjects = true; |
| |
| ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return compiler_options_.IsAppImage() |
| ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_)) |
| : nullptr; |
| } |
| |
| bool ImageWriter::IsImageObject(ObjPtr<mirror::Object> obj) const { |
| // For boot image, we keep all objects remaining after the GC in PrepareImageAddressSpace(). |
| if (compiler_options_.IsBootImage()) { |
| return true; |
| } |
| // Objects already in the boot image do not belong to the image being written. |
| if (IsInBootImage(obj.Ptr())) { |
| return false; |
| } |
| // DexCaches for the boot class path components that are not a part of the boot image |
| // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to |
| // include them in the app image. So make sure we include only the app DexCaches. |
| if (obj->IsDexCache() && |
| !ContainsElement(compiler_options_.GetDexFilesForOatFile(), |
| obj->AsDexCache()->GetDexFile())) { |
| return false; |
| } |
| return true; |
| } |
| |
| // Return true if an object is already in an image space. |
| bool ImageWriter::IsInBootImage(const void* obj) const { |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| if (compiler_options_.IsBootImage()) { |
| DCHECK(heap->GetBootImageSpaces().empty()); |
| return false; |
| } |
| for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { |
| const uint8_t* image_begin = boot_image_space->Begin(); |
| // Real image end including ArtMethods and ArtField sections. |
| const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize(); |
| if (image_begin <= obj && obj < image_end) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool ImageWriter::IsInBootOatFile(const void* ptr) const { |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| if (compiler_options_.IsBootImage()) { |
| DCHECK(heap->GetBootImageSpaces().empty()); |
| return false; |
| } |
| for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { |
| const ImageHeader& image_header = boot_image_space->GetImageHeader(); |
| if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) { |
| auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(obj != nullptr); |
| Class* klass = obj->GetClass(); |
| if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) { |
| ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie); |
| // Null out the cookie to enable determinism. b/34090128 |
| field->SetObject</*kTransactionActive*/false>(obj, nullptr); |
| } |
| }; |
| Runtime::Current()->GetHeap()->VisitObjects(visitor); |
| } |
| |
| bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) { |
| target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet()); |
| |
| Thread* const self = Thread::Current(); |
| |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| { |
| ScopedObjectAccess soa(self); |
| { |
| TimingLogger::ScopedTiming t("PruneNonImageClasses", timings); |
| PruneNonImageClasses(); // Remove junk |
| } |
| |
| if (compiler_options_.IsAppImage()) { |
| TimingLogger::ScopedTiming t("ClearDexFileCookies", timings); |
| // Clear dex file cookies for app images to enable app image determinism. This is required |
| // since the cookie field contains long pointers to DexFiles which are not deterministic. |
| // b/34090128 |
| ClearDexFileCookies(); |
| } |
| } |
| |
| { |
| TimingLogger::ScopedTiming t("CollectGarbage", timings); |
| heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage. |
| } |
| |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(self); |
| CheckNonImageClassesRemoved(); |
| } |
| |
| // Used to store information that will later be used to calculate image |
| // offsets to string references in the AppImage. |
| std::vector<HeapReferencePointerInfo> string_ref_info; |
| if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) { |
| // Count the number of string fields so we can allocate the appropriate |
| // amount of space in the image section. |
| TimingLogger::ScopedTiming t("AppImage:CollectStringReferenceInfo", timings); |
| ScopedObjectAccess soa(self); |
| |
| if (kIsDebugBuild) { |
| VerifyNativeGCRootInvariants(); |
| CHECK_EQ(image_infos_.size(), 1u); |
| } |
| |
| string_ref_info = CollectStringReferenceInfo(); |
| image_infos_.back().num_string_references_ = string_ref_info.size(); |
| } |
| |
| { |
| TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings); |
| ScopedObjectAccess soa(self); |
| CalculateNewObjectOffsets(); |
| } |
| |
| // Obtain class count for debugging purposes |
| if (VLOG_IS_ON(compiler) && compiler_options_.IsAppImage()) { |
| ScopedObjectAccess soa(self); |
| |
| size_t app_image_class_count = 0; |
| |
| for (ImageInfo& info : image_infos_) { |
| info.class_table_->Visit([&](ObjPtr<mirror::Class> klass) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!IsInBootImage(klass.Ptr())) { |
| ++app_image_class_count; |
| } |
| |
| // Indicate that we would like to continue visiting classes. |
| return true; |
| }); |
| } |
| |
| VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << app_image_class_count; |
| } |
| |
| if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) { |
| // Use the string reference information obtained earlier to calculate image |
| // offsets. These will later be written to the image by Write/CopyMetadata. |
| TimingLogger::ScopedTiming t("AppImage:CalculateImageOffsets", timings); |
| ScopedObjectAccess soa(self); |
| |
| size_t managed_string_refs = 0; |
| size_t native_string_refs = 0; |
| |
| /* |
| * Iterate over the string reference info and calculate image offsets. |
| * The first element of the pair is either the object the reference belongs |
| * to or the beginning of the native reference array it is located in. In |
| * the first case the second element is the offset of the field relative to |
| * the object's base address. In the second case, it is the index of the |
| * StringDexCacheType object in the array. |
| */ |
| for (const HeapReferencePointerInfo& ref_info : string_ref_info) { |
| uint32_t base_offset; |
| |
| if (HasDexCacheStringNativeRefTag(ref_info.first)) { |
| ++native_string_refs; |
| auto* obj_ptr = reinterpret_cast<mirror::Object*>(ClearDexCacheNativeRefTags( |
| ref_info.first)); |
| base_offset = SetDexCacheStringNativeRefTag(GetImageOffset(obj_ptr)); |
| } else if (HasDexCachePreResolvedStringNativeRefTag(ref_info.first)) { |
| ++native_string_refs; |
| auto* obj_ptr = reinterpret_cast<mirror::Object*>(ClearDexCacheNativeRefTags( |
| ref_info.first)); |
| base_offset = SetDexCachePreResolvedStringNativeRefTag(GetImageOffset(obj_ptr)); |
| } else { |
| ++managed_string_refs; |
| base_offset = GetImageOffset(reinterpret_cast<mirror::Object*>(ref_info.first)); |
| } |
| |
| string_reference_offsets_.emplace_back(base_offset, ref_info.second); |
| } |
| |
| CHECK_EQ(image_infos_.back().num_string_references_, |
| string_reference_offsets_.size()); |
| |
| VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << string_reference_offsets_.size(); |
| VLOG(compiler) << "Dex2Oat:AppImage:managedStringReferences = " << managed_string_refs; |
| VLOG(compiler) << "Dex2Oat:AppImage:nativeStringReferences = " << native_string_refs; |
| } |
| |
| // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and |
| // bin size sums being calculated. |
| TimingLogger::ScopedTiming t("AllocMemory", timings); |
| return AllocMemory(); |
| } |
| |
| class ImageWriter::CollectStringReferenceVisitor { |
| public: |
| explicit CollectStringReferenceVisitor(const ImageWriter& image_writer) |
| : image_writer_(image_writer), |
| curr_obj_(nullptr), |
| string_ref_info_(0), |
| dex_cache_string_ref_counter_(0) {} |
| |
| // Used to prevent repeated null checks in the code that calls the visitor. |
| ALWAYS_INLINE |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| /* |
| * Counts the number of native references to strings reachable through |
| * DexCache objects for verification later. |
| */ |
| ALWAYS_INLINE |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> referred_obj = root->AsMirrorPtr(); |
| |
| if (curr_obj_->IsDexCache() && |
| image_writer_.IsValidAppImageStringReference(referred_obj)) { |
| ++dex_cache_string_ref_counter_; |
| } |
| } |
| |
| // Collects info for managed fields that reference managed Strings. |
| ALWAYS_INLINE |
| void operator() (ObjPtr<mirror::Object> obj, |
| MemberOffset member_offset, |
| bool is_static ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> referred_obj = |
| obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( |
| member_offset); |
| |
| if (image_writer_.IsValidAppImageStringReference(referred_obj)) { |
| string_ref_info_.emplace_back(reinterpret_cast<uintptr_t>(obj.Ptr()), |
| member_offset.Uint32Value()); |
| } |
| } |
| |
| ALWAYS_INLINE |
| void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, |
| ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| void AddStringRefInfo(uint32_t first, uint32_t second) { |
| string_ref_info_.emplace_back(first, second); |
| } |
| |
| std::vector<HeapReferencePointerInfo>&& MoveRefInfo() { |
| return std::move(string_ref_info_); |
| } |
| |
| // Used by the wrapper function to obtain a native reference count. |
| size_t GetDexCacheStringRefCount() const { |
| return dex_cache_string_ref_counter_; |
| } |
| |
| void SetObject(ObjPtr<mirror::Object> obj) { |
| curr_obj_ = obj; |
| dex_cache_string_ref_counter_ = 0; |
| } |
| |
| private: |
| const ImageWriter& image_writer_; |
| ObjPtr<mirror::Object> curr_obj_; |
| mutable std::vector<HeapReferencePointerInfo> string_ref_info_; |
| mutable size_t dex_cache_string_ref_counter_; |
| }; |
| |
| std::vector<ImageWriter::HeapReferencePointerInfo> ImageWriter::CollectStringReferenceInfo() const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| CollectStringReferenceVisitor visitor(*this); |
| |
| /* |
| * References to managed strings can occur either in the managed heap or in |
| * native memory regions. Information about managed references is collected |
| * by the CollectStringReferenceVisitor and directly added to the internal |
| * info vector. |
| * |
| * Native references to managed strings can only occur through DexCache |
| * objects. This is verified by VerifyNativeGCRootInvariants(). Due to the |
| * fact that these native references are encapsulated in std::atomic objects |
| * the VisitReferences() function can't pass the visiting object the address |
| * of the reference. Instead, the VisitReferences() function loads the |
| * reference into a temporary variable and passes that address to the |
| * visitor. As a consequence of this we can't uniquely identify the location |
| * of the string reference in the visitor. |
| * |
| * Due to these limitations, the visitor will only count the number of |
| * managed strings reachable through the native references of a DexCache |
| * object. If there are any such strings, this function will then iterate |
| * over the native references, test the string for membership in the |
| * AppImage, and add the tagged DexCache pointer and string array offset to |
| * the info vector if necessary. |
| */ |
| heap->VisitObjects([this, &visitor](ObjPtr<mirror::Object> object) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (IsImageObject(object)) { |
| visitor.SetObject(object); |
| |
| if (object->IsDexCache()) { |
| object->VisitReferences</* kVisitNativeRoots= */ true, |
| kVerifyNone, |
| kWithoutReadBarrier>(visitor, visitor); |
| |
| if (visitor.GetDexCacheStringRefCount() > 0) { |
| size_t string_info_collected = 0; |
| |
| ObjPtr<mirror::DexCache> dex_cache = object->AsDexCache(); |
| DCHECK_LE(visitor.GetDexCacheStringRefCount(), dex_cache->NumStrings()); |
| |
| for (uint32_t index = 0; index < dex_cache->NumStrings(); ++index) { |
| // GetResolvedString() can't be used here due to the circular |
| // nature of the cache and the collision detection this requires. |
| ObjPtr<mirror::String> referred_string = |
| dex_cache->GetStrings()[index].load().object.Read(); |
| |
| if (IsValidAppImageStringReference(referred_string)) { |
| ++string_info_collected; |
| visitor.AddStringRefInfo( |
| SetDexCacheStringNativeRefTag(reinterpret_cast<uintptr_t>(object.Ptr())), index); |
| } |
| } |
| |
| // Visit all of the preinitialized strings. |
| GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings(); |
| for (size_t index = 0; index < dex_cache->NumPreResolvedStrings(); ++index) { |
| ObjPtr<mirror::String> referred_string = preresolved_strings[index].Read(); |
| if (IsValidAppImageStringReference(referred_string)) { |
| ++string_info_collected; |
| visitor.AddStringRefInfo(SetDexCachePreResolvedStringNativeRefTag( |
| reinterpret_cast<uintptr_t>(object.Ptr())), |
| index); |
| } |
| } |
| |
| DCHECK_EQ(string_info_collected, visitor.GetDexCacheStringRefCount()); |
| } |
| } else { |
| object->VisitReferences</* kVisitNativeRoots= */ false, |
| kVerifyNone, |
| kWithoutReadBarrier>(visitor, visitor); |
| } |
| } |
| }); |
| |
| return visitor.MoveRefInfo(); |
| } |
| |
| class ImageWriter::NativeGCRootInvariantVisitor { |
| public: |
| explicit NativeGCRootInvariantVisitor(const ImageWriter& image_writer) : |
| curr_obj_(nullptr), class_violation_(false), class_loader_violation_(false), |
| image_writer_(image_writer) {} |
| |
| ALWAYS_INLINE |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| ALWAYS_INLINE |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> referred_obj = root->AsMirrorPtr(); |
| |
| if (curr_obj_->IsClass()) { |
| class_violation_ = class_violation_ || |
| image_writer_.IsValidAppImageStringReference(referred_obj); |
| |
| } else if (curr_obj_->IsClassLoader()) { |
| class_loader_violation_ = class_loader_violation_ || |
| image_writer_.IsValidAppImageStringReference(referred_obj); |
| |
| } else if (!curr_obj_->IsDexCache()) { |
| LOG(FATAL) << "Dex2Oat:AppImage | " << |
| "Native reference to String found in unexpected object type."; |
| } |
| } |
| |
| ALWAYS_INLINE |
| void operator() (ObjPtr<mirror::Object> obj ATTRIBUTE_UNUSED, |
| MemberOffset member_offset ATTRIBUTE_UNUSED, |
| bool is_static ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) {} |
| |
| ALWAYS_INLINE |
| void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, |
| ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) {} |
| |
| // Returns true iff the only reachable native string references are through DexCache objects. |
| bool InvariantsHold() const { |
| return !(class_violation_ || class_loader_violation_); |
| } |
| |
| ObjPtr<mirror::Object> curr_obj_; |
| mutable bool class_violation_; |
| mutable bool class_loader_violation_; |
| |
| private: |
| const ImageWriter& image_writer_; |
| }; |
| |
| void ImageWriter::VerifyNativeGCRootInvariants() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| |
| NativeGCRootInvariantVisitor visitor(*this); |
| |
| heap->VisitObjects([this, &visitor](ObjPtr<mirror::Object> object) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| visitor.curr_obj_ = object; |
| |
| if (!IsInBootImage(object.Ptr())) { |
| object->VisitReferences</* kVisitNativeReferences= */ true, |
| kVerifyNone, |
| kWithoutReadBarrier>(visitor, visitor); |
| } |
| }); |
| |
| bool error = false; |
| std::ostringstream error_str; |
| |
| /* |
| * Build the error string |
| */ |
| |
| if (UNLIKELY(visitor.class_violation_)) { |
| error_str << "Class"; |
| error = true; |
| } |
| |
| if (UNLIKELY(visitor.class_loader_violation_)) { |
| if (error) { |
| error_str << ", "; |
| } |
| |
| error_str << "ClassLoader"; |
| } |
| |
| CHECK(visitor.InvariantsHold()) << |
| "Native GC root invariant failure. String ref invariants don't hold for the following " << |
| "object types: " << error_str.str(); |
| } |
| |
| void ImageWriter::CopyMetadata() { |
| DCHECK(compiler_options_.IsAppImage()); |
| CHECK_EQ(image_infos_.size(), 1u); |
| |
| const ImageInfo& image_info = image_infos_.back(); |
| std::vector<ImageSection> image_sections = image_info.CreateImageSections().second; |
| |
| auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>( |
| image_info.image_.Begin() + |
| image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset()); |
| |
| std::copy(string_reference_offsets_.begin(), |
| string_reference_offsets_.end(), |
| sfo_section_base); |
| } |
| |
| bool ImageWriter::IsValidAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const { |
| return referred_obj != nullptr && |
| !IsInBootImage(referred_obj.Ptr()) && |
| referred_obj->IsString(); |
| } |
| |
| // Helper class that erases the image file if it isn't properly flushed and closed. |
| class ImageWriter::ImageFileGuard { |
| public: |
| ImageFileGuard() noexcept = default; |
| ImageFileGuard(ImageFileGuard&& other) noexcept = default; |
| ImageFileGuard& operator=(ImageFileGuard&& other) noexcept = default; |
| |
| ~ImageFileGuard() { |
| if (image_file_ != nullptr) { |
| // Failure, erase the image file. |
| image_file_->Erase(); |
| } |
| } |
| |
| void reset(File* image_file) { |
| image_file_.reset(image_file); |
| } |
| |
| bool operator==(std::nullptr_t) { |
| return image_file_ == nullptr; |
| } |
| |
| bool operator!=(std::nullptr_t) { |
| return image_file_ != nullptr; |
| } |
| |
| File* operator->() const { |
| return image_file_.get(); |
| } |
| |
| bool WriteHeaderAndClose(const std::string& image_filename, const ImageHeader* image_header) { |
| // The header is uncompressed since it contains whether the image is compressed or not. |
| if (!image_file_->PwriteFully(image_header, sizeof(ImageHeader), 0)) { |
| PLOG(ERROR) << "Failed to write image file header " << image_filename; |
| return false; |
| } |
| |
| // FlushCloseOrErase() takes care of erasing, so the destructor does not need |
| // to do that whether the FlushCloseOrErase() succeeds or fails. |
| std::unique_ptr<File> image_file = std::move(image_file_); |
| if (image_file->FlushCloseOrErase() != 0) { |
| PLOG(ERROR) << "Failed to flush and close image file " << image_filename; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| private: |
| std::unique_ptr<File> image_file_; |
| }; |
| |
| bool ImageWriter::Write(int image_fd, |
| const std::vector<std::string>& image_filenames, |
| const std::vector<std::string>& oat_filenames) { |
| // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or |
| // oat_filenames. |
| CHECK(!image_filenames.empty()); |
| if (image_fd != kInvalidFd) { |
| CHECK_EQ(image_filenames.size(), 1u); |
| } |
| CHECK(!oat_filenames.empty()); |
| CHECK_EQ(image_filenames.size(), oat_filenames.size()); |
| |
| Thread* self = Thread::Current(); |
| { |
| // Preload deterministic contents to the dex cache arrays we're going to write. |
| ScopedObjectAccess soa(self); |
| ObjPtr<mirror::ClassLoader> class_loader = GetAppClassLoader(); |
| std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self); |
| for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) { |
| if (!IsImageObject(dex_cache)) { |
| continue; // Boot image DexCache is not written to the app image. |
| } |
| PreloadDexCache(dex_cache, class_loader); |
| } |
| } |
| |
| { |
| ScopedObjectAccess soa(self); |
| for (size_t i = 0; i < oat_filenames.size(); ++i) { |
| CreateHeader(i); |
| CopyAndFixupNativeData(i); |
| } |
| } |
| |
| { |
| // TODO: heap validation can't handle these fix up passes. |
| ScopedObjectAccess soa(self); |
| Runtime::Current()->GetHeap()->DisableObjectValidation(); |
| CopyAndFixupObjects(); |
| } |
| |
| if (compiler_options_.IsAppImage()) { |
| CopyMetadata(); |
| } |
| |
| // Primary image header shall be written last for two reasons. First, this ensures |
| // that we shall not end up with a valid primary image and invalid secondary image. |
| // Second, its checksum shall include the checksums of the secondary images (XORed). |
| // This way only the primary image checksum needs to be checked to determine whether |
| // any of the images or oat files are out of date. (Oat file checksums are included |
| // in the image checksum calculation.) |
| ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin()); |
| ImageFileGuard primary_image_file; |
| for (size_t i = 0; i < image_filenames.size(); ++i) { |
| const std::string& image_filename = image_filenames[i]; |
| ImageInfo& image_info = GetImageInfo(i); |
| ImageFileGuard image_file; |
| if (image_fd != kInvalidFd) { |
| if (image_filename.empty()) { |
| image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage)); |
| // Empty the file in case it already exists. |
| if (image_file != nullptr) { |
| TEMP_FAILURE_RETRY(image_file->SetLength(0)); |
| TEMP_FAILURE_RETRY(image_file->Flush()); |
| } |
| } else { |
| LOG(ERROR) << "image fd " << image_fd << " name " << image_filename; |
| } |
| } else { |
| image_file.reset(OS::CreateEmptyFile(image_filename.c_str())); |
| } |
| |
| if (image_file == nullptr) { |
| LOG(ERROR) << "Failed to open image file " << image_filename; |
| return false; |
| } |
| |
| if (!compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) { |
| PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; |
| return EXIT_FAILURE; |
| } |
| |
| // Image data size excludes the bitmap and the header. |
| ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin()); |
| |
| // Block sources (from the image). |
| const bool is_compressed = image_storage_mode_ != ImageHeader::kStorageModeUncompressed; |
| std::vector<std::pair<uint32_t, uint32_t>> block_sources; |
| std::vector<ImageHeader::Block> blocks; |
| |
| // Add a set of solid blocks such that no block is larger than the maximum size. A solid block |
| // is a block that must be decompressed all at once. |
| auto add_blocks = [&](uint32_t offset, uint32_t size) { |
| while (size != 0u) { |
| const uint32_t cur_size = std::min(size, compiler_options_.MaxImageBlockSize()); |
| block_sources.emplace_back(offset, cur_size); |
| offset += cur_size; |
| size -= cur_size; |
| } |
| }; |
| |
| add_blocks(sizeof(ImageHeader), image_header->GetImageSize() - sizeof(ImageHeader)); |
| |
| // Checksum of compressed image data and header. |
| uint32_t image_checksum = adler32(0L, Z_NULL, 0); |
| image_checksum = adler32(image_checksum, |
| reinterpret_cast<const uint8_t*>(image_header), |
| sizeof(ImageHeader)); |
| // Copy and compress blocks. |
| size_t out_offset = sizeof(ImageHeader); |
| for (const std::pair<uint32_t, uint32_t> block : block_sources) { |
| ArrayRef<const uint8_t> raw_image_data(image_info.image_.Begin() + block.first, |
| block.second); |
| std::vector<uint8_t> compressed_data; |
| ArrayRef<const uint8_t> image_data = |
| MaybeCompressData(raw_image_data, image_storage_mode_, &compressed_data); |
| |
| if (!is_compressed) { |
| // For uncompressed, preserve alignment since the image will be directly mapped. |
| out_offset = block.first; |
| } |
| |
| // Fill in the compressed location of the block. |
| blocks.emplace_back(ImageHeader::Block( |
| image_storage_mode_, |
| /*data_offset=*/ out_offset, |
| /*data_size=*/ image_data.size(), |
| /*image_offset=*/ block.first, |
| /*image_size=*/ block.second)); |
| |
| // Write out the image + fields + methods. |
| if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) { |
| PLOG(ERROR) << "Failed to write image file data " << image_filename; |
| image_file->Erase(); |
| return false; |
| } |
| out_offset += image_data.size(); |
| image_checksum = adler32(image_checksum, image_data.data(), image_data.size()); |
| } |
| |
| // Write the block metadata directly after the image sections. |
| // Note: This is not part of the mapped image and is not preserved after decompressing, it's |
| // only used for image loading. For this reason, only write it out for compressed images. |
| if (is_compressed) { |
| // Align up since the compressed data is not necessarily aligned. |
| out_offset = RoundUp(out_offset, alignof(ImageHeader::Block)); |
| CHECK(!blocks.empty()); |
| const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]); |
| if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) { |
| PLOG(ERROR) << "Failed to write image blocks " << image_filename; |
| image_file->Erase(); |
| return false; |
| } |
| image_header->blocks_offset_ = out_offset; |
| image_header->blocks_count_ = blocks.size(); |
| out_offset += blocks_bytes; |
| } |
| |
| // Data size includes everything except the bitmap. |
| image_header->data_size_ = out_offset - sizeof(ImageHeader); |
| |
| // Update and write the bitmap section. Note that the bitmap section is relative to the |
| // possibly compressed image. |
| ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap); |
| // Align up since data size may be unaligned if the image is compressed. |
| out_offset = RoundUp(out_offset, kPageSize); |
| bitmap_section = ImageSection(out_offset, bitmap_section.Size()); |
| |
| if (!image_file->PwriteFully(image_info.image_bitmap_->Begin(), |
| bitmap_section.Size(), |
| bitmap_section.Offset())) { |
| PLOG(ERROR) << "Failed to write image file bitmap " << image_filename; |
| return false; |
| } |
| |
| int err = image_file->Flush(); |
| if (err < 0) { |
| PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err; |
| return false; |
| } |
| |
| // Calculate the image checksum of the remaining data. |
| image_checksum = adler32(image_checksum, |
| reinterpret_cast<const uint8_t*>(image_info.image_bitmap_->Begin()), |
| bitmap_section.Size()); |
| image_header->SetImageChecksum(image_checksum); |
| |
| if (VLOG_IS_ON(compiler)) { |
| const size_t separately_written_section_size = bitmap_section.Size(); |
| const size_t total_uncompressed_size = image_info.image_size_ + |
| separately_written_section_size; |
| const size_t total_compressed_size = out_offset + separately_written_section_size; |
| |
| VLOG(compiler) << "Dex2Oat:uncompressedImageSize = " << total_uncompressed_size; |
| if (total_uncompressed_size != total_compressed_size) { |
| VLOG(compiler) << "Dex2Oat:compressedImageSize = " << total_compressed_size; |
| } |
| } |
| |
| CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength())) |
| << "Bitmap should be at the end of the file"; |
| |
| // Write header last in case the compiler gets killed in the middle of image writing. |
| // We do not want to have a corrupted image with a valid header. |
| // Delay the writing of the primary image header until after writing secondary images. |
| if (i == 0u) { |
| primary_image_file = std::move(image_file); |
| } else { |
| if (!image_file.WriteHeaderAndClose(image_filename, image_header)) { |
| return false; |
| } |
| // Update the primary image checksum with the secondary image checksum. |
| primary_header->SetImageChecksum(primary_header->GetImageChecksum() ^ image_checksum); |
| } |
| } |
| DCHECK(primary_image_file != nullptr); |
| if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) { |
| DCHECK(object != nullptr); |
| DCHECK_NE(offset, 0U); |
| |
| // The object is already deflated from when we set the bin slot. Just overwrite the lock word. |
| object->SetLockWord(LockWord::FromForwardingAddress(offset), false); |
| DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); |
| DCHECK(IsImageOffsetAssigned(object)); |
| } |
| |
| void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) { |
| DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset; |
| obj->SetLockWord(LockWord::FromForwardingAddress(offset), false); |
| DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u); |
| } |
| |
| void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) { |
| DCHECK(object != nullptr); |
| DCHECK_NE(image_objects_offset_begin_, 0u); |
| |
| size_t oat_index = GetOatIndex(object); |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| size_t bin_slot_offset = image_info.GetBinSlotOffset(bin_slot.GetBin()); |
| size_t new_offset = bin_slot_offset + bin_slot.GetIndex(); |
| DCHECK_ALIGNED(new_offset, kObjectAlignment); |
| |
| SetImageOffset(object, new_offset); |
| DCHECK_LT(new_offset, image_info.image_end_); |
| } |
| |
| bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const { |
| // Will also return true if the bin slot was assigned since we are reusing the lock word. |
| DCHECK(object != nullptr); |
| return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress; |
| } |
| |
| size_t ImageWriter::GetImageOffset(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| DCHECK(IsImageOffsetAssigned(object)); |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); |
| size_t oat_index = GetOatIndex(object); |
| const ImageInfo& image_info = GetImageInfo(oat_index); |
| DCHECK_LT(offset, image_info.image_end_); |
| return offset; |
| } |
| |
| void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) { |
| DCHECK(object != nullptr); |
| DCHECK(!IsImageOffsetAssigned(object)); |
| DCHECK(!IsImageBinSlotAssigned(object)); |
| |
| // Before we stomp over the lock word, save the hash code for later. |
| LockWord lw(object->GetLockWord(false)); |
| switch (lw.GetState()) { |
| case LockWord::kFatLocked: |
| FALLTHROUGH_INTENDED; |
| case LockWord::kThinLocked: { |
| std::ostringstream oss; |
| bool thin = (lw.GetState() == LockWord::kThinLocked); |
| oss << (thin ? "Thin" : "Fat") |
| << " locked object " << object << "(" << object->PrettyTypeOf() |
| << ") found during object copy"; |
| if (thin) { |
| oss << ". Lock owner:" << lw.ThinLockOwner(); |
| } |
| LOG(FATAL) << oss.str(); |
| UNREACHABLE(); |
| } |
| case LockWord::kUnlocked: |
| // No hash, don't need to save it. |
| break; |
| case LockWord::kHashCode: |
| DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end()); |
| saved_hashcode_map_.emplace(object, lw.GetHashCode()); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable."; |
| UNREACHABLE(); |
| } |
| object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false); |
| DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| } |
| |
| void ImageWriter::PrepareDexCacheArraySlots() { |
| // Prepare dex cache array starts based on the ordering specified in the CompilerOptions. |
| // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned() |
| // when AssignImageBinSlot() assigns their indexes out or order. |
| for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) { |
| auto it = dex_file_oat_index_map_.find(dex_file); |
| DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); |
| ImageInfo& image_info = GetImageInfo(it->second); |
| image_info.dex_cache_array_starts_.Put( |
| dex_file, image_info.GetBinSlotSize(Bin::kDexCacheArray)); |
| DexCacheArraysLayout layout(target_ptr_size_, dex_file); |
| image_info.IncrementBinSlotSize(Bin::kDexCacheArray, layout.Size()); |
| } |
| |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Thread* const self = Thread::Current(); |
| ReaderMutexLock mu(self, *Locks::dex_lock_); |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| ObjPtr<mirror::DexCache> dex_cache = |
| ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root)); |
| if (dex_cache == nullptr || !IsImageObject(dex_cache)) { |
| continue; |
| } |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end()) |
| << "Dex cache should have been pruned " << dex_file->GetLocation() |
| << "; possibly in class path"; |
| DexCacheArraysLayout layout(target_ptr_size_, dex_file); |
| DCHECK(layout.Valid()); |
| size_t oat_index = GetOatIndexForDexCache(dex_cache); |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file); |
| DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr); |
| AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(), |
| start + layout.TypesOffset(), |
| oat_index); |
| DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr); |
| AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(), |
| start + layout.MethodsOffset(), |
| oat_index); |
| DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr); |
| AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(), |
| start + layout.FieldsOffset(), |
| oat_index); |
| DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr); |
| AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), oat_index); |
| |
| AddDexCacheArrayRelocation(dex_cache->GetResolvedMethodTypes(), |
| start + layout.MethodTypesOffset(), |
| oat_index); |
| AddDexCacheArrayRelocation(dex_cache->GetResolvedCallSites(), |
| start + layout.CallSitesOffset(), |
| oat_index); |
| |
| // Preresolved strings aren't part of the special layout. |
| GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings(); |
| if (preresolved_strings != nullptr) { |
| DCHECK(!IsInBootImage(preresolved_strings)); |
| // Add the array to the metadata section. |
| const size_t count = dex_cache->NumPreResolvedStrings(); |
| auto bin = BinTypeForNativeRelocationType(NativeObjectRelocationType::kGcRootPointer); |
| for (size_t i = 0; i < count; ++i) { |
| native_object_relocations_.emplace(&preresolved_strings[i], |
| NativeObjectRelocation { oat_index, |
| image_info.GetBinSlotSize(bin), |
| NativeObjectRelocationType::kGcRootPointer }); |
| image_info.IncrementBinSlotSize(bin, sizeof(GcRoot<mirror::Object>)); |
| } |
| } |
| } |
| } |
| |
| void ImageWriter::AddDexCacheArrayRelocation(void* array, |
| size_t offset, |
| size_t oat_index) { |
| if (array != nullptr) { |
| DCHECK(!IsInBootImage(array)); |
| native_object_relocations_.emplace(array, |
| NativeObjectRelocation { oat_index, offset, NativeObjectRelocationType::kDexCacheArray }); |
| } |
| } |
| |
| void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) { |
| DCHECK(arr != nullptr); |
| if (kIsDebugBuild) { |
| for (size_t i = 0, len = arr->GetLength(); i < len; i++) { |
| ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_); |
| if (method != nullptr && !method->IsRuntimeMethod()) { |
| ObjPtr<mirror::Class> klass = method->GetDeclaringClass(); |
| CHECK(klass == nullptr || KeepClass(klass)) |
| << Class::PrettyClass(klass) << " should be a kept class"; |
| } |
| } |
| } |
| // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and |
| // ArtMethods. |
| pointer_arrays_.emplace(arr, Bin::kArtMethodClean); |
| } |
| |
| void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) { |
| DCHECK(object != nullptr); |
| size_t object_size = object->SizeOf(); |
| |
| // The magic happens here. We segregate objects into different bins based |
| // on how likely they are to get dirty at runtime. |
| // |
| // Likely-to-dirty objects get packed together into the same bin so that |
| // at runtime their page dirtiness ratio (how many dirty objects a page has) is |
| // maximized. |
| // |
| // This means more pages will stay either clean or shared dirty (with zygote) and |
| // the app will use less of its own (private) memory. |
| Bin bin = Bin::kRegular; |
| |
| if (kBinObjects) { |
| // |
| // Changing the bin of an object is purely a memory-use tuning. |
| // It has no change on runtime correctness. |
| // |
| // Memory analysis has determined that the following types of objects get dirtied |
| // the most: |
| // |
| // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have |
| // a fixed layout which helps improve generated code (using PC-relative addressing), |
| // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots(). |
| // Since these arrays are huge, most pages do not overlap other objects and it's not |
| // really important where they are for the clean/dirty separation. Due to their |
| // special PC-relative addressing, we arbitrarily keep them at the end. |
| // * Class'es which are verified [their clinit runs only at runtime] |
| // - classes in general [because their static fields get overwritten] |
| // - initialized classes with all-final statics are unlikely to be ever dirty, |
| // so bin them separately |
| // * Art Methods that are: |
| // - native [their native entry point is not looked up until runtime] |
| // - have declaring classes that aren't initialized |
| // [their interpreter/quick entry points are trampolines until the class |
| // becomes initialized] |
| // |
| // We also assume the following objects get dirtied either never or extremely rarely: |
| // * Strings (they are immutable) |
| // * Art methods that aren't native and have initialized declared classes |
| // |
| // We assume that "regular" bin objects are highly unlikely to become dirtied, |
| // so packing them together will not result in a noticeably tighter dirty-to-clean ratio. |
| // |
| if (object->IsClass()) { |
| bin = Bin::kClassVerified; |
| mirror::Class* klass = object->AsClass(); |
| |
| // Add non-embedded vtable to the pointer array table if there is one. |
| auto* vtable = klass->GetVTable(); |
| if (vtable != nullptr) { |
| AddMethodPointerArray(vtable); |
| } |
| auto* iftable = klass->GetIfTable(); |
| if (iftable != nullptr) { |
| for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { |
| if (iftable->GetMethodArrayCount(i) > 0) { |
| AddMethodPointerArray(iftable->GetMethodArray(i)); |
| } |
| } |
| } |
| |
| // Move known dirty objects into their own sections. This includes: |
| // - classes with dirty static fields. |
| if (dirty_image_objects_ != nullptr && |
| dirty_image_objects_->find(klass->PrettyDescriptor()) != dirty_image_objects_->end()) { |
| bin = Bin::kKnownDirty; |
| } else if (klass->GetStatus() == ClassStatus::kInitialized) { |
| bin = Bin::kClassInitialized; |
| |
| // If the class's static fields are all final, put it into a separate bin |
| // since it's very likely it will stay clean. |
| uint32_t num_static_fields = klass->NumStaticFields(); |
| if (num_static_fields == 0) { |
| bin = Bin::kClassInitializedFinalStatics; |
| } else { |
| // Maybe all the statics are final? |
| bool all_final = true; |
| for (uint32_t i = 0; i < num_static_fields; ++i) { |
| ArtField* field = klass->GetStaticField(i); |
| if (!field->IsFinal()) { |
| all_final = false; |
| break; |
| } |
| } |
| |
| if (all_final) { |
| bin = Bin::kClassInitializedFinalStatics; |
| } |
| } |
| } |
| } else if (object->GetClass<kVerifyNone>()->IsStringClass()) { |
| bin = Bin::kString; // Strings are almost always immutable (except for object header). |
| } else if (object->GetClass<kVerifyNone>() == GetClassRoot<mirror::Object>()) { |
| // Instance of java lang object, probably a lock object. This means it will be dirty when we |
| // synchronize on it. |
| bin = Bin::kMiscDirty; |
| } else if (object->IsDexCache()) { |
| // Dex file field becomes dirty when the image is loaded. |
| bin = Bin::kMiscDirty; |
| } |
| // else bin = kBinRegular |
| } |
| |
| // Assign the oat index too. |
| DCHECK(oat_index_map_.find(object) == oat_index_map_.end()); |
| oat_index_map_.emplace(object, oat_index); |
| |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| |
| size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment |
| // How many bytes the current bin is at (aligned). |
| size_t current_offset = image_info.GetBinSlotSize(bin); |
| // Move the current bin size up to accommodate the object we just assigned a bin slot. |
| image_info.IncrementBinSlotSize(bin, offset_delta); |
| |
| BinSlot new_bin_slot(bin, current_offset); |
| SetImageBinSlot(object, new_bin_slot); |
| |
| image_info.IncrementBinSlotCount(bin, 1u); |
| |
| // Grow the image closer to the end by the object we just assigned. |
| image_info.image_end_ += offset_delta; |
| } |
| |
| bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const { |
| if (m->IsNative()) { |
| return true; |
| } |
| ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass(); |
| // Initialized is highly unlikely to dirty since there's no entry points to mutate. |
| return declaring_class == nullptr || declaring_class->GetStatus() != ClassStatus::kInitialized; |
| } |
| |
| bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| |
| // We always stash the bin slot into a lockword, in the 'forwarding address' state. |
| // If it's in some other state, then we haven't yet assigned an image bin slot. |
| if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) { |
| return false; |
| } else if (kIsDebugBuild) { |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); |
| BinSlot bin_slot(offset); |
| size_t oat_index = GetOatIndex(object); |
| const ImageInfo& image_info = GetImageInfo(oat_index); |
| DCHECK_LT(bin_slot.GetIndex(), image_info.GetBinSlotSize(bin_slot.GetBin())) |
| << "bin slot offset should not exceed the size of that bin"; |
| } |
| return true; |
| } |
| |
| ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t |
| DCHECK_LE(offset, std::numeric_limits<uint32_t>::max()); |
| |
| BinSlot bin_slot(static_cast<uint32_t>(offset)); |
| size_t oat_index = GetOatIndex(object); |
| const ImageInfo& image_info = GetImageInfo(oat_index); |
| DCHECK_LT(bin_slot.GetIndex(), image_info.GetBinSlotSize(bin_slot.GetBin())); |
| |
| return bin_slot; |
| } |
| |
| bool ImageWriter::AllocMemory() { |
| for (ImageInfo& image_info : image_infos_) { |
| const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize); |
| |
| std::string error_msg; |
| image_info.image_ = MemMap::MapAnonymous("image writer image", |
| length, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ false, |
| &error_msg); |
| if (UNLIKELY(!image_info.image_.IsValid())) { |
| LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; |
| return false; |
| } |
| |
| // Create the image bitmap, only needs to cover mirror object section which is up to image_end_. |
| CHECK_LE(image_info.image_end_, length); |
| image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create( |
| "image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize))); |
| if (image_info.image_bitmap_.get() == nullptr) { |
| LOG(ERROR) << "Failed to allocate memory for image bitmap"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool IsBootClassLoaderClass(ObjPtr<mirror::Class> klass) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return klass->GetClassLoader() == nullptr; |
| } |
| |
| bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) { |
| return IsBootClassLoaderClass(klass) && !IsInBootImage(klass); |
| } |
| |
| // This visitor follows the references of an instance, recursively then prune this class |
| // if a type of any field is pruned. |
| class ImageWriter::PruneObjectReferenceVisitor { |
| public: |
| PruneObjectReferenceVisitor(ImageWriter* image_writer, |
| bool* early_exit, |
| std::unordered_set<mirror::Object*>* visited, |
| bool* result) |
| : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {} |
| |
| ALWAYS_INLINE void VisitRootIfNonNull( |
| mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { } |
| |
| ALWAYS_INLINE void VisitRoot( |
| mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { } |
| |
| ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj, |
| MemberOffset offset, |
| bool is_static ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Object* ref = |
| obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset); |
| if (ref == nullptr || visited_->find(ref) != visited_->end()) { |
| return; |
| } |
| |
| ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = |
| Runtime::Current()->GetClassLinker()->GetClassRoots(); |
| ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass(); |
| if (klass == GetClassRoot<mirror::Method>(class_roots) || |
| klass == GetClassRoot<mirror::Constructor>(class_roots)) { |
| // Prune all classes using reflection because the content they held will not be fixup. |
| *result_ = true; |
| } |
| |
| if (ref->IsClass()) { |
| *result_ = *result_ || |
| image_writer_->PruneAppImageClassInternal(ref->AsClass(), early_exit_, visited_); |
| } else { |
| // Record the object visited in case of circular reference. |
| visited_->emplace(ref); |
| *result_ = *result_ || |
| image_writer_->PruneAppImageClassInternal(klass, early_exit_, visited_); |
| ref->VisitReferences(*this, *this); |
| // Clean up before exit for next call of this function. |
| visited_->erase(ref); |
| } |
| } |
| |
| ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, |
| ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| ALWAYS_INLINE bool GetResult() const { |
| return result_; |
| } |
| |
| private: |
| ImageWriter* image_writer_; |
| bool* early_exit_; |
| std::unordered_set<mirror::Object*>* visited_; |
| bool* const result_; |
| }; |
| |
| |
| bool ImageWriter::PruneAppImageClass(ObjPtr<mirror::Class> klass) { |
| bool early_exit = false; |
| std::unordered_set<mirror::Object*> visited; |
| return PruneAppImageClassInternal(klass, &early_exit, &visited); |
| } |
| |
| bool ImageWriter::PruneAppImageClassInternal( |
| ObjPtr<mirror::Class> klass, |
| bool* early_exit, |
| std::unordered_set<mirror::Object*>* visited) { |
| DCHECK(early_exit != nullptr); |
| DCHECK(visited != nullptr); |
| DCHECK(compiler_options_.IsAppImage()); |
| if (klass == nullptr || IsInBootImage(klass.Ptr())) { |
| return false; |
| } |
| auto found = prune_class_memo_.find(klass.Ptr()); |
| if (found != prune_class_memo_.end()) { |
| // Already computed, return the found value. |
| return found->second; |
| } |
| // Circular dependencies, return false but do not store the result in the memoization table. |
| if (visited->find(klass.Ptr()) != visited->end()) { |
| *early_exit = true; |
| return false; |
| } |
| visited->emplace(klass.Ptr()); |
| bool result = IsBootClassLoaderClass(klass); |
| std::string temp; |
| // Prune if not an image class, this handles any broken sets of image classes such as having a |
| // class in the set but not it's superclass. |
| result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp)); |
| bool my_early_exit = false; // Only for ourselves, ignore caller. |
| // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the |
| // app image. |
| if (klass->IsErroneous()) { |
| result = true; |
| } else { |
| ObjPtr<mirror::ClassExt> ext(klass->GetExtData()); |
| CHECK(ext.IsNull() || ext->GetVerifyError() == nullptr) << klass->PrettyClass(); |
| } |
| if (!result) { |
| // Check interfaces since these wont be visited through VisitReferences.) |
| mirror::IfTable* if_table = klass->GetIfTable(); |
| for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) { |
| result = result || PruneAppImageClassInternal(if_table->GetInterface(i), |
| &my_early_exit, |
| visited); |
| } |
| } |
| if (klass->IsObjectArrayClass()) { |
| result = result || PruneAppImageClassInternal(klass->GetComponentType(), |
| &my_early_exit, |
| visited); |
| } |
| // Check static fields and their classes. |
| if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) { |
| size_t num_static_fields = klass->NumReferenceStaticFields(); |
| // Presumably GC can happen when we are cross compiling, it should not cause performance |
| // problems to do pointer size logic. |
| MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset( |
| Runtime::Current()->GetClassLinker()->GetImagePointerSize()); |
| for (size_t i = 0u; i < num_static_fields; ++i) { |
| mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset); |
| if (ref != nullptr) { |
| if (ref->IsClass()) { |
| result = result || PruneAppImageClassInternal(ref->AsClass(), |
| &my_early_exit, |
| visited); |
| } else { |
| mirror::Class* type = ref->GetClass(); |
| result = result || PruneAppImageClassInternal(type, |
| &my_early_exit, |
| visited); |
| if (!result) { |
| // For non-class case, also go through all the types mentioned by it's fields' |
| // references recursively to decide whether to keep this class. |
| bool tmp = false; |
| PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp); |
| ref->VisitReferences(visitor, visitor); |
| result = result || tmp; |
| } |
| } |
| } |
| field_offset = MemberOffset(field_offset.Uint32Value() + |
| sizeof(mirror::HeapReference<mirror::Object>)); |
| } |
| } |
| result = result || PruneAppImageClassInternal(klass->GetSuperClass(), |
| &my_early_exit, |
| visited); |
| // Remove the class if the dex file is not in the set of dex files. This happens for classes that |
| // are from uses-library if there is no profile. b/30688277 |
| mirror::DexCache* dex_cache = klass->GetDexCache(); |
| if (dex_cache != nullptr) { |
| result = result || |
| dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end(); |
| } |
| // Erase the element we stored earlier since we are exiting the function. |
| auto it = visited->find(klass.Ptr()); |
| DCHECK(it != visited->end()); |
| visited->erase(it); |
| // Only store result if it is true or none of the calls early exited due to circular |
| // dependencies. If visited is empty then we are the root caller, in this case the cycle was in |
| // a child call and we can remember the result. |
| if (result == true || !my_early_exit || visited->empty()) { |
| prune_class_memo_[klass.Ptr()] = result; |
| } |
| *early_exit |= my_early_exit; |
| return result; |
| } |
| |
| bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) { |
| if (klass == nullptr) { |
| return false; |
| } |
| if (!compiler_options_.IsBootImage() && |
| Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { |
| // Already in boot image, return true. |
| return true; |
| } |
| std::string temp; |
| if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) { |
| return false; |
| } |
| if (compiler_options_.IsAppImage()) { |
| // For app images, we need to prune boot loader classes that are not in the boot image since |
| // these may have already been loaded when the app image is loaded. |
| // Keep classes in the boot image space since we don't want to re-resolve these. |
| return !PruneAppImageClass(klass); |
| } |
| return true; |
| } |
| |
| class ImageWriter::PruneClassesVisitor : public ClassVisitor { |
| public: |
| PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader) |
| : image_writer_(image_writer), |
| class_loader_(class_loader), |
| classes_to_prune_(), |
| defined_class_count_(0u) { } |
| |
| bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!image_writer_->KeepClass(klass.Ptr())) { |
| classes_to_prune_.insert(klass.Ptr()); |
| if (klass->GetClassLoader() == class_loader_) { |
| ++defined_class_count_; |
| } |
| } |
| return true; |
| } |
| |
| size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassTable* class_table = |
| Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_); |
| for (mirror::Class* klass : classes_to_prune_) { |
| std::string storage; |
| const char* descriptor = klass->GetDescriptor(&storage); |
| bool result = class_table->Remove(descriptor); |
| DCHECK(result); |
| DCHECK(!class_table->Remove(descriptor)) << descriptor; |
| } |
| return defined_class_count_; |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| const ObjPtr<mirror::ClassLoader> class_loader_; |
| std::unordered_set<mirror::Class*> classes_to_prune_; |
| size_t defined_class_count_; |
| }; |
| |
| class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor { |
| public: |
| explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer) |
| : image_writer_(image_writer), removed_class_count_(0) {} |
| |
| void Visit(ObjPtr<mirror::ClassLoader> class_loader) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PruneClassesVisitor classes_visitor(image_writer_, class_loader); |
| ClassTable* class_table = |
| Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader); |
| class_table->Visit(classes_visitor); |
| removed_class_count_ += classes_visitor.Prune(); |
| } |
| |
| size_t GetRemovedClassCount() const { |
| return removed_class_count_; |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| size_t removed_class_count_; |
| }; |
| |
| void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) { |
| WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); |
| visitor->Visit(nullptr); // Visit boot class loader. |
| Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor); |
| } |
| |
| void ImageWriter::PruneDexCache(ObjPtr<mirror::DexCache> dex_cache, |
| ObjPtr<mirror::ClassLoader> class_loader) { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| const DexFile& dex_file = *dex_cache->GetDexFile(); |
| // Prune methods. |
| dex::TypeIndex last_class_idx; // Initialized to invalid index. |
| ObjPtr<mirror::Class> last_class = nullptr; |
| mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods(); |
| for (size_t slot_idx = 0, num = dex_cache->NumResolvedMethods(); slot_idx != num; ++slot_idx) { |
| auto pair = |
| mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_); |
| uint32_t stored_index = pair.index; |
| ArtMethod* method = pair.object; |
| if (method == nullptr) { |
| continue; // Empty entry. |
| } |
| // Check if the referenced class is in the image. Note that we want to check the referenced |
| // class rather than the declaring class to preserve the semantics, i.e. using a MethodId |
| // results in resolving the referenced class and that can for example throw OOME. |
| const dex::MethodId& method_id = dex_file.GetMethodId(stored_index); |
| if (method_id.class_idx_ != last_class_idx) { |
| last_class_idx = method_id.class_idx_; |
| last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader); |
| if (last_class != nullptr && !KeepClass(last_class)) { |
| last_class = nullptr; |
| } |
| } |
| if (last_class == nullptr) { |
| dex_cache->ClearResolvedMethod(stored_index, target_ptr_size_); |
| } |
| } |
| // Prune fields. |
| mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields(); |
| last_class_idx = dex::TypeIndex(); // Initialized to invalid index. |
| last_class = nullptr; |
| for (size_t slot_idx = 0, num = dex_cache->NumResolvedFields(); slot_idx != num; ++slot_idx) { |
| auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_); |
| uint32_t stored_index = pair.index; |
| ArtField* field = pair.object; |
| if (field == nullptr) { |
| continue; // Empty entry. |
| } |
| // Check if the referenced class is in the image. Note that we want to check the referenced |
| // class rather than the declaring class to preserve the semantics, i.e. using a FieldId |
| // results in resolving the referenced class and that can for example throw OOME. |
| const dex::FieldId& field_id = dex_file.GetFieldId(stored_index); |
| if (field_id.class_idx_ != last_class_idx) { |
| last_class_idx = field_id.class_idx_; |
| last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader); |
| if (last_class != nullptr && !KeepClass(last_class)) { |
| last_class = nullptr; |
| } |
| } |
| if (last_class == nullptr) { |
| dex_cache->ClearResolvedField(stored_index, target_ptr_size_); |
| } |
| } |
| // Prune types. |
| for (size_t slot_idx = 0, num = dex_cache->NumResolvedTypes(); slot_idx != num; ++slot_idx) { |
| mirror::TypeDexCachePair pair = |
| dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed); |
| uint32_t stored_index = pair.index; |
| ObjPtr<mirror::Class> klass = pair.object.Read(); |
| if (klass != nullptr && !KeepClass(klass)) { |
| dex_cache->ClearResolvedType(dex::TypeIndex(stored_index)); |
| } |
| } |
| // Strings do not need pruning. |
| } |
| |
| void ImageWriter::PreloadDexCache(ObjPtr<mirror::DexCache> dex_cache, |
| ObjPtr<mirror::ClassLoader> class_loader) { |
| // To ensure deterministic contents of the hash-based arrays, each slot shall contain |
| // the candidate with the lowest index. As we're processing entries in increasing index |
| // order, this means trying to look up the entry for the current index if the slot is |
| // empty or if it contains a higher index. |
| |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| const DexFile& dex_file = *dex_cache->GetDexFile(); |
| // Preload the methods array and make the contents deterministic. |
| mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods(); |
| dex::TypeIndex last_class_idx; // Initialized to invalid index. |
| ObjPtr<mirror::Class> last_class = nullptr; |
| for (size_t i = 0, num = dex_cache->GetDexFile()->NumMethodIds(); i != num; ++i) { |
| uint32_t slot_idx = dex_cache->MethodSlotIndex(i); |
| auto pair = |
| mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_); |
| uint32_t stored_index = pair.index; |
| ArtMethod* method = pair.object; |
| if (method != nullptr && i > stored_index) { |
| continue; // Already checked. |
| } |
| // Check if the referenced class is in the image. Note that we want to check the referenced |
| // class rather than the declaring class to preserve the semantics, i.e. using a MethodId |
| // results in resolving the referenced class and that can for example throw OOME. |
| const dex::MethodId& method_id = dex_file.GetMethodId(i); |
| if (method_id.class_idx_ != last_class_idx) { |
| last_class_idx = method_id.class_idx_; |
| last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader); |
| } |
| if (method == nullptr || i < stored_index) { |
| if (last_class != nullptr) { |
| // Try to resolve the method with the class linker, which will insert |
| // it into the dex cache if successful. |
| method = class_linker->FindResolvedMethod(last_class, dex_cache, class_loader, i); |
| DCHECK(method == nullptr || dex_cache->GetResolvedMethod(i, target_ptr_size_) == method); |
| } |
| } else { |
| DCHECK_EQ(i, stored_index); |
| DCHECK(last_class != nullptr); |
| } |
| } |
| // Preload the fields array and make the contents deterministic. |
| mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields(); |
| last_class_idx = dex::TypeIndex(); // Initialized to invalid index. |
| last_class = nullptr; |
| for (size_t i = 0, end = dex_file.NumFieldIds(); i < end; ++i) { |
| uint32_t slot_idx = dex_cache->FieldSlotIndex(i); |
| auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_); |
| uint32_t stored_index = pair.index; |
| ArtField* field = pair.object; |
| if (field != nullptr && i > stored_index) { |
| continue; // Already checked. |
| } |
| // Check if the referenced class is in the image. Note that we want to check the referenced |
| // class rather than the declaring class to preserve the semantics, i.e. using a FieldId |
| // results in resolving the referenced class and that can for example throw OOME. |
| const dex::FieldId& field_id = dex_file.GetFieldId(i); |
| if (field_id.class_idx_ != last_class_idx) { |
| last_class_idx = field_id.class_idx_; |
| last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader); |
| if (last_class != nullptr && !KeepClass(last_class)) { |
| last_class = nullptr; |
| } |
| } |
| if (field == nullptr || i < stored_index) { |
| if (last_class != nullptr) { |
| // Try to resolve the field with the class linker, which will insert |
| // it into the dex cache if successful. |
| field = class_linker->FindResolvedFieldJLS(last_class, dex_cache, class_loader, i); |
| DCHECK(field == nullptr || dex_cache->GetResolvedField(i, target_ptr_size_) == field); |
| } |
| } else { |
| DCHECK_EQ(i, stored_index); |
| DCHECK(last_class != nullptr); |
| } |
| } |
| // Preload the types array and make the contents deterministic. |
| // This is done after fields and methods as their lookup can touch the types array. |
| for (size_t i = 0, end = dex_cache->GetDexFile()->NumTypeIds(); i < end; ++i) { |
| dex::TypeIndex type_idx(i); |
| uint32_t slot_idx = dex_cache->TypeSlotIndex(type_idx); |
| mirror::TypeDexCachePair pair = |
| dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed); |
| uint32_t stored_index = pair.index; |
| ObjPtr<mirror::Class> klass = pair.object.Read(); |
| if (klass == nullptr || i < stored_index) { |
| klass = class_linker->LookupResolvedType(type_idx, dex_cache, class_loader); |
| DCHECK(klass == nullptr || dex_cache->GetResolvedType(type_idx) == klass); |
| } |
| } |
| // Preload the strings array and make the contents deterministic. |
| for (size_t i = 0, end = dex_cache->GetDexFile()->NumStringIds(); i < end; ++i) { |
| dex::StringIndex string_idx(i); |
| uint32_t slot_idx = dex_cache->StringSlotIndex(string_idx); |
| mirror::StringDexCachePair pair = |
| dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed); |
| uint32_t stored_index = pair.index; |
| ObjPtr<mirror::String> string = pair.object.Read(); |
| if (string == nullptr || i < stored_index) { |
| string = class_linker->LookupString(string_idx, dex_cache); |
| DCHECK(string == nullptr || dex_cache->GetResolvedString(string_idx) == string); |
| } |
| } |
| } |
| |
| void ImageWriter::PruneNonImageClasses() { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| Thread* self = Thread::Current(); |
| ScopedAssertNoThreadSuspension sa(__FUNCTION__); |
| |
| // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make |
| // sure the other ones don't get unloaded before the OatWriter runs. |
| class_linker->VisitClassTables( |
| [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) { |
| table->RemoveStrongRoots( |
| [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> obj = root.Read(); |
| if (obj->IsDexCache()) { |
| // Return true if the dex file is not one of the ones in the map. |
| return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) == |
| dex_file_oat_index_map_.end(); |
| } |
| // Return false to avoid removing. |
| return false; |
| }); |
| }); |
| |
| // Remove the undesired classes from the class roots. |
| { |
| PruneClassLoaderClassesVisitor class_loader_visitor(this); |
| VisitClassLoaders(&class_loader_visitor); |
| VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes"; |
| } |
| |
| // Clear references to removed classes from the DexCaches. |
| std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self); |
| for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) { |
| // Pass the class loader associated with the DexCache. This can either be |
| // the app's `class_loader` or `nullptr` if boot class loader. |
| bool is_app_image_dex_cache = compiler_options_.IsAppImage() && IsImageObject(dex_cache); |
| PruneDexCache(dex_cache, is_app_image_dex_cache ? GetAppClassLoader() : nullptr); |
| } |
| |
| // Drop the array class cache in the ClassLinker, as these are roots holding those classes live. |
| class_linker->DropFindArrayClassCache(); |
| |
| // Clear to save RAM. |
| prune_class_memo_.clear(); |
| } |
| |
| std::vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) { |
| std::vector<ObjPtr<mirror::DexCache>> dex_caches; |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ReaderMutexLock mu2(self, *Locks::dex_lock_); |
| dex_caches.reserve(class_linker->GetDexCachesData().size()); |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| if (self->IsJWeakCleared(data.weak_root)) { |
| continue; |
| } |
| dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache()); |
| } |
| return dex_caches; |
| } |
| |
| void ImageWriter::CheckNonImageClassesRemoved() { |
| auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (obj->IsClass() && !IsInBootImage(obj)) { |
| Class* klass = obj->AsClass(); |
| if (!KeepClass(klass)) { |
| DumpImageClasses(); |
| CHECK(KeepClass(klass)) |
| << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass); |
| } |
| } |
| }; |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->VisitObjects(visitor); |
| } |
| |
| void ImageWriter::DumpImageClasses() { |
| for (const std::string& image_class : compiler_options_.GetImageClasses()) { |
| LOG(INFO) << " " << image_class; |
| } |
| } |
| |
| mirror::String* ImageWriter::FindInternedString(mirror::String* string) { |
| Thread* const self = Thread::Current(); |
| for (const ImageInfo& image_info : image_infos_) { |
| ObjPtr<mirror::String> const found = image_info.intern_table_->LookupStrong(self, string); |
| DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr) |
| << string->ToModifiedUtf8(); |
| if (found != nullptr) { |
| return found.Ptr(); |
| } |
| } |
| if (!compiler_options_.IsBootImage()) { |
| Runtime* const runtime = Runtime::Current(); |
| ObjPtr<mirror::String> found = runtime->GetInternTable()->LookupStrong(self, string); |
| // If we found it in the runtime intern table it could either be in the boot image or interned |
| // during app image compilation. If it was in the boot image return that, otherwise return null |
| // since it belongs to another image space. |
| if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found.Ptr())) { |
| return found.Ptr(); |
| } |
| DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr) |
| << string->ToModifiedUtf8(); |
| } |
| return nullptr; |
| } |
| |
| ObjPtr<mirror::ObjectArray<mirror::Object>> ImageWriter::CollectDexCaches(Thread* self, |
| size_t oat_index) const { |
| std::unordered_set<const DexFile*> image_dex_files; |
| for (auto& pair : dex_file_oat_index_map_) { |
| const DexFile* image_dex_file = pair.first; |
| size_t image_oat_index = pair.second; |
| if (oat_index == image_oat_index) { |
| image_dex_files.insert(image_dex_file); |
| } |
| } |
| |
| // build an Object[] of all the DexCaches used in the source_space_. |
| // Since we can't hold the dex lock when allocating the dex_caches |
| // ObjectArray, we lock the dex lock twice, first to get the number |
| // of dex caches first and then lock it again to copy the dex |
| // caches. We check that the number of dex caches does not change. |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| size_t dex_cache_count = 0; |
| { |
| ReaderMutexLock mu(self, *Locks::dex_lock_); |
| // Count number of dex caches not in the boot image. |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| ObjPtr<mirror::DexCache> dex_cache = |
| ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root)); |
| if (dex_cache == nullptr) { |
| continue; |
| } |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| if (IsImageObject(dex_cache)) { |
| dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; |
| } |
| } |
| } |
| ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc( |
| self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_count); |
| CHECK(dex_caches != nullptr) << "Failed to allocate a dex cache array."; |
| { |
| ReaderMutexLock mu(self, *Locks::dex_lock_); |
| size_t non_image_dex_caches = 0; |
| // Re-count number of non image dex caches. |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| ObjPtr<mirror::DexCache> dex_cache = |
| ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root)); |
| if (dex_cache == nullptr) { |
| continue; |
| } |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| if (IsImageObject(dex_cache)) { |
| non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; |
| } |
| } |
| CHECK_EQ(dex_cache_count, non_image_dex_caches) |
| << "The number of non-image dex caches changed."; |
| size_t i = 0; |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| ObjPtr<mirror::DexCache> dex_cache = |
| ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root)); |
| if (dex_cache == nullptr) { |
| continue; |
| } |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| if (IsImageObject(dex_cache) && |
| image_dex_files.find(dex_file) != image_dex_files.end()) { |
| dex_caches->Set<false>(i, dex_cache.Ptr()); |
| ++i; |
| } |
| } |
| } |
| return dex_caches; |
| } |
| |
| ObjPtr<ObjectArray<Object>> ImageWriter::CreateImageRoots( |
| size_t oat_index, |
| Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| Thread* self = Thread::Current(); |
| StackHandleScope<2> hs(self); |
| |
| Handle<ObjectArray<Object>> dex_caches(hs.NewHandle(CollectDexCaches(self, oat_index))); |
| |
| // build an Object[] of the roots needed to restore the runtime |
| int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage()); |
| Handle<ObjectArray<Object>> image_roots(hs.NewHandle(ObjectArray<Object>::Alloc( |
| self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size))); |
| image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get()); |
| image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots()); |
| image_roots->Set<false>(ImageHeader::kOomeWhenThrowingException, |
| runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException()); |
| image_roots->Set<false>(ImageHeader::kOomeWhenThrowingOome, |
| runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()); |
| image_roots->Set<false>(ImageHeader::kOomeWhenHandlingStackOverflow, |
| runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()); |
| image_roots->Set<false>(ImageHeader::kNoClassDefFoundError, |
| runtime->GetPreAllocatedNoClassDefFoundError()); |
| if (!compiler_options_.IsAppImage()) { |
| DCHECK(boot_image_live_objects != nullptr); |
| image_roots->Set<false>(ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get()); |
| } else { |
| DCHECK(boot_image_live_objects == nullptr); |
| } |
| for (int32_t i = 0; i != image_roots_size; ++i) { |
| if (compiler_options_.IsAppImage() && i == ImageHeader::kAppImageClassLoader) { |
| // image_roots[ImageHeader::kAppImageClassLoader] will be set later for app image. |
| continue; |
| } |
| CHECK(image_roots->Get(i) != nullptr); |
| } |
| return image_roots.Get(); |
| } |
| |
| mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack, |
| mirror::Object* obj, |
| size_t oat_index) { |
| if (obj == nullptr || !IsImageObject(obj)) { |
| // Object is null or already in the image, there is no work to do. |
| return obj; |
| } |
| if (!IsImageBinSlotAssigned(obj)) { |
| // We want to intern all strings but also assign offsets for the source string. Since the |
| // pruning phase has already happened, if we intern a string to one in the image we still |
| // end up copying an unreachable string. |
| if (obj->IsString()) { |
| // Need to check if the string is already interned in another image info so that we don't have |
| // the intern tables of two different images contain the same string. |
| mirror::String* interned = FindInternedString(obj->AsString()); |
| if (interned == nullptr) { |
| // Not in another image space, insert to our table. |
| interned = |
| GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString()).Ptr(); |
| DCHECK_EQ(interned, obj); |
| } |
| } else if (obj->IsDexCache()) { |
| oat_index = GetOatIndexForDexCache(obj->AsDexCache()); |
| } else if (obj->IsClass()) { |
| // Visit and assign offsets for fields and field arrays. |
| mirror::Class* as_klass = obj->AsClass(); |
| mirror::DexCache* dex_cache = as_klass->GetDexCache(); |
| DCHECK(!as_klass->IsErroneous()) << as_klass->GetStatus(); |
| if (compiler_options_.IsAppImage()) { |
| // Extra sanity, no boot loader classes should be left! |
| CHECK(!IsBootClassLoaderClass(as_klass)) << as_klass->PrettyClass(); |
| } |
| LengthPrefixedArray<ArtField>* fields[] = { |
| as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(), |
| }; |
| // Overwrite the oat index value since the class' dex cache is more accurate of where it |
| // belongs. |
| oat_index = GetOatIndexForDexCache(dex_cache); |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| if (!compiler_options_.IsAppImage()) { |
| // Note: Avoid locking to prevent lock order violations from root visiting; |
| // image_info.class_table_ is only accessed from the image writer. |
| image_info.class_table_->InsertWithoutLocks(as_klass); |
| } |
| for (LengthPrefixedArray<ArtField>* cur_fields : fields) { |
| // Total array length including header. |
| if (cur_fields != nullptr) { |
| const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0); |
| // Forward the entire array at once. |
| auto it = native_object_relocations_.find(cur_fields); |
| CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields |
| << " already forwarded"; |
| size_t offset = image_info.GetBinSlotSize(Bin::kArtField); |
| DCHECK(!IsInBootImage(cur_fields)); |
| native_object_relocations_.emplace( |
| cur_fields, |
| NativeObjectRelocation { |
| oat_index, offset, NativeObjectRelocationType::kArtFieldArray |
| }); |
| offset += header_size; |
| // Forward individual fields so that we can quickly find where they belong. |
| for (size_t i = 0, count = cur_fields->size(); i < count; ++i) { |
| // Need to forward arrays separate of fields. |
| ArtField* field = &cur_fields->At(i); |
| auto it2 = native_object_relocations_.find(field); |
| CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i |
| << " already assigned " << field->PrettyField() << " static=" << field->IsStatic(); |
| DCHECK(!IsInBootImage(field)); |
| native_object_relocations_.emplace( |
| field, |
| NativeObjectRelocation { oat_index, |
| offset, |
| NativeObjectRelocationType::kArtField }); |
| offset += sizeof(ArtField); |
| } |
| image_info.IncrementBinSlotSize( |
| Bin::kArtField, header_size + cur_fields->size() * sizeof(ArtField)); |
| DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField)); |
| } |
| } |
| // Visit and assign offsets for methods. |
| size_t num_methods = as_klass->NumMethods(); |
| if (num_methods != 0) { |
| bool any_dirty = false; |
| for (auto& m : as_klass->GetMethods(target_ptr_size_)) { |
| if (WillMethodBeDirty(&m)) { |
| any_dirty = true; |
| break; |
| } |
| } |
| NativeObjectRelocationType type = any_dirty |
| ? NativeObjectRelocationType::kArtMethodDirty |
| : NativeObjectRelocationType::kArtMethodClean; |
| Bin bin_type = BinTypeForNativeRelocationType(type); |
| // Forward the entire array at once, but header first. |
| const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); |
| const size_t method_size = ArtMethod::Size(target_ptr_size_); |
| const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0, |
| method_size, |
| method_alignment); |
| LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr(); |
| auto it = native_object_relocations_.find(array); |
| CHECK(it == native_object_relocations_.end()) |
| << "Method array " << array << " already forwarded"; |
| size_t offset = image_info.GetBinSlotSize(bin_type); |
| DCHECK(!IsInBootImage(array)); |
| native_object_relocations_.emplace(array, |
| NativeObjectRelocation { |
| oat_index, |
| offset, |
| any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty |
| : NativeObjectRelocationType::kArtMethodArrayClean }); |
| image_info.IncrementBinSlotSize(bin_type, header_size); |
| for (auto& m : as_klass->GetMethods(target_ptr_size_)) { |
| AssignMethodOffset(&m, type, oat_index); |
| } |
| (any_dirty ? dirty_methods_ : clean_methods_) += num_methods; |
| } |
| // Assign offsets for all runtime methods in the IMT since these may hold conflict tables |
| // live. |
| if (as_klass->ShouldHaveImt()) { |
| ImTable* imt = as_klass->GetImt(target_ptr_size_); |
| if (TryAssignImTableOffset(imt, oat_index)) { |
| // Since imt's can be shared only do this the first time to not double count imt method |
| // fixups. |
| for (size_t i = 0; i < ImTable::kSize; ++i) { |
| ArtMethod* imt_method = imt->Get(i, target_ptr_size_); |
| DCHECK(imt_method != nullptr); |
| if (imt_method->IsRuntimeMethod() && |
| !IsInBootImage(imt_method) && |
| !NativeRelocationAssigned(imt_method)) { |
| AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index); |
| } |
| } |
| } |
| } |
| } else if (obj->IsClassLoader()) { |
| // Register the class loader if it has a class table. |
| // The fake boot class loader should not get registered. |
| mirror::ClassLoader* class_loader = obj->AsClassLoader(); |
| if (class_loader->GetClassTable() != nullptr) { |
| DCHECK(compiler_options_.IsAppImage()); |
| if (class_loader == GetAppClassLoader()) { |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| // Note: Avoid locking to prevent lock order violations from root visiting; |
| // image_info.class_table_ table is only accessed from the image writer |
| // and class_loader->GetClassTable() is iterated but not modified. |
| image_info.class_table_->CopyWithoutLocks(*class_loader->GetClassTable()); |
| } |
| } |
| } |
| AssignImageBinSlot(obj, oat_index); |
| work_stack.emplace(obj, oat_index); |
| } |
| if (obj->IsString()) { |
| // Always return the interned string if there exists one. |
| mirror::String* interned = FindInternedString(obj->AsString()); |
| if (interned != nullptr) { |
| return interned; |
| } |
| } |
| return obj; |
| } |
| |
| bool ImageWriter::NativeRelocationAssigned(void* ptr) const { |
| return native_object_relocations_.find(ptr) != native_object_relocations_.end(); |
| } |
| |
| bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) { |
| // No offset, or already assigned. |
| if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) { |
| return false; |
| } |
| // If the method is a conflict method we also want to assign the conflict table offset. |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| const size_t size = ImTable::SizeInBytes(target_ptr_size_); |
| native_object_relocations_.emplace( |
| imt, |
| NativeObjectRelocation { |
| oat_index, |
| image_info.GetBinSlotSize(Bin::kImTable), |
| NativeObjectRelocationType::kIMTable}); |
| image_info.IncrementBinSlotSize(Bin::kImTable, size); |
| return true; |
| } |
| |
| void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) { |
| // No offset, or already assigned. |
| if (table == nullptr || NativeRelocationAssigned(table)) { |
| return; |
| } |
| CHECK(!IsInBootImage(table)); |
| // If the method is a conflict method we also want to assign the conflict table offset. |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| const size_t size = table->ComputeSize(target_ptr_size_); |
| native_object_relocations_.emplace( |
| table, |
| NativeObjectRelocation { |
| oat_index, |
| image_info.GetBinSlotSize(Bin::kIMTConflictTable), |
| NativeObjectRelocationType::kIMTConflictTable}); |
| image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size); |
| } |
| |
| void ImageWriter::AssignMethodOffset(ArtMethod* method, |
| NativeObjectRelocationType type, |
| size_t oat_index) { |
| DCHECK(!IsInBootImage(method)); |
| CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned " |
| << ArtMethod::PrettyMethod(method); |
| if (method->IsRuntimeMethod()) { |
| TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index); |
| } |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| Bin bin_type = BinTypeForNativeRelocationType(type); |
| size_t offset = image_info.GetBinSlotSize(bin_type); |
| native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type }); |
| image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_)); |
| } |
| |
| void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) { |
| DCHECK(!IsInBootImage(obj)); |
| CHECK(obj != nullptr); |
| |
| // We know the bin slot, and the total bin sizes for all objects by now, |
| // so calculate the object's final image offset. |
| |
| DCHECK(IsImageBinSlotAssigned(obj)); |
| BinSlot bin_slot = GetImageBinSlot(obj); |
| // Change the lockword from a bin slot into an offset |
| AssignImageOffset(obj, bin_slot); |
| } |
| |
| class ImageWriter::VisitReferencesVisitor { |
| public: |
| VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index) |
| : image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {} |
| |
| // Fix up separately since we also need to fix up method entrypoints. |
| ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| root->Assign(VisitReference(root->AsMirrorPtr())); |
| } |
| |
| ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj, |
| MemberOffset offset, |
| bool is_static ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Object* ref = |
| obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset); |
| obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref)); |
| } |
| |
| ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, |
| ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| private: |
| mirror::Object* VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_); |
| } |
| |
| ImageWriter* const image_writer_; |
| WorkStack* const work_stack_; |
| const size_t oat_index_; |
| }; |
| |
| class ImageWriter::GetRootsVisitor : public RootVisitor { |
| public: |
| explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {} |
| |
| void VisitRoots(mirror::Object*** roots, |
| size_t count, |
| const RootInfo& info ATTRIBUTE_UNUSED) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| for (size_t i = 0; i < count; ++i) { |
| roots_->push_back(*roots[i]); |
| } |
| } |
| |
| void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, |
| size_t count, |
| const RootInfo& info ATTRIBUTE_UNUSED) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| for (size_t i = 0; i < count; ++i) { |
| roots_->push_back(roots[i]->AsMirrorPtr()); |
| } |
| } |
| |
| private: |
| std::vector<mirror::Object*>* const roots_; |
| }; |
| |
| void ImageWriter::ProcessWorkStack(WorkStack* work_stack) { |
| while (!work_stack->empty()) { |
| std::pair<mirror::Object*, size_t> pair(work_stack->top()); |
| work_stack->pop(); |
| VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second); |
| // Walk references and assign bin slots for them. |
| pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>( |
| visitor, |
| visitor); |
| } |
| } |
| |
| void ImageWriter::CalculateNewObjectOffsets() { |
| Thread* const self = Thread::Current(); |
| Runtime* const runtime = Runtime::Current(); |
| VariableSizedHandleScope handles(self); |
| MutableHandle<ObjectArray<Object>> boot_image_live_objects = handles.NewHandle( |
| compiler_options_.IsAppImage() |
| ? nullptr |
| : IntrinsicObjects::AllocateBootImageLiveObjects(self, runtime->GetClassLinker())); |
| std::vector<Handle<ObjectArray<Object>>> image_roots; |
| for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { |
| image_roots.push_back(handles.NewHandle(CreateImageRoots(i, boot_image_live_objects))); |
| } |
| |
| gc::Heap* const heap = runtime->GetHeap(); |
| |
| // Leave space for the header, but do not write it yet, we need to |
| // know where image_roots is going to end up |
| image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment |
| |
| const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); |
| // Write the image runtime methods. |
| image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod(); |
| image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod(); |
| image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod(); |
| image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves); |
| image_methods_[ImageHeader::kSaveRefsOnlyMethod] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly); |
| image_methods_[ImageHeader::kSaveRefsAndArgsMethod] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs); |
| image_methods_[ImageHeader::kSaveEverythingMethod] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything); |
| image_methods_[ImageHeader::kSaveEverythingMethodForClinit] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit); |
| image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck); |
| // Visit image methods first to have the main runtime methods in the first image. |
| for (auto* m : image_methods_) { |
| CHECK(m != nullptr); |
| CHECK(m->IsRuntimeMethod()); |
| DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m)) |
| << "Trampolines should be in boot image"; |
| if (!IsInBootImage(m)) { |
| AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex()); |
| } |
| } |
| |
| // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring |
| // this lock while holding other locks may cause lock order violations. |
| { |
| auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| Monitor::Deflate(Thread::Current(), obj); |
| }; |
| heap->VisitObjects(deflate_monitor); |
| } |
| |
| // From this point on, there shall be no GC anymore and no objects shall be allocated. |
| // We can now assign a BitSlot to each object and store it in its lockword. |
| |
| // Work list of <object, oat_index> for objects. Everything on the stack must already be |
| // assigned a bin slot. |
| WorkStack work_stack; |
| |
| // Special case interned strings to put them in the image they are likely to be resolved from. |
| for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) { |
| auto it = dex_file_oat_index_map_.find(dex_file); |
| DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); |
| const size_t oat_index = it->second; |
| InternTable* const intern_table = runtime->GetInternTable(); |
| for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) { |
| uint32_t utf16_length; |
| const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i), |
| &utf16_length); |
| mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data).Ptr(); |
| TryAssignBinSlot(work_stack, string, oat_index); |
| } |
| } |
| |
| // Get the GC roots and then visit them separately to avoid lock violations since the root visitor |
| // visits roots while holding various locks. |
| { |
| std::vector<mirror::Object*> roots; |
| GetRootsVisitor root_visitor(&roots); |
| runtime->VisitRoots(&root_visitor); |
| for (mirror::Object* obj : roots) { |
| TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex()); |
| } |
| } |
| ProcessWorkStack(&work_stack); |
| |
| // For app images, there may be objects that are only held live by the boot image. One |
| // example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback |
| // does not fail any checks. |
| if (compiler_options_.IsAppImage()) { |
| for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) { |
| DCHECK(space->IsImageSpace()); |
| gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); |
| live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), |
| reinterpret_cast<uintptr_t>(space->Limit()), |
| [this, &work_stack](mirror::Object* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex()); |
| // Visit all references and try to assign bin slots for them (calls TryAssignBinSlot). |
| obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>( |
| visitor, |
| visitor); |
| }); |
| } |
| // Process the work stack in case anything was added by TryAssignBinSlot. |
| ProcessWorkStack(&work_stack); |
| |
| // Store the class loader in the class roots. |
| CHECK_EQ(image_roots.size(), 1u); |
| image_roots[0]->Set<false>(ImageHeader::kAppImageClassLoader, GetAppClassLoader()); |
| } |
| |
| // Verify that all objects have assigned image bin slots. |
| { |
| auto ensure_bin_slots_assigned = [&](mirror::Object* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (IsImageObject(obj)) { |
| CHECK(IsImageBinSlotAssigned(obj)) << mirror::Object::PrettyTypeOf(obj) << " " << obj; |
| } |
| }; |
| heap->VisitObjects(ensure_bin_slots_assigned); |
| } |
| |
| // Calculate size of the dex cache arrays slot and prepare offsets. |
| PrepareDexCacheArraySlots(); |
| |
| // Calculate the sizes of the intern tables, class tables, and fixup tables. |
| for (ImageInfo& image_info : image_infos_) { |
| // Calculate how big the intern table will be after being serialized. |
| InternTable* const intern_table = image_info.intern_table_.get(); |
| CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings"; |
| if (intern_table->StrongSize() != 0u) { |
| image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr); |
| } |
| |
| // Calculate the size of the class table. |
| ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); |
| DCHECK_EQ(image_info.class_table_->NumReferencedZygoteClasses(), 0u); |
| if (image_info.class_table_->NumReferencedNonZygoteClasses() != 0u) { |
| image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr); |
| } |
| } |
| |
| // Calculate bin slot offsets. |
| for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) { |
| ImageInfo& image_info = image_infos_[oat_index]; |
| size_t bin_offset = image_objects_offset_begin_; |
| // Need to visit the objects in bin order since alignment requirements might change the |
| // section sizes. |
| using BinPair = std::pair<BinSlot, ObjPtr<mirror::Object>>; |
| std::vector<BinPair> objects; |
| heap->VisitObjects([&](mirror::Object* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Only visit the oat index for the current image. |
| if (IsImageObject(obj) && GetOatIndex(obj) == oat_index) { |
| objects.emplace_back(GetImageBinSlot(obj), obj); |
| } |
| }); |
| std::sort(objects.begin(), objects.end(), [](const BinPair& a, const BinPair& b) -> bool { |
| if (a.first.GetBin() != b.first.GetBin()) { |
| return a.first.GetBin() < b.first.GetBin(); |
| } |
| // Note that the index is really the relative offset in this case. |
| return a.first.GetIndex() < b.first.GetIndex(); |
| }); |
| auto it = objects.begin(); |
| for (size_t i = 0; i != kNumberOfBins; ++i) { |
| Bin bin = enum_cast<Bin>(i); |
| switch (bin) { |
| case Bin::kArtMethodClean: |
| case Bin::kArtMethodDirty: { |
| bin_offset = RoundUp(bin_offset, method_alignment); |
| break; |
| } |
| case Bin::kDexCacheArray: |
| bin_offset = RoundUp(bin_offset, DexCacheArraysLayout::Alignment(target_ptr_size_)); |
| break; |
| case Bin::kImTable: |
| case Bin::kIMTConflictTable: { |
| bin_offset = RoundUp(bin_offset, static_cast<size_t>(target_ptr_size_)); |
| break; |
| } |
| default: { |
| // Normal alignment. |
| } |
| } |
| image_info.bin_slot_offsets_[i] = bin_offset; |
| |
| // If the bin is for mirror objects, assign the offsets since we may need to change sizes |
| // from alignment requirements. |
| if (i < static_cast<size_t>(Bin::kMirrorCount)) { |
| const size_t start_offset = bin_offset; |
| // Visit and assign offsets for all objects of the bin type. |
| while (it != objects.end() && it->first.GetBin() == bin) { |
| ObjPtr<mirror::Object> obj(it->second); |
| const size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment); |
| // If the object spans region bondaries, add padding objects between. |
| // TODO: Instead of adding padding, we should consider reordering the bins to reduce |
| // wasted space. |
| if (region_size_ != 0u) { |
| const size_t offset_after_header = bin_offset - sizeof(ImageHeader); |
| const size_t next_region = RoundUp(offset_after_header, region_size_); |
| if (offset_after_header != next_region && |
| offset_after_header + object_size > next_region) { |
| // Add padding objects until aligned. |
| while (bin_offset - sizeof(ImageHeader) < next_region) { |
| image_info.padding_object_offsets_.push_back(bin_offset); |
| bin_offset += kObjectAlignment; |
| region_alignment_wasted_ += kObjectAlignment; |
| image_info.image_end_ += kObjectAlignment; |
| } |
| CHECK_EQ(bin_offset - sizeof(ImageHeader), next_region); |
| } |
| } |
| SetImageOffset(obj.Ptr(), bin_offset); |
| bin_offset = bin_offset + object_size; |
| ++it; |
| } |
| image_info.bin_slot_sizes_[i] = bin_offset - start_offset; |
| } else { |
| bin_offset += image_info.bin_slot_sizes_[i]; |
| } |
| } |
| // NOTE: There may be additional padding between the bin slots and the intern table. |
| DCHECK_EQ(image_info.image_end_, |
| image_info.GetBinSizeSum(Bin::kMirrorCount) + image_objects_offset_begin_); |
| } |
| |
| VLOG(image) << "Space wasted for region alignment " << region_alignment_wasted_; |
| |
| // Calculate image offsets. |
| size_t image_offset = 0; |
| for (ImageInfo& image_info : image_infos_) { |
| image_info.image_begin_ = global_image_begin_ + image_offset; |
| image_info.image_offset_ = image_offset; |
| image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize); |
| // There should be no gaps until the next image. |
| image_offset += image_info.image_size_; |
| } |
| |
| size_t i = 0; |
| for (ImageInfo& image_info : image_infos_) { |
| image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get())); |
| i++; |
| } |
| |
| // Update the native relocations by adding their bin sums. |
| for (auto& pair : native_object_relocations_) { |
| NativeObjectRelocation& relocation = pair.second; |
| Bin bin_type = BinTypeForNativeRelocationType(relocation.type); |
| ImageInfo& image_info = GetImageInfo(relocation.oat_index); |
| relocation.offset += image_info.GetBinSlotOffset(bin_type); |
| } |
| |
| // Remember the boot image live objects as raw pointer. No GC can happen anymore. |
| boot_image_live_objects_ = boot_image_live_objects.Get(); |
| } |
| |
| std::pair<size_t, std::vector<ImageSection>> ImageWriter::ImageInfo::CreateImageSections() const { |
| std::vector<ImageSection> sections(ImageHeader::kSectionCount); |
| |
| // Do not round up any sections here that are represented by the bins since it |
| // will break offsets. |
| |
| /* |
| * Objects section |
| */ |
| sections[ImageHeader::kSectionObjects] = |
| ImageSection(0u, image_end_); |
| |
| /* |
| * Field section |
| */ |
| sections[ImageHeader::kSectionArtFields] = |
| ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField)); |
| |
| /* |
| * Method section |
| */ |
| sections[ImageHeader::kSectionArtMethods] = |
| ImageSection(GetBinSlotOffset(Bin::kArtMethodClean), |
| GetBinSlotSize(Bin::kArtMethodClean) + |
| GetBinSlotSize(Bin::kArtMethodDirty)); |
| |
| /* |
| * IMT section |
| */ |
| sections[ImageHeader::kSectionImTables] = |
| ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable)); |
| |
| /* |
| * Conflict Tables section |
| */ |
| sections[ImageHeader::kSectionIMTConflictTables] = |
| ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable)); |
| |
| /* |
| * Runtime Methods section |
| */ |
| sections[ImageHeader::kSectionRuntimeMethods] = |
| ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod)); |
| |
| /* |
| * DexCache Arrays section. |
| */ |
| const ImageSection& dex_cache_arrays_section = |
| sections[ImageHeader::kSectionDexCacheArrays] = |
| ImageSection(GetBinSlotOffset(Bin::kDexCacheArray), |
| GetBinSlotSize(Bin::kDexCacheArray)); |
| |
| /* |
| * Interned Strings section |
| */ |
| |
| // Round up to the alignment the string table expects. See HashSet::WriteToMemory. |
| size_t cur_pos = RoundUp(dex_cache_arrays_section.End(), sizeof(uint64_t)); |
| |
| const ImageSection& interned_strings_section = |
| sections[ImageHeader::kSectionInternedStrings] = |
| ImageSection(cur_pos, intern_table_bytes_); |
| |
| /* |
| * Class Table section |
| */ |
| |
| // Obtain the new position and round it up to the appropriate alignment. |
| cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t)); |
| |
| const ImageSection& class_table_section = |
| sections[ImageHeader::kSectionClassTable] = |
| ImageSection(cur_pos, class_table_bytes_); |
| |
| /* |
| * String Field Offsets section |
| */ |
| |
| // Round up to the alignment of the offsets we are going to store. |
| cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t)); |
| |
| // The size of string_reference_offsets_ can't be used here because it hasn't |
| // been filled with AppImageReferenceOffsetInfo objects yet. The |
| // num_string_references_ value is calculated separately, before we can |
| // compute the actual offsets. |
| const ImageSection& string_reference_offsets = |
| sections[ImageHeader::kSectionStringReferenceOffsets] = |
| ImageSection(cur_pos, |
| sizeof(typename decltype(string_reference_offsets_)::value_type) * |
| num_string_references_); |
| |
| /* |
| * Metadata section. |
| */ |
| |
| // Round up to the alignment of the offsets we are going to store. |
| cur_pos = RoundUp(string_reference_offsets.End(), |
| mirror::DexCache::PreResolvedStringsAlignment()); |
| |
| const ImageSection& metadata_section = |
| sections[ImageHeader::kSectionMetadata] = |
| ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata)); |
| |
| // Return the number of bytes described by these sections, and the sections |
| // themselves. |
| return make_pair(metadata_section.End(), std::move(sections)); |
| } |
| |
| void ImageWriter::CreateHeader(size_t oat_index) { |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| const uint8_t* oat_file_begin = image_info.oat_file_begin_; |
| const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_; |
| const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_; |
| |
| uint32_t image_reservation_size = image_info.image_size_; |
| DCHECK_ALIGNED(image_reservation_size, kPageSize); |
| uint32_t component_count = 1u; |
| if (!compiler_options_.IsAppImage()) { |
| if (oat_index == 0u) { |
| const ImageInfo& last_info = image_infos_.back(); |
| const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_; |
| DCHECK_ALIGNED(image_info.image_begin_, kPageSize); |
| image_reservation_size = |
| dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize)); |
| component_count = image_infos_.size(); |
| } else { |
| image_reservation_size = 0u; |
| component_count = 0u; |
| } |
| } |
| |
| // Create the image sections. |
| auto section_info_pair = image_info.CreateImageSections(); |
| const size_t image_end = section_info_pair.first; |
| std::vector<ImageSection>& sections = section_info_pair.second; |
| |
| // Finally bitmap section. |
| const size_t bitmap_bytes = image_info.image_bitmap_->Size(); |
| auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap]; |
| *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize)); |
| if (VLOG_IS_ON(compiler)) { |
| LOG(INFO) << "Creating header for " << oat_filenames_[oat_index]; |
| size_t idx = 0; |
| for (const ImageSection& section : sections) { |
| LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section; |
| ++idx; |
| } |
| LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_; |
| LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec; |
| LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_) |
| << " Image offset=" << image_info.image_offset_ << std::dec; |
| LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin) |
| << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_) |
| << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end) |
| << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end); |
| } |
| // Store boot image info for app image so that we can relocate. |
| uint32_t boot_image_begin = 0; |
| uint32_t boot_image_end = 0; |
| uint32_t boot_oat_begin = 0; |
| uint32_t boot_oat_end = 0; |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); |
| |
| // Create the header, leave 0 for data size since we will fill this in as we are writing the |
| // image. |
| new (image_info.image_.Begin()) ImageHeader( |
| image_reservation_size, |
| component_count, |
| PointerToLowMemUInt32(image_info.image_begin_), |
| image_end, |
| sections.data(), |
| image_info.image_roots_address_, |
| image_info.oat_checksum_, |
| PointerToLowMemUInt32(oat_file_begin), |
| PointerToLowMemUInt32(image_info.oat_data_begin_), |
| PointerToLowMemUInt32(oat_data_end), |
| PointerToLowMemUInt32(oat_file_end), |
| boot_image_begin, |
| boot_oat_end - boot_image_begin, |
| static_cast<uint32_t>(target_ptr_size_)); |
| } |
| |
| ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) { |
| NativeObjectRelocation relocation = GetNativeRelocation(method); |
| const ImageInfo& image_info = GetImageInfo(relocation.oat_index); |
| CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects"; |
| return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset); |
| } |
| |
| const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) { |
| DCHECK(compiler_options_.IsBootImage()); |
| switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) { |
| case IntrinsicObjects::PatchType::kIntegerValueOfArray: { |
| const uint8_t* base_address = |
| reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_)); |
| MemberOffset data_offset = |
| IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_); |
| return base_address + data_offset.Uint32Value(); |
| } |
| case IntrinsicObjects::PatchType::kIntegerValueOfObject: { |
| uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data); |
| ObjPtr<mirror::Object> value = |
| IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index); |
| return GetImageAddress(value.Ptr()); |
| } |
| } |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| |
| class ImageWriter::FixupRootVisitor : public RootVisitor { |
| public: |
| explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) { |
| } |
| |
| void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED, |
| size_t count ATTRIBUTE_UNUSED, |
| const RootInfo& info ATTRIBUTE_UNUSED) |
| override REQUIRES_SHARED(Locks::mutator_lock_) { |
| LOG(FATAL) << "Unsupported"; |
| } |
| |
| void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, |
| size_t count, |
| const RootInfo& info ATTRIBUTE_UNUSED) |
| override REQUIRES_SHARED(Locks::mutator_lock_) { |
| for (size_t i = 0; i < count; ++i) { |
| // Copy the reference. Since we do not have the address for recording the relocation, |
| // it needs to be recorded explicitly by the user of FixupRootVisitor. |
| ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr(); |
| roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr())); |
| } |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| }; |
| |
| void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) { |
| for (size_t i = 0; i < ImTable::kSize; ++i) { |
| ArtMethod* method = orig->Get(i, target_ptr_size_); |
| void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_)); |
| CopyAndFixupPointer(address, method); |
| DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method)); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) { |
| const size_t count = orig->NumEntries(target_ptr_size_); |
| for (size_t i = 0; i < count; ++i) { |
| ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_); |
| ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_); |
| CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method); |
| CopyAndFixupPointer( |
| copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method); |
| DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_), |
| NativeLocationInImage(interface_method)); |
| DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_), |
| NativeLocationInImage(implementation_method)); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupNativeData(size_t oat_index) { |
| const ImageInfo& image_info = GetImageInfo(oat_index); |
| // Copy ArtFields and methods to their locations and update the array for convenience. |
| for (auto& pair : native_object_relocations_) { |
| NativeObjectRelocation& relocation = pair.second; |
| // Only work with fields and methods that are in the current oat file. |
| if (relocation.oat_index != oat_index) { |
| continue; |
| } |
| auto* dest = image_info.image_.Begin() + relocation.offset; |
| DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_); |
| DCHECK(!IsInBootImage(pair.first)); |
| switch (relocation.type) { |
| case NativeObjectRelocationType::kArtField: { |
| memcpy(dest, pair.first, sizeof(ArtField)); |
| CopyAndFixupReference( |
| reinterpret_cast<ArtField*>(dest)->GetDeclaringClassAddressWithoutBarrier(), |
| reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()); |
| break; |
| } |
| case NativeObjectRelocationType::kRuntimeMethod: |
| case NativeObjectRelocationType::kArtMethodClean: |
| case NativeObjectRelocationType::kArtMethodDirty: { |
| CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first), |
| reinterpret_cast<ArtMethod*>(dest), |
| oat_index); |
| break; |
| } |
| // For arrays, copy just the header since the elements will get copied by their corresponding |
| // relocations. |
| case NativeObjectRelocationType::kArtFieldArray: { |
| memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0)); |
| break; |
| } |
| case NativeObjectRelocationType::kArtMethodArrayClean: |
| case NativeObjectRelocationType::kArtMethodArrayDirty: { |
| size_t size = ArtMethod::Size(target_ptr_size_); |
| size_t alignment = ArtMethod::Alignment(target_ptr_size_); |
| memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment)); |
| // Clear padding to avoid non-deterministic data in the image. |
| // Historical note: We also did that to placate Valgrind. |
| reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment); |
| break; |
| } |
| case NativeObjectRelocationType::kDexCacheArray: |
| // Nothing to copy here, everything is done in FixupDexCache(). |
| break; |
| case NativeObjectRelocationType::kIMTable: { |
| ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first); |
| ImTable* dest_imt = reinterpret_cast<ImTable*>(dest); |
| CopyAndFixupImTable(orig_imt, dest_imt); |
| break; |
| } |
| case NativeObjectRelocationType::kIMTConflictTable: { |
| auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first); |
| CopyAndFixupImtConflictTable( |
| orig_table, |
| new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_)); |
| break; |
| } |
| case NativeObjectRelocationType::kGcRootPointer: { |
| auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first); |
| auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest); |
| CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read()); |
| break; |
| } |
| } |
| } |
| // Fixup the image method roots. |
| auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin()); |
| for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) { |
| ArtMethod* method = image_methods_[i]; |
| CHECK(method != nullptr); |
| CopyAndFixupPointer( |
| reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32); |
| } |
| FixupRootVisitor root_visitor(this); |
| |
| // Write the intern table into the image. |
| if (image_info.intern_table_bytes_ > 0) { |
| const ImageSection& intern_table_section = image_header->GetInternedStringsSection(); |
| InternTable* const intern_table = image_info.intern_table_.get(); |
| uint8_t* const intern_table_memory_ptr = |
| image_info.image_.Begin() + intern_table_section.Offset(); |
| const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr); |
| CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_); |
| // Fixup the pointers in the newly written intern table to contain image addresses. |
| InternTable temp_intern_table; |
| // Note that we require that ReadFromMemory does not make an internal copy of the elements so |
| // that the VisitRoots() will update the memory directly rather than the copies. |
| // This also relies on visit roots not doing any verification which could fail after we update |
| // the roots to be the image addresses. |
| temp_intern_table.AddTableFromMemory(intern_table_memory_ptr, |
| VoidFunctor(), |
| /*is_boot_image=*/ false); |
| CHECK_EQ(temp_intern_table.Size(), intern_table->Size()); |
| temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots); |
| // Record relocations. (The root visitor does not get to see the slot addresses.) |
| MutexLock lock(Thread::Current(), *Locks::intern_table_lock_); |
| DCHECK(!temp_intern_table.strong_interns_.tables_.empty()); |
| DCHECK(!temp_intern_table.strong_interns_.tables_[0].Empty()); // Inserted at the beginning. |
| } |
| // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple |
| // class loaders. Writing multiple class tables into the image is currently unsupported. |
| if (image_info.class_table_bytes_ > 0u) { |
| const ImageSection& class_table_section = image_header->GetClassTableSection(); |
| uint8_t* const class_table_memory_ptr = |
| image_info.image_.Begin() + class_table_section.Offset(); |
| Thread* self = Thread::Current(); |
| ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); |
| |
| ClassTable* table = image_info.class_table_.get(); |
| CHECK(table != nullptr); |
| const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr); |
| CHECK_EQ(class_table_bytes, image_info.class_table_bytes_); |
| // Fixup the pointers in the newly written class table to contain image addresses. See |
| // above comment for intern tables. |
| ClassTable temp_class_table; |
| temp_class_table.ReadFromMemory(class_table_memory_ptr); |
| CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), |
| table->NumReferencedNonZygoteClasses() + table->NumReferencedZygoteClasses()); |
| UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown)); |
| temp_class_table.VisitRoots(visitor); |
| // Record relocations. (The root visitor does not get to see the slot addresses.) |
| // Note that the low bits in the slots contain bits of the descriptors' hash codes |
| // but the relocation works fine for these "adjusted" references. |
| ReaderMutexLock lock(self, temp_class_table.lock_); |
| DCHECK(!temp_class_table.classes_.empty()); |
| DCHECK(!temp_class_table.classes_[0].empty()); // The ClassSet was inserted at the beginning. |
| } |
| } |
| |
| void ImageWriter::FixupPointerArray(mirror::Object* dst, |
| mirror::PointerArray* arr, |
| Bin array_type) { |
| CHECK(arr->IsIntArray() || arr->IsLongArray()) << arr->GetClass()->PrettyClass() << " " << arr; |
| // Fixup int and long pointers for the ArtMethod or ArtField arrays. |
| const size_t num_elements = arr->GetLength(); |
| CopyAndFixupReference( |
| dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()), arr->GetClass()); |
| auto* dest_array = down_cast<mirror::PointerArray*>(dst); |
| for (size_t i = 0, count = num_elements; i < count; ++i) { |
| void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_); |
| if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) { |
| auto it = native_object_relocations_.find(elem); |
| if (UNLIKELY(it == native_object_relocations_.end())) { |
| if (it->second.IsArtMethodRelocation()) { |
| auto* method = reinterpret_cast<ArtMethod*>(elem); |
| LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ " |
| << method << " idx=" << i << "/" << num_elements << " with declaring class " |
| << Class::PrettyClass(method->GetDeclaringClass()); |
| } else { |
| CHECK_EQ(array_type, Bin::kArtField); |
| auto* field = reinterpret_cast<ArtField*>(elem); |
| LOG(FATAL) << "No relocation entry for ArtField " << field->PrettyField() << " @ " |
| << field << " idx=" << i << "/" << num_elements << " with declaring class " |
| << Class::PrettyClass(field->GetDeclaringClass()); |
| } |
| UNREACHABLE(); |
| } |
| } |
| CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupObject(Object* obj) { |
| if (!IsImageObject(obj)) { |
| return; |
| } |
| size_t offset = GetImageOffset(obj); |
| size_t oat_index = GetOatIndex(obj); |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset); |
| DCHECK_LT(offset, image_info.image_end_); |
| const auto* src = reinterpret_cast<const uint8_t*>(obj); |
| |
| image_info.image_bitmap_->Set(dst); // Mark the obj as live. |
| |
| const size_t n = obj->SizeOf(); |
| |
| if (kIsDebugBuild && region_size_ != 0u) { |
| const size_t offset_after_header = offset - sizeof(ImageHeader); |
| const size_t next_region = RoundUp(offset_after_header, region_size_); |
| if (offset_after_header != next_region) { |
| // If the object is not on a region bondary, it must not be cross region. |
| CHECK_LT(offset_after_header, next_region) |
| << "offset_after_header=" << offset_after_header << " size=" << n; |
| CHECK_LE(offset_after_header + n, next_region) |
| << "offset_after_header=" << offset_after_header << " size=" << n; |
| } |
| } |
| DCHECK_LE(offset + n, image_info.image_.Size()); |
| memcpy(dst, src, n); |
| |
| // Write in a hash code of objects which have inflated monitors or a hash code in their monitor |
| // word. |
| const auto it = saved_hashcode_map_.find(obj); |
| dst->SetLockWord(it != saved_hashcode_map_.end() ? |
| LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false); |
| if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) { |
| // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is |
| // safe since we mark all of the objects that may reference non immune objects as gray. |
| CHECK(dst->AtomicSetMarkBit(0, 1)); |
| } |
| FixupObject(obj, dst); |
| } |
| |
| // Rewrite all the references in the copied object to point to their image address equivalent |
| class ImageWriter::FixupVisitor { |
| public: |
| FixupVisitor(ImageWriter* image_writer, Object* copy) |
| : image_writer_(image_writer), copy_(copy) { |
| } |
| |
| // Ignore class roots since we don't have a way to map them to the destination. These are handled |
| // with other logic. |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) |
| const {} |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} |
| |
| void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone>(offset); |
| // Copy the reference and record the fixup if necessary. |
| image_writer_->CopyAndFixupReference( |
| copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref); |
| } |
| |
| // java.lang.ref.Reference visitor. |
| void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, |
| ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| protected: |
| ImageWriter* const image_writer_; |
| mirror::Object* const copy_; |
| }; |
| |
| void ImageWriter::CopyAndFixupObjects() { |
| auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(obj != nullptr); |
| CopyAndFixupObject(obj); |
| }; |
| Runtime::Current()->GetHeap()->VisitObjects(visitor); |
| // Copy the padding objects since they are required for in order traversal of the image space. |
| for (const ImageInfo& image_info : image_infos_) { |
| for (const size_t offset : image_info.padding_object_offsets_) { |
| auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset); |
| dst->SetClass<kVerifyNone>(GetImageAddress(GetClassRoot<mirror::Object>().Ptr())); |
| dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false); |
| image_info.image_bitmap_->Set(dst); // Mark the obj as live. |
| } |
| } |
| // We no longer need the hashcode map, values have already been copied to target objects. |
| saved_hashcode_map_.clear(); |
| } |
| |
| class ImageWriter::FixupClassVisitor final : public FixupVisitor { |
| public: |
| FixupClassVisitor(ImageWriter* image_writer, Object* copy) |
| : FixupVisitor(image_writer, copy) {} |
| |
| void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const |
| REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| DCHECK(obj->IsClass()); |
| FixupVisitor::operator()(obj, offset, /*is_static*/false); |
| } |
| |
| void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, |
| ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| LOG(FATAL) << "Reference not expected here."; |
| } |
| }; |
| |
| ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) { |
| DCHECK(obj != nullptr); |
| DCHECK(!IsInBootImage(obj)); |
| auto it = native_object_relocations_.find(obj); |
| CHECK(it != native_object_relocations_.end()) << obj << " spaces " |
| << Runtime::Current()->GetHeap()->DumpSpaces(); |
| return it->second; |
| } |
| |
| template <typename T> |
| std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) { |
| std::ostringstream oss; |
| oss << ptr; |
| return oss.str(); |
| } |
| |
| template <> |
| std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return ArtMethod::PrettyMethod(method); |
| } |
| |
| template <typename T> |
| T* ImageWriter::NativeLocationInImage(T* obj) { |
| if (obj == nullptr || IsInBootImage(obj)) { |
| return obj; |
| } else { |
| NativeObjectRelocation relocation = GetNativeRelocation(obj); |
| const ImageInfo& image_info = GetImageInfo(relocation.oat_index); |
| return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset); |
| } |
| } |
| |
| template <typename T> |
| T* ImageWriter::NativeCopyLocation(T* obj) { |
| const NativeObjectRelocation relocation = GetNativeRelocation(obj); |
| const ImageInfo& image_info = GetImageInfo(relocation.oat_index); |
| return reinterpret_cast<T*>(image_info.image_.Begin() + relocation.offset); |
| } |
| |
| class ImageWriter::NativeLocationVisitor { |
| public: |
| explicit NativeLocationVisitor(ImageWriter* image_writer) |
| : image_writer_(image_writer) {} |
| |
| template <typename T> |
| T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (ptr != nullptr) { |
| image_writer_->CopyAndFixupPointer(dest_addr, ptr); |
| } |
| // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer() |
| // with the value we return here. We should try to avoid the duplicate work. |
| return image_writer_->NativeLocationInImage(ptr); |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| }; |
| |
| void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) { |
| orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this)); |
| FixupClassVisitor visitor(this, copy); |
| ObjPtr<mirror::Object>(orig)->VisitReferences(visitor, visitor); |
| |
| if (kBitstringSubtypeCheckEnabled && compiler_options_.IsAppImage()) { |
| // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring |
| // values to the parent of that class. |
| // |
| // Every time this happens, the parent class has to mutate to increment |
| // the "Next" value. |
| // |
| // If any of these parents are in the boot image, the changes [in the parents] |
| // would be lost when the app image is reloaded. |
| // |
| // To prevent newly loaded classes (not in the app image) from being reassigned |
| // the same bitstring value as an existing app image class, uninitialize |
| // all the classes in the app image. |
| // |
| // On startup, the class linker will then re-initialize all the app |
| // image bitstrings. See also ClassLinker::AddImageSpace. |
| MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); |
| // Lock every time to prevent a dcheck failure when we suspend with the lock held. |
| SubtypeCheck<mirror::Class*>::ForceUninitialize(copy); |
| } |
| |
| // Remove the clinitThreadId. This is required for image determinism. |
| copy->SetClinitThreadId(static_cast<pid_t>(0)); |
| } |
| |
| void ImageWriter::FixupObject(Object* orig, Object* copy) { |
| DCHECK(orig != nullptr); |
| DCHECK(copy != nullptr); |
| if (kUseBakerReadBarrier) { |
| orig->AssertReadBarrierState(); |
| } |
| if (orig->IsIntArray() || orig->IsLongArray()) { |
| // Is this a native pointer array? |
| auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig)); |
| if (it != pointer_arrays_.end()) { |
| // Should only need to fixup every pointer array exactly once. |
| FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), it->second); |
| pointer_arrays_.erase(it); |
| return; |
| } |
| } |
| if (orig->IsClass()) { |
| FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy)); |
| } else { |
| ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = |
| Runtime::Current()->GetClassLinker()->GetClassRoots(); |
| ObjPtr<mirror::Class> klass = orig->GetClass(); |
| if (klass == GetClassRoot<mirror::Method>(class_roots) || |
| klass == GetClassRoot<mirror::Constructor>(class_roots)) { |
| // Need to go update the ArtMethod. |
| auto* dest = down_cast<mirror::Executable*>(copy); |
| auto* src = down_cast<mirror::Executable*>(orig); |
| ArtMethod* src_method = src->GetArtMethod(); |
| CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method); |
| } else if (klass == GetClassRoot<mirror::DexCache>(class_roots)) { |
| FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy)); |
| } else if (klass->IsClassLoaderClass()) { |
| mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy); |
| // If src is a ClassLoader, set the class table to null so that it gets recreated by the |
| // ClassLoader. |
| copy_loader->SetClassTable(nullptr); |
| // Also set allocator to null to be safe. The allocator is created when we create the class |
| // table. We also never expect to unload things in the image since they are held live as |
| // roots. |
| copy_loader->SetAllocator(nullptr); |
| } |
| FixupVisitor visitor(this, copy); |
| orig->VisitReferences(visitor, visitor); |
| } |
| } |
| |
| template <typename T> |
| void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* orig_array, |
| std::atomic<mirror::DexCachePair<T>>* new_array, |
| uint32_t array_index) { |
| static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>), |
| "Size check for removing std::atomic<>."); |
| mirror::DexCachePair<T>* orig_pair = |
| reinterpret_cast<mirror::DexCachePair<T>*>(&orig_array[array_index]); |
| mirror::DexCachePair<T>* new_pair = |
| reinterpret_cast<mirror::DexCachePair<T>*>(&new_array[array_index]); |
| CopyAndFixupReference( |
| new_pair->object.AddressWithoutBarrier(), orig_pair->object.Read()); |
| new_pair->index = orig_pair->index; |
| } |
| |
| template <typename T> |
| void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* orig_array, |
| std::atomic<mirror::NativeDexCachePair<T>>* new_array, |
| uint32_t array_index) { |
| static_assert( |
| sizeof(std::atomic<mirror::NativeDexCachePair<T>>) == sizeof(mirror::NativeDexCachePair<T>), |
| "Size check for removing std::atomic<>."); |
| if (target_ptr_size_ == PointerSize::k64) { |
| DexCache::ConversionPair64* orig_pair = |
| reinterpret_cast<DexCache::ConversionPair64*>(orig_array) + array_index; |
| DexCache::ConversionPair64* new_pair = |
| reinterpret_cast<DexCache::ConversionPair64*>(new_array) + array_index; |
| *new_pair = *orig_pair; // Copy original value and index. |
| if (orig_pair->first != 0u) { |
| CopyAndFixupPointer( |
| reinterpret_cast<void**>(&new_pair->first), reinterpret_cast64<void*>(orig_pair->first)); |
| } |
| } else { |
| DexCache::ConversionPair32* orig_pair = |
| reinterpret_cast<DexCache::ConversionPair32*>(orig_array) + array_index; |
| DexCache::ConversionPair32* new_pair = |
| reinterpret_cast<DexCache::ConversionPair32*>(new_array) + array_index; |
| *new_pair = *orig_pair; // Copy original value and index. |
| if (orig_pair->first != 0u) { |
| CopyAndFixupPointer( |
| reinterpret_cast<void**>(&new_pair->first), reinterpret_cast32<void*>(orig_pair->first)); |
| } |
| } |
| } |
| |
| void ImageWriter::FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* orig_array, |
| GcRoot<mirror::CallSite>* new_array, |
| uint32_t array_index) { |
| CopyAndFixupReference( |
| new_array[array_index].AddressWithoutBarrier(), orig_array[array_index].Read()); |
| } |
| |
| template <typename EntryType> |
| void ImageWriter::FixupDexCacheArray(DexCache* orig_dex_cache, |
| DexCache* copy_dex_cache, |
| MemberOffset array_offset, |
| uint32_t size) { |
| EntryType* orig_array = orig_dex_cache->GetFieldPtr64<EntryType*>(array_offset); |
| DCHECK_EQ(orig_array != nullptr, size != 0u); |
| if (orig_array != nullptr) { |
| // Though the DexCache array fields are usually treated as native pointers, we clear |
| // the top 32 bits for 32-bit targets. |
| CopyAndFixupPointer(copy_dex_cache, array_offset, orig_array, PointerSize::k64); |
| EntryType* new_array = NativeCopyLocation(orig_array); |
| for (uint32_t i = 0; i != size; ++i) { |
| FixupDexCacheArrayEntry(orig_array, new_array, i); |
| } |
| } |
| } |
| |
| void ImageWriter::FixupDexCache(DexCache* orig_dex_cache, DexCache* copy_dex_cache) { |
| FixupDexCacheArray<mirror::StringDexCacheType>(orig_dex_cache, |
| copy_dex_cache, |
| DexCache::StringsOffset(), |
| orig_dex_cache->NumStrings()); |
| FixupDexCacheArray<mirror::TypeDexCacheType>(orig_dex_cache, |
| copy_dex_cache, |
| DexCache::ResolvedTypesOffset(), |
| orig_dex_cache->NumResolvedTypes()); |
| FixupDexCacheArray<mirror::MethodDexCacheType>(orig_dex_cache, |
| copy_dex_cache, |
| DexCache::ResolvedMethodsOffset(), |
| orig_dex_cache->NumResolvedMethods()); |
| FixupDexCacheArray<mirror::FieldDexCacheType>(orig_dex_cache, |
| copy_dex_cache, |
| DexCache::ResolvedFieldsOffset(), |
| orig_dex_cache->NumResolvedFields()); |
| FixupDexCacheArray<mirror::MethodTypeDexCacheType>(orig_dex_cache, |
| copy_dex_cache, |
| DexCache::ResolvedMethodTypesOffset(), |
| orig_dex_cache->NumResolvedMethodTypes()); |
| FixupDexCacheArray<GcRoot<mirror::CallSite>>(orig_dex_cache, |
| copy_dex_cache, |
| DexCache::ResolvedCallSitesOffset(), |
| orig_dex_cache->NumResolvedCallSites()); |
| if (orig_dex_cache->GetPreResolvedStrings() != nullptr) { |
| CopyAndFixupPointer(copy_dex_cache, |
| DexCache::PreResolvedStringsOffset(), |
| orig_dex_cache->GetPreResolvedStrings(), |
| PointerSize::k64); |
| } |
| |
| // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving |
| // compiler pointers in here will make the output non-deterministic. |
| copy_dex_cache->SetDexFile(nullptr); |
| } |
| |
| const uint8_t* ImageWriter::GetOatAddress(StubType type) const { |
| DCHECK_LE(type, StubType::kLast); |
| // If we are compiling an app image, we need to use the stubs of the boot image. |
| if (!compiler_options_.IsBootImage()) { |
| // Use the current image pointers. |
| const std::vector<gc::space::ImageSpace*>& image_spaces = |
| Runtime::Current()->GetHeap()->GetBootImageSpaces(); |
| DCHECK(!image_spaces.empty()); |
| const OatFile* oat_file = image_spaces[0]->GetOatFile(); |
| CHECK(oat_file != nullptr); |
| const OatHeader& header = oat_file->GetOatHeader(); |
| switch (type) { |
| // TODO: We could maybe clean this up if we stored them in an array in the oat header. |
| case StubType::kQuickGenericJNITrampoline: |
| return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline()); |
| case StubType::kInterpreterToInterpreterBridge: |
| return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge()); |
| case StubType::kInterpreterToCompiledCodeBridge: |
| return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge()); |
| case StubType::kJNIDlsymLookup: |
| return static_cast<const uint8_t*>(header.GetJniDlsymLookup()); |
| case StubType::kQuickIMTConflictTrampoline: |
| return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline()); |
| case StubType::kQuickResolutionTrampoline: |
| return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline()); |
| case StubType::kQuickToInterpreterBridge: |
| return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge()); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| const ImageInfo& primary_image_info = GetImageInfo(0); |
| return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info); |
| } |
| |
| const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, |
| const ImageInfo& image_info, |
| bool* quick_is_interpreted) { |
| DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod(); |
| DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod(); |
| DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod(); |
| DCHECK(method->IsInvokable()) << method->PrettyMethod(); |
| DCHECK(!IsInBootImage(method)) << method->PrettyMethod(); |
| |
| // Use original code if it exists. Otherwise, set the code pointer to the resolution |
| // trampoline. |
| |
| // Quick entrypoint: |
| const void* quick_oat_entry_point = |
| method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_); |
| const uint8_t* quick_code; |
| |
| if (UNLIKELY(IsInBootImage(method->GetDeclaringClass().Ptr()))) { |
| DCHECK(method->IsCopied()); |
| // If the code is not in the oat file corresponding to this image (e.g. default methods) |
| quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point); |
| } else { |
| uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point); |
| quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info); |
| } |
| |
| *quick_is_interpreted = false; |
| if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() || |
| method->GetDeclaringClass()->IsInitialized())) { |
| // We have code for a non-static or initialized method, just use the code. |
| } else if (quick_code == nullptr && method->IsNative() && |
| (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) { |
| // Non-static or initialized native method missing compiled code, use generic JNI version. |
| quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline); |
| } else if (quick_code == nullptr && !method->IsNative()) { |
| // We don't have code at all for a non-native method, use the interpreter. |
| quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge); |
| *quick_is_interpreted = true; |
| } else { |
| CHECK(!method->GetDeclaringClass()->IsInitialized()); |
| // We have code for a static method, but need to go through the resolution stub for class |
| // initialization. |
| quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline); |
| } |
| if (!IsInBootOatFile(quick_code)) { |
| // DCHECK_GE(quick_code, oat_data_begin_); |
| } |
| return quick_code; |
| } |
| |
| void ImageWriter::CopyAndFixupMethod(ArtMethod* orig, |
| ArtMethod* copy, |
| size_t oat_index) { |
| if (orig->IsAbstract()) { |
| // Ignore the single-implementation info for abstract method. |
| // Do this on orig instead of copy, otherwise there is a crash due to methods |
| // are copied before classes. |
| // TODO: handle fixup of single-implementation method for abstract method. |
| orig->SetHasSingleImplementation(false); |
| orig->SetSingleImplementation( |
| nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); |
| } |
| |
| memcpy(copy, orig, ArtMethod::Size(target_ptr_size_)); |
| |
| CopyAndFixupReference( |
| copy->GetDeclaringClassAddressWithoutBarrier(), orig->GetDeclaringClassUnchecked()); |
| |
| // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to |
| // oat_begin_ |
| |
| // The resolution method has a special trampoline to call. |
| Runtime* runtime = Runtime::Current(); |
| const void* quick_code; |
| if (orig->IsRuntimeMethod()) { |
| ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_); |
| if (orig_table != nullptr) { |
| // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method. |
| quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline); |
| CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table); |
| } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) { |
| quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline); |
| } else { |
| bool found_one = false; |
| for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) { |
| auto idx = static_cast<CalleeSaveType>(i); |
| if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) { |
| found_one = true; |
| break; |
| } |
| } |
| CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod(); |
| CHECK(copy->IsRuntimeMethod()); |
| CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr); |
| quick_code = nullptr; |
| } |
| } else { |
| // We assume all methods have code. If they don't currently then we set them to the use the |
| // resolution trampoline. Abstract methods never have code and so we need to make sure their |
| // use results in an AbstractMethodError. We use the interpreter to achieve this. |
| if (UNLIKELY(!orig->IsInvokable())) { |
| quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge); |
| } else { |
| bool quick_is_interpreted; |
| const ImageInfo& image_info = image_infos_[oat_index]; |
| quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted); |
| |
| // JNI entrypoint: |
| if (orig->IsNative()) { |
| // The native method's pointer is set to a stub to lookup via dlsym. |
| // Note this is not the code_ pointer, that is handled above. |
| copy->SetEntryPointFromJniPtrSize( |
| GetOatAddress(StubType::kJNIDlsymLookup), target_ptr_size_); |
| } else { |
| CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr); |
| } |
| } |
| } |
| if (quick_code != nullptr) { |
| copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_); |
| } |
| } |
| |
| size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const { |
| DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins); |
| return std::accumulate(&bin_slot_sizes_[0], |
| &bin_slot_sizes_[0] + static_cast<size_t>(up_to), |
| /*init*/ static_cast<size_t>(0)); |
| } |
| |
| ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) { |
| // These values may need to get updated if more bins are added to the enum Bin |
| static_assert(kBinBits == 3, "wrong number of bin bits"); |
| static_assert(kBinShift == 27, "wrong number of shift"); |
| static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes"); |
| |
| DCHECK_LT(GetBin(), Bin::kMirrorCount); |
| DCHECK_ALIGNED(GetIndex(), kObjectAlignment); |
| } |
| |
| ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index) |
| : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) { |
| DCHECK_EQ(index, GetIndex()); |
| } |
| |
| ImageWriter::Bin ImageWriter::BinSlot::GetBin() const { |
| return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift); |
| } |
| |
| uint32_t ImageWriter::BinSlot::GetIndex() const { |
| return lockword_ & ~kBinMask; |
| } |
| |
| ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) { |
| switch (type) { |
| case NativeObjectRelocationType::kArtField: |
| case NativeObjectRelocationType::kArtFieldArray: |
| return Bin::kArtField; |
| case NativeObjectRelocationType::kArtMethodClean: |
| case NativeObjectRelocationType::kArtMethodArrayClean: |
| return Bin::kArtMethodClean; |
| case NativeObjectRelocationType::kArtMethodDirty: |
| case NativeObjectRelocationType::kArtMethodArrayDirty: |
| return Bin::kArtMethodDirty; |
| case NativeObjectRelocationType::kDexCacheArray: |
| return Bin::kDexCacheArray; |
| case NativeObjectRelocationType::kRuntimeMethod: |
| return Bin::kRuntimeMethod; |
| case NativeObjectRelocationType::kIMTable: |
| return Bin::kImTable; |
| case NativeObjectRelocationType::kIMTConflictTable: |
| return Bin::kIMTConflictTable; |
| case NativeObjectRelocationType::kGcRootPointer: |
| return Bin::kMetadata; |
| } |
| UNREACHABLE(); |
| } |
| |
| size_t ImageWriter::GetOatIndex(mirror::Object* obj) const { |
| if (!IsMultiImage()) { |
| return GetDefaultOatIndex(); |
| } |
| auto it = oat_index_map_.find(obj); |
| DCHECK(it != oat_index_map_.end()) << obj; |
| return it->second; |
| } |
| |
| size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const { |
| if (!IsMultiImage()) { |
| return GetDefaultOatIndex(); |
| } |
| auto it = dex_file_oat_index_map_.find(dex_file); |
| DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); |
| return it->second; |
| } |
| |
| size_t ImageWriter::GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const { |
| return (dex_cache == nullptr) |
| ? GetDefaultOatIndex() |
| : GetOatIndexForDexFile(dex_cache->GetDexFile()); |
| } |
| |
| void ImageWriter::UpdateOatFileLayout(size_t oat_index, |
| size_t oat_loaded_size, |
| size_t oat_data_offset, |
| size_t oat_data_size) { |
| DCHECK_GE(oat_loaded_size, oat_data_offset); |
| DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size); |
| |
| const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_; |
| DCHECK(images_end != nullptr); // Image space must be ready. |
| for (const ImageInfo& info : image_infos_) { |
| DCHECK_LE(info.image_begin_ + info.image_size_, images_end); |
| } |
| |
| ImageInfo& cur_image_info = GetImageInfo(oat_index); |
| cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_; |
| cur_image_info.oat_loaded_size_ = oat_loaded_size; |
| cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset; |
| cur_image_info.oat_size_ = oat_data_size; |
| |
| if (compiler_options_.IsAppImage()) { |
| CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image."; |
| return; |
| } |
| |
| // Update the oat_offset of the next image info. |
| if (oat_index + 1u != oat_filenames_.size()) { |
| // There is a following one. |
| ImageInfo& next_image_info = GetImageInfo(oat_index + 1u); |
| next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size; |
| } |
| } |
| |
| void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) { |
| ImageInfo& cur_image_info = GetImageInfo(oat_index); |
| cur_image_info.oat_checksum_ = oat_header.GetChecksum(); |
| |
| if (oat_index == GetDefaultOatIndex()) { |
| // Primary oat file, read the trampolines. |
| cur_image_info.SetStubOffset(StubType::kInterpreterToInterpreterBridge, |
| oat_header.GetInterpreterToInterpreterBridgeOffset()); |
| cur_image_info.SetStubOffset(StubType::kInterpreterToCompiledCodeBridge, |
| oat_header.GetInterpreterToCompiledCodeBridgeOffset()); |
| cur_image_info.SetStubOffset(StubType::kJNIDlsymLookup, |
| oat_header.GetJniDlsymLookupOffset()); |
| cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline, |
| oat_header.GetQuickGenericJniTrampolineOffset()); |
| cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline, |
| oat_header.GetQuickImtConflictTrampolineOffset()); |
| cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline, |
| oat_header.GetQuickResolutionTrampolineOffset()); |
| cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge, |
| oat_header.GetQuickToInterpreterBridgeOffset()); |
| } |
| } |
| |
| ImageWriter::ImageWriter( |
| const CompilerOptions& compiler_options, |
| uintptr_t image_begin, |
| ImageHeader::StorageMode image_storage_mode, |
| const std::vector<std::string>& oat_filenames, |
| const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map, |
| jobject class_loader, |
| const HashSet<std::string>* dirty_image_objects) |
| : compiler_options_(compiler_options), |
| global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)), |
| image_objects_offset_begin_(0), |
| target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())), |
| image_infos_(oat_filenames.size()), |
| dirty_methods_(0u), |
| clean_methods_(0u), |
| app_class_loader_(class_loader), |
| boot_image_live_objects_(nullptr), |
| image_storage_mode_(image_storage_mode), |
| oat_filenames_(oat_filenames), |
| dex_file_oat_index_map_(dex_file_oat_index_map), |
| dirty_image_objects_(dirty_image_objects) { |
| DCHECK(compiler_options.IsBootImage() || compiler_options.IsAppImage()); |
| CHECK_NE(image_begin, 0U); |
| std::fill_n(image_methods_, arraysize(image_methods_), nullptr); |
| CHECK_EQ(compiler_options.IsBootImage(), |
| Runtime::Current()->GetHeap()->GetBootImageSpaces().empty()) |
| << "Compiling a boot image should occur iff there are no boot image spaces loaded"; |
| if (compiler_options_.IsAppImage()) { |
| // Make sure objects are not crossing region boundaries for app images. |
| region_size_ = gc::space::RegionSpace::kRegionSize; |
| } |
| } |
| |
| ImageWriter::ImageInfo::ImageInfo() |
| : intern_table_(new InternTable), |
| class_table_(new ClassTable) {} |
| |
| template <typename DestType> |
| void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) { |
| static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value || |
| std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value, |
| "DestType must be a Compressed-/HeapReference<Object>."); |
| dest->Assign(GetImageAddress(src.Ptr())); |
| } |
| |
| void ImageWriter::CopyAndFixupPointer(void** target, void* value, PointerSize pointer_size) { |
| void* new_value = NativeLocationInImage(value); |
| if (pointer_size == PointerSize::k32) { |
| *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value); |
| } else { |
| *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value); |
| } |
| DCHECK(value != nullptr); |
| } |
| |
| void ImageWriter::CopyAndFixupPointer(void** target, void* value) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| CopyAndFixupPointer(target, value, target_ptr_size_); |
| } |
| |
| void ImageWriter::CopyAndFixupPointer( |
| void* object, MemberOffset offset, void* value, PointerSize pointer_size) { |
| void** target = |
| reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value()); |
| return CopyAndFixupPointer(target, value, pointer_size); |
| } |
| |
| void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, void* value) { |
| return CopyAndFixupPointer(object, offset, value, target_ptr_size_); |
| } |
| |
| } // namespace linker |
| } // namespace art |