| /* |
| * Slab allocator functions that are independent of the allocator strategy |
| * |
| * (C) 2012 Christoph Lameter <cl@linux.com> |
| */ |
| #include <linux/slab.h> |
| |
| #include <linux/mm.h> |
| #include <linux/poison.h> |
| #include <linux/interrupt.h> |
| #include <linux/memory.h> |
| #include <linux/compiler.h> |
| #include <linux/module.h> |
| #include <linux/cpu.h> |
| #include <linux/uaccess.h> |
| #include <linux/seq_file.h> |
| #include <linux/proc_fs.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/page.h> |
| #include <linux/memcontrol.h> |
| |
| #include "slab.h" |
| |
| enum slab_state slab_state; |
| LIST_HEAD(slab_caches); |
| DEFINE_MUTEX(slab_mutex); |
| struct kmem_cache *kmem_cache; |
| |
| #ifdef CONFIG_DEBUG_VM |
| static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name, |
| size_t size) |
| { |
| struct kmem_cache *s = NULL; |
| |
| if (!name || in_interrupt() || size < sizeof(void *) || |
| size > KMALLOC_MAX_SIZE) { |
| pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
| return -EINVAL; |
| } |
| |
| list_for_each_entry(s, &slab_caches, list) { |
| char tmp; |
| int res; |
| |
| /* |
| * This happens when the module gets unloaded and doesn't |
| * destroy its slab cache and no-one else reuses the vmalloc |
| * area of the module. Print a warning. |
| */ |
| res = probe_kernel_address(s->name, tmp); |
| if (res) { |
| pr_err("Slab cache with size %d has lost its name\n", |
| s->object_size); |
| continue; |
| } |
| |
| /* |
| * For simplicity, we won't check this in the list of memcg |
| * caches. We have control over memcg naming, and if there |
| * aren't duplicates in the global list, there won't be any |
| * duplicates in the memcg lists as well. |
| */ |
| if (!memcg && !strcmp(s->name, name)) { |
| pr_err("%s (%s): Cache name already exists.\n", |
| __func__, name); |
| dump_stack(); |
| s = NULL; |
| return -EINVAL; |
| } |
| } |
| |
| WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
| return 0; |
| } |
| #else |
| static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg, |
| const char *name, size_t size) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_MEMCG_KMEM |
| int memcg_update_all_caches(int num_memcgs) |
| { |
| struct kmem_cache *s; |
| int ret = 0; |
| mutex_lock(&slab_mutex); |
| |
| list_for_each_entry(s, &slab_caches, list) { |
| if (!is_root_cache(s)) |
| continue; |
| |
| ret = memcg_update_cache_size(s, num_memcgs); |
| /* |
| * See comment in memcontrol.c, memcg_update_cache_size: |
| * Instead of freeing the memory, we'll just leave the caches |
| * up to this point in an updated state. |
| */ |
| if (ret) |
| goto out; |
| } |
| |
| memcg_update_array_size(num_memcgs); |
| out: |
| mutex_unlock(&slab_mutex); |
| return ret; |
| } |
| #endif |
| |
| /* |
| * Figure out what the alignment of the objects will be given a set of |
| * flags, a user specified alignment and the size of the objects. |
| */ |
| unsigned long calculate_alignment(unsigned long flags, |
| unsigned long align, unsigned long size) |
| { |
| /* |
| * If the user wants hardware cache aligned objects then follow that |
| * suggestion if the object is sufficiently large. |
| * |
| * The hardware cache alignment cannot override the specified |
| * alignment though. If that is greater then use it. |
| */ |
| if (flags & SLAB_HWCACHE_ALIGN) { |
| unsigned long ralign = cache_line_size(); |
| while (size <= ralign / 2) |
| ralign /= 2; |
| align = max(align, ralign); |
| } |
| |
| if (align < ARCH_SLAB_MINALIGN) |
| align = ARCH_SLAB_MINALIGN; |
| |
| return ALIGN(align, sizeof(void *)); |
| } |
| |
| |
| /* |
| * kmem_cache_create - Create a cache. |
| * @name: A string which is used in /proc/slabinfo to identify this cache. |
| * @size: The size of objects to be created in this cache. |
| * @align: The required alignment for the objects. |
| * @flags: SLAB flags |
| * @ctor: A constructor for the objects. |
| * |
| * Returns a ptr to the cache on success, NULL on failure. |
| * Cannot be called within a interrupt, but can be interrupted. |
| * The @ctor is run when new pages are allocated by the cache. |
| * |
| * The flags are |
| * |
| * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) |
| * to catch references to uninitialised memory. |
| * |
| * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check |
| * for buffer overruns. |
| * |
| * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
| * cacheline. This can be beneficial if you're counting cycles as closely |
| * as davem. |
| */ |
| |
| struct kmem_cache * |
| kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size, |
| size_t align, unsigned long flags, void (*ctor)(void *), |
| struct kmem_cache *parent_cache) |
| { |
| struct kmem_cache *s = NULL; |
| int err = 0; |
| |
| get_online_cpus(); |
| mutex_lock(&slab_mutex); |
| |
| if (!kmem_cache_sanity_check(memcg, name, size) == 0) |
| goto out_locked; |
| |
| /* |
| * Some allocators will constraint the set of valid flags to a subset |
| * of all flags. We expect them to define CACHE_CREATE_MASK in this |
| * case, and we'll just provide them with a sanitized version of the |
| * passed flags. |
| */ |
| flags &= CACHE_CREATE_MASK; |
| |
| s = __kmem_cache_alias(memcg, name, size, align, flags, ctor); |
| if (s) |
| goto out_locked; |
| |
| s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); |
| if (s) { |
| s->object_size = s->size = size; |
| s->align = calculate_alignment(flags, align, size); |
| s->ctor = ctor; |
| |
| if (memcg_register_cache(memcg, s, parent_cache)) { |
| kmem_cache_free(kmem_cache, s); |
| err = -ENOMEM; |
| goto out_locked; |
| } |
| |
| s->name = kstrdup(name, GFP_KERNEL); |
| if (!s->name) { |
| kmem_cache_free(kmem_cache, s); |
| err = -ENOMEM; |
| goto out_locked; |
| } |
| |
| err = __kmem_cache_create(s, flags); |
| if (!err) { |
| s->refcount = 1; |
| list_add(&s->list, &slab_caches); |
| memcg_cache_list_add(memcg, s); |
| } else { |
| kfree(s->name); |
| kmem_cache_free(kmem_cache, s); |
| } |
| } else |
| err = -ENOMEM; |
| |
| out_locked: |
| mutex_unlock(&slab_mutex); |
| put_online_cpus(); |
| |
| if (err) { |
| |
| if (flags & SLAB_PANIC) |
| panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", |
| name, err); |
| else { |
| printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", |
| name, err); |
| dump_stack(); |
| } |
| |
| return NULL; |
| } |
| |
| return s; |
| } |
| |
| struct kmem_cache * |
| kmem_cache_create(const char *name, size_t size, size_t align, |
| unsigned long flags, void (*ctor)(void *)) |
| { |
| return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL); |
| } |
| EXPORT_SYMBOL(kmem_cache_create); |
| |
| void kmem_cache_destroy(struct kmem_cache *s) |
| { |
| /* Destroy all the children caches if we aren't a memcg cache */ |
| kmem_cache_destroy_memcg_children(s); |
| |
| get_online_cpus(); |
| mutex_lock(&slab_mutex); |
| s->refcount--; |
| if (!s->refcount) { |
| list_del(&s->list); |
| |
| if (!__kmem_cache_shutdown(s)) { |
| mutex_unlock(&slab_mutex); |
| if (s->flags & SLAB_DESTROY_BY_RCU) |
| rcu_barrier(); |
| |
| memcg_release_cache(s); |
| kfree(s->name); |
| kmem_cache_free(kmem_cache, s); |
| } else { |
| list_add(&s->list, &slab_caches); |
| mutex_unlock(&slab_mutex); |
| printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n", |
| s->name); |
| dump_stack(); |
| } |
| } else { |
| mutex_unlock(&slab_mutex); |
| } |
| put_online_cpus(); |
| } |
| EXPORT_SYMBOL(kmem_cache_destroy); |
| |
| int slab_is_available(void) |
| { |
| return slab_state >= UP; |
| } |
| |
| #ifndef CONFIG_SLOB |
| /* Create a cache during boot when no slab services are available yet */ |
| void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, |
| unsigned long flags) |
| { |
| int err; |
| |
| s->name = name; |
| s->size = s->object_size = size; |
| s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
| err = __kmem_cache_create(s, flags); |
| |
| if (err) |
| panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", |
| name, size, err); |
| |
| s->refcount = -1; /* Exempt from merging for now */ |
| } |
| |
| struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, |
| unsigned long flags) |
| { |
| struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
| |
| if (!s) |
| panic("Out of memory when creating slab %s\n", name); |
| |
| create_boot_cache(s, name, size, flags); |
| list_add(&s->list, &slab_caches); |
| s->refcount = 1; |
| return s; |
| } |
| |
| struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; |
| EXPORT_SYMBOL(kmalloc_caches); |
| |
| #ifdef CONFIG_ZONE_DMA |
| struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; |
| EXPORT_SYMBOL(kmalloc_dma_caches); |
| #endif |
| |
| /* |
| * Create the kmalloc array. Some of the regular kmalloc arrays |
| * may already have been created because they were needed to |
| * enable allocations for slab creation. |
| */ |
| void __init create_kmalloc_caches(unsigned long flags) |
| { |
| int i; |
| |
| /* Caches that are not of the two-to-the-power-of size */ |
| if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1]) |
| kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); |
| |
| if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2]) |
| kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); |
| |
| for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) |
| if (!kmalloc_caches[i]) |
| kmalloc_caches[i] = create_kmalloc_cache(NULL, |
| 1 << i, flags); |
| |
| /* Kmalloc array is now usable */ |
| slab_state = UP; |
| |
| for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { |
| struct kmem_cache *s = kmalloc_caches[i]; |
| char *n; |
| |
| if (s) { |
| n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); |
| |
| BUG_ON(!n); |
| s->name = n; |
| } |
| } |
| |
| #ifdef CONFIG_ZONE_DMA |
| for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { |
| struct kmem_cache *s = kmalloc_caches[i]; |
| |
| if (s) { |
| int size = kmalloc_size(i); |
| char *n = kasprintf(GFP_NOWAIT, |
| "dma-kmalloc-%d", size); |
| |
| BUG_ON(!n); |
| kmalloc_dma_caches[i] = create_kmalloc_cache(n, |
| size, SLAB_CACHE_DMA | flags); |
| } |
| } |
| #endif |
| } |
| |
| |
| #endif /* !CONFIG_SLOB */ |
| |
| |
| #ifdef CONFIG_SLABINFO |
| void print_slabinfo_header(struct seq_file *m) |
| { |
| /* |
| * Output format version, so at least we can change it |
| * without _too_ many complaints. |
| */ |
| #ifdef CONFIG_DEBUG_SLAB |
| seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
| #else |
| seq_puts(m, "slabinfo - version: 2.1\n"); |
| #endif |
| seq_puts(m, "# name <active_objs> <num_objs> <objsize> " |
| "<objperslab> <pagesperslab>"); |
| seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
| seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); |
| #ifdef CONFIG_DEBUG_SLAB |
| seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " |
| "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
| seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
| #endif |
| seq_putc(m, '\n'); |
| } |
| |
| static void *s_start(struct seq_file *m, loff_t *pos) |
| { |
| loff_t n = *pos; |
| |
| mutex_lock(&slab_mutex); |
| if (!n) |
| print_slabinfo_header(m); |
| |
| return seq_list_start(&slab_caches, *pos); |
| } |
| |
| static void *s_next(struct seq_file *m, void *p, loff_t *pos) |
| { |
| return seq_list_next(p, &slab_caches, pos); |
| } |
| |
| static void s_stop(struct seq_file *m, void *p) |
| { |
| mutex_unlock(&slab_mutex); |
| } |
| |
| static void |
| memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) |
| { |
| struct kmem_cache *c; |
| struct slabinfo sinfo; |
| int i; |
| |
| if (!is_root_cache(s)) |
| return; |
| |
| for_each_memcg_cache_index(i) { |
| c = cache_from_memcg(s, i); |
| if (!c) |
| continue; |
| |
| memset(&sinfo, 0, sizeof(sinfo)); |
| get_slabinfo(c, &sinfo); |
| |
| info->active_slabs += sinfo.active_slabs; |
| info->num_slabs += sinfo.num_slabs; |
| info->shared_avail += sinfo.shared_avail; |
| info->active_objs += sinfo.active_objs; |
| info->num_objs += sinfo.num_objs; |
| } |
| } |
| |
| int cache_show(struct kmem_cache *s, struct seq_file *m) |
| { |
| struct slabinfo sinfo; |
| |
| memset(&sinfo, 0, sizeof(sinfo)); |
| get_slabinfo(s, &sinfo); |
| |
| memcg_accumulate_slabinfo(s, &sinfo); |
| |
| seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
| cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
| sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
| |
| seq_printf(m, " : tunables %4u %4u %4u", |
| sinfo.limit, sinfo.batchcount, sinfo.shared); |
| seq_printf(m, " : slabdata %6lu %6lu %6lu", |
| sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); |
| slabinfo_show_stats(m, s); |
| seq_putc(m, '\n'); |
| return 0; |
| } |
| |
| static int s_show(struct seq_file *m, void *p) |
| { |
| struct kmem_cache *s = list_entry(p, struct kmem_cache, list); |
| |
| if (!is_root_cache(s)) |
| return 0; |
| return cache_show(s, m); |
| } |
| |
| /* |
| * slabinfo_op - iterator that generates /proc/slabinfo |
| * |
| * Output layout: |
| * cache-name |
| * num-active-objs |
| * total-objs |
| * object size |
| * num-active-slabs |
| * total-slabs |
| * num-pages-per-slab |
| * + further values on SMP and with statistics enabled |
| */ |
| static const struct seq_operations slabinfo_op = { |
| .start = s_start, |
| .next = s_next, |
| .stop = s_stop, |
| .show = s_show, |
| }; |
| |
| static int slabinfo_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &slabinfo_op); |
| } |
| |
| static const struct file_operations proc_slabinfo_operations = { |
| .open = slabinfo_open, |
| .read = seq_read, |
| .write = slabinfo_write, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static int __init slab_proc_init(void) |
| { |
| proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); |
| return 0; |
| } |
| module_init(slab_proc_init); |
| #endif /* CONFIG_SLABINFO */ |