| /* |
| * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> |
| * |
| * Based on former do_div() implementation from asm-parisc/div64.h: |
| * Copyright (C) 1999 Hewlett-Packard Co |
| * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * |
| * Generic C version of 64bit/32bit division and modulo, with |
| * 64bit result and 32bit remainder. |
| * |
| * The fast case for (n>>32 == 0) is handled inline by do_div(). |
| * |
| * Code generated for this function might be very inefficient |
| * for some CPUs. __div64_32() can be overridden by linking arch-specific |
| * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/math64.h> |
| |
| /* Not needed on 64bit architectures */ |
| #if BITS_PER_LONG == 32 |
| |
| uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) |
| { |
| uint64_t rem = *n; |
| uint64_t b = base; |
| uint64_t res, d = 1; |
| uint32_t high = rem >> 32; |
| |
| /* Reduce the thing a bit first */ |
| res = 0; |
| if (high >= base) { |
| high /= base; |
| res = (uint64_t) high << 32; |
| rem -= (uint64_t) (high*base) << 32; |
| } |
| |
| while ((int64_t)b > 0 && b < rem) { |
| b = b+b; |
| d = d+d; |
| } |
| |
| do { |
| if (rem >= b) { |
| rem -= b; |
| res += d; |
| } |
| b >>= 1; |
| d >>= 1; |
| } while (d); |
| |
| *n = res; |
| return rem; |
| } |
| |
| EXPORT_SYMBOL(__div64_32); |
| |
| #ifndef div_s64_rem |
| s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) |
| { |
| u64 quotient; |
| |
| if (dividend < 0) { |
| quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); |
| *remainder = -*remainder; |
| if (divisor > 0) |
| quotient = -quotient; |
| } else { |
| quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); |
| if (divisor < 0) |
| quotient = -quotient; |
| } |
| return quotient; |
| } |
| EXPORT_SYMBOL(div_s64_rem); |
| #endif |
| |
| /* 64bit divisor, dividend and result. dynamic precision */ |
| #ifndef div64_u64 |
| u64 div64_u64(u64 dividend, u64 divisor) |
| { |
| u32 high, d; |
| |
| high = divisor >> 32; |
| if (high) { |
| unsigned int shift = fls(high); |
| |
| d = divisor >> shift; |
| dividend >>= shift; |
| } else |
| d = divisor; |
| |
| return div_u64(dividend, d); |
| } |
| EXPORT_SYMBOL(div64_u64); |
| #endif |
| |
| #endif /* BITS_PER_LONG == 32 */ |
| |
| /* |
| * Iterative div/mod for use when dividend is not expected to be much |
| * bigger than divisor. |
| */ |
| u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) |
| { |
| u32 ret = 0; |
| |
| while (dividend >= divisor) { |
| /* The following asm() prevents the compiler from |
| optimising this loop into a modulo operation. */ |
| asm("" : "+rm"(dividend)); |
| |
| dividend -= divisor; |
| ret++; |
| } |
| |
| *remainder = dividend; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(iter_div_u64_rem); |