blob: 3e39579a6c2d26af63af4a1b84629ac367843d44 [file] [log] [blame]
/* driver/sensor/cm36686.c
* Copyright (c) 2011 SAMSUNG
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/i2c.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/wakelock.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/of_gpio.h>
#include <linux/types.h>
#include <linux/regulator/consumer.h>
#include <linux/sensor/sensors_core.h>
#define PROXIMITY_FOR_TEST /* for HW to tune up */
#define MODULE_NAME_PROX "proximity_sensor"
#define MODULE_NAME_LIGHT "light_sensor"
#define VENDOR "CAPELLA"
#define CHIP_ID "CM36686"
#define I2C_M_WR 0 /* for i2c Write */
#define ALS_REG_NUM 2
/* light sensor register addresses */
#define REG_CS_CONF1 0x00
#define REG_ALS_DATA 0x09
#define REG_WHITE_DATA 0x0A
/* register settings */
static u16 als_reg_setting[ALS_REG_NUM][2] = {
{REG_CS_CONF1, 0x0000}, /* enable */
{REG_CS_CONF1, 0x0001}, /* disable */
};
enum {
LIGHT_ENABLED = BIT(0),
PROXIMITY_ENABLED = BIT(1),
};
enum {
PS_CONF1 = 0,
PS_CONF3,
PS_THD_LOW,
PS_THD_HIGH,
PS_CANCEL,
PS_REG_NUM,
};
enum {
REG_ADDR = 0,
CMD,
};
/* proximity sensor regsiter addresses */
#define REG_PS_CONF1 0x03
#define REG_PS_CONF3 0x04
#define REG_PS_CANC 0x05
#define REG_PS_THD_LOW 0x06
#define REG_PS_THD_HIGH 0x07
#define REG_PS_DATA 0x08
/* proximity sensor default value for register */
#define DEFAULT_HI_THD 0x0015
#define DEFAULT_LOW_THD 0x000F
#define CANCEL_HI_THD 0x000F
#define CANCEL_LOW_THD 0x000A
#define DEFAULT_CONF1 0x03A4
#define DEFAULT_CONF3 0x4210
#define DEFAULT_TRIM 0x0000
static u16 ps_reg_init_setting[PS_REG_NUM][2] = {
{REG_PS_CONF1, DEFAULT_CONF1}, /* REG_PS_CONF1 */
{REG_PS_CONF3, DEFAULT_CONF3}, /* REG_PS_CONF3 */
{REG_PS_THD_LOW, DEFAULT_LOW_THD}, /* REG_PS_THD_LOW */
{REG_PS_THD_HIGH, DEFAULT_HI_THD}, /* REG_PS_THD_HIGH */
{REG_PS_CANC, DEFAULT_TRIM}, /* REG_PS_CANC */
};
/* Intelligent Cancelation*/
#define CANCELATION_FILE_PATH "/efs/FactoryApp/prox_cal"
#define CAL_SKIP_ADC 10 /* nondetect threshold *60% */
#define CAL_FAIL_ADC 18 /* detect threshold */
enum {
CAL_FAIL = 0,
CAL_CANCELATION,
CAL_SKIP,
};
/*lightsnesor log time 6SEC 200mec X 30*/
#define LIGHT_LOG_TIME 30
#define PROX_READ_NUM 40
enum {
OFF = 0,
ON,
};
/* driver data */
struct cm36686_data {
struct i2c_client *i2c_client;
struct wake_lock prox_wake_lock;
struct input_dev *proximity_input_dev;
struct input_dev *light_input_dev;
struct mutex power_lock;
struct mutex read_lock;
struct hrtimer light_timer;
struct hrtimer prox_timer;
struct workqueue_struct *light_wq;
struct workqueue_struct *prox_wq;
struct work_struct work_light;
struct work_struct work_prox;
struct device *proximity_dev;
struct device *light_dev;
struct regulator *vdd;
struct regulator *vled;
ktime_t light_poll_delay;
ktime_t prox_poll_delay;
int ps_conf1;
int ps_conf3;
int default_hi_thd;
int default_low_thd;
int cancel_hi_thd;
int cancel_low_thd;
int default_trim;
int cal_skip_adc;
int cal_fail_adc;
int vdd_always_on; /* 1: vdd is always on, 0: enable only when proximity is on */
int vled_same_vdd;
int vled_ldo; /*0: vled(anode) source regulator, other: get power by LDO control */
int irq;
int irq_gpio;
u8 power_state;
int avg[3];
u16 als_data;
u16 white_data;
int count_log_time;
unsigned int prox_cal_result;
};
static int sensor_vdd_onoff(struct device *dev, bool onoff);
static int proximity_vled_onoff(struct device *dev, bool onoff);
int cm36686_i2c_read_word(struct cm36686_data *cm36686, u8 command, u16 *val)
{
int err = 0;
int retry = 3;
struct i2c_client *client = cm36686->i2c_client;
struct i2c_msg msg[2];
unsigned char data[2] = {0,};
u16 value = 0;
if ((client == NULL) || (!client->adapter))
return -ENODEV;
while (retry--) {
/* send slave address & command */
msg[0].addr = client->addr;
msg[0].flags = I2C_M_WR;
msg[0].len = 1;
msg[0].buf = &command;
/* read word data */
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = 2;
msg[1].buf = data;
err = i2c_transfer(client->adapter, msg, 2);
if (err >= 0) {
value = (u16)data[1];
*val = (value << 8) | (u16)data[0];
return err;
}
}
SENSOR_ERR("i2c transfer error ret=%d\n", err);
return err;
}
int cm36686_i2c_write_word(struct cm36686_data *cm36686, u8 command, u16 val)
{
int err = 0;
struct i2c_client *client = cm36686->i2c_client;
int retry = 3;
if ((client == NULL) || (!client->adapter))
return -ENODEV;
while (retry--) {
err = i2c_smbus_write_word_data(client, command, val);
if (err >= 0)
return 0;
}
SENSOR_ERR("i2c transfer error(%d)\n", err);
return err;
}
static void cm36686_light_enable(struct cm36686_data *cm36686)
{
/* enable setting */
cm36686_i2c_write_word(cm36686, REG_CS_CONF1, als_reg_setting[0][1]);
hrtimer_start(&cm36686->light_timer, ns_to_ktime(200 * NSEC_PER_MSEC),
HRTIMER_MODE_REL);
}
static void cm36686_light_disable(struct cm36686_data *cm36686)
{
/* disable setting */
cm36686_i2c_write_word(cm36686, REG_CS_CONF1, als_reg_setting[1][1]);
hrtimer_cancel(&cm36686->light_timer);
cancel_work_sync(&cm36686->work_light);
}
static ssize_t cm36686_poll_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%lld\n",
ktime_to_ns(cm36686->light_poll_delay));
}
static ssize_t cm36686_poll_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
int64_t new_delay;
int err;
err = kstrtoll(buf, 10, &new_delay);
if (err < 0)
return err;
mutex_lock(&cm36686->power_lock);
if (new_delay != ktime_to_ns(cm36686->light_poll_delay)) {
cm36686->light_poll_delay = ns_to_ktime(new_delay);
if (cm36686->power_state & LIGHT_ENABLED) {
cm36686_light_disable(cm36686);
cm36686_light_enable(cm36686);
}
SENSOR_INFO("poll_delay = %lld\n", new_delay);
}
mutex_unlock(&cm36686->power_lock);
return size;
}
static ssize_t light_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
bool new_value;
if (sysfs_streq(buf, "1"))
new_value = true;
else if (sysfs_streq(buf, "0"))
new_value = false;
else {
SENSOR_ERR("invalid value %d\n", *buf);
return -EINVAL;
}
SENSOR_INFO("new_value = %d\n", new_value);
mutex_lock(&cm36686->power_lock);
if (new_value && !(cm36686->power_state & LIGHT_ENABLED)) {
cm36686->power_state |= LIGHT_ENABLED;
cm36686_light_enable(cm36686);
} else if (!new_value && (cm36686->power_state & LIGHT_ENABLED)) {
cm36686_light_disable(cm36686);
cm36686->power_state &= ~LIGHT_ENABLED;
}
mutex_unlock(&cm36686->power_lock);
return size;
}
static ssize_t light_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n",
(cm36686->power_state & LIGHT_ENABLED) ? 1 : 0);
}
static int proximity_open_cancelation(struct cm36686_data *data)
{
struct file *cancel_filp = NULL;
int err = 0;
mm_segment_t old_fs;
old_fs = get_fs();
set_fs(KERNEL_DS);
cancel_filp = filp_open(CANCELATION_FILE_PATH, O_RDONLY, 0);
if (IS_ERR(cancel_filp)) {
err = PTR_ERR(cancel_filp);
if (err != -ENOENT)
SENSOR_ERR("Can't open cancelation file(%d)\n", err);
set_fs(old_fs);
return err;
}
err = vfs_read(cancel_filp,
(char *)&ps_reg_init_setting[PS_CANCEL][CMD],
sizeof(u16), &cancel_filp->f_pos);
if (err != sizeof(u16)) {
SENSOR_ERR("Can't read the cancel data from file(%d)\n", err);
err = -EIO;
}
/*If there is an offset cal data. */
if (ps_reg_init_setting[PS_CANCEL][CMD] != data->default_trim) {
ps_reg_init_setting[PS_THD_HIGH][CMD] =
data->cancel_hi_thd ?
data->cancel_hi_thd :
CANCEL_HI_THD;
ps_reg_init_setting[PS_THD_LOW][CMD] =
data->cancel_low_thd ?
data->cancel_low_thd :
CANCEL_LOW_THD;
}
SENSOR_INFO("prox_cal = 0x%x, high_thd = 0x%x, low_thd = 0x%x\n",
ps_reg_init_setting[PS_CANCEL][CMD],
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
filp_close(cancel_filp, current->files);
set_fs(old_fs);
return err;
}
static int proximity_store_cancelation(struct device *dev, bool do_calib)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
struct file *cancel_filp = NULL;
mm_segment_t old_fs;
int err;
u16 ps_data = 0;
if (do_calib) {
mutex_lock(&cm36686->read_lock);
cm36686_i2c_read_word(cm36686, REG_PS_DATA, &ps_data);
mutex_unlock(&cm36686->read_lock);
SENSOR_INFO("do cal read data %d\n", ps_data);
if (ps_data < cm36686->cal_skip_adc) {
/* SKIP. CAL_SKIP_ADC */
ps_reg_init_setting[PS_CANCEL][CMD] =
cm36686->default_trim;
SENSOR_INFO("crosstalk < %d SKIP!!\n", cm36686->cal_skip_adc);
cm36686->prox_cal_result = CAL_SKIP;
} else if (ps_data <= cm36686->cal_fail_adc) {
/* CANCELATION. CAL_FAIL_ADC */
ps_reg_init_setting[PS_CANCEL][CMD] =
cm36686->default_trim + ps_data;
SENSOR_INFO("crosstalk_offset = %u Canceled", ps_data);
cm36686->prox_cal_result = CAL_CANCELATION;
} else {
/*FAIL*/
ps_reg_init_setting[PS_CANCEL][CMD] =
cm36686->default_trim;
SENSOR_INFO("crosstalk > %d\n", cm36686->cal_fail_adc);
cm36686->prox_cal_result = CAL_FAIL;
}
if (cm36686->prox_cal_result == CAL_CANCELATION) {
ps_reg_init_setting[PS_THD_HIGH][CMD] =
cm36686->cancel_hi_thd ?
cm36686->cancel_hi_thd :
CANCEL_HI_THD;
ps_reg_init_setting[PS_THD_LOW][CMD] =
cm36686->cancel_low_thd ?
cm36686->cancel_low_thd :
CANCEL_LOW_THD;
} else {
ps_reg_init_setting[PS_THD_HIGH][CMD] =
cm36686->default_hi_thd ?
cm36686->default_hi_thd :
DEFAULT_HI_THD;
ps_reg_init_setting[PS_THD_LOW][CMD] =
cm36686->default_low_thd ?
cm36686->default_low_thd :
DEFAULT_LOW_THD;
}
} else { /* reset */
ps_reg_init_setting[PS_CANCEL][CMD] =
cm36686->default_trim;
ps_reg_init_setting[PS_THD_HIGH][CMD] =
cm36686->default_hi_thd ?
cm36686->default_hi_thd :
DEFAULT_HI_THD;
ps_reg_init_setting[PS_THD_LOW][CMD] =
cm36686->default_low_thd ?
cm36686->default_low_thd :
DEFAULT_LOW_THD;
}
if ((cm36686->prox_cal_result == CAL_CANCELATION) || !do_calib) {
err = cm36686_i2c_write_word(cm36686, REG_PS_CANC,
ps_reg_init_setting[PS_CANCEL][CMD]);
if (err < 0)
SENSOR_ERR("cm36686_ps_canc_reg is failed. %d\n", err);
err = cm36686_i2c_write_word(cm36686, REG_PS_THD_HIGH,
ps_reg_init_setting[PS_THD_HIGH][CMD]);
if (err < 0)
SENSOR_ERR("cm36686_ps_high_reg is failed. %d\n", err);
err = cm36686_i2c_write_word(cm36686, REG_PS_THD_LOW,
ps_reg_init_setting[PS_THD_LOW][CMD]);
if (err < 0)
SENSOR_ERR("cm36686_ps_low_reg is failed. %d\n", err);
}
SENSOR_INFO("prox_cal = 0x%x, high_thd = 0x%x, low_thd = 0x%x\n",
ps_reg_init_setting[PS_CANCEL][CMD],
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
old_fs = get_fs();
set_fs(KERNEL_DS);
cancel_filp = filp_open(CANCELATION_FILE_PATH,
O_CREAT | O_TRUNC | O_WRONLY | O_SYNC, 0660);
if (IS_ERR(cancel_filp)) {
set_fs(old_fs);
err = PTR_ERR(cancel_filp);
SENSOR_ERR("Can't open cancelation file(%d)\n", err);
return err;
}
err = vfs_write(cancel_filp,
(char *)&ps_reg_init_setting[PS_CANCEL][CMD],
sizeof(u16), &cancel_filp->f_pos);
if (err != sizeof(u16)) {
SENSOR_ERR("Can't write the cancel data to file(%d)\n", err);
err = -EIO;
}
filp_close(cancel_filp, current->files);
set_fs(old_fs);
if (!do_calib) /* delay for clearing */
msleep(150);
return err;
}
static ssize_t proximity_cancel_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
bool do_calib;
int err;
if (sysfs_streq(buf, "1")) /* calibrate cancelation value */
do_calib = true;
else if (sysfs_streq(buf, "0")) /* reset cancelation value */
do_calib = false;
else {
SENSOR_ERR("invalid value %d\n", *buf);
return -EINVAL;
}
err = proximity_store_cancelation(dev, do_calib);
if (err < 0) {
SENSOR_ERR("proximity_store_cancelation() failed(%d)\n", err);
return err;
}
return size;
}
static ssize_t proximity_cancel_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u,%u,%u\n",
ps_reg_init_setting[PS_CANCEL][CMD],
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
}
static ssize_t proximity_cancel_pass_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
SENSOR_INFO("%u\n", cm36686->prox_cal_result);
return snprintf(buf, PAGE_SIZE, "%u\n", cm36686->prox_cal_result);
}
static ssize_t proximity_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
bool new_value;
if (sysfs_streq(buf, "1"))
new_value = true;
else if (sysfs_streq(buf, "0"))
new_value = false;
else {
SENSOR_ERR("invalid value %d\n", *buf);
return -EINVAL;
}
SENSOR_INFO("new_value = %d\n", new_value);
mutex_lock(&cm36686->power_lock);
if (new_value && !(cm36686->power_state & PROXIMITY_ENABLED)) {
u8 val = 1;
int i;
int err = 0;
cm36686->power_state |= PROXIMITY_ENABLED;
if (!cm36686->vled_same_vdd)
proximity_vled_onoff(dev, ON);
/* open cancelation data */
err = proximity_open_cancelation(cm36686);
if (err < 0 && err != -ENOENT)
SENSOR_ERR("proximity_open_cancelation() failed(%d)\n",
err);
/* enable settings */
for (i = 0; i < PS_REG_NUM; i++)
cm36686_i2c_write_word(cm36686,
ps_reg_init_setting[i][REG_ADDR],
ps_reg_init_setting[i][CMD]);
/*send far for input update*/
input_report_abs(cm36686->proximity_input_dev, ABS_DISTANCE,
val);
val = gpio_get_value(cm36686->irq_gpio);
/* 0 is close, 1 is far */
input_report_abs(cm36686->proximity_input_dev, ABS_DISTANCE,
val);
input_sync(cm36686->proximity_input_dev);
enable_irq(cm36686->irq);
enable_irq_wake(cm36686->irq);
} else if (!new_value && (cm36686->power_state & PROXIMITY_ENABLED)) {
cm36686->power_state &= ~PROXIMITY_ENABLED;
disable_irq_wake(cm36686->irq);
disable_irq(cm36686->irq);
/* disable settings */
cm36686_i2c_write_word(cm36686, REG_PS_CONF1, 0x0001);
if (!cm36686->vled_same_vdd)
proximity_vled_onoff(dev, OFF);
}
mutex_unlock(&cm36686->power_lock);
return size;
}
static ssize_t proximity_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n",
(cm36686->power_state & PROXIMITY_ENABLED) ? 1 : 0);
}
static DEVICE_ATTR(poll_delay, 0664,
cm36686_poll_delay_show, cm36686_poll_delay_store);
static struct device_attribute dev_attr_light_enable =
__ATTR(enable, 0664,
light_enable_show, light_enable_store);
static struct device_attribute dev_attr_proximity_enable =
__ATTR(enable, 0664,
proximity_enable_show, proximity_enable_store);
static struct attribute *light_sysfs_attrs[] = {
&dev_attr_light_enable.attr,
&dev_attr_poll_delay.attr,
NULL
};
static struct attribute_group light_attribute_group = {
.attrs = light_sysfs_attrs,
};
static struct attribute *proximity_sysfs_attrs[] = {
&dev_attr_proximity_enable.attr,
NULL
};
static struct attribute_group proximity_attribute_group = {
.attrs = proximity_sysfs_attrs,
};
/* sysfs for vendor & name */
static ssize_t cm36686_vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", VENDOR);
}
static ssize_t cm36686_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", CHIP_ID);
}
static struct device_attribute dev_attr_prox_sensor_vendor =
__ATTR(vendor, 0444, cm36686_vendor_show, NULL);
static struct device_attribute dev_attr_light_sensor_vendor =
__ATTR(vendor, 0444, cm36686_vendor_show, NULL);
static struct device_attribute dev_attr_prox_sensor_name =
__ATTR(name, 0444, cm36686_name_show, NULL);
static struct device_attribute dev_attr_light_sensor_name =
__ATTR(name, 0444, cm36686_name_show, NULL);
/* proximity sensor sysfs */
static ssize_t proximity_trim_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n", cm36686->default_trim);
}
#if defined(PROXIMITY_FOR_TEST)
static ssize_t proximity_trim_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *data = dev_get_drvdata(dev);
u16 trim_value;
int err;
err = kstrtou16(buf, 10, &trim_value);
if (err < 0) {
SENSOR_ERR("kstrtoint failed.\n");
return size;
}
SENSOR_INFO("trim_value: %u\n", trim_value);
if (trim_value > -1) {
data->default_trim = trim_value;
ps_reg_init_setting[PS_CANCEL][CMD] = trim_value;
data->default_trim = trim_value;
err = cm36686_i2c_write_word(data, REG_PS_CANC,
ps_reg_init_setting[PS_CANCEL][CMD]);
if (err < 0)
SENSOR_ERR("cm36686_ps_canc is failed. %d\n", err);
SENSOR_INFO("new trim_value = %u\n", trim_value);
msleep(150);
} else
SENSOR_ERR("wrong trim_value (%u)!!\n", trim_value);
return size;
}
#endif
static ssize_t proximity_avg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d,%d,%d\n", cm36686->avg[0],
cm36686->avg[1], cm36686->avg[2]);
}
static ssize_t proximity_avg_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
bool new_value = false;
if (sysfs_streq(buf, "1"))
new_value = true;
else if (sysfs_streq(buf, "0"))
new_value = false;
else {
SENSOR_ERR("invalid value %d\n", *buf);
return -EINVAL;
}
SENSOR_INFO("average enable = %d\n", new_value);
mutex_lock(&cm36686->power_lock);
if (new_value) {
if (!(cm36686->power_state & PROXIMITY_ENABLED))
cm36686_i2c_write_word(cm36686, REG_PS_CONF1,
ps_reg_init_setting[PS_CONF1][CMD]);
hrtimer_start(&cm36686->prox_timer, cm36686->prox_poll_delay,
HRTIMER_MODE_REL);
} else if (!new_value) {
hrtimer_cancel(&cm36686->prox_timer);
cancel_work_sync(&cm36686->work_prox);
if (!(cm36686->power_state & PROXIMITY_ENABLED))
cm36686_i2c_write_word(cm36686, REG_PS_CONF1,
0x0001);
}
mutex_unlock(&cm36686->power_lock);
return size;
}
static ssize_t proximity_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
u16 ps_data;
mutex_lock(&cm36686->read_lock);
cm36686_i2c_read_word(cm36686, REG_PS_DATA, &ps_data);
mutex_unlock(&cm36686->read_lock);
return snprintf(buf, PAGE_SIZE, "%u\n", ps_data);
}
static ssize_t proximity_thresh_high_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
SENSOR_INFO("%u,%u\n",
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
return snprintf(buf, PAGE_SIZE, "%u,%u\n",
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
}
static ssize_t proximity_thresh_high_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
u16 thresh_value = ps_reg_init_setting[PS_THD_HIGH][CMD];
int err;
err = kstrtou16(buf, 10, &thresh_value);
if (err < 0)
SENSOR_ERR("kstrtoint failed.");
SENSOR_INFO("thresh_value:%u\n", thresh_value);
if (thresh_value > 2) {
ps_reg_init_setting[PS_THD_HIGH][CMD] = thresh_value;
err = cm36686_i2c_write_word(cm36686, REG_PS_THD_HIGH,
ps_reg_init_setting[PS_THD_HIGH][CMD]);
if (err < 0)
SENSOR_ERR("cm36686_ps_high_reg is failed. %d\n", err);
SENSOR_INFO("new high threshold = 0x%x\n", thresh_value);
msleep(150);
} else
SENSOR_ERR("wrong high threshold value(0x%x)\n", thresh_value);
return size;
}
static ssize_t proximity_thresh_low_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
SENSOR_INFO("%u,%u\n",
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
return snprintf(buf, PAGE_SIZE, "%u,%u\n",
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
}
static ssize_t proximity_thresh_low_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
u16 thresh_value = ps_reg_init_setting[PS_THD_LOW][CMD];
int err;
err = kstrtou16(buf, 10, &thresh_value);
if (err < 0)
SENSOR_ERR("kstrtoint failed.");
SENSOR_INFO("thresh_value:%u\n", thresh_value);
if (thresh_value > 2) {
ps_reg_init_setting[PS_THD_LOW][CMD] = thresh_value;
err = cm36686_i2c_write_word(cm36686, REG_PS_THD_LOW,
ps_reg_init_setting[PS_THD_LOW][CMD]);
if (err < 0)
SENSOR_ERR("cm36686_ps_low_reg is failed. %d\n", err);
SENSOR_INFO("new low threshold = 0x%x\n", thresh_value);
msleep(150);
} else
SENSOR_ERR("wrong low threshold value(0x%x)\n", thresh_value);
return size;
}
#if defined(PROXIMITY_FOR_TEST)
static ssize_t proximity_register_write_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int regist = 0, val = 0;
struct cm36686_data *data = dev_get_drvdata(dev);
if (sscanf(buf, "%2x,%4x", &regist, &val) != 2) {
SENSOR_ERR("The number of data are wrong\n");
return -EINVAL;
}
cm36686_i2c_write_word(data, regist, val);
SENSOR_INFO("Register(0x%2x) 16:data(0x%4x) 10:%d\n",
regist, val, val);
return count;
}
static ssize_t proximity_register_read_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u16 val[10], i;
struct cm36686_data *data = dev_get_drvdata(dev);
for (i = 0; i < 10; i++) {
cm36686_i2c_read_word(data, i, &val[i]);
SENSOR_INFO("Register(0x%2x) data(0x%4x)\n", i, val[i]);
}
return snprintf(buf, PAGE_SIZE,
"0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n",
val[0], val[1], val[2], val[3], val[4],
val[5], val[6], val[7], val[8], val[9]);
}
#endif
static ssize_t proximity_dhr_sensor_info_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
u16 cs_conf1;
u16 ps_conf1, ps_conf3;
u8 als_it;
u8 ps_period, ps_pers, ps_it;
u8 ps_smart_pers, ps_led_current;
u16 ps_canc;
u16 ps_low_thresh, ps_hi_thresh;
mutex_lock(&cm36686->read_lock);
cm36686_i2c_read_word(cm36686, REG_CS_CONF1, &cs_conf1);
cm36686_i2c_read_word(cm36686, REG_PS_CONF1, &ps_conf1);
cm36686_i2c_read_word(cm36686, REG_PS_CONF3, &ps_conf3);
cm36686_i2c_read_word(cm36686, REG_PS_CANC, &ps_canc);
cm36686_i2c_read_word(cm36686, REG_PS_THD_LOW, &ps_low_thresh);
cm36686_i2c_read_word(cm36686, REG_PS_THD_HIGH, &ps_hi_thresh);
mutex_unlock(&cm36686->read_lock);
als_it = (cs_conf1 & 0x0c) >> 2;
ps_period = (ps_conf1 & 0xc0) >> 6;
ps_pers = (ps_conf1 & 0x30) >> 4;
ps_it = (ps_conf1 & 0xc000) >> 14;
ps_smart_pers = (ps_conf1 & 0x02) >> 1;
ps_led_current = (ps_conf3 & 0x0700) >> 8;
return snprintf(buf, PAGE_SIZE,
"\"THD\":\"%u %u\", \"ALS_IT\":\"0x%x\", \"PS_PERIOD\":\"0x%x\", \"PS_PERS\":\"0x%x\", \"PS_IT\":\"0x%x\", \"PS_SMART_PERS\":\"0x%x\", \"PS_LED_CURRENT\":\"0x%x\", \"PS_CANC\":\"0x%x\"\n",
ps_low_thresh, ps_hi_thresh,
als_it, ps_period, ps_pers, ps_it,
ps_smart_pers, ps_led_current, ps_canc);
}
static DEVICE_ATTR(prox_cal, 0664,
proximity_cancel_show, proximity_cancel_store);
static DEVICE_ATTR(prox_offset_pass, 0444, proximity_cancel_pass_show,
NULL);
static DEVICE_ATTR(prox_avg, 0664,
proximity_avg_show, proximity_avg_store);
static DEVICE_ATTR(state, 0444, proximity_state_show, NULL);
static struct device_attribute dev_attr_prox_raw = __ATTR(raw_data,
0444, proximity_state_show, NULL);
static DEVICE_ATTR(thresh_high, 0664,
proximity_thresh_high_show, proximity_thresh_high_store);
static DEVICE_ATTR(thresh_low, 0664,
proximity_thresh_low_show, proximity_thresh_low_store);
#if defined(PROXIMITY_FOR_TEST)
static DEVICE_ATTR(prox_trim, 0664,
proximity_trim_show, proximity_trim_store);
static DEVICE_ATTR(prox_register, 0664,
proximity_register_read_show, proximity_register_write_store);
#else
static DEVICE_ATTR(prox_trim, 0440,
proximity_trim_show, NULL);
#endif
static DEVICE_ATTR(dhr_sensor_info, 0440,
proximity_dhr_sensor_info_show, NULL);
static struct device_attribute *prox_sensor_attrs[] = {
&dev_attr_prox_sensor_vendor,
&dev_attr_prox_sensor_name,
&dev_attr_prox_avg,
&dev_attr_state,
&dev_attr_thresh_high,
&dev_attr_thresh_low,
&dev_attr_prox_raw,
&dev_attr_prox_trim,
#if defined(PROXIMITY_FOR_TEST)
&dev_attr_prox_register,
#endif
&dev_attr_prox_cal,
&dev_attr_prox_offset_pass,
&dev_attr_dhr_sensor_info,
NULL,
};
/* light sensor sysfs */
static ssize_t light_lux_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u,%u\n", cm36686->als_data,
cm36686->white_data);
}
static ssize_t light_data_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u,%u\n", cm36686->als_data,
cm36686->white_data);
}
static DEVICE_ATTR(lux, 0444, light_lux_show, NULL);
static DEVICE_ATTR(raw_data, 0444, light_data_show, NULL);
static struct device_attribute *light_sensor_attrs[] = {
&dev_attr_light_sensor_vendor,
&dev_attr_light_sensor_name,
&dev_attr_lux,
&dev_attr_raw_data,
NULL,
};
/* interrupt happened due to transition/change of near/far proximity state */
irqreturn_t cm36686_irq_thread_fn(int irq, void *data)
{
struct cm36686_data *cm36686 = data;
u8 val;
u16 ps_data = 0;
val = gpio_get_value(cm36686->irq_gpio);
cm36686_i2c_read_word(cm36686, REG_PS_DATA, &ps_data);
if (cm36686->power_state & PROXIMITY_ENABLED) {
#ifdef CONFIG_SEC_FACTORY
SENSOR_INFO("FACTORY: near/far=%d, ps data = %d (close:0, far:1)\n",
val, ps_data);
#else
SENSOR_INFO("near/far=%d, ps data = %d (close:0, far:1)\n",
val, ps_data);
if (((!val) && (ps_data >= cm36686->default_hi_thd)) ||
(val && (ps_data <= cm36686->default_low_thd)))
#endif
{
/* 0 is close, 1 is far */
input_report_abs(cm36686->proximity_input_dev, ABS_DISTANCE,
val);
input_sync(cm36686->proximity_input_dev);
}
}
wake_lock_timeout(&cm36686->prox_wake_lock, 3 * HZ);
return IRQ_HANDLED;
}
/* This function is for light sensor. It operates every a few seconds.
* It asks for work to be done on a thread because i2c needs a thread
* context (slow and blocking) and then reschedules the timer to run again.
*/
static enum hrtimer_restart cm36686_light_timer_func(struct hrtimer *timer)
{
struct cm36686_data *cm36686
= container_of(timer, struct cm36686_data, light_timer);
queue_work(cm36686->light_wq, &cm36686->work_light);
hrtimer_forward_now(&cm36686->light_timer, cm36686->light_poll_delay);
return HRTIMER_RESTART;
}
static void cm36686_work_func_light(struct work_struct *work)
{
struct cm36686_data *cm36686 = container_of(work, struct cm36686_data,
work_light);
struct timespec ts = ktime_to_timespec(ktime_get_boottime());
u64 timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
int time_hi = (int)((timestamp & TIME_HI_MASK) >> TIME_HI_SHIFT);
int time_lo = (int)(timestamp & TIME_LO_MASK);
if (!(cm36686->power_state & LIGHT_ENABLED)) {
SENSOR_INFO("light disabled.\n");
return;
}
mutex_lock(&cm36686->read_lock);
cm36686_i2c_read_word(cm36686, REG_ALS_DATA, &cm36686->als_data);
cm36686_i2c_read_word(cm36686, REG_WHITE_DATA, &cm36686->white_data);
mutex_unlock(&cm36686->read_lock);
input_report_rel(cm36686->light_input_dev, REL_DIAL,
cm36686->als_data + 1);
input_report_rel(cm36686->light_input_dev, REL_WHEEL,
cm36686->white_data + 1);
input_report_rel(cm36686->light_input_dev, REL_X, time_hi);
input_report_rel(cm36686->light_input_dev, REL_Y, time_lo);
input_sync(cm36686->light_input_dev);
if (cm36686->count_log_time >= LIGHT_LOG_TIME) {
SENSOR_INFO("%u,%u\n", cm36686->als_data, cm36686->white_data);
cm36686->count_log_time = 0;
} else
cm36686->count_log_time++;
}
static void cm36686_get_avg_val(struct cm36686_data *cm36686)
{
int min = 0, max = 0, avg = 0;
int i;
u16 ps_data = 0;
for (i = 0; i < PROX_READ_NUM; i++) {
msleep(40);
cm36686_i2c_read_word(cm36686, REG_PS_DATA, &ps_data);
avg += ps_data;
if (!i)
min = ps_data;
else if (ps_data < min)
min = ps_data;
if (ps_data > max)
max = ps_data;
}
avg /= PROX_READ_NUM;
cm36686->avg[0] = min;
cm36686->avg[1] = avg;
cm36686->avg[2] = max;
}
static void cm36686_work_func_prox(struct work_struct *work)
{
struct cm36686_data *cm36686 = container_of(work, struct cm36686_data,
work_prox);
cm36686_get_avg_val(cm36686);
}
static enum hrtimer_restart cm36686_prox_timer_func(struct hrtimer *timer)
{
struct cm36686_data *cm36686
= container_of(timer, struct cm36686_data, prox_timer);
queue_work(cm36686->prox_wq, &cm36686->work_prox);
hrtimer_forward_now(&cm36686->prox_timer, cm36686->prox_poll_delay);
return HRTIMER_RESTART;
}
static int sensor_vdd_onoff(struct device *dev, bool onoff)
{
struct cm36686_data *data = dev_get_drvdata(dev);
int ret;
SENSOR_INFO("%s\n", (onoff) ? "on" : "off");
if (!data->vdd) {
SENSOR_INFO("VDD get regulator\n");
data->vdd = devm_regulator_get(dev, "cm36686,vdd");
if (IS_ERR(data->vdd)) {
SENSOR_ERR("cannot get vdd\n");
data->vdd = NULL;
return -ENOMEM;
}
if (!regulator_get_voltage(data->vdd))
regulator_set_voltage(data->vdd, 2850000, 2850000);
}
if (onoff) {
if (regulator_is_enabled(data->vdd)) {
SENSOR_INFO("Regulator already enabled\n");
return 0;
}
ret = regulator_enable(data->vdd);
if (ret)
SENSOR_ERR("Failed to enable vdd.\n");
usleep_range(10000, 11000);
} else {
ret = regulator_disable(data->vdd);
if (ret)
SENSOR_ERR("Failed to disable vdd.\n");
}
SENSOR_INFO("end\n");
return 0;
}
static int proximity_vled_onoff(struct device *dev, bool onoff)
{
struct cm36686_data *data = dev_get_drvdata(dev);
int ret;
SENSOR_INFO("%s, ldo:%d\n",
(onoff) ? "on" : "off", data->vled_ldo);
/* ldo control */
if (data->vled_ldo) {
gpio_set_value(data->vled_ldo, onoff);
return 0;
}
/* regulator control */
if (!data->vled) {
SENSOR_INFO("VLED get regulator\n");
data->vled = devm_regulator_get(dev, "cm36686,vled");
if (IS_ERR(data->vled)) {
SENSOR_ERR("cannot get vled\n");
data->vled = NULL;
return -ENOMEM;
}
}
if (onoff) {
if (regulator_is_enabled(data->vled)) {
SENSOR_INFO("Regulator already enabled\n");
return 0;
}
ret = regulator_enable(data->vled);
if (ret)
SENSOR_ERR("Failed to enable vled.\n");
usleep_range(10000, 11000);
} else {
ret = regulator_disable(data->vled);
if (ret)
SENSOR_ERR("Failed to disable vled.\n");
}
return 0;
}
static int cm36686_setup_reg(struct cm36686_data *cm36686)
{
int err, i;
u16 tmp = 0;
/* ALS initialization */
err = cm36686_i2c_write_word(cm36686,
als_reg_setting[0][0],
als_reg_setting[0][1]);
if (err < 0) {
SENSOR_ERR("cm36686_als_reg is failed. %d\n", err);
return err;
}
/* PS initialization */
for (i = 0; i < PS_REG_NUM; i++) {
err = cm36686_i2c_write_word(cm36686,
ps_reg_init_setting[i][REG_ADDR],
ps_reg_init_setting[i][CMD]);
if (err < 0) {
SENSOR_ERR("cm36686_ps_reg is failed. %d\n", err);
return err;
}
}
/* printing the inital proximity value with no contact */
msleep(50);
mutex_lock(&cm36686->read_lock);
err = cm36686_i2c_read_word(cm36686, REG_PS_DATA, &tmp);
mutex_unlock(&cm36686->read_lock);
if (err < 0) {
SENSOR_ERR("read ps_data failed\n");
err = -EIO;
}
SENSOR_INFO("initial proximity value = %d\n", tmp);
/* turn off */
cm36686_i2c_write_word(cm36686, REG_CS_CONF1, 0x0001);
cm36686_i2c_write_word(cm36686, REG_PS_CONF1, 0x0001);
cm36686_i2c_write_word(cm36686, REG_PS_CONF3, 0x0000);
SENSOR_INFO("is success.");
return err;
}
static int cm36686_setup_irq(struct cm36686_data *cm36686)
{
int rc;
rc = gpio_request(cm36686->irq_gpio, "gpio_proximity_out");
if (rc < 0) {
SENSOR_ERR("gpio %d request failed (%d)\n", cm36686->irq_gpio, rc);
return rc;
}
rc = gpio_direction_input(cm36686->irq_gpio);
if (rc < 0) {
SENSOR_ERR("failed to set gpio %d as input (%d)\n",
cm36686->irq_gpio, rc);
gpio_free(cm36686->irq_gpio);
return rc;
}
cm36686->irq = gpio_to_irq(cm36686->irq_gpio);
/* add IRQF_NO_SUSPEND option in case of Spreadtrum AP */
rc = request_threaded_irq(cm36686->irq, NULL, cm36686_irq_thread_fn,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"proximity_int", cm36686);
if (rc < 0) {
SENSOR_ERR("irq:%d failed for qpio:%d err:%d\n",
cm36686->irq, cm36686->irq_gpio, rc);
gpio_free(cm36686->irq_gpio);
return rc;
}
/* start with interrupts disabled */
disable_irq(cm36686->irq);
SENSOR_ERR("success\n");
return rc;
}
#ifdef CONFIG_OF
/* device tree parsing function */
static int cm36686_parse_dt(struct device *dev,
struct cm36686_data *cm36686)
{
struct device_node *np = dev->of_node;
enum of_gpio_flags flags;
int ret;
cm36686->irq_gpio = of_get_named_gpio_flags(np, "cm36686,irq_gpio", 0, &flags);
if (cm36686->irq_gpio < 0) {
SENSOR_ERR("get prox_int error\n");
return -ENODEV;
}
ret = of_property_read_u32(np, "cm36686,vled_same_vdd",
&cm36686->vled_same_vdd);
if ((ret < 0) || (!cm36686->vled_same_vdd)) {
SENSOR_ERR("vled is controled\n");
cm36686->vled_same_vdd = 0;
cm36686->vled_ldo = of_get_named_gpio_flags(np, "cm36686,vled_ldo",
0, &flags);
if (cm36686->vled_ldo < 0) {
SENSOR_ERR("fail to get vled_ldo but using regulator\n");
cm36686->vled_ldo = 0;
} else {
ret = gpio_request(cm36686->vled_ldo, "prox_vled_en");
if (ret < 0) {
SENSOR_ERR("gpio %d request failed (%d)\n",
cm36686->vled_ldo, ret);
return ret;
}
gpio_direction_output(cm36686->vled_ldo, 0);
}
} else
SENSOR_ERR("vled & vdd is same regulator\n");
ret = of_property_read_u32(np, "cm36686,vdd_always_on",
&cm36686->vdd_always_on);
if (ret < 0) {
SENSOR_ERR("vdd is controled\n");
cm36686->vdd_always_on = 0;
}
ret = of_property_read_u32(np, "cm36686,ps_conf1",
&cm36686->ps_conf1);
if (ret < 0) {
SENSOR_ERR("Cannot set ps_conf1 through DTSI\n");
cm36686->ps_conf1 = DEFAULT_CONF1;
}
ret = of_property_read_u32(np, "cm36686,ps_conf3",
&cm36686->ps_conf3);
if (ret < 0) {
SENSOR_ERR("Cannot set ps_conf3 through DTSI\n");
cm36686->ps_conf3 = DEFAULT_CONF3;
}
ret = of_property_read_u32(np, "cm36686,default_hi_thd",
&cm36686->default_hi_thd);
if (ret < 0) {
SENSOR_ERR("Cannot set default_hi_thd through DTSI\n");
cm36686->default_hi_thd = DEFAULT_HI_THD;
}
ret = of_property_read_u32(np, "cm36686,default_low_thd",
&cm36686->default_low_thd);
if (ret < 0) {
SENSOR_ERR("Cannot set default_low_thd through DTSI\n");
cm36686->default_low_thd = DEFAULT_LOW_THD;
}
ret = of_property_read_u32(np, "cm36686,cancel_hi_thd",
&cm36686->cancel_hi_thd);
if (ret < 0) {
SENSOR_ERR("Cannot set cancel_hi_thd through DTSI\n");
cm36686->cancel_hi_thd = CANCEL_HI_THD;
}
ret = of_property_read_u32(np, "cm36686,cancel_low_thd",
&cm36686->cancel_low_thd);
if (ret < 0) {
SENSOR_ERR("Cannot set cancel_low_thd through DTSI\n");
cm36686->cancel_low_thd = CANCEL_LOW_THD;
}
ret = of_property_read_u32(np, "cm36686,cal_skip_adc",
&cm36686->cal_skip_adc);
if (ret < 0) {
SENSOR_ERR("Cannot set cal_skip_adc through DTSI\n");
cm36686->cal_skip_adc = CAL_SKIP_ADC;
}
ret = of_property_read_u32(np, "cm36686,cal_fail_adc",
&cm36686->cal_fail_adc);
if (ret < 0) {
SENSOR_ERR("Cannot set cal_fail_adc through DTSI\n");
cm36686->cal_fail_adc = CAL_FAIL_ADC;
}
ret = of_property_read_u32(np, "cm36686,default_trim",
&cm36686->default_trim);
if (ret < 0) {
SENSOR_ERR("Cannot set default_trim\n");
cm36686->default_trim = DEFAULT_TRIM;
}
ps_reg_init_setting[PS_CONF1][CMD] = cm36686->ps_conf1;
ps_reg_init_setting[PS_CONF3][CMD] = cm36686->ps_conf3;
ps_reg_init_setting[PS_THD_LOW][CMD] = cm36686->default_low_thd;
ps_reg_init_setting[PS_THD_HIGH][CMD] = cm36686->default_hi_thd;
ps_reg_init_setting[PS_CANCEL][CMD] = cm36686->default_trim;
return 0;
}
#else
static int cm36686_parse_dt(struct device *dev, struct cm36686_data cm36686)
{
return -ENODEV;
}
#endif
static int cm36686_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret;
struct cm36686_data *cm36686 = NULL;
SENSOR_INFO("start\n");
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
SENSOR_ERR("i2c functionality check failed!\n");
return -ENODEV;
}
cm36686 = kzalloc(sizeof(struct cm36686_data), GFP_KERNEL);
if (!cm36686) {
SENSOR_ERR("failed to alloc memory for module data\n");
return -ENOMEM;
}
ret = cm36686_parse_dt(&client->dev, cm36686);
if (ret) {
SENSOR_ERR("error in device tree");
goto err_devicetree;
}
cm36686->i2c_client = client;
i2c_set_clientdata(client, cm36686);
mutex_init(&cm36686->power_lock);
mutex_init(&cm36686->read_lock);
/* wake lock init for proximity sensor */
wake_lock_init(&cm36686->prox_wake_lock, WAKE_LOCK_SUSPEND,
"prox_wake_lock");
sensor_vdd_onoff(&client->dev, ON);
if (!cm36686->vled_same_vdd)
proximity_vled_onoff(&client->dev, ON);
/* Check if the device is there or not. */
ret = cm36686_i2c_write_word(cm36686, REG_CS_CONF1, 0x0001);
if (ret < 0) {
SENSOR_ERR("cm36686 is not connected.(%d)\n", ret);
goto err_setup_reg;
}
/* setup initial registers */
ret = cm36686_setup_reg(cm36686);
if (ret < 0) {
SENSOR_ERR("could not setup regs\n");
goto err_setup_reg;
}
/* allocate proximity input_device */
cm36686->proximity_input_dev = input_allocate_device();
if (!cm36686->proximity_input_dev) {
SENSOR_ERR("could not allocate proximity input device\n");
goto err_input_allocate_device_proximity;
}
input_set_drvdata(cm36686->proximity_input_dev, cm36686);
cm36686->proximity_input_dev->name = MODULE_NAME_PROX;
input_set_capability(cm36686->proximity_input_dev, EV_ABS,
ABS_DISTANCE);
input_set_abs_params(cm36686->proximity_input_dev, ABS_DISTANCE,
0, 1, 0, 0);
ret = input_register_device(cm36686->proximity_input_dev);
if (ret < 0) {
input_free_device(cm36686->proximity_input_dev);
SENSOR_ERR("could not register input device\n");
goto err_input_register_device_proximity;
}
ret = sensors_create_symlink(&cm36686->proximity_input_dev->dev.kobj,
cm36686->proximity_input_dev->name);
if (ret < 0) {
SENSOR_ERR("create_symlink error\n");
goto err_sensors_create_symlink_prox;
}
ret = sysfs_create_group(&cm36686->proximity_input_dev->dev.kobj,
&proximity_attribute_group);
if (ret) {
SENSOR_ERR("could not create sysfs group\n");
goto err_sysfs_create_group_proximity;
}
/* setup irq */
ret = cm36686_setup_irq(cm36686);
if (ret) {
SENSOR_ERR("could not setup irq\n");
goto err_setup_irq;
}
/* For factory test mode, we use timer to get average proximity data. */
/* prox_timer settings. we poll for light values using a timer. */
hrtimer_init(&cm36686->prox_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cm36686->prox_poll_delay = ns_to_ktime(2000 * NSEC_PER_MSEC);/*2 sec*/
cm36686->prox_timer.function = cm36686_prox_timer_func;
/* the timer just fires off a work queue request. we need a thread
to read the i2c (can be slow and blocking). */
cm36686->prox_wq = create_singlethread_workqueue("cm36686_prox_wq");
if (!cm36686->prox_wq) {
ret = -ENOMEM;
SENSOR_ERR("could not create prox workqueue\n");
goto err_create_prox_workqueue;
}
/* this is the thread function we run on the work queue */
INIT_WORK(&cm36686->work_prox, cm36686_work_func_prox);
/* allocate lightsensor input_device */
cm36686->light_input_dev = input_allocate_device();
if (!cm36686->light_input_dev) {
SENSOR_ERR("could not allocate light input device\n");
goto err_input_allocate_device_light;
}
input_set_drvdata(cm36686->light_input_dev, cm36686);
cm36686->light_input_dev->name = MODULE_NAME_LIGHT;
input_set_capability(cm36686->light_input_dev, EV_REL, REL_DIAL);
input_set_capability(cm36686->light_input_dev, EV_REL, REL_WHEEL);
input_set_capability(cm36686->light_input_dev, EV_REL, REL_X);
input_set_capability(cm36686->light_input_dev, EV_REL, REL_Y);
ret = input_register_device(cm36686->light_input_dev);
if (ret < 0) {
input_free_device(cm36686->light_input_dev);
SENSOR_ERR("could not register input device\n");
goto err_input_register_device_light;
}
ret = sensors_create_symlink(&cm36686->light_input_dev->dev.kobj,
cm36686->light_input_dev->name);
if (ret < 0) {
SENSOR_ERR("create_symlink error\n");
goto err_sensors_create_symlink_light;
}
ret = sysfs_create_group(&cm36686->light_input_dev->dev.kobj,
&light_attribute_group);
if (ret) {
SENSOR_ERR("could not create sysfs group\n");
goto err_sysfs_create_group_light;
}
/* light_timer settings. we poll for light values using a timer. */
hrtimer_init(&cm36686->light_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cm36686->light_poll_delay = ns_to_ktime(200 * NSEC_PER_MSEC);
cm36686->light_timer.function = cm36686_light_timer_func;
/* the timer just fires off a work queue request. we need a thread
to read the i2c (can be slow and blocking). */
cm36686->light_wq = create_singlethread_workqueue("cm36686_light_wq");
if (!cm36686->light_wq) {
ret = -ENOMEM;
SENSOR_ERR("could not create light workqueue\n");
goto err_create_light_workqueue;
}
/* this is the thread function we run on the work queue */
INIT_WORK(&cm36686->work_light, cm36686_work_func_light);
/* set sysfs for proximity sensor */
ret = sensors_register(&cm36686->proximity_dev,
cm36686, prox_sensor_attrs, MODULE_NAME_PROX);
if (ret) {
SENSOR_ERR("can't register prox sensor device(%d)\n", ret);
goto prox_sensor_register_failed;
}
/* set sysfs for light sensor */
ret = sensors_register(&cm36686->light_dev,
cm36686, light_sensor_attrs, MODULE_NAME_LIGHT);
if (ret) {
SENSOR_ERR("can't register light sensor device(%d)\n", ret);
goto light_sensor_register_failed;
}
if (!cm36686->vled_same_vdd)
proximity_vled_onoff(&client->dev, OFF);
SENSOR_INFO("success\n");
return ret;
/* error, unwind it all */
light_sensor_register_failed:
sensors_unregister(cm36686->proximity_dev, prox_sensor_attrs);
prox_sensor_register_failed:
destroy_workqueue(cm36686->light_wq);
err_create_light_workqueue:
sysfs_remove_group(&cm36686->light_input_dev->dev.kobj,
&light_attribute_group);
err_sysfs_create_group_light:
sensors_remove_symlink(&cm36686->light_input_dev->dev.kobj,
cm36686->light_input_dev->name);
err_sensors_create_symlink_light:
input_unregister_device(cm36686->light_input_dev);
err_input_register_device_light:
err_input_allocate_device_light:
destroy_workqueue(cm36686->prox_wq);
err_create_prox_workqueue:
free_irq(cm36686->irq, cm36686);
gpio_free(cm36686->irq_gpio);
err_setup_irq:
sysfs_remove_group(&cm36686->proximity_input_dev->dev.kobj,
&proximity_attribute_group);
err_sysfs_create_group_proximity:
sensors_remove_symlink(&cm36686->proximity_input_dev->dev.kobj,
cm36686->proximity_input_dev->name);
err_sensors_create_symlink_prox:
input_unregister_device(cm36686->proximity_input_dev);
err_input_register_device_proximity:
err_input_allocate_device_proximity:
err_setup_reg:
proximity_vled_onoff(&client->dev, OFF);
if (cm36686->vled_ldo)
gpio_free(cm36686->vled_ldo);
sensor_vdd_onoff(&client->dev, OFF);
wake_lock_destroy(&cm36686->prox_wake_lock);
mutex_destroy(&cm36686->read_lock);
mutex_destroy(&cm36686->power_lock);
err_devicetree:
kfree(cm36686);
SENSOR_ERR("failed (%d)\n", ret);
return ret;
}
static int cm36686_suspend(struct device *dev)
{
/* We disable power only if proximity is disabled. If proximity
is enabled, we leave power on because proximity is allowed
to wake up device. We remove power without changing
cm36686->power_state because we use that state in resume.
*/
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
if (cm36686->power_state & LIGHT_ENABLED)
cm36686_light_disable(cm36686);
SENSOR_INFO("is called.\n");
return 0;
}
static int cm36686_resume(struct device *dev)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
if (cm36686->power_state & LIGHT_ENABLED)
cm36686_light_enable(cm36686);
SENSOR_INFO("is called.\n");
return 0;
}
static int cm36686_i2c_remove(struct i2c_client *client)
{
SENSOR_INFO("\n");
return 0;
}
static void cm36686_i2c_shutdown(struct i2c_client *client)
{
struct cm36686_data *cm36686 = i2c_get_clientdata(client);
if (cm36686->power_state & LIGHT_ENABLED)
cm36686_light_disable(cm36686);
if (cm36686->power_state & PROXIMITY_ENABLED) {
disable_irq_wake(cm36686->irq);
disable_irq(cm36686->irq);
cm36686_i2c_write_word(cm36686, REG_PS_CONF1, 0x0001);
}
SENSOR_INFO("done\n");
}
#ifdef CONFIG_OF
static struct of_device_id cm36686_match_table[] = {
{ .compatible = "cm36686",},
{},
};
#else
#define cm36686_match_table NULL
#endif
static const struct i2c_device_id cm36686_device_id[] = {
{"cm36686", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, cm36686_device_id);
static const struct dev_pm_ops cm36686_pm_ops = {
.suspend = cm36686_suspend,
.resume = cm36686_resume
};
static struct i2c_driver cm36686_i2c_driver = {
.driver = {
.name = "cm36686",
.owner = THIS_MODULE,
.of_match_table = cm36686_match_table,
.pm = &cm36686_pm_ops
},
.probe = cm36686_i2c_probe,
.shutdown = cm36686_i2c_shutdown,
.remove = cm36686_i2c_remove,
.id_table = cm36686_device_id,
};
static int __init cm36686_init(void)
{
return i2c_add_driver(&cm36686_i2c_driver);
}
static void __exit cm36686_exit(void)
{
i2c_del_driver(&cm36686_i2c_driver);
}
module_init(cm36686_init);
module_exit(cm36686_exit);
MODULE_AUTHOR("Samsung Electronics");
MODULE_DESCRIPTION("RGB Sensor device driver for cm36686");
MODULE_LICENSE("GPL");