| /* |
| * Functions for working with the Flattened Device Tree data format |
| * |
| * Copyright 2009 Benjamin Herrenschmidt, IBM Corp |
| * benh@kernel.crashing.org |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| */ |
| |
| #include <linux/crc32.h> |
| #include <linux/kernel.h> |
| #include <linux/initrd.h> |
| #include <linux/memblock.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/sizes.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/libfdt.h> |
| #include <linux/debugfs.h> |
| #include <linux/serial_core.h> |
| #include <linux/sysfs.h> |
| |
| #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ |
| #include <asm/page.h> |
| |
| #ifdef CONFIG_UH |
| #include <linux/uh.h> |
| #endif |
| /* |
| * of_fdt_limit_memory - limit the number of regions in the /memory node |
| * @limit: maximum entries |
| * |
| * Adjust the flattened device tree to have at most 'limit' number of |
| * memory entries in the /memory node. This function may be called |
| * any time after initial_boot_param is set. |
| */ |
| void of_fdt_limit_memory(int limit) |
| { |
| int memory; |
| int len; |
| const void *val; |
| int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
| int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
| const uint32_t *addr_prop; |
| const uint32_t *size_prop; |
| int root_offset; |
| int cell_size; |
| |
| root_offset = fdt_path_offset(initial_boot_params, "/"); |
| if (root_offset < 0) |
| return; |
| |
| addr_prop = fdt_getprop(initial_boot_params, root_offset, |
| "#address-cells", NULL); |
| if (addr_prop) |
| nr_address_cells = fdt32_to_cpu(*addr_prop); |
| |
| size_prop = fdt_getprop(initial_boot_params, root_offset, |
| "#size-cells", NULL); |
| if (size_prop) |
| nr_size_cells = fdt32_to_cpu(*size_prop); |
| |
| cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells); |
| |
| memory = fdt_path_offset(initial_boot_params, "/memory"); |
| if (memory > 0) { |
| val = fdt_getprop(initial_boot_params, memory, "reg", &len); |
| if (len > limit*cell_size) { |
| len = limit*cell_size; |
| pr_debug("Limiting number of entries to %d\n", limit); |
| fdt_setprop(initial_boot_params, memory, "reg", val, |
| len); |
| } |
| } |
| } |
| |
| /** |
| * of_fdt_is_compatible - Return true if given node from the given blob has |
| * compat in its compatible list |
| * @blob: A device tree blob |
| * @node: node to test |
| * @compat: compatible string to compare with compatible list. |
| * |
| * On match, returns a non-zero value with smaller values returned for more |
| * specific compatible values. |
| */ |
| int of_fdt_is_compatible(const void *blob, |
| unsigned long node, const char *compat) |
| { |
| const char *cp; |
| int cplen; |
| unsigned long l, score = 0; |
| |
| cp = fdt_getprop(blob, node, "compatible", &cplen); |
| if (cp == NULL) |
| return 0; |
| while (cplen > 0) { |
| score++; |
| if (of_compat_cmp(cp, compat, strlen(compat)) == 0) |
| return score; |
| l = strlen(cp) + 1; |
| cp += l; |
| cplen -= l; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses |
| * @blob: A device tree blob |
| * @node: node to test |
| * |
| * Returns true if the node has a "big-endian" property, or if the kernel |
| * was compiled for BE *and* the node has a "native-endian" property. |
| * Returns false otherwise. |
| */ |
| bool of_fdt_is_big_endian(const void *blob, unsigned long node) |
| { |
| if (fdt_getprop(blob, node, "big-endian", NULL)) |
| return true; |
| if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && |
| fdt_getprop(blob, node, "native-endian", NULL)) |
| return true; |
| return false; |
| } |
| |
| /** |
| * of_fdt_match - Return true if node matches a list of compatible values |
| */ |
| int of_fdt_match(const void *blob, unsigned long node, |
| const char *const *compat) |
| { |
| unsigned int tmp, score = 0; |
| |
| if (!compat) |
| return 0; |
| |
| while (*compat) { |
| tmp = of_fdt_is_compatible(blob, node, *compat); |
| if (tmp && (score == 0 || (tmp < score))) |
| score = tmp; |
| compat++; |
| } |
| |
| return score; |
| } |
| |
| static void *unflatten_dt_alloc(void **mem, unsigned long size, |
| unsigned long align) |
| { |
| void *res; |
| |
| *mem = PTR_ALIGN(*mem, align); |
| res = *mem; |
| *mem += size; |
| |
| return res; |
| } |
| |
| /** |
| * unflatten_dt_node - Alloc and populate a device_node from the flat tree |
| * @blob: The parent device tree blob |
| * @mem: Memory chunk to use for allocating device nodes and properties |
| * @poffset: pointer to node in flat tree |
| * @dad: Parent struct device_node |
| * @nodepp: The device_node tree created by the call |
| * @fpsize: Size of the node path up at the current depth. |
| * @dryrun: If true, do not allocate device nodes but still calculate needed |
| * memory size |
| */ |
| static void * unflatten_dt_node(const void *blob, |
| void *mem, |
| int *poffset, |
| struct device_node *dad, |
| struct device_node **nodepp, |
| unsigned long fpsize, |
| bool dryrun) |
| { |
| const __be32 *p; |
| struct device_node *np; |
| struct property *pp, **prev_pp = NULL; |
| const char *pathp; |
| unsigned int l, allocl; |
| static int depth; |
| int old_depth; |
| int offset; |
| int has_name = 0; |
| int new_format = 0; |
| |
| pathp = fdt_get_name(blob, *poffset, &l); |
| if (!pathp) |
| return mem; |
| |
| allocl = ++l; |
| |
| /* version 0x10 has a more compact unit name here instead of the full |
| * path. we accumulate the full path size using "fpsize", we'll rebuild |
| * it later. We detect this because the first character of the name is |
| * not '/'. |
| */ |
| if ((*pathp) != '/') { |
| new_format = 1; |
| if (fpsize == 0) { |
| /* root node: special case. fpsize accounts for path |
| * plus terminating zero. root node only has '/', so |
| * fpsize should be 2, but we want to avoid the first |
| * level nodes to have two '/' so we use fpsize 1 here |
| */ |
| fpsize = 1; |
| allocl = 2; |
| l = 1; |
| pathp = ""; |
| } else { |
| /* account for '/' and path size minus terminal 0 |
| * already in 'l' |
| */ |
| fpsize += l; |
| allocl = fpsize; |
| } |
| } |
| |
| np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl, |
| __alignof__(struct device_node)); |
| if (!dryrun) { |
| char *fn; |
| of_node_init(np); |
| np->full_name = fn = ((char *)np) + sizeof(*np); |
| if (new_format) { |
| /* rebuild full path for new format */ |
| if (dad && dad->parent) { |
| strcpy(fn, dad->full_name); |
| #ifdef DEBUG |
| if ((strlen(fn) + l + 1) != allocl) { |
| pr_debug("%s: p: %d, l: %d, a: %d\n", |
| pathp, (int)strlen(fn), |
| l, allocl); |
| } |
| #endif |
| fn += strlen(fn); |
| } |
| *(fn++) = '/'; |
| } |
| memcpy(fn, pathp, l); |
| |
| prev_pp = &np->properties; |
| if (dad != NULL) { |
| np->parent = dad; |
| np->sibling = dad->child; |
| dad->child = np; |
| } |
| } |
| /* process properties */ |
| for (offset = fdt_first_property_offset(blob, *poffset); |
| (offset >= 0); |
| (offset = fdt_next_property_offset(blob, offset))) { |
| const char *pname; |
| u32 sz; |
| |
| if (!(p = fdt_getprop_by_offset(blob, offset, &pname, &sz))) { |
| offset = -FDT_ERR_INTERNAL; |
| break; |
| } |
| |
| if (pname == NULL) { |
| pr_info("Can't find property name in list !\n"); |
| break; |
| } |
| if (strcmp(pname, "name") == 0) |
| has_name = 1; |
| pp = unflatten_dt_alloc(&mem, sizeof(struct property), |
| __alignof__(struct property)); |
| if (!dryrun) { |
| /* We accept flattened tree phandles either in |
| * ePAPR-style "phandle" properties, or the |
| * legacy "linux,phandle" properties. If both |
| * appear and have different values, things |
| * will get weird. Don't do that. */ |
| if ((strcmp(pname, "phandle") == 0) || |
| (strcmp(pname, "linux,phandle") == 0)) { |
| if (np->phandle == 0) |
| np->phandle = be32_to_cpup(p); |
| } |
| /* And we process the "ibm,phandle" property |
| * used in pSeries dynamic device tree |
| * stuff */ |
| if (strcmp(pname, "ibm,phandle") == 0) |
| np->phandle = be32_to_cpup(p); |
| pp->name = (char *)pname; |
| pp->length = sz; |
| pp->value = (__be32 *)p; |
| *prev_pp = pp; |
| prev_pp = &pp->next; |
| } |
| } |
| /* with version 0x10 we may not have the name property, recreate |
| * it here from the unit name if absent |
| */ |
| if (!has_name) { |
| const char *p1 = pathp, *ps = pathp, *pa = NULL; |
| int sz; |
| |
| while (*p1) { |
| if ((*p1) == '@') |
| pa = p1; |
| if ((*p1) == '/') |
| ps = p1 + 1; |
| p1++; |
| } |
| if (pa < ps) |
| pa = p1; |
| sz = (pa - ps) + 1; |
| pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz, |
| __alignof__(struct property)); |
| if (!dryrun) { |
| pp->name = "name"; |
| pp->length = sz; |
| pp->value = pp + 1; |
| *prev_pp = pp; |
| prev_pp = &pp->next; |
| memcpy(pp->value, ps, sz - 1); |
| ((char *)pp->value)[sz - 1] = 0; |
| pr_debug("fixed up name for %s -> %s\n", pathp, |
| (char *)pp->value); |
| } |
| } |
| if (!dryrun) { |
| *prev_pp = NULL; |
| np->name = of_get_property(np, "name", NULL); |
| np->type = of_get_property(np, "device_type", NULL); |
| |
| if (!np->name) |
| np->name = "<NULL>"; |
| if (!np->type) |
| np->type = "<NULL>"; |
| } |
| |
| old_depth = depth; |
| *poffset = fdt_next_node(blob, *poffset, &depth); |
| if (depth < 0) |
| depth = 0; |
| while (*poffset > 0 && depth > old_depth) |
| mem = unflatten_dt_node(blob, mem, poffset, np, NULL, |
| fpsize, dryrun); |
| |
| if (*poffset < 0 && *poffset != -FDT_ERR_NOTFOUND) |
| pr_err("unflatten: error %d processing FDT\n", *poffset); |
| |
| /* |
| * Reverse the child list. Some drivers assumes node order matches .dts |
| * node order |
| */ |
| if (!dryrun && np->child) { |
| struct device_node *child = np->child; |
| np->child = NULL; |
| while (child) { |
| struct device_node *next = child->sibling; |
| child->sibling = np->child; |
| np->child = child; |
| child = next; |
| } |
| } |
| |
| if (nodepp) |
| *nodepp = np; |
| |
| return mem; |
| } |
| |
| /** |
| * __unflatten_device_tree - create tree of device_nodes from flat blob |
| * |
| * unflattens a device-tree, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used. |
| * @blob: The blob to expand |
| * @mynodes: The device_node tree created by the call |
| * @dt_alloc: An allocator that provides a virtual address to memory |
| * for the resulting tree |
| */ |
| static void __unflatten_device_tree(const void *blob, |
| struct device_node **mynodes, |
| void * (*dt_alloc)(u64 size, u64 align)) |
| { |
| unsigned long size; |
| int start; |
| void *mem; |
| |
| pr_debug(" -> unflatten_device_tree()\n"); |
| |
| if (!blob) { |
| pr_debug("No device tree pointer\n"); |
| return; |
| } |
| |
| pr_debug("Unflattening device tree:\n"); |
| pr_debug("magic: %08x\n", fdt_magic(blob)); |
| pr_debug("size: %08x\n", fdt_totalsize(blob)); |
| pr_debug("version: %08x\n", fdt_version(blob)); |
| |
| if (fdt_check_header(blob)) { |
| pr_err("Invalid device tree blob header\n"); |
| return; |
| } |
| |
| /* First pass, scan for size */ |
| start = 0; |
| size = (unsigned long)unflatten_dt_node(blob, NULL, &start, NULL, NULL, 0, true); |
| size = ALIGN(size, 4); |
| |
| pr_debug(" size is %lx, allocating...\n", size); |
| |
| /* Allocate memory for the expanded device tree */ |
| mem = dt_alloc(size + 4, __alignof__(struct device_node)); |
| memset(mem, 0, size); |
| |
| *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); |
| |
| pr_debug(" unflattening %p...\n", mem); |
| |
| /* Second pass, do actual unflattening */ |
| start = 0; |
| unflatten_dt_node(blob, mem, &start, NULL, mynodes, 0, false); |
| if (be32_to_cpup(mem + size) != 0xdeadbeef) |
| pr_warning("End of tree marker overwritten: %08x\n", |
| be32_to_cpup(mem + size)); |
| |
| pr_debug(" <- unflatten_device_tree()\n"); |
| } |
| |
| static void *kernel_tree_alloc(u64 size, u64 align) |
| { |
| return kzalloc(size, GFP_KERNEL); |
| } |
| |
| static DEFINE_MUTEX(of_fdt_unflatten_mutex); |
| |
| /** |
| * of_fdt_unflatten_tree - create tree of device_nodes from flat blob |
| * |
| * unflattens the device-tree passed by the firmware, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used. |
| */ |
| void of_fdt_unflatten_tree(const unsigned long *blob, |
| struct device_node **mynodes) |
| { |
| mutex_lock(&of_fdt_unflatten_mutex); |
| __unflatten_device_tree(blob, mynodes, &kernel_tree_alloc); |
| mutex_unlock(&of_fdt_unflatten_mutex); |
| } |
| EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); |
| |
| /* Everything below here references initial_boot_params directly. */ |
| int __initdata dt_root_addr_cells; |
| int __initdata dt_root_size_cells; |
| |
| void *initial_boot_params; |
| |
| #ifdef CONFIG_OF_EARLY_FLATTREE |
| |
| static u32 of_fdt_crc32; |
| |
| /** |
| * res_mem_reserve_reg() - reserve all memory described in 'reg' property |
| */ |
| static int __init __reserved_mem_reserve_reg(unsigned long node, |
| const char *uname) |
| { |
| int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); |
| phys_addr_t base, size; |
| int len; |
| const __be32 *prop; |
| int nomap, first = 1; |
| |
| prop = of_get_flat_dt_prop(node, "reg", &len); |
| if (!prop) |
| return -ENOENT; |
| |
| if (len && len % t_len != 0) { |
| pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", |
| uname); |
| return -EINVAL; |
| } |
| |
| nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; |
| |
| while (len >= t_len) { |
| base = dt_mem_next_cell(dt_root_addr_cells, &prop); |
| size = dt_mem_next_cell(dt_root_size_cells, &prop); |
| |
| if (size && |
| early_init_dt_reserve_memory_arch(base, size, nomap) == 0) |
| pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n", |
| uname, &base, (unsigned long)size / SZ_1M); |
| else |
| pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n", |
| uname, &base, (unsigned long)size / SZ_1M); |
| |
| len -= t_len; |
| if (first) { |
| fdt_reserved_mem_save_node(node, uname, base, size); |
| first = 0; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * __reserved_mem_check_root() - check if #size-cells, #address-cells provided |
| * in /reserved-memory matches the values supported by the current implementation, |
| * also check if ranges property has been provided |
| */ |
| static int __init __reserved_mem_check_root(unsigned long node) |
| { |
| const __be32 *prop; |
| |
| prop = of_get_flat_dt_prop(node, "#size-cells", NULL); |
| if (!prop || be32_to_cpup(prop) != dt_root_size_cells) |
| return -EINVAL; |
| |
| prop = of_get_flat_dt_prop(node, "#address-cells", NULL); |
| if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) |
| return -EINVAL; |
| |
| prop = of_get_flat_dt_prop(node, "ranges", NULL); |
| if (!prop) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /** |
| * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory |
| */ |
| static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname, |
| int depth, void *data) |
| { |
| static int found; |
| const char *status; |
| int err; |
| |
| if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) { |
| if (__reserved_mem_check_root(node) != 0) { |
| pr_err("Reserved memory: unsupported node format, ignoring\n"); |
| /* break scan */ |
| return 1; |
| } |
| found = 1; |
| /* scan next node */ |
| return 0; |
| } else if (!found) { |
| /* scan next node */ |
| return 0; |
| } else if (found && depth < 2) { |
| /* scanning of /reserved-memory has been finished */ |
| return 1; |
| } |
| |
| status = of_get_flat_dt_prop(node, "status", NULL); |
| if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0) |
| return 0; |
| |
| err = __reserved_mem_reserve_reg(node, uname); |
| if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL)) |
| fdt_reserved_mem_save_node(node, uname, 0, 0); |
| |
| /* scan next node */ |
| return 0; |
| } |
| |
| /** |
| * early_init_fdt_scan_reserved_mem() - create reserved memory regions |
| * |
| * This function grabs memory from early allocator for device exclusive use |
| * defined in device tree structures. It should be called by arch specific code |
| * once the early allocator (i.e. memblock) has been fully activated. |
| */ |
| void __init early_init_fdt_scan_reserved_mem(void) |
| { |
| int n; |
| u64 base, size; |
| |
| if (!initial_boot_params) |
| return; |
| |
| /* Process header /memreserve/ fields */ |
| for (n = 0; ; n++) { |
| fdt_get_mem_rsv(initial_boot_params, n, &base, &size); |
| if (!size) |
| break; |
| early_init_dt_reserve_memory_arch(base, size, 0); |
| record_memsize_reserved(NULL, base, size, 0, 0); |
| } |
| |
| of_scan_flat_dt(__fdt_scan_reserved_mem, NULL); |
| fdt_init_reserved_mem(); |
| } |
| |
| /** |
| * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob |
| */ |
| void __init early_init_fdt_reserve_self(void) |
| { |
| if (!initial_boot_params) |
| return; |
| |
| /* Reserve the dtb region */ |
| early_init_dt_reserve_memory_arch(__pa(initial_boot_params), |
| fdt_totalsize(initial_boot_params), |
| 0); |
| } |
| |
| /** |
| * of_scan_flat_dt - scan flattened tree blob and call callback on each. |
| * @it: callback function |
| * @data: context data pointer |
| * |
| * This function is used to scan the flattened device-tree, it is |
| * used to extract the memory information at boot before we can |
| * unflatten the tree |
| */ |
| int __init of_scan_flat_dt(int (*it)(unsigned long node, |
| const char *uname, int depth, |
| void *data), |
| void *data) |
| { |
| const void *blob = initial_boot_params; |
| const char *pathp; |
| int offset, rc = 0, depth = -1; |
| |
| if (!blob) |
| return 0; |
| |
| for (offset = fdt_next_node(blob, -1, &depth); |
| offset >= 0 && depth >= 0 && !rc; |
| offset = fdt_next_node(blob, offset, &depth)) { |
| |
| pathp = fdt_get_name(blob, offset, NULL); |
| if (*pathp == '/') |
| pathp = kbasename(pathp); |
| rc = it(offset, pathp, depth, data); |
| } |
| return rc; |
| } |
| |
| /** |
| * of_get_flat_dt_root - find the root node in the flat blob |
| */ |
| unsigned long __init of_get_flat_dt_root(void) |
| { |
| return 0; |
| } |
| |
| /** |
| * of_get_flat_dt_size - Return the total size of the FDT |
| */ |
| int __init of_get_flat_dt_size(void) |
| { |
| return fdt_totalsize(initial_boot_params); |
| } |
| |
| /** |
| * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr |
| * |
| * This function can be used within scan_flattened_dt callback to get |
| * access to properties |
| */ |
| const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, |
| int *size) |
| { |
| return fdt_getprop(initial_boot_params, node, name, size); |
| } |
| |
| /** |
| * of_flat_dt_is_compatible - Return true if given node has compat in compatible list |
| * @node: node to test |
| * @compat: compatible string to compare with compatible list. |
| */ |
| int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) |
| { |
| return of_fdt_is_compatible(initial_boot_params, node, compat); |
| } |
| |
| /** |
| * of_flat_dt_match - Return true if node matches a list of compatible values |
| */ |
| int __init of_flat_dt_match(unsigned long node, const char *const *compat) |
| { |
| return of_fdt_match(initial_boot_params, node, compat); |
| } |
| |
| struct fdt_scan_status { |
| const char *name; |
| int namelen; |
| int depth; |
| int found; |
| int (*iterator)(unsigned long node, const char *uname, int depth, void *data); |
| void *data; |
| }; |
| |
| const char * __init of_flat_dt_get_machine_name(void) |
| { |
| const char *name; |
| unsigned long dt_root = of_get_flat_dt_root(); |
| |
| name = of_get_flat_dt_prop(dt_root, "model", NULL); |
| if (!name) |
| name = of_get_flat_dt_prop(dt_root, "compatible", NULL); |
| return name; |
| } |
| |
| /** |
| * of_flat_dt_match_machine - Iterate match tables to find matching machine. |
| * |
| * @default_match: A machine specific ptr to return in case of no match. |
| * @get_next_compat: callback function to return next compatible match table. |
| * |
| * Iterate through machine match tables to find the best match for the machine |
| * compatible string in the FDT. |
| */ |
| const void * __init of_flat_dt_match_machine(const void *default_match, |
| const void * (*get_next_compat)(const char * const**)) |
| { |
| const void *data = NULL; |
| const void *best_data = default_match; |
| const char *const *compat; |
| unsigned long dt_root; |
| unsigned int best_score = ~1, score = 0; |
| |
| dt_root = of_get_flat_dt_root(); |
| while ((data = get_next_compat(&compat))) { |
| score = of_flat_dt_match(dt_root, compat); |
| if (score > 0 && score < best_score) { |
| best_data = data; |
| best_score = score; |
| } |
| } |
| if (!best_data) { |
| const char *prop; |
| int size; |
| |
| pr_err("\n unrecognized device tree list:\n[ "); |
| |
| prop = of_get_flat_dt_prop(dt_root, "compatible", &size); |
| if (prop) { |
| while (size > 0) { |
| printk("'%s' ", prop); |
| size -= strlen(prop) + 1; |
| prop += strlen(prop) + 1; |
| } |
| } |
| printk("]\n\n"); |
| return NULL; |
| } |
| |
| pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); |
| |
| return best_data; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| #ifndef __early_init_dt_declare_initrd |
| static void __early_init_dt_declare_initrd(unsigned long start, |
| unsigned long end) |
| { |
| initrd_start = (unsigned long)__va(start); |
| initrd_end = (unsigned long)__va(end); |
| initrd_below_start_ok = 1; |
| } |
| #endif |
| |
| /** |
| * early_init_dt_check_for_initrd - Decode initrd location from flat tree |
| * @node: reference to node containing initrd location ('chosen') |
| */ |
| static void __init early_init_dt_check_for_initrd(unsigned long node) |
| { |
| u64 start, end; |
| int len; |
| const __be32 *prop; |
| |
| pr_debug("Looking for initrd properties... "); |
| |
| prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); |
| if (!prop) |
| return; |
| start = of_read_number(prop, len/4); |
| |
| prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); |
| if (!prop) |
| return; |
| end = of_read_number(prop, len/4); |
| |
| __early_init_dt_declare_initrd(start, end); |
| |
| pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", |
| (unsigned long long)start, (unsigned long long)end); |
| } |
| #else |
| static inline void early_init_dt_check_for_initrd(unsigned long node) |
| { |
| } |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| #ifdef CONFIG_SERIAL_EARLYCON |
| extern struct of_device_id __earlycon_of_table[]; |
| |
| static int __init early_init_dt_scan_chosen_serial(void) |
| { |
| int offset; |
| const char *p; |
| int l; |
| const struct of_device_id *match = __earlycon_of_table; |
| const void *fdt = initial_boot_params; |
| |
| offset = fdt_path_offset(fdt, "/chosen"); |
| if (offset < 0) |
| offset = fdt_path_offset(fdt, "/chosen@0"); |
| if (offset < 0) |
| return -ENOENT; |
| |
| p = fdt_getprop(fdt, offset, "stdout-path", &l); |
| if (!p) |
| p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); |
| if (!p || !l) |
| return -ENOENT; |
| |
| /* Remove console options if present */ |
| l = strchrnul(p, ':') - p; |
| |
| /* Get the node specified by stdout-path */ |
| offset = fdt_path_offset_namelen(fdt, p, l); |
| if (offset < 0) |
| return -ENODEV; |
| |
| while (match->compatible[0]) { |
| u64 addr; |
| |
| if (fdt_node_check_compatible(fdt, offset, match->compatible)) { |
| match++; |
| continue; |
| } |
| |
| addr = fdt_translate_address(fdt, offset); |
| if (addr == OF_BAD_ADDR) |
| return -ENXIO; |
| |
| of_setup_earlycon(addr, match->data); |
| return 0; |
| } |
| return -ENODEV; |
| } |
| |
| static int __init setup_of_earlycon(char *buf) |
| { |
| if (buf) |
| return 0; |
| |
| return early_init_dt_scan_chosen_serial(); |
| } |
| early_param("earlycon", setup_of_earlycon); |
| #endif |
| |
| /** |
| * early_init_dt_scan_root - fetch the top level address and size cells |
| */ |
| int __init early_init_dt_scan_root(unsigned long node, const char *uname, |
| int depth, void *data) |
| { |
| const __be32 *prop; |
| |
| if (depth != 0) |
| return 0; |
| |
| dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
| dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
| |
| prop = of_get_flat_dt_prop(node, "#size-cells", NULL); |
| if (prop) |
| dt_root_size_cells = be32_to_cpup(prop); |
| pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); |
| |
| prop = of_get_flat_dt_prop(node, "#address-cells", NULL); |
| if (prop) |
| dt_root_addr_cells = be32_to_cpup(prop); |
| pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); |
| |
| /* break now */ |
| return 1; |
| } |
| |
| u64 __init dt_mem_next_cell(int s, const __be32 **cellp) |
| { |
| const __be32 *p = *cellp; |
| |
| *cellp = p + s; |
| return of_read_number(p, s); |
| } |
| |
| /** |
| * early_init_dt_scan_memory - Look for an parse memory nodes |
| */ |
| int __init early_init_dt_scan_memory(unsigned long node, const char *uname, |
| int depth, void *data) |
| { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *reg, *endp; |
| int l; |
| |
| /* We are scanning "memory" nodes only */ |
| if (type == NULL) { |
| /* |
| * The longtrail doesn't have a device_type on the |
| * /memory node, so look for the node called /memory@0. |
| */ |
| if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0) |
| return 0; |
| } else if (strcmp(type, "memory") != 0) |
| return 0; |
| |
| reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); |
| if (reg == NULL) |
| reg = of_get_flat_dt_prop(node, "reg", &l); |
| if (reg == NULL) |
| return 0; |
| |
| endp = reg + (l / sizeof(__be32)); |
| |
| pr_debug("memory scan node %s, reg size %d,\n", uname, l); |
| |
| while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
| u64 base, size; |
| |
| base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| size = dt_mem_next_cell(dt_root_size_cells, ®); |
| |
| if (size == 0) |
| continue; |
| pr_debug(" - %llx , %llx\n", (unsigned long long)base, |
| (unsigned long long)size); |
| |
| early_init_dt_add_memory_arch(base, size); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_UH |
| int __init init_dt_scan_uh_reserved(unsigned long node, const char *uname, |
| int depth, void *data) |
| { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *reg, *endp; |
| int l; |
| |
| /* We are scanning "memory" nodes only */ |
| if (type == NULL) { |
| /* |
| * The longtrail doesn't have a device_type on the |
| * /memory node, so look for the node called /memory@0. |
| */ |
| if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0) |
| return 0; |
| } else if (strcmp(type, "memory") != 0) |
| return 0; |
| |
| reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); |
| if (reg == NULL) |
| reg = of_get_flat_dt_prop(node, "reg", &l); |
| if (reg == NULL) |
| return 0; |
| |
| endp = reg + (l / sizeof(__be32)); |
| |
| while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
| u64 base, size; |
| |
| base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| size = dt_mem_next_cell(dt_root_size_cells, ®); |
| |
| if (size == 0) |
| continue; |
| uh_call(UH_APP_INIT, 2, (u64)base, (u64)size, 0, 0); |
| } |
| |
| return 0; |
| } |
| /** |
| * early_init_dt_scan_memory - Look for an parse memory nodes |
| */ |
| void __init init_dt_scan_uh_nodes(void) |
| { |
| /* Setup memory, calling early_init_dt_add_memory_arch */ |
| of_scan_flat_dt(init_dt_scan_uh_reserved, NULL); |
| } |
| |
| #endif |
| |
| /* |
| * Convert configs to something easy to use in C code |
| */ |
| #if defined(CONFIG_CMDLINE_FORCE) |
| static const int overwrite_incoming_cmdline = 1; |
| static const int read_dt_cmdline; |
| static const int concat_cmdline; |
| #elif defined(CONFIG_CMDLINE_EXTEND) |
| static const int overwrite_incoming_cmdline; |
| static const int read_dt_cmdline = 1; |
| static const int concat_cmdline = 1; |
| #else /* CMDLINE_FROM_BOOTLOADER */ |
| static const int overwrite_incoming_cmdline; |
| static const int read_dt_cmdline = 1; |
| static const int concat_cmdline; |
| #endif |
| |
| #ifdef CONFIG_CMDLINE |
| static const char *config_cmdline = CONFIG_CMDLINE; |
| #else |
| static const char *config_cmdline = ""; |
| #endif |
| |
| int __init early_init_dt_scan_chosen(unsigned long node, const char *uname, |
| int depth, void *data) |
| { |
| int l = 0; |
| const char *p = NULL; |
| char *cmdline = data; |
| |
| pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); |
| |
| if (depth != 1 || !cmdline || |
| (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) |
| return 0; |
| |
| early_init_dt_check_for_initrd(node); |
| |
| /* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */ |
| if (overwrite_incoming_cmdline || !cmdline[0]) |
| strlcpy(cmdline, config_cmdline, COMMAND_LINE_SIZE); |
| |
| /* Retrieve command line unless forcing */ |
| if (read_dt_cmdline) |
| p = of_get_flat_dt_prop(node, "bootargs", &l); |
| |
| if (p != NULL && l > 0) { |
| if (concat_cmdline) { |
| int cmdline_len; |
| int copy_len; |
| strlcat(cmdline, " ", COMMAND_LINE_SIZE); |
| cmdline_len = strlen(cmdline); |
| copy_len = COMMAND_LINE_SIZE - cmdline_len - 1; |
| copy_len = min((int)l, copy_len); |
| strncpy(cmdline + cmdline_len, p, copy_len); |
| cmdline[cmdline_len + copy_len] = '\0'; |
| } else { |
| strlcpy(cmdline, p, min((int)l, COMMAND_LINE_SIZE)); |
| } |
| } |
| |
| pr_debug("Command line is: %s\n", (char*)data); |
| |
| /* break now */ |
| return 1; |
| } |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK |
| #ifndef MIN_MEMBLOCK_ADDR |
| #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) |
| #endif |
| #ifndef MAX_MEMBLOCK_ADDR |
| #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) |
| #endif |
| |
| void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) |
| { |
| const u64 phys_offset = MIN_MEMBLOCK_ADDR; |
| u64 hole_s; |
| |
| if (!PAGE_ALIGNED(base)) { |
| if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { |
| pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
| base, base + size); |
| return; |
| } |
| size -= PAGE_SIZE - (base & ~PAGE_MASK); |
| base = PAGE_ALIGN(base); |
| } |
| size &= PAGE_MASK; |
| |
| if (base > MAX_MEMBLOCK_ADDR) { |
| pr_warning("Ignoring memory block 0x%llx - 0x%llx\n", |
| base, base + size); |
| return; |
| } |
| |
| if (base + size - 1 > MAX_MEMBLOCK_ADDR) { |
| pr_warning("Ignoring memory range 0x%llx - 0x%llx\n", |
| ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); |
| size = MAX_MEMBLOCK_ADDR - base + 1; |
| } |
| |
| if (base + size < phys_offset) { |
| pr_warning("Ignoring memory block 0x%llx - 0x%llx\n", |
| base, base + size); |
| return; |
| } |
| if (base < phys_offset) { |
| pr_warning("Ignoring memory range 0x%llx - 0x%llx\n", |
| base, phys_offset); |
| size -= phys_offset - base; |
| base = phys_offset; |
| } |
| memblock_add(base, size); |
| hole_s = base % SZ_256M; |
| if (hole_s) |
| record_memsize_reserved(NULL, base - hole_s, hole_s, 1, 0); |
| hole_s = round_up(base + size, SZ_256M) - (base + size); |
| if (hole_s) |
| record_memsize_reserved(NULL, base + size, hole_s, 1, 0); |
| } |
| |
| int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base, |
| phys_addr_t size, bool nomap) |
| { |
| if (nomap) |
| return memblock_remove(base, size); |
| return memblock_reserve(base, size); |
| } |
| |
| /* |
| * called from unflatten_device_tree() to bootstrap devicetree itself |
| * Architectures can override this definition if memblock isn't used |
| */ |
| void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align) |
| { |
| return __va(memblock_alloc(size, align)); |
| } |
| #else |
| void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) |
| { |
| WARN_ON(1); |
| } |
| |
| int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base, |
| phys_addr_t size, bool nomap) |
| { |
| pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n", |
| &base, &size, nomap ? " (nomap)" : ""); |
| return -ENOSYS; |
| } |
| |
| void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align) |
| { |
| WARN_ON(1); |
| return NULL; |
| } |
| #endif |
| |
| bool __init early_init_dt_verify(void *params) |
| { |
| if (!params) |
| return false; |
| |
| /* check device tree validity */ |
| if (fdt_check_header(params)) |
| return false; |
| |
| /* Setup flat device-tree pointer */ |
| initial_boot_params = params; |
| of_fdt_crc32 = crc32_be(~0, initial_boot_params, |
| fdt_totalsize(initial_boot_params)); |
| return true; |
| } |
| |
| |
| void __init early_init_dt_scan_nodes(void) |
| { |
| /* Retrieve various information from the /chosen node */ |
| of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line); |
| |
| /* Initialize {size,address}-cells info */ |
| of_scan_flat_dt(early_init_dt_scan_root, NULL); |
| |
| /* Setup memory, calling early_init_dt_add_memory_arch */ |
| of_scan_flat_dt(early_init_dt_scan_memory, NULL); |
| } |
| |
| bool __init early_init_dt_scan(void *params) |
| { |
| bool status; |
| |
| status = early_init_dt_verify(params); |
| if (!status) |
| return false; |
| |
| early_init_dt_scan_nodes(); |
| return true; |
| } |
| |
| /** |
| * unflatten_device_tree - create tree of device_nodes from flat blob |
| * |
| * unflattens the device-tree passed by the firmware, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used. |
| */ |
| void __init unflatten_device_tree(void) |
| { |
| __unflatten_device_tree(initial_boot_params, &of_root, |
| early_init_dt_alloc_memory_arch); |
| |
| /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ |
| of_alias_scan(early_init_dt_alloc_memory_arch); |
| } |
| |
| /** |
| * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob |
| * |
| * Copies and unflattens the device-tree passed by the firmware, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used. This should only be used when the FDT memory has not been |
| * reserved such is the case when the FDT is built-in to the kernel init |
| * section. If the FDT memory is reserved already then unflatten_device_tree |
| * should be used instead. |
| */ |
| void __init unflatten_and_copy_device_tree(void) |
| { |
| int size; |
| void *dt; |
| |
| if (!initial_boot_params) { |
| pr_warn("No valid device tree found, continuing without\n"); |
| return; |
| } |
| |
| size = fdt_totalsize(initial_boot_params); |
| dt = early_init_dt_alloc_memory_arch(size, |
| roundup_pow_of_two(FDT_V17_SIZE)); |
| |
| if (dt) { |
| memcpy(dt, initial_boot_params, size); |
| initial_boot_params = dt; |
| } |
| unflatten_device_tree(); |
| } |
| |
| #ifdef CONFIG_SYSFS |
| static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, |
| struct bin_attribute *bin_attr, |
| char *buf, loff_t off, size_t count) |
| { |
| memcpy(buf, initial_boot_params + off, count); |
| return count; |
| } |
| |
| static int __init of_fdt_raw_init(void) |
| { |
| static struct bin_attribute of_fdt_raw_attr = |
| __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); |
| |
| if (!initial_boot_params) |
| return 0; |
| |
| if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, |
| fdt_totalsize(initial_boot_params))) { |
| pr_warn("fdt: not creating '/sys/firmware/fdt': CRC check failed\n"); |
| return 0; |
| } |
| of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); |
| return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); |
| } |
| late_initcall(of_fdt_raw_init); |
| #endif |
| |
| #endif /* CONFIG_OF_EARLY_FLATTREE */ |