blob: 9367cf1a2ff0a5e08f011769bb8de87806c81c2f [file] [log] [blame]
/*
* linux/drivers/mmc/card/queue.c
*
* Copyright (C) 2003 Russell King, All Rights Reserved.
* Copyright 2006-2007 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/version.h>
#include <linux/backing-dev.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/sched/rt.h>
#include "queue.h"
#include "../host/cmdq_hci.h"
#define MMC_QUEUE_BOUNCESZ 65536
/*
* Prepare a MMC request. This just filters out odd stuff.
*/
static int mmc_prep_request(struct request_queue *q, struct request *req)
{
struct mmc_queue *mq = q->queuedata;
/*
* We only like normal block requests and discards.
*/
if (req->cmd_type != REQ_TYPE_FS && !(req->cmd_flags & REQ_DISCARD)) {
blk_dump_rq_flags(req, "MMC bad request");
return BLKPREP_KILL;
}
if (mq && (mmc_card_removed(mq->card) || mmc_access_rpmb(mq)))
return BLKPREP_KILL;
req->cmd_flags |= REQ_DONTPREP;
return BLKPREP_OK;
}
static struct request *mmc_peek_request(struct mmc_queue *mq)
{
struct request_queue *q = mq->queue;
mq->cmdq_req_peeked = NULL;
spin_lock_irq(q->queue_lock);
if (!blk_queue_stopped(q))
mq->cmdq_req_peeked = blk_peek_request(q);
spin_unlock_irq(q->queue_lock);
return mq->cmdq_req_peeked;
}
static bool mmc_check_blk_queue_start_tag(struct request_queue *q,
struct request *req)
{
int ret;
spin_lock_irq(q->queue_lock);
ret = blk_queue_start_tag(q, req);
spin_unlock_irq(q->queue_lock);
return !!ret;
}
static inline void mmc_cmdq_ready_wait(struct mmc_host *host,
struct mmc_queue *mq)
{
struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx;
struct request_queue *q = mq->queue;
/*
* Wait until all of the following conditions are true:
* 1. There is a request pending in the block layer queue
* to be processed.
* 2. If the peeked request is flush/discard then there shouldn't
* be any other direct command active.
* 3. cmdq state should be unhalted.
* 4. cmdq state shouldn't be in error state.
* 5. free tag available to process the new request.
*/
wait_event(ctx->wait, kthread_should_stop()
|| (mmc_peek_request(mq) &&
!((mq->cmdq_req_peeked->cmd_flags & (REQ_FLUSH | REQ_DISCARD))
&& test_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx->curr_state))
&& !(!host->card->part_curr && !mmc_card_suspended(host->card)
&& mmc_host_halt(host))
&& !test_bit(CMDQ_STATE_ERR, &ctx->curr_state)
&& !test_bit(CMDQ_STATE_ERR_HOST, &ctx->curr_state)
&& !mmc_check_blk_queue_start_tag(q, mq->cmdq_req_peeked)));
}
static int mmc_cmdq_thread(void *d)
{
struct mmc_queue *mq = d;
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
#ifdef CONFIG_MMC_CMDQ_DEBUG
struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx;
#endif
current->flags |= PF_MEMALLOC;
while (1) {
#ifdef CONFIG_MMC_CMDQ_DEBUG
/* cq debug */
exynos_ss_printk("[CQ] THR 1: flag = 0x%lx\n",
ctx->curr_state);
#endif
mmc_cmdq_ready_wait(host, mq);
#ifdef CONFIG_MMC_CMDQ_DEBUG
if (mq->cmdq_req_peeked)
exynos_ss_printk("[CQ] THR 2: tag = %d, flag = 0x%lx\n",
mq->cmdq_req_peeked->tag,
ctx->curr_state);
else
exynos_ss_printk("[CQ] THR 2: flag = 0x%lx\n",
ctx->curr_state);
#endif
if (kthread_should_stop())
break;
mq->cmdq_issue_fn(mq, mq->cmdq_req_peeked);
} /* loop */
return 0;
}
static int mmc_queue_thread(void *d)
{
struct mmc_queue *mq = d;
struct request_queue *q = mq->queue;
struct sched_param scheduler_params = {0};
if (mq->card->type != MMC_TYPE_SD) {
scheduler_params.sched_priority = 1;
sched_setscheduler(current, SCHED_FIFO, &scheduler_params);
}
current->flags |= PF_MEMALLOC;
down(&mq->thread_sem);
do {
struct request *req = NULL;
unsigned int cmd_flags = 0;
spin_lock_irq(q->queue_lock);
set_current_state(TASK_INTERRUPTIBLE);
if (mq->mqrq_prev->req &&
(mq->card && (mq->card->type == MMC_TYPE_SD) &&
mq->card->host->pm_progress))
req = NULL;
else
req = blk_fetch_request(q);
mq->mqrq_cur->req = req;
spin_unlock_irq(q->queue_lock);
if (req || mq->mqrq_prev->req) {
set_current_state(TASK_RUNNING);
cmd_flags = req ? req->cmd_flags : 0;
mq->issue_fn(mq, req);
cond_resched();
if (test_bit(MMC_QUEUE_NEW_REQUEST, &mq->flags)) {
clear_bit(MMC_QUEUE_NEW_REQUEST, &mq->flags);
continue; /* fetch again */
}
/*
* Current request becomes previous request
* and vice versa.
* In case of special requests, current request
* has been finished. Do not assign it to previous
* request.
*/
if (cmd_flags & MMC_REQ_SPECIAL_MASK)
mq->mqrq_cur->req = NULL;
mq->mqrq_prev->brq.mrq.data = NULL;
mq->mqrq_prev->req = NULL;
swap(mq->mqrq_prev, mq->mqrq_cur);
} else {
if (kthread_should_stop()) {
set_current_state(TASK_RUNNING);
break;
}
up(&mq->thread_sem);
schedule();
down(&mq->thread_sem);
}
} while (1);
up(&mq->thread_sem);
return 0;
}
static void mmc_cmdq_dispatch_req(struct request_queue *q)
{
struct mmc_queue *mq = q->queuedata;
wake_up(&mq->card->host->cmdq_ctx.wait);
}
/*
* Generic MMC request handler. This is called for any queue on a
* particular host. When the host is not busy, we look for a request
* on any queue on this host, and attempt to issue it. This may
* not be the queue we were asked to process.
*/
static void mmc_request_fn(struct request_queue *q)
{
struct mmc_queue *mq = q->queuedata;
struct request *req;
unsigned long flags;
struct mmc_context_info *cntx;
if (!mq) {
while ((req = blk_fetch_request(q)) != NULL) {
req->cmd_flags |= REQ_QUIET;
__blk_end_request_all(req, -EIO);
}
return;
}
cntx = &mq->card->host->context_info;
if (!mq->mqrq_cur->req && mq->mqrq_prev->req) {
/*
* New MMC request arrived when MMC thread may be
* blocked on the previous request to be complete
* with no current request fetched
*/
spin_lock_irqsave(&cntx->lock, flags);
if (cntx->is_waiting_last_req) {
cntx->is_new_req = true;
wake_up_interruptible(&cntx->wait);
}
spin_unlock_irqrestore(&cntx->lock, flags);
} else if (!mq->mqrq_cur->req && !mq->mqrq_prev->req)
wake_up_process(mq->thread);
}
static struct scatterlist *mmc_alloc_sg(int sg_len, int *err)
{
struct scatterlist *sg;
sg = kmalloc(sizeof(struct scatterlist)*sg_len, GFP_KERNEL);
if (!sg)
*err = -ENOMEM;
else {
*err = 0;
sg_init_table(sg, sg_len);
}
return sg;
}
static void mmc_queue_setup_discard(struct request_queue *q,
struct mmc_card *card)
{
unsigned max_discard;
max_discard = mmc_calc_max_discard(card);
if (!max_discard)
return;
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
blk_queue_max_discard_sectors(q, max_discard);
if (card->erased_byte == 0 && !mmc_can_discard(card))
q->limits.discard_zeroes_data = 1;
q->limits.discard_granularity = card->pref_erase << 9;
/* granularity must not be greater than max. discard */
if (card->pref_erase > max_discard)
q->limits.discard_granularity = 0;
if (mmc_can_secure_erase_trim(card))
queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, q);
}
/**
* mmc_blk_cmdq_setup_queue
* @mq: mmc queue
* @card: card to attach to this queue
*
* Setup queue for CMDQ supporting MMC card
*/
void mmc_cmdq_setup_queue(struct mmc_queue *mq, struct mmc_card *card)
{
u64 limit = BLK_BOUNCE_HIGH;
struct mmc_host *host = card->host;
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
if (mmc_can_erase(card))
mmc_queue_setup_discard(mq->queue, card);
blk_queue_bounce_limit(mq->queue, limit);
blk_queue_max_hw_sectors(mq->queue, min(host->max_blk_count,
host->max_req_size / 512));
blk_queue_max_segment_size(mq->queue, host->max_seg_size);
blk_queue_max_segments(mq->queue, host->max_segs);
}
/**
* mmc_init_queue - initialise a queue structure.
* @mq: mmc queue
* @card: mmc card to attach this queue
* @lock: queue lock
* @subname: partition subname
*
* Initialise a MMC card request queue.
*/
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
spinlock_t *lock, const char *subname, int area_type)
{
struct mmc_host *host = card->host;
u64 limit = BLK_BOUNCE_HIGH;
int ret;
struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
/* for error handling in CQ mode */
INIT_LIST_HEAD(&mq->eh_mrq);
spin_lock_init(&mq->eh_lock);
if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT;
mq->card = card;
if (card->ext_csd.cmdq_support &&
(area_type == MMC_BLK_DATA_AREA_MAIN)) {
mq->queue = blk_init_queue(mmc_cmdq_dispatch_req, lock);
if (!mq->queue)
return -ENOMEM;
mmc_cmdq_setup_queue(mq, card);
ret = mmc_cmdq_init(mq, card);
if (ret) {
pr_err("%s: %d: cmdq: unable to set-up\n",
mmc_hostname(card->host), ret);
blk_cleanup_queue(mq->queue);
} else {
sema_init(&mq->thread_sem, 1);
/* hook for pm qos cmdq init */
if (card->host->cmdq_ops->init)
card->host->cmdq_ops->init(card->host);
mq->queue->queuedata = mq;
mq->thread = kthread_run(mmc_cmdq_thread, mq,
"mmc-cmdqd/%d%s",
host->index,
subname ? subname : "");
if (IS_ERR(mq->thread)) {
pr_err("%s: %d: cmdq: failed to start mmc-cmdqd thread\n",
mmc_hostname(card->host), ret);
ret = PTR_ERR(mq->thread);
}
return ret;
}
}
mq->queue = blk_init_queue(mmc_request_fn, lock);
if (!mq->queue)
return -ENOMEM;
mq->mqrq_cur = mqrq_cur;
mq->mqrq_prev = mqrq_prev;
mq->queue->queuedata = mq;
blk_queue_prep_rq(mq->queue, mmc_prep_request);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue);
if (mmc_can_erase(card))
mmc_queue_setup_discard(mq->queue, card);
#ifdef CONFIG_MMC_BLOCK_BOUNCE
if (host->max_segs == 1) {
unsigned int bouncesz;
bouncesz = MMC_QUEUE_BOUNCESZ;
if (bouncesz > host->max_req_size)
bouncesz = host->max_req_size;
if (bouncesz > host->max_seg_size)
bouncesz = host->max_seg_size;
if (bouncesz > (host->max_blk_count * 512))
bouncesz = host->max_blk_count * 512;
if (bouncesz > 512) {
mqrq_cur->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
if (!mqrq_cur->bounce_buf) {
pr_warn("%s: unable to allocate bounce cur buffer\n",
mmc_card_name(card));
} else {
mqrq_prev->bounce_buf =
kmalloc(bouncesz, GFP_KERNEL);
if (!mqrq_prev->bounce_buf) {
pr_warn("%s: unable to allocate bounce prev buffer\n",
mmc_card_name(card));
kfree(mqrq_cur->bounce_buf);
mqrq_cur->bounce_buf = NULL;
}
}
}
if (mqrq_cur->bounce_buf && mqrq_prev->bounce_buf) {
blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
blk_queue_max_segments(mq->queue, bouncesz / 512);
blk_queue_max_segment_size(mq->queue, bouncesz);
mqrq_cur->sg = mmc_alloc_sg(1, &ret);
if (ret)
goto cleanup_queue;
mqrq_cur->bounce_sg =
mmc_alloc_sg(bouncesz / 512, &ret);
if (ret)
goto cleanup_queue;
mqrq_prev->sg = mmc_alloc_sg(1, &ret);
if (ret)
goto cleanup_queue;
mqrq_prev->bounce_sg =
mmc_alloc_sg(bouncesz / 512, &ret);
if (ret)
goto cleanup_queue;
}
}
#endif
if (!mqrq_cur->bounce_buf && !mqrq_prev->bounce_buf) {
blk_queue_bounce_limit(mq->queue, limit);
blk_queue_max_hw_sectors(mq->queue,
min(host->max_blk_count, host->max_req_size / 512));
blk_queue_max_segments(mq->queue, host->max_segs);
blk_queue_max_segment_size(mq->queue, host->max_seg_size);
mqrq_cur->sg = mmc_alloc_sg(host->max_segs, &ret);
if (ret)
goto cleanup_queue;
mqrq_prev->sg = mmc_alloc_sg(host->max_segs, &ret);
if (ret)
goto cleanup_queue;
}
sema_init(&mq->thread_sem, 1);
/* hook for pm qos legacy init */
if (card->host->ops->init)
card->host->ops->init(card->host);
mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
host->index, subname ? subname : "");
if (mmc_card_sd(card)) {
/* decrease max # of requests to 32. The goal of this tunning is
* reducing the time for draining elevator when elevator_switch
* function is called. It is effective for slow external sdcard.
*/
mq->queue->nr_requests = BLKDEV_MAX_RQ / 8;
if (mq->queue->nr_requests < 32)
mq->queue->nr_requests = 32;
#ifdef CONFIG_LARGE_DIRTY_BUFFER
/* apply more throttle on external sdcard */
mq->queue->backing_dev_info.capabilities |= BDI_CAP_STRICTLIMIT;
bdi_set_min_ratio(&mq->queue->backing_dev_info, 20);
bdi_set_max_ratio(&mq->queue->backing_dev_info, 20);
#endif
pr_info("Parameters for external-sdcard: min/max_ratio: %u/%u "
"strictlimit: on nr_requests: %lu read_ahead_kb: %lu\n",
mq->queue->backing_dev_info.min_ratio,
mq->queue->backing_dev_info.max_ratio,
mq->queue->nr_requests,
mq->queue->backing_dev_info.ra_pages * 4);
}
if (IS_ERR(mq->thread)) {
ret = PTR_ERR(mq->thread);
goto free_bounce_sg;
}
return 0;
free_bounce_sg:
kfree(mqrq_cur->bounce_sg);
mqrq_cur->bounce_sg = NULL;
kfree(mqrq_prev->bounce_sg);
mqrq_prev->bounce_sg = NULL;
cleanup_queue:
kfree(mqrq_cur->sg);
mqrq_cur->sg = NULL;
kfree(mqrq_cur->bounce_buf);
mqrq_cur->bounce_buf = NULL;
kfree(mqrq_prev->sg);
mqrq_prev->sg = NULL;
kfree(mqrq_prev->bounce_buf);
mqrq_prev->bounce_buf = NULL;
blk_cleanup_queue(mq->queue);
return ret;
}
void mmc_cleanup_queue(struct mmc_queue *mq)
{
struct request_queue *q = mq->queue;
unsigned long flags;
struct mmc_queue_req *mqrq_cur = mq->mqrq_cur;
struct mmc_queue_req *mqrq_prev = mq->mqrq_prev;
/* Make sure the queue isn't suspended, as that will deadlock */
mmc_queue_resume(mq);
/* Then terminate our worker thread */
kthread_stop(mq->thread);
/* Empty the queue */
spin_lock_irqsave(q->queue_lock, flags);
q->queuedata = NULL;
blk_start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
kfree(mqrq_cur->bounce_sg);
mqrq_cur->bounce_sg = NULL;
kfree(mqrq_cur->sg);
mqrq_cur->sg = NULL;
kfree(mqrq_cur->bounce_buf);
mqrq_cur->bounce_buf = NULL;
kfree(mqrq_prev->bounce_sg);
mqrq_prev->bounce_sg = NULL;
kfree(mqrq_prev->sg);
mqrq_prev->sg = NULL;
kfree(mqrq_prev->bounce_buf);
mqrq_prev->bounce_buf = NULL;
mq->card = NULL;
}
EXPORT_SYMBOL(mmc_cleanup_queue);
int mmc_packed_init(struct mmc_queue *mq, struct mmc_card *card)
{
struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
int ret = 0;
mqrq_cur->packed = kzalloc(sizeof(struct mmc_packed), GFP_KERNEL);
if (!mqrq_cur->packed) {
pr_warn("%s: unable to allocate packed cmd for mqrq_cur\n",
mmc_card_name(card));
ret = -ENOMEM;
goto out;
}
mqrq_prev->packed = kzalloc(sizeof(struct mmc_packed), GFP_KERNEL);
if (!mqrq_prev->packed) {
pr_warn("%s: unable to allocate packed cmd for mqrq_prev\n",
mmc_card_name(card));
kfree(mqrq_cur->packed);
mqrq_cur->packed = NULL;
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&mqrq_cur->packed->list);
INIT_LIST_HEAD(&mqrq_prev->packed->list);
out:
return ret;
}
void mmc_packed_clean(struct mmc_queue *mq)
{
struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
kfree(mqrq_cur->packed);
mqrq_cur->packed = NULL;
kfree(mqrq_prev->packed);
mqrq_prev->packed = NULL;
}
static void mmc_cmdq_softirq_done(struct request *rq)
{
struct mmc_queue *mq = rq->q->queuedata;
mq->cmdq_complete_fn(rq);
}
static void mmc_cmdq_error_work(struct work_struct *work)
{
struct mmc_queue *mq = container_of(work, struct mmc_queue,
cmdq_err_work);
mq->cmdq_error_fn(mq);
}
enum blk_eh_timer_return mmc_cmdq_rq_timed_out(struct request *req)
{
struct mmc_queue *mq = req->q->queuedata;
struct mmc_host *host = mq->card->host;
struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx;
struct cmdq_host *cq_host = mmc_cmdq_private(mq->card->host);
const char op[] = {'D', 'F', 'W', 'R'};
test_and_set_bit(CMDQ_STATE_ERR_HOST, &ctx_info->curr_state);
if (req->cmd_flags & REQ_DISCARD) {
pr_err("[CQ] SW TIMEOUT(%s, %c): tag: %d flags: 0x%llx timed out\n",
mmc_hostname(mq->card->host), op[0], req->tag, req->cmd_flags);
#ifdef CONFIG_MMC_CMDQ_DEBUG
exynos_ss_printk("[CQ] SW TIMEOUT(%c): tag: %d flags: 0x%llx timed out\n",
op[0], req->tag, req->cmd_flags);
#endif
} else if (req->cmd_flags & REQ_FLUSH) {
pr_err("[CQ] SW TIMEOUT(%s, %c): tag: %d flags: 0x%llx timed out\n",
mmc_hostname(mq->card->host), op[1], req->tag, req->cmd_flags);
#ifdef CONFIG_MMC_CMDQ_DEBUG
exynos_ss_printk("[CQ] SW TIMEOUT(%c): tag: %d flags: 0x%llx timed out\n",
op[1], req->tag, req->cmd_flags);
#endif
} else if (req->cmd_flags & REQ_WRITE) {
pr_err("[CQ] SW TIMEOUT(%s, %c): tag: %d flags: 0x%llx timed out\n",
mmc_hostname(mq->card->host), op[2], req->tag, req->cmd_flags);
#ifdef CONFIG_MMC_CMDQ_DEBUG
exynos_ss_printk("[CQ] SW TIMEOUT(%c): tag: %d flags: 0x%llx timed out\n",
op[2], req->tag, req->cmd_flags);
#endif
} else {
pr_err("[CQ] SW TIMEOUT(%s, %c): tag: %d flags: 0x%llx timed out\n",
mmc_hostname(mq->card->host), op[3], req->tag, req->cmd_flags);
#ifdef CONFIG_MMC_CMDQ_DEBUG
exynos_ss_printk("[CQ] SW TIMEOUT(%c): tag: %d flags: 0x%llx timed out\n",
op[3], req->tag, req->cmd_flags);
#endif
}
ctx_info->dump_state = CMDQ_DUMP_SWTIMOUT;
cmdq_dumpregs(cq_host);
return mq->cmdq_req_timed_out(req);
}
int mmc_cmdq_init(struct mmc_queue *mq, struct mmc_card *card)
{
int i, ret = 0;
/* one slot is reserved for dcmd requests */
int q_depth = card->ext_csd.cmdq_depth - 1;
card->cmdq_init = false;
if (!(card->host->caps2 & MMC_CAP2_CMD_QUEUE)) {
ret = -ENOTSUPP;
goto out;
}
init_waitqueue_head(&card->host->cmdq_ctx.queue_empty_wq);
init_waitqueue_head(&card->host->cmdq_ctx.wait);
mq->mqrq_cmdq = kzalloc(
sizeof(struct mmc_queue_req) * q_depth, GFP_KERNEL);
if (!mq->mqrq_cmdq) {
pr_warn("%s: unable to allocate mqrq's for q_depth %d\n",
mmc_card_name(card), q_depth);
ret = -ENOMEM;
goto out;
}
/* sg is allocated for data request slots only */
for (i = 0; i < q_depth; i++) {
mq->mqrq_cmdq[i].sg = mmc_alloc_sg(card->host->max_segs, &ret);
if (ret) {
pr_warn("%s: unable to allocate cmdq sg of size %d\n",
mmc_card_name(card),
card->host->max_segs);
goto free_mqrq_sg;
}
}
ret = blk_queue_init_tags(mq->queue, q_depth, NULL, BLK_TAG_ALLOC_FIFO);
if (ret) {
pr_warn("%s: unable to allocate cmdq tags %d\n",
mmc_card_name(card), q_depth);
goto free_mqrq_sg;
}
blk_queue_softirq_done(mq->queue, mmc_cmdq_softirq_done);
INIT_WORK(&mq->cmdq_err_work, mmc_cmdq_error_work);
init_completion(&mq->cmdq_shutdown_complete);
init_completion(&mq->cmdq_pending_req_done);
blk_queue_rq_timed_out(mq->queue, mmc_cmdq_rq_timed_out);
blk_queue_rq_timeout(mq->queue, 30 * HZ);
card->cmdq_init = true;
goto out;
free_mqrq_sg:
for (i = 0; i < q_depth; i++)
kfree(mq->mqrq_cmdq[i].sg);
kfree(mq->mqrq_cmdq);
mq->mqrq_cmdq = NULL;
out:
return ret;
}
void mmc_cmdq_clean(struct mmc_queue *mq, struct mmc_card *card)
{
int i;
int q_depth = card->ext_csd.cmdq_depth - 1;
blk_free_tags(mq->queue->queue_tags);
mq->queue->queue_tags = NULL;
blk_queue_free_tags(mq->queue);
for (i = 0; i < q_depth; i++)
kfree(mq->mqrq_cmdq[i].sg);
kfree(mq->mqrq_cmdq);
mq->mqrq_cmdq = NULL;
}
/**
* mmc_queue_suspend - suspend a MMC request queue
* @mq: MMC queue to suspend
* @wait: Wait till MMC request queue is empty
*
* Stop the block request queue, and wait for our thread to
* complete any outstanding requests. This ensures that we
* won't suspend while a request is being processed.
*/
int mmc_queue_suspend(struct mmc_queue *mq, int wait)
{
struct request_queue *q = mq->queue;
unsigned long flags;
int rc = 0;
struct mmc_card *card = mq->card;
struct request *req;
if (card->cmdq_init && blk_queue_tagged(q)) {
struct mmc_host *host = card->host;
if (test_and_set_bit(MMC_QUEUE_SUSPENDED, &mq->flags))
goto out;
if (wait) {
/*
* After blk_cleanup_queue is called, wait for all
* active_reqs to complete.
* Then wait for cmdq thread to exit before calling
* cmdq shutdown to avoid race between issuing
* requests and shutdown of cmdq.
*/
printk("%s: mq->flags: %lx, q->queue_flags: 0x%lx, "\
"q->in_flight (%d, %d) \n",
mmc_hostname(mq->card->host), mq->flags,
q->queue_flags, q->in_flight[0], q->in_flight[1]);
blk_cleanup_queue(q);
printk("%s: Queue is Cleaned up : q->queue_flags: 0x%lx\n",
mmc_hostname(mq->card->host), q->queue_flags);
if (host->cmdq_ctx.active_reqs)
wait_for_completion(
&mq->cmdq_shutdown_complete);
kthread_stop(mq->thread);
mq->cmdq_shutdown(mq);
} else {
spin_lock_irqsave(q->queue_lock, flags);
blk_stop_queue(q);
wake_up(&host->cmdq_ctx.wait);
req = blk_peek_request(q);
if (req || mq->cmdq_req_peeked ||
host->cmdq_ctx.active_reqs) {
clear_bit(MMC_QUEUE_SUSPENDED, &mq->flags);
blk_start_queue(q);
rc = -EBUSY;
}
spin_unlock_irqrestore(q->queue_lock, flags);
}
goto out;
}
if (!(test_and_set_bit(MMC_QUEUE_SUSPENDED, &mq->flags))) {
spin_lock_irqsave(q->queue_lock, flags);
blk_stop_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
rc = down_trylock(&mq->thread_sem);
if (rc && !wait) {
/*
* Failed to take the lock so better to abort the
* suspend because mmcqd thread is processing requests.
*/
clear_bit(MMC_QUEUE_SUSPENDED, &mq->flags);
spin_lock_irqsave(q->queue_lock, flags);
blk_start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
rc = -EBUSY;
} else if (wait) {
printk("%s: mq->flags: %lx, q->queue_flags: 0x%lx, "\
"q->in_flight (%d, %d) \n",
mmc_hostname(mq->card->host), mq->flags,
q->queue_flags, q->in_flight[0], q->in_flight[1]);
mutex_lock(&q->sysfs_lock);
if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)) {
queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
spin_lock_irqsave(q->queue_lock, flags);
queue_flag_set(QUEUE_FLAG_DYING, q);
} else if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0)) {
queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
spin_lock_irqsave(q->queue_lock, flags);
queue_flag_set(QUEUE_FLAG_DEAD, q);
}
while ((req = blk_fetch_request(q)) != NULL) {
req->cmd_flags |= REQ_QUIET;
__blk_end_request_all(req, -EIO);
}
spin_unlock_irqrestore(q->queue_lock, flags);
mutex_unlock(&q->sysfs_lock);
if (rc) {
down(&mq->thread_sem);
rc = 0;
}
}
}
out:
return rc;
}
/**
* mmc_queue_resume - resume a previously suspended MMC request queue
* @mq: MMC queue to resume
*/
void mmc_queue_resume(struct mmc_queue *mq)
{
struct request_queue *q = mq->queue;
struct mmc_card *card = mq->card;
unsigned long flags;
if (test_and_clear_bit(MMC_QUEUE_SUSPENDED, &mq->flags)) {
if (!(card->cmdq_init && blk_queue_tagged(q)))
up(&mq->thread_sem);
spin_lock_irqsave(q->queue_lock, flags);
blk_start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
}
static unsigned int mmc_queue_packed_map_sg(struct mmc_queue *mq,
struct mmc_packed *packed,
struct scatterlist *sg,
enum mmc_packed_type cmd_type)
{
struct scatterlist *__sg = sg;
unsigned int sg_len = 0;
struct request *req;
if (mmc_packed_wr(cmd_type)) {
unsigned int hdr_sz = mmc_large_sector(mq->card) ? 4096 : 512;
unsigned int max_seg_sz = queue_max_segment_size(mq->queue);
unsigned int len, remain, offset = 0;
u8 *buf = (u8 *)packed->cmd_hdr;
remain = hdr_sz;
do {
len = min(remain, max_seg_sz);
sg_set_buf(__sg, buf + offset, len);
offset += len;
remain -= len;
sg_unmark_end(__sg++);
sg_len++;
} while (remain);
}
list_for_each_entry(req, &packed->list, queuelist) {
sg_len += blk_rq_map_sg(mq->queue, req, __sg);
__sg = sg + (sg_len - 1);
sg_unmark_end(__sg++);
}
sg_mark_end(sg + (sg_len - 1));
return sg_len;
}
/*
* Prepare the sg list(s) to be handed of to the host driver
*/
unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
{
unsigned int sg_len;
size_t buflen;
struct scatterlist *sg;
enum mmc_packed_type cmd_type;
int i;
cmd_type = mqrq->cmd_type;
if (!mqrq->bounce_buf) {
if (mmc_packed_cmd(cmd_type))
return mmc_queue_packed_map_sg(mq, mqrq->packed,
mqrq->sg, cmd_type);
else
return blk_rq_map_sg(mq->queue, mqrq->req, mqrq->sg);
}
BUG_ON(!mqrq->bounce_sg);
if (mmc_packed_cmd(cmd_type))
sg_len = mmc_queue_packed_map_sg(mq, mqrq->packed,
mqrq->bounce_sg, cmd_type);
else
sg_len = blk_rq_map_sg(mq->queue, mqrq->req, mqrq->bounce_sg);
mqrq->bounce_sg_len = sg_len;
buflen = 0;
for_each_sg(mqrq->bounce_sg, sg, sg_len, i)
buflen += sg->length;
sg_init_one(mqrq->sg, mqrq->bounce_buf, buflen);
return 1;
}
/*
* If writing, bounce the data to the buffer before the request
* is sent to the host driver
*/
void mmc_queue_bounce_pre(struct mmc_queue_req *mqrq)
{
if (!mqrq->bounce_buf)
return;
if (rq_data_dir(mqrq->req) != WRITE)
return;
sg_copy_to_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
mqrq->bounce_buf, mqrq->sg[0].length);
}
/*
* If reading, bounce the data from the buffer after the request
* has been handled by the host driver
*/
void mmc_queue_bounce_post(struct mmc_queue_req *mqrq)
{
if (!mqrq->bounce_buf)
return;
if (rq_data_dir(mqrq->req) != READ)
return;
sg_copy_from_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
mqrq->bounce_buf, mqrq->sg[0].length);
}