blob: ab387f2c5f3b80fd7fb3bef4fdc076eae5a6c53f [file] [log] [blame]
/*
md.c : Multiple Devices driver for Linux
Copyright (C) 1998, 1999, 2000 Ingo Molnar
completely rewritten, based on the MD driver code from Marc Zyngier
Changes:
- RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
- RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
- boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
- kerneld support by Boris Tobotras <boris@xtalk.msk.su>
- kmod support by: Cyrus Durgin
- RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
- Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
- lots of fixes and improvements to the RAID1/RAID5 and generic
RAID code (such as request based resynchronization):
Neil Brown <neilb@cse.unsw.edu.au>.
- persistent bitmap code
Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kthread.h>
#include <linux/blkdev.h>
#include <linux/sysctl.h>
#include <linux/seq_file.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/hdreg.h>
#include <linux/proc_fs.h>
#include <linux/random.h>
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/file.h>
#include <linux/compat.h>
#include <linux/delay.h>
#include <linux/raid/md_p.h>
#include <linux/raid/md_u.h>
#include <linux/slab.h>
#include "md.h"
#include "bitmap.h"
#include "md-cluster.h"
#ifndef MODULE
static void autostart_arrays(int part);
#endif
/* pers_list is a list of registered personalities protected
* by pers_lock.
* pers_lock does extra service to protect accesses to
* mddev->thread when the mutex cannot be held.
*/
static LIST_HEAD(pers_list);
static DEFINE_SPINLOCK(pers_lock);
struct md_cluster_operations *md_cluster_ops;
EXPORT_SYMBOL(md_cluster_ops);
struct module *md_cluster_mod;
EXPORT_SYMBOL(md_cluster_mod);
static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
static struct workqueue_struct *md_wq;
static struct workqueue_struct *md_misc_wq;
static int remove_and_add_spares(struct mddev *mddev,
struct md_rdev *this);
static void mddev_detach(struct mddev *mddev);
/*
* Default number of read corrections we'll attempt on an rdev
* before ejecting it from the array. We divide the read error
* count by 2 for every hour elapsed between read errors.
*/
#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
/*
* Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
* is 1000 KB/sec, so the extra system load does not show up that much.
* Increase it if you want to have more _guaranteed_ speed. Note that
* the RAID driver will use the maximum available bandwidth if the IO
* subsystem is idle. There is also an 'absolute maximum' reconstruction
* speed limit - in case reconstruction slows down your system despite
* idle IO detection.
*
* you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
* or /sys/block/mdX/md/sync_speed_{min,max}
*/
static int sysctl_speed_limit_min = 1000;
static int sysctl_speed_limit_max = 200000;
static inline int speed_min(struct mddev *mddev)
{
return mddev->sync_speed_min ?
mddev->sync_speed_min : sysctl_speed_limit_min;
}
static inline int speed_max(struct mddev *mddev)
{
return mddev->sync_speed_max ?
mddev->sync_speed_max : sysctl_speed_limit_max;
}
static struct ctl_table_header *raid_table_header;
static struct ctl_table raid_table[] = {
{
.procname = "speed_limit_min",
.data = &sysctl_speed_limit_min,
.maxlen = sizeof(int),
.mode = S_IRUGO|S_IWUSR,
.proc_handler = proc_dointvec,
},
{
.procname = "speed_limit_max",
.data = &sysctl_speed_limit_max,
.maxlen = sizeof(int),
.mode = S_IRUGO|S_IWUSR,
.proc_handler = proc_dointvec,
},
{ }
};
static struct ctl_table raid_dir_table[] = {
{
.procname = "raid",
.maxlen = 0,
.mode = S_IRUGO|S_IXUGO,
.child = raid_table,
},
{ }
};
static struct ctl_table raid_root_table[] = {
{
.procname = "dev",
.maxlen = 0,
.mode = 0555,
.child = raid_dir_table,
},
{ }
};
static const struct block_device_operations md_fops;
static int start_readonly;
/* bio_clone_mddev
* like bio_clone, but with a local bio set
*/
struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
struct mddev *mddev)
{
struct bio *b;
if (!mddev || !mddev->bio_set)
return bio_alloc(gfp_mask, nr_iovecs);
b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
if (!b)
return NULL;
return b;
}
EXPORT_SYMBOL_GPL(bio_alloc_mddev);
struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
struct mddev *mddev)
{
if (!mddev || !mddev->bio_set)
return bio_clone(bio, gfp_mask);
return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
}
EXPORT_SYMBOL_GPL(bio_clone_mddev);
/*
* We have a system wide 'event count' that is incremented
* on any 'interesting' event, and readers of /proc/mdstat
* can use 'poll' or 'select' to find out when the event
* count increases.
*
* Events are:
* start array, stop array, error, add device, remove device,
* start build, activate spare
*/
static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
static atomic_t md_event_count;
void md_new_event(struct mddev *mddev)
{
atomic_inc(&md_event_count);
wake_up(&md_event_waiters);
}
EXPORT_SYMBOL_GPL(md_new_event);
/* Alternate version that can be called from interrupts
* when calling sysfs_notify isn't needed.
*/
static void md_new_event_inintr(struct mddev *mddev)
{
atomic_inc(&md_event_count);
wake_up(&md_event_waiters);
}
/*
* Enables to iterate over all existing md arrays
* all_mddevs_lock protects this list.
*/
static LIST_HEAD(all_mddevs);
static DEFINE_SPINLOCK(all_mddevs_lock);
/*
* iterates through all used mddevs in the system.
* We take care to grab the all_mddevs_lock whenever navigating
* the list, and to always hold a refcount when unlocked.
* Any code which breaks out of this loop while own
* a reference to the current mddev and must mddev_put it.
*/
#define for_each_mddev(_mddev,_tmp) \
\
for (({ spin_lock(&all_mddevs_lock); \
_tmp = all_mddevs.next; \
_mddev = NULL;}); \
({ if (_tmp != &all_mddevs) \
mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
spin_unlock(&all_mddevs_lock); \
if (_mddev) mddev_put(_mddev); \
_mddev = list_entry(_tmp, struct mddev, all_mddevs); \
_tmp != &all_mddevs;}); \
({ spin_lock(&all_mddevs_lock); \
_tmp = _tmp->next;}) \
)
/* Rather than calling directly into the personality make_request function,
* IO requests come here first so that we can check if the device is
* being suspended pending a reconfiguration.
* We hold a refcount over the call to ->make_request. By the time that
* call has finished, the bio has been linked into some internal structure
* and so is visible to ->quiesce(), so we don't need the refcount any more.
*/
static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
{
const int rw = bio_data_dir(bio);
struct mddev *mddev = q->queuedata;
unsigned int sectors;
int cpu;
blk_queue_split(q, &bio, q->bio_split);
if (mddev == NULL || mddev->pers == NULL
|| !mddev->ready) {
bio_io_error(bio);
return BLK_QC_T_NONE;
}
if (mddev->ro == 1 && unlikely(rw == WRITE)) {
if (bio_sectors(bio) != 0)
bio->bi_error = -EROFS;
bio_endio(bio);
return BLK_QC_T_NONE;
}
smp_rmb(); /* Ensure implications of 'active' are visible */
rcu_read_lock();
if (mddev->suspended) {
DEFINE_WAIT(__wait);
for (;;) {
prepare_to_wait(&mddev->sb_wait, &__wait,
TASK_UNINTERRUPTIBLE);
if (!mddev->suspended)
break;
rcu_read_unlock();
schedule();
rcu_read_lock();
}
finish_wait(&mddev->sb_wait, &__wait);
}
atomic_inc(&mddev->active_io);
rcu_read_unlock();
/*
* save the sectors now since our bio can
* go away inside make_request
*/
sectors = bio_sectors(bio);
/* bio could be mergeable after passing to underlayer */
bio->bi_rw &= ~REQ_NOMERGE;
mddev->pers->make_request(mddev, bio);
cpu = part_stat_lock();
part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
part_stat_unlock();
if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
wake_up(&mddev->sb_wait);
return BLK_QC_T_NONE;
}
/* mddev_suspend makes sure no new requests are submitted
* to the device, and that any requests that have been submitted
* are completely handled.
* Once mddev_detach() is called and completes, the module will be
* completely unused.
*/
void mddev_suspend(struct mddev *mddev)
{
if (mddev->suspended++)
return;
synchronize_rcu();
wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
mddev->pers->quiesce(mddev, 1);
del_timer_sync(&mddev->safemode_timer);
}
EXPORT_SYMBOL_GPL(mddev_suspend);
void mddev_resume(struct mddev *mddev)
{
if (--mddev->suspended)
return;
wake_up(&mddev->sb_wait);
mddev->pers->quiesce(mddev, 0);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
}
EXPORT_SYMBOL_GPL(mddev_resume);
int mddev_congested(struct mddev *mddev, int bits)
{
struct md_personality *pers = mddev->pers;
int ret = 0;
rcu_read_lock();
if (mddev->suspended)
ret = 1;
else if (pers && pers->congested)
ret = pers->congested(mddev, bits);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(mddev_congested);
static int md_congested(void *data, int bits)
{
struct mddev *mddev = data;
return mddev_congested(mddev, bits);
}
/*
* Generic flush handling for md
*/
static void md_end_flush(struct bio *bio)
{
struct md_rdev *rdev = bio->bi_private;
struct mddev *mddev = rdev->mddev;
rdev_dec_pending(rdev, mddev);
if (atomic_dec_and_test(&mddev->flush_pending)) {
/* The pre-request flush has finished */
queue_work(md_wq, &mddev->flush_work);
}
bio_put(bio);
}
static void md_submit_flush_data(struct work_struct *ws);
static void submit_flushes(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, flush_work);
struct md_rdev *rdev;
INIT_WORK(&mddev->flush_work, md_submit_flush_data);
atomic_set(&mddev->flush_pending, 1);
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Faulty, &rdev->flags)) {
/* Take two references, one is dropped
* when request finishes, one after
* we reclaim rcu_read_lock
*/
struct bio *bi;
atomic_inc(&rdev->nr_pending);
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
bi->bi_end_io = md_end_flush;
bi->bi_private = rdev;
bi->bi_bdev = rdev->bdev;
atomic_inc(&mddev->flush_pending);
submit_bio(WRITE_FLUSH, bi);
rcu_read_lock();
rdev_dec_pending(rdev, mddev);
}
rcu_read_unlock();
if (atomic_dec_and_test(&mddev->flush_pending))
queue_work(md_wq, &mddev->flush_work);
}
static void md_submit_flush_data(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, flush_work);
struct bio *bio = mddev->flush_bio;
if (bio->bi_iter.bi_size == 0)
/* an empty barrier - all done */
bio_endio(bio);
else {
bio->bi_rw &= ~REQ_FLUSH;
mddev->pers->make_request(mddev, bio);
}
mddev->flush_bio = NULL;
wake_up(&mddev->sb_wait);
}
void md_flush_request(struct mddev *mddev, struct bio *bio)
{
spin_lock_irq(&mddev->lock);
wait_event_lock_irq(mddev->sb_wait,
!mddev->flush_bio,
mddev->lock);
mddev->flush_bio = bio;
spin_unlock_irq(&mddev->lock);
INIT_WORK(&mddev->flush_work, submit_flushes);
queue_work(md_wq, &mddev->flush_work);
}
EXPORT_SYMBOL(md_flush_request);
void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
struct mddev *mddev = cb->data;
md_wakeup_thread(mddev->thread);
kfree(cb);
}
EXPORT_SYMBOL(md_unplug);
static inline struct mddev *mddev_get(struct mddev *mddev)
{
atomic_inc(&mddev->active);
return mddev;
}
static void mddev_delayed_delete(struct work_struct *ws);
static void mddev_put(struct mddev *mddev)
{
struct bio_set *bs = NULL;
if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
return;
if (!mddev->raid_disks && list_empty(&mddev->disks) &&
mddev->ctime == 0 && !mddev->hold_active) {
/* Array is not configured at all, and not held active,
* so destroy it */
list_del_init(&mddev->all_mddevs);
bs = mddev->bio_set;
mddev->bio_set = NULL;
if (mddev->gendisk) {
/* We did a probe so need to clean up. Call
* queue_work inside the spinlock so that
* flush_workqueue() after mddev_find will
* succeed in waiting for the work to be done.
*/
INIT_WORK(&mddev->del_work, mddev_delayed_delete);
queue_work(md_misc_wq, &mddev->del_work);
} else
kfree(mddev);
}
spin_unlock(&all_mddevs_lock);
if (bs)
bioset_free(bs);
}
static void md_safemode_timeout(unsigned long data);
void mddev_init(struct mddev *mddev)
{
mutex_init(&mddev->open_mutex);
mutex_init(&mddev->reconfig_mutex);
mutex_init(&mddev->bitmap_info.mutex);
INIT_LIST_HEAD(&mddev->disks);
INIT_LIST_HEAD(&mddev->all_mddevs);
setup_timer(&mddev->safemode_timer, md_safemode_timeout,
(unsigned long) mddev);
atomic_set(&mddev->active, 1);
atomic_set(&mddev->openers, 0);
atomic_set(&mddev->active_io, 0);
spin_lock_init(&mddev->lock);
atomic_set(&mddev->flush_pending, 0);
init_waitqueue_head(&mddev->sb_wait);
init_waitqueue_head(&mddev->recovery_wait);
mddev->reshape_position = MaxSector;
mddev->reshape_backwards = 0;
mddev->last_sync_action = "none";
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
mddev->level = LEVEL_NONE;
}
EXPORT_SYMBOL_GPL(mddev_init);
static struct mddev *mddev_find(dev_t unit)
{
struct mddev *mddev, *new = NULL;
if (unit && MAJOR(unit) != MD_MAJOR)
unit &= ~((1<<MdpMinorShift)-1);
retry:
spin_lock(&all_mddevs_lock);
if (unit) {
list_for_each_entry(mddev, &all_mddevs, all_mddevs)
if (mddev->unit == unit) {
mddev_get(mddev);
spin_unlock(&all_mddevs_lock);
kfree(new);
return mddev;
}
if (new) {
list_add(&new->all_mddevs, &all_mddevs);
spin_unlock(&all_mddevs_lock);
new->hold_active = UNTIL_IOCTL;
return new;
}
} else if (new) {
/* find an unused unit number */
static int next_minor = 512;
int start = next_minor;
int is_free = 0;
int dev = 0;
while (!is_free) {
dev = MKDEV(MD_MAJOR, next_minor);
next_minor++;
if (next_minor > MINORMASK)
next_minor = 0;
if (next_minor == start) {
/* Oh dear, all in use. */
spin_unlock(&all_mddevs_lock);
kfree(new);
return NULL;
}
is_free = 1;
list_for_each_entry(mddev, &all_mddevs, all_mddevs)
if (mddev->unit == dev) {
is_free = 0;
break;
}
}
new->unit = dev;
new->md_minor = MINOR(dev);
new->hold_active = UNTIL_STOP;
list_add(&new->all_mddevs, &all_mddevs);
spin_unlock(&all_mddevs_lock);
return new;
}
spin_unlock(&all_mddevs_lock);
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
new->unit = unit;
if (MAJOR(unit) == MD_MAJOR)
new->md_minor = MINOR(unit);
else
new->md_minor = MINOR(unit) >> MdpMinorShift;
mddev_init(new);
goto retry;
}
static struct attribute_group md_redundancy_group;
void mddev_unlock(struct mddev *mddev)
{
if (mddev->to_remove) {
/* These cannot be removed under reconfig_mutex as
* an access to the files will try to take reconfig_mutex
* while holding the file unremovable, which leads to
* a deadlock.
* So hold set sysfs_active while the remove in happeing,
* and anything else which might set ->to_remove or my
* otherwise change the sysfs namespace will fail with
* -EBUSY if sysfs_active is still set.
* We set sysfs_active under reconfig_mutex and elsewhere
* test it under the same mutex to ensure its correct value
* is seen.
*/
struct attribute_group *to_remove = mddev->to_remove;
mddev->to_remove = NULL;
mddev->sysfs_active = 1;
mutex_unlock(&mddev->reconfig_mutex);
if (mddev->kobj.sd) {
if (to_remove != &md_redundancy_group)
sysfs_remove_group(&mddev->kobj, to_remove);
if (mddev->pers == NULL ||
mddev->pers->sync_request == NULL) {
sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
if (mddev->sysfs_action)
sysfs_put(mddev->sysfs_action);
mddev->sysfs_action = NULL;
}
}
mddev->sysfs_active = 0;
} else
mutex_unlock(&mddev->reconfig_mutex);
/* As we've dropped the mutex we need a spinlock to
* make sure the thread doesn't disappear
*/
spin_lock(&pers_lock);
md_wakeup_thread(mddev->thread);
spin_unlock(&pers_lock);
}
EXPORT_SYMBOL_GPL(mddev_unlock);
struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
{
struct md_rdev *rdev;
rdev_for_each_rcu(rdev, mddev)
if (rdev->desc_nr == nr)
return rdev;
return NULL;
}
EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
rdev_for_each(rdev, mddev)
if (rdev->bdev->bd_dev == dev)
return rdev;
return NULL;
}
static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
rdev_for_each_rcu(rdev, mddev)
if (rdev->bdev->bd_dev == dev)
return rdev;
return NULL;
}
static struct md_personality *find_pers(int level, char *clevel)
{
struct md_personality *pers;
list_for_each_entry(pers, &pers_list, list) {
if (level != LEVEL_NONE && pers->level == level)
return pers;
if (strcmp(pers->name, clevel)==0)
return pers;
}
return NULL;
}
/* return the offset of the super block in 512byte sectors */
static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
{
sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
return MD_NEW_SIZE_SECTORS(num_sectors);
}
static int alloc_disk_sb(struct md_rdev *rdev)
{
rdev->sb_page = alloc_page(GFP_KERNEL);
if (!rdev->sb_page) {
printk(KERN_ALERT "md: out of memory.\n");
return -ENOMEM;
}
return 0;
}
void md_rdev_clear(struct md_rdev *rdev)
{
if (rdev->sb_page) {
put_page(rdev->sb_page);
rdev->sb_loaded = 0;
rdev->sb_page = NULL;
rdev->sb_start = 0;
rdev->sectors = 0;
}
if (rdev->bb_page) {
put_page(rdev->bb_page);
rdev->bb_page = NULL;
}
kfree(rdev->badblocks.page);
rdev->badblocks.page = NULL;
}
EXPORT_SYMBOL_GPL(md_rdev_clear);
static void super_written(struct bio *bio)
{
struct md_rdev *rdev = bio->bi_private;
struct mddev *mddev = rdev->mddev;
if (bio->bi_error) {
printk("md: super_written gets error=%d\n", bio->bi_error);
md_error(mddev, rdev);
}
if (atomic_dec_and_test(&mddev->pending_writes))
wake_up(&mddev->sb_wait);
bio_put(bio);
}
void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
sector_t sector, int size, struct page *page)
{
/* write first size bytes of page to sector of rdev
* Increment mddev->pending_writes before returning
* and decrement it on completion, waking up sb_wait
* if zero is reached.
* If an error occurred, call md_error
*/
struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
bio->bi_iter.bi_sector = sector;
bio_add_page(bio, page, size, 0);
bio->bi_private = rdev;
bio->bi_end_io = super_written;
atomic_inc(&mddev->pending_writes);
submit_bio(WRITE_FLUSH_FUA, bio);
}
void md_super_wait(struct mddev *mddev)
{
/* wait for all superblock writes that were scheduled to complete */
wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
}
int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
struct page *page, int rw, bool metadata_op)
{
struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
int ret;
bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
rdev->meta_bdev : rdev->bdev;
if (metadata_op)
bio->bi_iter.bi_sector = sector + rdev->sb_start;
else if (rdev->mddev->reshape_position != MaxSector &&
(rdev->mddev->reshape_backwards ==
(sector >= rdev->mddev->reshape_position)))
bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
else
bio->bi_iter.bi_sector = sector + rdev->data_offset;
bio_add_page(bio, page, size, 0);
submit_bio_wait(rw, bio);
ret = !bio->bi_error;
bio_put(bio);
return ret;
}
EXPORT_SYMBOL_GPL(sync_page_io);
static int read_disk_sb(struct md_rdev *rdev, int size)
{
char b[BDEVNAME_SIZE];
if (rdev->sb_loaded)
return 0;
if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
goto fail;
rdev->sb_loaded = 1;
return 0;
fail:
printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
bdevname(rdev->bdev,b));
return -EINVAL;
}
static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
{
return sb1->set_uuid0 == sb2->set_uuid0 &&
sb1->set_uuid1 == sb2->set_uuid1 &&
sb1->set_uuid2 == sb2->set_uuid2 &&
sb1->set_uuid3 == sb2->set_uuid3;
}
static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
{
int ret;
mdp_super_t *tmp1, *tmp2;
tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
if (!tmp1 || !tmp2) {
ret = 0;
printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
goto abort;
}
*tmp1 = *sb1;
*tmp2 = *sb2;
/*
* nr_disks is not constant
*/
tmp1->nr_disks = 0;
tmp2->nr_disks = 0;
ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
abort:
kfree(tmp1);
kfree(tmp2);
return ret;
}
static u32 md_csum_fold(u32 csum)
{
csum = (csum & 0xffff) + (csum >> 16);
return (csum & 0xffff) + (csum >> 16);
}
static unsigned int calc_sb_csum(mdp_super_t *sb)
{
u64 newcsum = 0;
u32 *sb32 = (u32*)sb;
int i;
unsigned int disk_csum, csum;
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
for (i = 0; i < MD_SB_BYTES/4 ; i++)
newcsum += sb32[i];
csum = (newcsum & 0xffffffff) + (newcsum>>32);
#ifdef CONFIG_ALPHA
/* This used to use csum_partial, which was wrong for several
* reasons including that different results are returned on
* different architectures. It isn't critical that we get exactly
* the same return value as before (we always csum_fold before
* testing, and that removes any differences). However as we
* know that csum_partial always returned a 16bit value on
* alphas, do a fold to maximise conformity to previous behaviour.
*/
sb->sb_csum = md_csum_fold(disk_csum);
#else
sb->sb_csum = disk_csum;
#endif
return csum;
}
/*
* Handle superblock details.
* We want to be able to handle multiple superblock formats
* so we have a common interface to them all, and an array of
* different handlers.
* We rely on user-space to write the initial superblock, and support
* reading and updating of superblocks.
* Interface methods are:
* int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
* loads and validates a superblock on dev.
* if refdev != NULL, compare superblocks on both devices
* Return:
* 0 - dev has a superblock that is compatible with refdev
* 1 - dev has a superblock that is compatible and newer than refdev
* so dev should be used as the refdev in future
* -EINVAL superblock incompatible or invalid
* -othererror e.g. -EIO
*
* int validate_super(struct mddev *mddev, struct md_rdev *dev)
* Verify that dev is acceptable into mddev.
* The first time, mddev->raid_disks will be 0, and data from
* dev should be merged in. Subsequent calls check that dev
* is new enough. Return 0 or -EINVAL
*
* void sync_super(struct mddev *mddev, struct md_rdev *dev)
* Update the superblock for rdev with data in mddev
* This does not write to disc.
*
*/
struct super_type {
char *name;
struct module *owner;
int (*load_super)(struct md_rdev *rdev,
struct md_rdev *refdev,
int minor_version);
int (*validate_super)(struct mddev *mddev,
struct md_rdev *rdev);
void (*sync_super)(struct mddev *mddev,
struct md_rdev *rdev);
unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
sector_t num_sectors);
int (*allow_new_offset)(struct md_rdev *rdev,
unsigned long long new_offset);
};
/*
* Check that the given mddev has no bitmap.
*
* This function is called from the run method of all personalities that do not
* support bitmaps. It prints an error message and returns non-zero if mddev
* has a bitmap. Otherwise, it returns 0.
*
*/
int md_check_no_bitmap(struct mddev *mddev)
{
if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
return 0;
printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
mdname(mddev), mddev->pers->name);
return 1;
}
EXPORT_SYMBOL(md_check_no_bitmap);
/*
* load_super for 0.90.0
*/
static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
{
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
mdp_super_t *sb;
int ret;
/*
* Calculate the position of the superblock (512byte sectors),
* it's at the end of the disk.
*
* It also happens to be a multiple of 4Kb.
*/
rdev->sb_start = calc_dev_sboffset(rdev);
ret = read_disk_sb(rdev, MD_SB_BYTES);
if (ret) return ret;
ret = -EINVAL;
bdevname(rdev->bdev, b);
sb = page_address(rdev->sb_page);
if (sb->md_magic != MD_SB_MAGIC) {
printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
b);
goto abort;
}
if (sb->major_version != 0 ||
sb->minor_version < 90 ||
sb->minor_version > 91) {
printk(KERN_WARNING "Bad version number %d.%d on %s\n",
sb->major_version, sb->minor_version,
b);
goto abort;
}
if (sb->raid_disks <= 0)
goto abort;
if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
b);
goto abort;
}
rdev->preferred_minor = sb->md_minor;
rdev->data_offset = 0;
rdev->new_data_offset = 0;
rdev->sb_size = MD_SB_BYTES;
rdev->badblocks.shift = -1;
if (sb->level == LEVEL_MULTIPATH)
rdev->desc_nr = -1;
else
rdev->desc_nr = sb->this_disk.number;
if (!refdev) {
ret = 1;
} else {
__u64 ev1, ev2;
mdp_super_t *refsb = page_address(refdev->sb_page);
if (!uuid_equal(refsb, sb)) {
printk(KERN_WARNING "md: %s has different UUID to %s\n",
b, bdevname(refdev->bdev,b2));
goto abort;
}
if (!sb_equal(refsb, sb)) {
printk(KERN_WARNING "md: %s has same UUID"
" but different superblock to %s\n",
b, bdevname(refdev->bdev, b2));
goto abort;
}
ev1 = md_event(sb);
ev2 = md_event(refsb);
if (ev1 > ev2)
ret = 1;
else
ret = 0;
}
rdev->sectors = rdev->sb_start;
/* Limit to 4TB as metadata cannot record more than that.
* (not needed for Linear and RAID0 as metadata doesn't
* record this size)
*/
if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
sb->level >= 1)
rdev->sectors = (sector_t)(2ULL << 32) - 2;
if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
/* "this cannot possibly happen" ... */
ret = -EINVAL;
abort:
return ret;
}
/*
* validate_super for 0.90.0
*/
static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
{
mdp_disk_t *desc;
mdp_super_t *sb = page_address(rdev->sb_page);
__u64 ev1 = md_event(sb);
rdev->raid_disk = -1;
clear_bit(Faulty, &rdev->flags);
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
if (mddev->raid_disks == 0) {
mddev->major_version = 0;
mddev->minor_version = sb->minor_version;
mddev->patch_version = sb->patch_version;
mddev->external = 0;
mddev->chunk_sectors = sb->chunk_size >> 9;
mddev->ctime = sb->ctime;
mddev->utime = sb->utime;
mddev->level = sb->level;
mddev->clevel[0] = 0;
mddev->layout = sb->layout;
mddev->raid_disks = sb->raid_disks;
mddev->dev_sectors = ((sector_t)sb->size) * 2;
mddev->events = ev1;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.space = 0;
/* bitmap can use 60 K after the 4K superblocks */
mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
mddev->reshape_backwards = 0;
if (mddev->minor_version >= 91) {
mddev->reshape_position = sb->reshape_position;
mddev->delta_disks = sb->delta_disks;
mddev->new_level = sb->new_level;
mddev->new_layout = sb->new_layout;
mddev->new_chunk_sectors = sb->new_chunk >> 9;
if (mddev->delta_disks < 0)
mddev->reshape_backwards = 1;
} else {
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
if (sb->state & (1<<MD_SB_CLEAN))
mddev->recovery_cp = MaxSector;
else {
if (sb->events_hi == sb->cp_events_hi &&
sb->events_lo == sb->cp_events_lo) {
mddev->recovery_cp = sb->recovery_cp;
} else
mddev->recovery_cp = 0;
}
memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
mddev->max_disks = MD_SB_DISKS;
if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
mddev->bitmap_info.file == NULL) {
mddev->bitmap_info.offset =
mddev->bitmap_info.default_offset;
mddev->bitmap_info.space =
mddev->bitmap_info.default_space;
}
} else if (mddev->pers == NULL) {
/* Insist on good event counter while assembling, except
* for spares (which don't need an event count) */
++ev1;
if (sb->disks[rdev->desc_nr].state & (
(1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
if (ev1 < mddev->events)
return -EINVAL;
} else if (mddev->bitmap) {
/* if adding to array with a bitmap, then we can accept an
* older device ... but not too old.
*/
if (ev1 < mddev->bitmap->events_cleared)
return 0;
if (ev1 < mddev->events)
set_bit(Bitmap_sync, &rdev->flags);
} else {
if (ev1 < mddev->events)
/* just a hot-add of a new device, leave raid_disk at -1 */
return 0;
}
if (mddev->level != LEVEL_MULTIPATH) {
desc = sb->disks + rdev->desc_nr;
if (desc->state & (1<<MD_DISK_FAULTY))
set_bit(Faulty, &rdev->flags);
else if (desc->state & (1<<MD_DISK_SYNC) /* &&
desc->raid_disk < mddev->raid_disks */) {
set_bit(In_sync, &rdev->flags);
rdev->raid_disk = desc->raid_disk;
rdev->saved_raid_disk = desc->raid_disk;
} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
/* active but not in sync implies recovery up to
* reshape position. We don't know exactly where
* that is, so set to zero for now */
if (mddev->minor_version >= 91) {
rdev->recovery_offset = 0;
rdev->raid_disk = desc->raid_disk;
}
}
if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
} else /* MULTIPATH are always insync */
set_bit(In_sync, &rdev->flags);
return 0;
}
/*
* sync_super for 0.90.0
*/
static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
{
mdp_super_t *sb;
struct md_rdev *rdev2;
int next_spare = mddev->raid_disks;
/* make rdev->sb match mddev data..
*
* 1/ zero out disks
* 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
* 3/ any empty disks < next_spare become removed
*
* disks[0] gets initialised to REMOVED because
* we cannot be sure from other fields if it has
* been initialised or not.
*/
int i;
int active=0, working=0,failed=0,spare=0,nr_disks=0;
rdev->sb_size = MD_SB_BYTES;
sb = page_address(rdev->sb_page);
memset(sb, 0, sizeof(*sb));
sb->md_magic = MD_SB_MAGIC;
sb->major_version = mddev->major_version;
sb->patch_version = mddev->patch_version;
sb->gvalid_words = 0; /* ignored */
memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
memcpy(&sb->set_uuid3, mddev->uuid+12,4);
sb->ctime = mddev->ctime;
sb->level = mddev->level;
sb->size = mddev->dev_sectors / 2;
sb->raid_disks = mddev->raid_disks;
sb->md_minor = mddev->md_minor;
sb->not_persistent = 0;
sb->utime = mddev->utime;
sb->state = 0;
sb->events_hi = (mddev->events>>32);
sb->events_lo = (u32)mddev->events;
if (mddev->reshape_position == MaxSector)
sb->minor_version = 90;
else {
sb->minor_version = 91;
sb->reshape_position = mddev->reshape_position;
sb->new_level = mddev->new_level;
sb->delta_disks = mddev->delta_disks;
sb->new_layout = mddev->new_layout;
sb->new_chunk = mddev->new_chunk_sectors << 9;
}
mddev->minor_version = sb->minor_version;
if (mddev->in_sync)
{
sb->recovery_cp = mddev->recovery_cp;
sb->cp_events_hi = (mddev->events>>32);
sb->cp_events_lo = (u32)mddev->events;
if (mddev->recovery_cp == MaxSector)
sb->state = (1<< MD_SB_CLEAN);
} else
sb->recovery_cp = 0;
sb->layout = mddev->layout;
sb->chunk_size = mddev->chunk_sectors << 9;
if (mddev->bitmap && mddev->bitmap_info.file == NULL)
sb->state |= (1<<MD_SB_BITMAP_PRESENT);
sb->disks[0].state = (1<<MD_DISK_REMOVED);
rdev_for_each(rdev2, mddev) {
mdp_disk_t *d;
int desc_nr;
int is_active = test_bit(In_sync, &rdev2->flags);
if (rdev2->raid_disk >= 0 &&
sb->minor_version >= 91)
/* we have nowhere to store the recovery_offset,
* but if it is not below the reshape_position,
* we can piggy-back on that.
*/
is_active = 1;
if (rdev2->raid_disk < 0 ||
test_bit(Faulty, &rdev2->flags))
is_active = 0;
if (is_active)
desc_nr = rdev2->raid_disk;
else
desc_nr = next_spare++;
rdev2->desc_nr = desc_nr;
d = &sb->disks[rdev2->desc_nr];
nr_disks++;
d->number = rdev2->desc_nr;
d->major = MAJOR(rdev2->bdev->bd_dev);
d->minor = MINOR(rdev2->bdev->bd_dev);
if (is_active)
d->raid_disk = rdev2->raid_disk;
else
d->raid_disk = rdev2->desc_nr; /* compatibility */
if (test_bit(Faulty, &rdev2->flags))
d->state = (1<<MD_DISK_FAULTY);
else if (is_active) {
d->state = (1<<MD_DISK_ACTIVE);
if (test_bit(In_sync, &rdev2->flags))
d->state |= (1<<MD_DISK_SYNC);
active++;
working++;
} else {
d->state = 0;
spare++;
working++;
}
if (test_bit(WriteMostly, &rdev2->flags))
d->state |= (1<<MD_DISK_WRITEMOSTLY);
}
/* now set the "removed" and "faulty" bits on any missing devices */
for (i=0 ; i < mddev->raid_disks ; i++) {
mdp_disk_t *d = &sb->disks[i];
if (d->state == 0 && d->number == 0) {
d->number = i;
d->raid_disk = i;
d->state = (1<<MD_DISK_REMOVED);
d->state |= (1<<MD_DISK_FAULTY);
failed++;
}
}
sb->nr_disks = nr_disks;
sb->active_disks = active;
sb->working_disks = working;
sb->failed_disks = failed;
sb->spare_disks = spare;
sb->this_disk = sb->disks[rdev->desc_nr];
sb->sb_csum = calc_sb_csum(sb);
}
/*
* rdev_size_change for 0.90.0
*/
static unsigned long long
super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
{
if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
return 0; /* component must fit device */
if (rdev->mddev->bitmap_info.offset)
return 0; /* can't move bitmap */
rdev->sb_start = calc_dev_sboffset(rdev);
if (!num_sectors || num_sectors > rdev->sb_start)
num_sectors = rdev->sb_start;
/* Limit to 4TB as metadata cannot record more than that.
* 4TB == 2^32 KB, or 2*2^32 sectors.
*/
if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
rdev->mddev->level >= 1)
num_sectors = (sector_t)(2ULL << 32) - 2;
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
rdev->sb_page);
md_super_wait(rdev->mddev);
return num_sectors;
}
static int
super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
{
/* non-zero offset changes not possible with v0.90 */
return new_offset == 0;
}
/*
* version 1 superblock
*/
static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
{
__le32 disk_csum;
u32 csum;
unsigned long long newcsum;
int size = 256 + le32_to_cpu(sb->max_dev)*2;
__le32 *isuper = (__le32*)sb;
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
newcsum = 0;
for (; size >= 4; size -= 4)
newcsum += le32_to_cpu(*isuper++);
if (size == 2)
newcsum += le16_to_cpu(*(__le16*) isuper);
csum = (newcsum & 0xffffffff) + (newcsum >> 32);
sb->sb_csum = disk_csum;
return cpu_to_le32(csum);
}
static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
int acknowledged);
static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
{
struct mdp_superblock_1 *sb;
int ret;
sector_t sb_start;
sector_t sectors;
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
int bmask;
/*
* Calculate the position of the superblock in 512byte sectors.
* It is always aligned to a 4K boundary and
* depeding on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(minor_version) {
case 0:
sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
sb_start -= 8*2;
sb_start &= ~(sector_t)(4*2-1);
break;
case 1:
sb_start = 0;
break;
case 2:
sb_start = 8;
break;
default:
return -EINVAL;
}
rdev->sb_start = sb_start;
/* superblock is rarely larger than 1K, but it can be larger,
* and it is safe to read 4k, so we do that
*/
ret = read_disk_sb(rdev, 4096);
if (ret) return ret;
sb = page_address(rdev->sb_page);
if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
sb->major_version != cpu_to_le32(1) ||
le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
le64_to_cpu(sb->super_offset) != rdev->sb_start ||
(le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
return -EINVAL;
if (calc_sb_1_csum(sb) != sb->sb_csum) {
printk("md: invalid superblock checksum on %s\n",
bdevname(rdev->bdev,b));
return -EINVAL;
}
if (le64_to_cpu(sb->data_size) < 10) {
printk("md: data_size too small on %s\n",
bdevname(rdev->bdev,b));
return -EINVAL;
}
if (sb->pad0 ||
sb->pad3[0] ||
memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
/* Some padding is non-zero, might be a new feature */
return -EINVAL;
rdev->preferred_minor = 0xffff;
rdev->data_offset = le64_to_cpu(sb->data_offset);
rdev->new_data_offset = rdev->data_offset;
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
(le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
if (rdev->sb_size & bmask)
rdev->sb_size = (rdev->sb_size | bmask) + 1;
if (minor_version
&& rdev->data_offset < sb_start + (rdev->sb_size/512))
return -EINVAL;
if (minor_version
&& rdev->new_data_offset < sb_start + (rdev->sb_size/512))
return -EINVAL;
if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
rdev->desc_nr = -1;
else
rdev->desc_nr = le32_to_cpu(sb->dev_number);
if (!rdev->bb_page) {
rdev->bb_page = alloc_page(GFP_KERNEL);
if (!rdev->bb_page)
return -ENOMEM;
}
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
rdev->badblocks.count == 0) {
/* need to load the bad block list.
* Currently we limit it to one page.
*/
s32 offset;
sector_t bb_sector;
u64 *bbp;
int i;
int sectors = le16_to_cpu(sb->bblog_size);
if (sectors > (PAGE_SIZE / 512))
return -EINVAL;
offset = le32_to_cpu(sb->bblog_offset);
if (offset == 0)
return -EINVAL;
bb_sector = (long long)offset;
if (!sync_page_io(rdev, bb_sector, sectors << 9,
rdev->bb_page, READ, true))
return -EIO;
bbp = (u64 *)page_address(rdev->bb_page);
rdev->badblocks.shift = sb->bblog_shift;
for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
u64 bb = le64_to_cpu(*bbp);
int count = bb & (0x3ff);
u64 sector = bb >> 10;
sector <<= sb->bblog_shift;
count <<= sb->bblog_shift;
if (bb + 1 == 0)
break;
if (md_set_badblocks(&rdev->badblocks,
sector, count, 1) == 0)
return -EINVAL;
}
} else if (sb->bblog_offset != 0)
rdev->badblocks.shift = 0;
if (!refdev) {
ret = 1;
} else {
__u64 ev1, ev2;
struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
sb->level != refsb->level ||
sb->layout != refsb->layout ||
sb->chunksize != refsb->chunksize) {
printk(KERN_WARNING "md: %s has strangely different"
" superblock to %s\n",
bdevname(rdev->bdev,b),
bdevname(refdev->bdev,b2));
return -EINVAL;
}
ev1 = le64_to_cpu(sb->events);
ev2 = le64_to_cpu(refsb->events);
if (ev1 > ev2)
ret = 1;
else
ret = 0;
}
if (minor_version) {
sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
sectors -= rdev->data_offset;
} else
sectors = rdev->sb_start;
if (sectors < le64_to_cpu(sb->data_size))
return -EINVAL;
rdev->sectors = le64_to_cpu(sb->data_size);
return ret;
}
static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
__u64 ev1 = le64_to_cpu(sb->events);
rdev->raid_disk = -1;
clear_bit(Faulty, &rdev->flags);
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
if (mddev->raid_disks == 0) {
mddev->major_version = 1;
mddev->patch_version = 0;
mddev->external = 0;
mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
mddev->level = le32_to_cpu(sb->level);
mddev->clevel[0] = 0;
mddev->layout = le32_to_cpu(sb->layout);
mddev->raid_disks = le32_to_cpu(sb->raid_disks);
mddev->dev_sectors = le64_to_cpu(sb->size);
mddev->events = ev1;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.space = 0;
/* Default location for bitmap is 1K after superblock
* using 3K - total of 4K
*/
mddev->bitmap_info.default_offset = 1024 >> 9;
mddev->bitmap_info.default_space = (4096-1024) >> 9;
mddev->reshape_backwards = 0;
mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
memcpy(mddev->uuid, sb->set_uuid, 16);
mddev->max_disks = (4096-256)/2;
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
mddev->bitmap_info.file == NULL) {
mddev->bitmap_info.offset =
(__s32)le32_to_cpu(sb->bitmap_offset);
/* Metadata doesn't record how much space is available.
* For 1.0, we assume we can use up to the superblock
* if before, else to 4K beyond superblock.
* For others, assume no change is possible.
*/
if (mddev->minor_version > 0)
mddev->bitmap_info.space = 0;
else if (mddev->bitmap_info.offset > 0)
mddev->bitmap_info.space =
8 - mddev->bitmap_info.offset;
else
mddev->bitmap_info.space =
-mddev->bitmap_info.offset;
}
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
mddev->reshape_position = le64_to_cpu(sb->reshape_position);
mddev->delta_disks = le32_to_cpu(sb->delta_disks);
mddev->new_level = le32_to_cpu(sb->new_level);
mddev->new_layout = le32_to_cpu(sb->new_layout);
mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
if (mddev->delta_disks < 0 ||
(mddev->delta_disks == 0 &&
(le32_to_cpu(sb->feature_map)
& MD_FEATURE_RESHAPE_BACKWARDS)))
mddev->reshape_backwards = 1;
} else {
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
} else if (mddev->pers == NULL) {
/* Insist of good event counter while assembling, except for
* spares (which don't need an event count) */
++ev1;
if (rdev->desc_nr >= 0 &&
rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
if (ev1 < mddev->events)
return -EINVAL;
} else if (mddev->bitmap) {
/* If adding to array with a bitmap, then we can accept an
* older device, but not too old.
*/
if (ev1 < mddev->bitmap->events_cleared)
return 0;
if (ev1 < mddev->events)
set_bit(Bitmap_sync, &rdev->flags);
} else {
if (ev1 < mddev->events)
/* just a hot-add of a new device, leave raid_disk at -1 */
return 0;
}
if (mddev->level != LEVEL_MULTIPATH) {
int role;
if (rdev->desc_nr < 0 ||
rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
role = MD_DISK_ROLE_SPARE;
rdev->desc_nr = -1;
} else
role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
switch(role) {
case MD_DISK_ROLE_SPARE: /* spare */
break;
case MD_DISK_ROLE_FAULTY: /* faulty */
set_bit(Faulty, &rdev->flags);
break;
case MD_DISK_ROLE_JOURNAL: /* journal device */
if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
/* journal device without journal feature */
printk(KERN_WARNING
"md: journal device provided without journal feature, ignoring the device\n");
return -EINVAL;
}
set_bit(Journal, &rdev->flags);
rdev->journal_tail = le64_to_cpu(sb->journal_tail);
if (mddev->recovery_cp == MaxSector)
set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
rdev->raid_disk = 0;
break;
default:
rdev->saved_raid_disk = role;
if ((le32_to_cpu(sb->feature_map) &
MD_FEATURE_RECOVERY_OFFSET)) {
rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
if (!(le32_to_cpu(sb->feature_map) &
MD_FEATURE_RECOVERY_BITMAP))
rdev->saved_raid_disk = -1;
} else
set_bit(In_sync, &rdev->flags);
rdev->raid_disk = role;
break;
}
if (sb->devflags & WriteMostly1)
set_bit(WriteMostly, &rdev->flags);
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
set_bit(Replacement, &rdev->flags);
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
set_bit(MD_HAS_JOURNAL, &mddev->flags);
} else /* MULTIPATH are always insync */
set_bit(In_sync, &rdev->flags);
return 0;
}
static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb;
struct md_rdev *rdev2;
int max_dev, i;
/* make rdev->sb match mddev and rdev data. */
sb = page_address(rdev->sb_page);
sb->feature_map = 0;
sb->pad0 = 0;
sb->recovery_offset = cpu_to_le64(0);
memset(sb->pad3, 0, sizeof(sb->pad3));
sb->utime = cpu_to_le64((__u64)mddev->utime);
sb->events = cpu_to_le64(mddev->events);
if (mddev->in_sync)
sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
sb->resync_offset = cpu_to_le64(MaxSector);
else
sb->resync_offset = cpu_to_le64(0);
sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
sb->raid_disks = cpu_to_le32(mddev->raid_disks);
sb->size = cpu_to_le64(mddev->dev_sectors);
sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
sb->level = cpu_to_le32(mddev->level);
sb->layout = cpu_to_le32(mddev->layout);
if (test_bit(WriteMostly, &rdev->flags))
sb->devflags |= WriteMostly1;
else
sb->devflags &= ~WriteMostly1;
sb->data_offset = cpu_to_le64(rdev->data_offset);
sb->data_size = cpu_to_le64(rdev->sectors);
if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
}
if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags)) {
sb->feature_map |=
cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
sb->recovery_offset =
cpu_to_le64(rdev->recovery_offset);
if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
sb->feature_map |=
cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
}
/* Note: recovery_offset and journal_tail share space */
if (test_bit(Journal, &rdev->flags))
sb->journal_tail = cpu_to_le64(rdev->journal_tail);
if (test_bit(Replacement, &rdev->flags))
sb->feature_map |=
cpu_to_le32(MD_FEATURE_REPLACEMENT);
if (mddev->reshape_position != MaxSector) {
sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
sb->reshape_position = cpu_to_le64(mddev->reshape_position);
sb->new_layout = cpu_to_le32(mddev->new_layout);
sb->delta_disks = cpu_to_le32(mddev->delta_disks);
sb->new_level = cpu_to_le32(mddev->new_level);
sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
if (mddev->delta_disks == 0 &&
mddev->reshape_backwards)
sb->feature_map
|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
if (rdev->new_data_offset != rdev->data_offset) {
sb->feature_map
|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
- rdev->data_offset));
}
}
if (mddev_is_clustered(mddev))
sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
if (rdev->badblocks.count == 0)
/* Nothing to do for bad blocks*/ ;
else if (sb->bblog_offset == 0)
/* Cannot record bad blocks on this device */
md_error(mddev, rdev);
else {
struct badblocks *bb = &rdev->badblocks;
u64 *bbp = (u64 *)page_address(rdev->bb_page);
u64 *p = bb->page;
sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
if (bb->changed) {
unsigned seq;
retry:
seq = read_seqbegin(&bb->lock);
memset(bbp, 0xff, PAGE_SIZE);
for (i = 0 ; i < bb->count ; i++) {
u64 internal_bb = p[i];
u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
| BB_LEN(internal_bb));
bbp[i] = cpu_to_le64(store_bb);
}
bb->changed = 0;
if (read_seqretry(&bb->lock, seq))
goto retry;
bb->sector = (rdev->sb_start +
(int)le32_to_cpu(sb->bblog_offset));
bb->size = le16_to_cpu(sb->bblog_size);
}
}
max_dev = 0;
rdev_for_each(rdev2, mddev)
if (rdev2->desc_nr+1 > max_dev)
max_dev = rdev2->desc_nr+1;
if (max_dev > le32_to_cpu(sb->max_dev)) {
int bmask;
sb->max_dev = cpu_to_le32(max_dev);
rdev->sb_size = max_dev * 2 + 256;
bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
if (rdev->sb_size & bmask)
rdev->sb_size = (rdev->sb_size | bmask) + 1;
} else
max_dev = le32_to_cpu(sb->max_dev);
for (i=0; i<max_dev;i++)
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
rdev_for_each(rdev2, mddev) {
i = rdev2->desc_nr;
if (test_bit(Faulty, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
else if (test_bit(In_sync, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
else if (test_bit(Journal, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
else if (rdev2->raid_disk >= 0)
sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
else
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
}
sb->sb_csum = calc_sb_1_csum(sb);
}
static unsigned long long
super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
{
struct mdp_superblock_1 *sb;
sector_t max_sectors;
if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
return 0; /* component must fit device */
if (rdev->data_offset != rdev->new_data_offset)
return 0; /* too confusing */
if (rdev->sb_start < rdev->data_offset) {
/* minor versions 1 and 2; superblock before data */
max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
max_sectors -= rdev->data_offset;
if (!num_sectors || num_sectors > max_sectors)
num_sectors = max_sectors;
} else if (rdev->mddev->bitmap_info.offset) {
/* minor version 0 with bitmap we can't move */
return 0;
} else {
/* minor version 0; superblock after data */
sector_t sb_start;
sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
sb_start &= ~(sector_t)(4*2 - 1);
max_sectors = rdev->sectors + sb_start - rdev->sb_start;
if (!num_sectors || num_sectors > max_sectors)
num_sectors = max_sectors;
rdev->sb_start = sb_start;
}
sb = page_address(rdev->sb_page);
sb->data_size = cpu_to_le64(num_sectors);
sb->super_offset = cpu_to_le64(rdev->sb_start);
sb->sb_csum = calc_sb_1_csum(sb);
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
rdev->sb_page);
md_super_wait(rdev->mddev);
return num_sectors;
}
static int
super_1_allow_new_offset(struct md_rdev *rdev,
unsigned long long new_offset)
{
/* All necessary checks on new >= old have been done */
struct bitmap *bitmap;
if (new_offset >= rdev->data_offset)
return 1;
/* with 1.0 metadata, there is no metadata to tread on
* so we can always move back */
if (rdev->mddev->minor_version == 0)
return 1;
/* otherwise we must be sure not to step on
* any metadata, so stay:
* 36K beyond start of superblock
* beyond end of badblocks
* beyond write-intent bitmap
*/
if (rdev->sb_start + (32+4)*2 > new_offset)
return 0;
bitmap = rdev->mddev->bitmap;
if (bitmap && !rdev->mddev->bitmap_info.file &&
rdev->sb_start + rdev->mddev->bitmap_info.offset +
bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
return 0;
if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
return 0;
return 1;
}
static struct super_type super_types[] = {
[0] = {
.name = "0.90.0",
.owner = THIS_MODULE,
.load_super = super_90_load,
.validate_super = super_90_validate,
.sync_super = super_90_sync,
.rdev_size_change = super_90_rdev_size_change,
.allow_new_offset = super_90_allow_new_offset,
},
[1] = {
.name = "md-1",
.owner = THIS_MODULE,
.load_super = super_1_load,
.validate_super = super_1_validate,
.sync_super = super_1_sync,
.rdev_size_change = super_1_rdev_size_change,
.allow_new_offset = super_1_allow_new_offset,
},
};
static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
{
if (mddev->sync_super) {
mddev->sync_super(mddev, rdev);
return;
}
BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
super_types[mddev->major_version].sync_super(mddev, rdev);
}
static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
{
struct md_rdev *rdev, *rdev2;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev1) {
if (test_bit(Faulty, &rdev->flags) ||
test_bit(Journal, &rdev->flags) ||
rdev->raid_disk == -1)
continue;
rdev_for_each_rcu(rdev2, mddev2) {
if (test_bit(Faulty, &rdev2->flags) ||
test_bit(Journal, &rdev2->flags) ||
rdev2->raid_disk == -1)
continue;
if (rdev->bdev->bd_contains ==
rdev2->bdev->bd_contains) {
rcu_read_unlock();
return 1;
}
}
}
rcu_read_unlock();
return 0;
}
static LIST_HEAD(pending_raid_disks);
/*
* Try to register data integrity profile for an mddev
*
* This is called when an array is started and after a disk has been kicked
* from the array. It only succeeds if all working and active component devices
* are integrity capable with matching profiles.
*/
int md_integrity_register(struct mddev *mddev)
{
struct md_rdev *rdev, *reference = NULL;
if (list_empty(&mddev->disks))
return 0; /* nothing to do */
if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
return 0; /* shouldn't register, or already is */
rdev_for_each(rdev, mddev) {
/* skip spares and non-functional disks */
if (test_bit(Faulty, &rdev->flags))
continue;
if (rdev->raid_disk < 0)
continue;
if (!reference) {
/* Use the first rdev as the reference */
reference = rdev;
continue;
}
/* does this rdev's profile match the reference profile? */
if (blk_integrity_compare(reference->bdev->bd_disk,
rdev->bdev->bd_disk) < 0)
return -EINVAL;
}
if (!reference || !bdev_get_integrity(reference->bdev))
return 0;
/*
* All component devices are integrity capable and have matching
* profiles, register the common profile for the md device.
*/
blk_integrity_register(mddev->gendisk,
bdev_get_integrity(reference->bdev));
printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
printk(KERN_ERR "md: failed to create integrity pool for %s\n",
mdname(mddev));
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(md_integrity_register);
/*
* Attempt to add an rdev, but only if it is consistent with the current
* integrity profile
*/
int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
{
struct blk_integrity *bi_rdev;
struct blk_integrity *bi_mddev;
char name[BDEVNAME_SIZE];
if (!mddev->gendisk)
return 0;
bi_rdev = bdev_get_integrity(rdev->bdev);
bi_mddev = blk_get_integrity(mddev->gendisk);
if (!bi_mddev) /* nothing to do */
return 0;
if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
mdname(mddev), bdevname(rdev->bdev, name));
return -ENXIO;
}
return 0;
}
EXPORT_SYMBOL(md_integrity_add_rdev);
static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
{
char b[BDEVNAME_SIZE];
struct kobject *ko;
int err;
/* prevent duplicates */
if (find_rdev(mddev, rdev->bdev->bd_dev))
return -EEXIST;
/* make sure rdev->sectors exceeds mddev->dev_sectors */
if (rdev->sectors && (mddev->dev_sectors == 0 ||
rdev->sectors < mddev->dev_sectors)) {
if (mddev->pers) {
/* Cannot change size, so fail
* If mddev->level <= 0, then we don't care
* about aligning sizes (e.g. linear)
*/
if (mddev->level > 0)
return -ENOSPC;
} else
mddev->dev_sectors = rdev->sectors;
}
/* Verify rdev->desc_nr is unique.
* If it is -1, assign a free number, else
* check number is not in use
*/
rcu_read_lock();
if (rdev->desc_nr < 0) {
int choice = 0;
if (mddev->pers)
choice = mddev->raid_disks;
while (md_find_rdev_nr_rcu(mddev, choice))
choice++;
rdev->desc_nr = choice;
} else {
if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
rcu_read_unlock();
return -EBUSY;
}
}
rcu_read_unlock();
if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
mdname(mddev), mddev->max_disks);
return -EBUSY;
}
bdevname(rdev->bdev,b);
strreplace(b, '/', '!');
rdev->mddev = mddev;
printk(KERN_INFO "md: bind<%s>\n", b);
if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
goto fail;
ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
if (sysfs_create_link(&rdev->kobj, ko, "block"))
/* failure here is OK */;
rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
list_add_rcu(&rdev->same_set, &mddev->disks);
bd_link_disk_holder(rdev->bdev, mddev->gendisk);
/* May as well allow recovery to be retried once */
mddev->recovery_disabled++;
return 0;
fail:
printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
b, mdname(mddev));
return err;
}
static void md_delayed_delete(struct work_struct *ws)
{
struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
kobject_del(&rdev->kobj);
kobject_put(&rdev->kobj);
}
static void unbind_rdev_from_array(struct md_rdev *rdev)
{
char b[BDEVNAME_SIZE];
bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
list_del_rcu(&rdev->same_set);
printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
rdev->mddev = NULL;
sysfs_remove_link(&rdev->kobj, "block");
sysfs_put(rdev->sysfs_state);
rdev->sysfs_state = NULL;
rdev->badblocks.count = 0;
/* We need to delay this, otherwise we can deadlock when
* writing to 'remove' to "dev/state". We also need
* to delay it due to rcu usage.
*/
synchronize_rcu();
INIT_WORK(&rdev->del_work, md_delayed_delete);
kobject_get(&rdev->kobj);
queue_work(md_misc_wq, &rdev->del_work);
}
/*
* prevent the device from being mounted, repartitioned or
* otherwise reused by a RAID array (or any other kernel
* subsystem), by bd_claiming the device.
*/
static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
{
int err = 0;
struct block_device *bdev;
char b[BDEVNAME_SIZE];
bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
shared ? (struct md_rdev *)lock_rdev : rdev);
if (IS_ERR(bdev)) {
printk(KERN_ERR "md: could not open %s.\n",
__bdevname(dev, b));
return PTR_ERR(bdev);
}
rdev->bdev = bdev;
return err;
}
static void unlock_rdev(struct md_rdev *rdev)
{
struct block_device *bdev = rdev->bdev;
rdev->bdev = NULL;
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
}
void md_autodetect_dev(dev_t dev);
static void export_rdev(struct md_rdev *rdev)
{
char b[BDEVNAME_SIZE];
printk(KERN_INFO "md: export_rdev(%s)\n",
bdevname(rdev->bdev,b));
md_rdev_clear(rdev);
#ifndef MODULE
if (test_bit(AutoDetected, &rdev->flags))
md_autodetect_dev(rdev->bdev->bd_dev);
#endif
unlock_rdev(rdev);
kobject_put(&rdev->kobj);
}
void md_kick_rdev_from_array(struct md_rdev *rdev)
{
unbind_rdev_from_array(rdev);
export_rdev(rdev);
}
EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
static void export_array(struct mddev *mddev)
{
struct md_rdev *rdev;
while (!list_empty(&mddev->disks)) {
rdev = list_first_entry(&mddev->disks, struct md_rdev,
same_set);
md_kick_rdev_from_array(rdev);
}
mddev->raid_disks = 0;
mddev->major_version = 0;
}
static void sync_sbs(struct mddev *mddev, int nospares)
{
/* Update each superblock (in-memory image), but
* if we are allowed to, skip spares which already
* have the right event counter, or have one earlier
* (which would mean they aren't being marked as dirty
* with the rest of the array)
*/
struct md_rdev *rdev;
rdev_for_each(rdev, mddev) {
if (rdev->sb_events == mddev->events ||
(nospares &&
rdev->raid_disk < 0 &&
rdev->sb_events+1 == mddev->events)) {
/* Don't update this superblock */
rdev->sb_loaded = 2;
} else {
sync_super(mddev, rdev);
rdev->sb_loaded = 1;
}
}
}
static bool does_sb_need_changing(struct mddev *mddev)
{
struct md_rdev *rdev;
struct mdp_superblock_1 *sb;
int role;
/* Find a good rdev */
rdev_for_each(rdev, mddev)
if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
break;
/* No good device found. */
if (!rdev)
return false;
sb = page_address(rdev->sb_page);
/* Check if a device has become faulty or a spare become active */
rdev_for_each(rdev, mddev) {
role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
/* Device activated? */
if (role == 0xffff && rdev->raid_disk >=0 &&
!test_bit(Faulty, &rdev->flags))
return true;
/* Device turned faulty? */
if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
return true;
}
/* Check if any mddev parameters have changed */
if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
(mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
(mddev->layout != le32_to_cpu(sb->layout)) ||
(mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
(mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
return true;
return false;
}
void md_update_sb(struct mddev *mddev, int force_change)
{
struct md_rdev *rdev;
int sync_req;
int nospares = 0;
int any_badblocks_changed = 0;
int ret = -1;
if (mddev->ro) {
if (force_change)
set_bit(MD_CHANGE_DEVS, &mddev->flags);
return;
}
if (mddev_is_clustered(mddev)) {
if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
force_change = 1;
ret = md_cluster_ops->metadata_update_start(mddev);
/* Has someone else has updated the sb */
if (!does_sb_need_changing(mddev)) {
if (ret == 0)
md_cluster_ops->metadata_update_cancel(mddev);
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
return;
}
}
repeat:
/* First make sure individual recovery_offsets are correct */
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk >= 0 &&
mddev->delta_disks >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
mddev->curr_resync_completed > rdev->recovery_offset)
rdev->recovery_offset = mddev->curr_resync_completed;
}
if (!mddev->persistent) {
clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
clear_bit(MD_CHANGE_DEVS, &mddev->flags);
if (!mddev->external) {
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
rdev_for_each(rdev, mddev) {
if (rdev->badblocks.changed) {
rdev->badblocks.changed = 0;
md_ack_all_badblocks(&rdev->badblocks);
md_error(mddev, rdev);
}
clear_bit(Blocked, &rdev->flags);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
}
}
wake_up(&mddev->sb_wait);
return;
}
spin_lock(&mddev->lock);
mddev->utime = get_seconds();
if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
force_change = 1;
if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
/* just a clean<-> dirty transition, possibly leave spares alone,
* though if events isn't the right even/odd, we will have to do
* spares after all
*/
nospares = 1;
if (force_change)
nospares = 0;
if (mddev->degraded)
/* If the array is degraded, then skipping spares is both
* dangerous and fairly pointless.
* Dangerous because a device that was removed from the array
* might have a event_count that still looks up-to-date,
* so it can be re-added without a resync.
* Pointless because if there are any spares to skip,
* then a recovery will happen and soon that array won't
* be degraded any more and the spare can go back to sleep then.
*/
nospares = 0;
sync_req = mddev->in_sync;
/* If this is just a dirty<->clean transition, and the array is clean
* and 'events' is odd, we can roll back to the previous clean state */
if (nospares
&& (mddev->in_sync && mddev->recovery_cp == MaxSector)
&& mddev->can_decrease_events
&& mddev->events != 1) {
mddev->events--;
mddev->can_decrease_events = 0;
} else {
/* otherwise we have to go forward and ... */
mddev->events ++;
mddev->can_decrease_events = nospares;
}
/*
* This 64-bit counter should never wrap.
* Either we are in around ~1 trillion A.C., assuming
* 1 reboot per second, or we have a bug...
*/
WARN_ON(mddev->events == 0);
rdev_for_each(rdev, mddev) {
if (rdev->badblocks.changed)
any_badblocks_changed++;
if (test_bit(Faulty, &rdev->flags))
set_bit(FaultRecorded, &rdev->flags);
}
sync_sbs(mddev, nospares);
spin_unlock(&mddev->lock);
pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
mdname(mddev), mddev->in_sync);
bitmap_update_sb(mddev->bitmap);
rdev_for_each(rdev, mddev) {
char b[BDEVNAME_SIZE];
if (rdev->sb_loaded != 1)
continue; /* no noise on spare devices */
if (!test_bit(Faulty, &rdev->flags)) {
md_super_write(mddev,rdev,
rdev->sb_start, rdev->sb_size,
rdev->sb_page);
pr_debug("md: (write) %s's sb offset: %llu\n",
bdevname(rdev->bdev, b),
(unsigned long long)rdev->sb_start);
rdev->sb_events = mddev->events;
if (rdev->badblocks.size) {
md_super_write(mddev, rdev,
rdev->badblocks.sector,
rdev->badblocks.size << 9,
rdev->bb_page);
rdev->badblocks.size = 0;
}
} else
pr_debug("md: %s (skipping faulty)\n",
bdevname(rdev->bdev, b));
if (mddev->level == LEVEL_MULTIPATH)
/* only need to write one superblock... */
break;
}
md_super_wait(mddev);
/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
spin_lock(&mddev->lock);
if (mddev->in_sync != sync_req ||
test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
/* have to write it out again */
spin_unlock(&mddev->lock);
goto repeat;
}
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
spin_unlock(&mddev->lock);
wake_up(&mddev->sb_wait);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
rdev_for_each(rdev, mddev) {
if (test_and_clear_bit(FaultRecorded, &rdev->flags))
clear_bit(Blocked, &rdev->flags);
if (any_badblocks_changed)
md_ack_all_badblocks(&rdev->badblocks);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
}
if (mddev_is_clustered(mddev) && ret == 0)
md_cluster_ops->metadata_update_finish(mddev);
}
EXPORT_SYMBOL(md_update_sb);
static int add_bound_rdev(struct md_rdev *rdev)
{
struct mddev *mddev = rdev->mddev;
int err = 0;
if (!mddev->pers->hot_remove_disk) {
/* If there is hot_add_disk but no hot_remove_disk
* then added disks for geometry changes,
* and should be added immediately.
*/
super_types[mddev->major_version].
validate_super(mddev, rdev);
err = mddev->pers->hot_add_disk(mddev, rdev);
if (err) {
unbind_rdev_from_array(rdev);
export_rdev(rdev);
return err;
}
}
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_bit(MD_CHANGE_DEVS, &mddev->flags);
if (mddev->degraded)
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_new_event(mddev);
md_wakeup_thread(mddev->thread);
return 0;
}
/* words written to sysfs files may, or may not, be \n terminated.
* We want to accept with case. For this we use cmd_match.
*/
static int cmd_match(const char *cmd, const char *str)
{
/* See if cmd, written into a sysfs file, matches
* str. They must either be the same, or cmd can
* have a trailing newline
*/
while (*cmd && *str && *cmd == *str) {
cmd++;
str++;
}
if (*cmd == '\n')
cmd++;
if (*str || *cmd)
return 0;
return 1;
}
struct rdev_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct md_rdev *, char *);
ssize_t (*store)(struct md_rdev *, const char *, size_t);
};
static ssize_t
state_show(struct md_rdev *rdev, char *page)
{
char *sep = "";
size_t len = 0;
unsigned long flags = ACCESS_ONCE(rdev->flags);
if (test_bit(Faulty, &flags) ||
rdev->badblocks.unacked_exist) {
len+= sprintf(page+len, "%sfaulty",sep);
sep = ",";
}
if (test_bit(In_sync, &flags)) {
len += sprintf(page+len, "%sin_sync",sep);
sep = ",";
}
if (test_bit(Journal, &flags)) {
len += sprintf(page+len, "%sjournal",sep);
sep = ",";
}
if (test_bit(WriteMostly, &flags)) {
len += sprintf(page+len, "%swrite_mostly",sep);
sep = ",";
}
if (test_bit(Blocked, &flags) ||
(rdev->badblocks.unacked_exist
&& !test_bit(Faulty, &flags))) {
len += sprintf(page+len, "%sblocked", sep);
sep = ",";
}
if (!test_bit(Faulty, &flags) &&
!test_bit(Journal, &flags) &&
!test_bit(In_sync, &flags)) {
len += sprintf(page+len, "%sspare", sep);
sep = ",";
}
if (test_bit(WriteErrorSeen, &flags)) {
len += sprintf(page+len, "%swrite_error", sep);
sep = ",";
}
if (test_bit(WantReplacement, &flags)) {
len += sprintf(page+len, "%swant_replacement", sep);
sep = ",";
}
if (test_bit(Replacement, &flags)) {
len += sprintf(page+len, "%sreplacement", sep);
sep = ",";
}
return len+sprintf(page+len, "\n");
}
static ssize_t
state_store(struct md_rdev *rdev, const char *buf, size_t len)
{
/* can write
* faulty - simulates an error
* remove - disconnects the device
* writemostly - sets write_mostly
* -writemostly - clears write_mostly
* blocked - sets the Blocked flags
* -blocked - clears the Blocked and possibly simulates an error
* insync - sets Insync providing device isn't active
* -insync - clear Insync for a device with a slot assigned,
* so that it gets rebuilt based on bitmap
* write_error - sets WriteErrorSeen
* -write_error - clears WriteErrorSeen
*/
int err = -EINVAL;
if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
md_error(rdev->mddev, rdev);
if (test_bit(Faulty, &rdev->flags))
err = 0;
else
err = -EBUSY;
} else if (cmd_match(buf, "remove")) {
if (rdev->raid_disk >= 0)
err = -EBUSY;
else {
struct mddev *mddev = rdev->mddev;
err = 0;
if (mddev_is_clustered(mddev))
err = md_cluster_ops->remove_disk(mddev, rdev);
if (err == 0) {
md_kick_rdev_from_array(rdev);
if (mddev->pers)
md_update_sb(mddev, 1);
md_new_event(mddev);
}
}
} else if (cmd_match(buf, "writemostly")) {
set_bit(WriteMostly, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-writemostly")) {
clear_bit(WriteMostly, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "blocked")) {
set_bit(Blocked, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-blocked")) {
if (!test_bit(Faulty, &rdev->flags) &&
rdev->badblocks.unacked_exist) {
/* metadata handler doesn't understand badblocks,
* so we need to fail the device
*/
md_error(rdev->mddev, rdev);
}
clear_bit(Blocked, &rdev->flags);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
err = 0;
} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
set_bit(In_sync, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags)) {
if (rdev->mddev->pers == NULL) {
clear_bit(In_sync, &rdev->flags);
rdev->saved_raid_disk = rdev->raid_disk;
rdev->raid_disk = -1;
err = 0;
}
} else if (cmd_match(buf, "write_error")) {
set_bit(WriteErrorSeen, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-write_error")) {
clear_bit(WriteErrorSeen, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "want_replacement")) {
/* Any non-spare device that is not a replacement can
* become want_replacement at any time, but we then need to
* check if recovery is needed.
*/
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Replacement, &rdev->flags))
set_bit(WantReplacement, &rdev->flags);
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
err = 0;
} else if (cmd_match(buf, "-want_replacement")) {
/* Clearing 'want_replacement' is always allowed.
* Once replacements starts it is too late though.
*/
err = 0;
clear_bit(WantReplacement, &rdev->flags);
} else if (cmd_match(buf, "replacement")) {
/* Can only set a device as a replacement when array has not
* yet been started. Once running, replacement is automatic
* from spares, or by assigning 'slot'.
*/
if (rdev->mddev->pers)
err = -EBUSY;
else {
set_bit(Replacement, &rdev->flags);
err = 0;
}
} else if (cmd_match(buf, "-replacement")) {
/* Similarly, can only clear Replacement before start */
if (rdev->mddev->pers)
err = -EBUSY;
else {
clear_bit(Replacement, &rdev->flags);
err = 0;
}
} else if (cmd_match(buf, "re-add")) {
if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
rdev->saved_raid_disk >= 0) {
/* clear_bit is performed _after_ all the devices
* have their local Faulty bit cleared. If any writes
* happen in the meantime in the local node, they
* will land in the local bitmap, which will be synced
* by this node eventually
*/
if (!mddev_is_clustered(rdev->mddev) ||
(err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
clear_bit(Faulty, &rdev->flags);
err = add_bound_rdev(rdev);
}
} else
err = -EBUSY;
}
if (!err)
sysfs_notify_dirent_safe(rdev->sysfs_state);
return err ? err : len;
}
static struct rdev_sysfs_entry rdev_state =
__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
static ssize_t
errors_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
}
static ssize_t
errors_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned int n;
int rv;
rv = kstrtouint(buf, 10, &n);
if (rv < 0)
return rv;
atomic_set(&rdev->corrected_errors, n);
return len;
}
static struct rdev_sysfs_entry rdev_errors =
__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
static ssize_t
slot_show(struct md_rdev *rdev, char *page)
{
if (test_bit(Journal, &rdev->flags))
return sprintf(page, "journal\n");
else if (rdev->raid_disk < 0)
return sprintf(page, "none\n");
else
return sprintf(page, "%d\n", rdev->raid_disk);
}
static ssize_t
slot_store(struct md_rdev *rdev, const char *buf, size_t len)
{
int slot;
int err;
if (test_bit(Journal, &rdev->flags))
return -EBUSY;
if (strncmp(buf, "none", 4)==0)
slot = -1;
else {
err = kstrtouint(buf, 10, (unsigned int *)&slot);
if (err < 0)
return err;
}
if (rdev->mddev->pers && slot == -1) {
/* Setting 'slot' on an active array requires also
* updating the 'rd%d' link, and communicating
* with the personality with ->hot_*_disk.
* For now we only support removing
* failed/spare devices. This normally happens automatically,
* but not when the metadata is externally managed.
*/
if (rdev->raid_disk == -1)
return -EEXIST;
/* personality does all needed checks */
if (rdev->mddev->pers->hot_remove_disk == NULL)
return -EINVAL;
clear_bit(Blocked, &rdev->flags);
remove_and_add_spares(rdev->mddev, rdev);
if (rdev->raid_disk >= 0)
return -EBUSY;
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
} else if (rdev->mddev->pers) {
/* Activating a spare .. or possibly reactivating
* if we ever get bitmaps working here.
*/
int err;
if (rdev->raid_disk != -1)
return -EBUSY;
if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
return -EBUSY;
if (rdev->mddev->pers->hot_add_disk == NULL)
return -EINVAL;
if (slot >= rdev->mddev->raid_disks &&
slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
return -ENOSPC;
rdev->raid_disk = slot;
if (test_bit(In_sync, &rdev->flags))
rdev->saved_raid_disk = slot;
else
rdev->saved_raid_disk = -1;
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
err = rdev->mddev->pers->
hot_add_disk(rdev->mddev, rdev);
if (err) {
rdev->raid_disk = -1;
return err;
} else
sysfs_notify_dirent_safe(rdev->sysfs_state);
if (sysfs_link_rdev(rdev->mddev, rdev))
/* failure here is OK */;
/* don't wakeup anyone, leave that to userspace. */
} else {
if (slot >= rdev->mddev->raid_disks &&
slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
return -ENOSPC;
rdev->raid_disk = slot;
/* assume it is working */
clear_bit(Faulty, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
set_bit(In_sync, &rdev->flags);
sysfs_notify_dirent_safe(rdev->sysfs_state);
}
return len;
}
static struct rdev_sysfs_entry rdev_slot =
__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
static ssize_t
offset_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
}
static ssize_t
offset_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned long long offset;
if (kstrtoull(buf, 10, &offset) < 0)
return -EINVAL;
if (rdev->mddev->pers && rdev->raid_disk >= 0)
return -EBUSY;
if (rdev->sectors && rdev->mddev->external)
/* Must set offset before size, so overlap checks
* can be sane */
return -EBUSY;
rdev->data_offset = offset;
rdev->new_data_offset = offset;
return len;
}
static struct rdev_sysfs_entry rdev_offset =
__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)rdev->new_data_offset);
}
static ssize_t new_offset_store(struct md_rdev *rdev,
const char *buf, size_t len)
{
unsigned long long new_offset;
struct mddev *mddev = rdev->mddev;
if (kstrtoull(buf, 10, &new_offset) < 0)
return -EINVAL;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
return -EBUSY;
if (new_offset == rdev->data_offset)
/* reset is always permitted */
;
else if (new_offset > rdev->data_offset) {
/* must not push array size beyond rdev_sectors */
if (new_offset - rdev->data_offset
+ mddev->dev_sectors > rdev->sectors)
return -E2BIG;
}
/* Metadata worries about other space details. */
/* decreasing the offset is inconsistent with a backwards
* reshape.
*/
if (new_offset < rdev->data_offset &&
mddev->reshape_backwards)
return -EINVAL;
/* Increasing offset is inconsistent with forwards
* reshape. reshape_direction should be set to
* 'backwards' first.
*/
if (new_offset > rdev->data_offset &&
!mddev->reshape_backwards)
return -EINVAL;
if (mddev->pers && mddev->persistent &&
!super_types[mddev->major_version]
.allow_new_offset(rdev, new_offset))
return -E2BIG;
rdev->new_data_offset = new_offset;
if (new_offset > rdev->data_offset)
mddev->reshape_backwards = 1;
else if (new_offset < rdev->data_offset)
mddev->reshape_backwards = 0;
return len;
}
static struct rdev_sysfs_entry rdev_new_offset =
__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
static ssize_t
rdev_size_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
}
static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
{
/* check if two start/length pairs overlap */
if (s1+l1 <= s2)
return 0;
if (s2+l2 <= s1)
return 0;
return 1;
}
static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
{
unsigned long long blocks;
sector_t new;
if (kstrtoull(buf, 10, &blocks) < 0)
return -EINVAL;
if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
return -EINVAL; /* sector conversion overflow */
new = blocks * 2;
if (new != blocks * 2)
return -EINVAL; /* unsigned long long to sector_t overflow */
*sectors = new;
return 0;
}
static ssize_t
rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
{
struct mddev *my_mddev = rdev->mddev;
sector_t oldsectors = rdev->sectors;
sector_t sectors;
if (test_bit(Journal, &rdev->flags))
return -EBUSY;
if (strict_blocks_to_sectors(buf, &sectors) < 0)
return -EINVAL;
if (rdev->data_offset != rdev->new_data_offset)
return -EINVAL; /* too confusing */
if (my_mddev->pers && rdev->raid_disk >= 0) {
if (my_mddev->persistent) {
sectors = super_types[my_mddev->major_version].
rdev_size_change(rdev, sectors);
if (!sectors)
return -EBUSY;
} else if (!sectors)
sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
rdev->data_offset;
if (!my_mddev->pers->resize)
/* Cannot change size for RAID0 or Linear etc */
return -EINVAL;
}
if (sectors < my_mddev->dev_sectors)
return -EINVAL; /* component must fit device */
rdev->sectors = sectors;
if (sectors > oldsectors && my_mddev->external) {
/* Need to check that all other rdevs with the same
* ->bdev do not overlap. 'rcu' is sufficient to walk
* the rdev lists safely.
* This check does not provide a hard guarantee, it
* just helps avoid dangerous mistakes.
*/
struct mddev *mddev;
int overlap = 0;
struct list_head *tmp;
rcu_read_lock();
for_each_mddev(mddev, tmp) {
struct md_rdev *rdev2;
rdev_for_each(rdev2, mddev)
if (rdev->bdev == rdev2->bdev &&
rdev != rdev2 &&
overlaps(rdev->data_offset, rdev->sectors,
rdev2->data_offset,
rdev2->sectors)) {
overlap = 1;
break;
}
if (overlap) {
mddev_put(mddev);
break;
}
}
rcu_read_unlock();
if (overlap) {
/* Someone else could have slipped in a size
* change here, but doing so is just silly.
* We put oldsectors back because we *know* it is
* safe, and trust userspace not to race with
* itself
*/
rdev->sectors = oldsectors;
return -EBUSY;
}
}
return len;
}
static struct rdev_sysfs_entry rdev_size =
__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
{
unsigned long long recovery_start = rdev->recovery_offset;
if (test_bit(In_sync, &rdev->flags) ||
recovery_start == MaxSector)
return sprintf(page, "none\n");
return sprintf(page, "%llu\n", recovery_start);
}
static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned long long recovery_start;
if (cmd_match(buf, "none"))
recovery_start = MaxSector;
else if (kstrtoull(buf, 10, &recovery_start))
return -EINVAL;
if (rdev->mddev->pers &&
rdev->raid_disk >= 0)
return -EBUSY;
rdev->recovery_offset = recovery_start;
if (recovery_start == MaxSector)
set_bit(In_sync, &rdev->flags);
else
clear_bit(In_sync, &rdev->flags);
return len;
}
static struct rdev_sysfs_entry rdev_recovery_start =
__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
static ssize_t
badblocks_show(struct badblocks *bb, char *page, int unack);
static ssize_t
badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
static ssize_t bb_show(struct md_rdev *rdev, char *page)
{
return badblocks_show(&rdev->badblocks, page, 0);
}
static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
{
int rv = badblocks_store(&rdev->badblocks, page, len, 0);
/* Maybe that ack was all we needed */
if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
wake_up(&rdev->blocked_wait);
return rv;
}
static struct rdev_sysfs_entry rdev_bad_blocks =
__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
static ssize_t ubb_show(struct md_rdev *rdev, char *page)
{
return badblocks_show(&rdev->badblocks, page, 1);
}
static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
{
return badblocks_store(&rdev->badblocks, page, len, 1);
}
static struct rdev_sysfs_entry rdev_unack_bad_blocks =
__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
static struct attribute *rdev_default_attrs[] = {
&rdev_state.attr,
&rdev_errors.attr,
&rdev_slot.attr,
&rdev_offset.attr,
&rdev_new_offset.attr,
&rdev_size.attr,
&rdev_recovery_start.attr,
&rdev_bad_blocks.attr,
&rdev_unack_bad_blocks.attr,
NULL,
};
static ssize_t
rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
if (!entry->show)
return -EIO;
if (!rdev->mddev)
return -EBUSY;
return entry->show(rdev, page);
}
static ssize_t
rdev_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
ssize_t rv;
struct mddev *mddev = rdev->mddev;
if (!entry->store)
return -EIO;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
rv = mddev ? mddev_lock(mddev): -EBUSY;
if (!rv) {
if (rdev->mddev == NULL)
rv = -EBUSY;
else
rv = entry->store(rdev, page, length);
mddev_unlock(mddev);
}
return rv;
}
static void rdev_free(struct kobject *ko)
{
struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
kfree(rdev);
}
static const struct sysfs_ops rdev_sysfs_ops = {
.show = rdev_attr_show,
.store = rdev_attr_store,
};
static struct kobj_type rdev_ktype = {
.release = rdev_free,
.sysfs_ops = &rdev_sysfs_ops,
.default_attrs = rdev_default_attrs,
};
int md_rdev_init(struct md_rdev *rdev)
{
rdev->desc_nr = -1;
rdev->saved_raid_disk = -1;
rdev->raid_disk = -1;
rdev->flags = 0;
rdev->data_offset = 0;
rdev->new_data_offset = 0;
rdev->sb_events = 0;
rdev->last_read_error.tv_sec = 0;
rdev->last_read_error.tv_nsec = 0;
rdev->sb_loaded = 0;
rdev->bb_page = NULL;
atomic_set(&rdev->nr_pending, 0);
atomic_set(&rdev->read_errors, 0);
atomic_set(&rdev->corrected_errors, 0);
INIT_LIST_HEAD(&rdev->same_set);
init_waitqueue_head(&rdev->blocked_wait);
/* Add space to store bad block list.
* This reserves the space even on arrays where it cannot
* be used - I wonder if that matters
*/
rdev->badblocks.count = 0;
rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
seqlock_init(&rdev->badblocks.lock);
if (rdev->badblocks.page == NULL)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(md_rdev_init);
/*
* Import a device. If 'super_format' >= 0, then sanity check the superblock
*
* mark the device faulty if:
*
* - the device is nonexistent (zero size)
* - the device has no valid superblock
*
* a faulty rdev _never_ has rdev->sb set.
*/
static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
{
char b[BDEVNAME_SIZE];
int err;
struct md_rdev *rdev;
sector_t size;
rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
if (!rdev) {
printk(KERN_ERR "md: could not alloc mem for new device!\n");
return ERR_PTR(-ENOMEM);
}
err = md_rdev_init(rdev);
if (err)
goto abort_free;
err = alloc_disk_sb(rdev);
if (err)
goto abort_free;
err = lock_rdev(rdev, newdev, super_format == -2);
if (err)
goto abort_free;
kobject_init(&rdev->kobj, &rdev_ktype);
size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
if (!size) {
printk(KERN_WARNING
"md: %s has zero or unknown size, marking faulty!\n",
bdevname(rdev->bdev,b));
err = -EINVAL;
goto abort_free;
}
if (super_format >= 0) {
err = super_types[super_format].
load_super(rdev, NULL, super_minor);
if (err == -EINVAL) {
printk(KERN_WARNING
"md: %s does not have a valid v%d.%d "
"superblock, not importing!\n",
bdevname(rdev->bdev,b),
super_format, super_minor);
goto abort_free;
}
if (err < 0) {
printk(KERN_WARNING
"md: could not read %s's sb, not importing!\n",
bdevname(rdev->bdev,b));
goto abort_free;
}
}
return rdev;
abort_free:
if (rdev->bdev)
unlock_rdev(rdev);
md_rdev_clear(rdev);
kfree(rdev);
return ERR_PTR(err);
}
/*
* Check a full RAID array for plausibility
*/
static void analyze_sbs(struct mddev *mddev)
{
int i;
struct md_rdev *rdev, *freshest, *tmp;
char b[BDEVNAME_SIZE];
freshest = NULL;
rdev_for_each_safe(rdev, tmp, mddev)
switch (super_types[mddev->major_version].
load_super(rdev, freshest, mddev->minor_version)) {
case 1:
freshest = rdev;
break;
case 0:
break;
default:
printk( KERN_ERR \
"md: fatal superblock inconsistency in %s"
" -- removing from array\n",
bdevname(rdev->bdev,b));
md_kick_rdev_from_array(rdev);
}
super_types[mddev->major_version].
validate_super(mddev, freshest);
i = 0;
rdev_for_each_safe(rdev, tmp, mddev) {
if (mddev->max_disks &&
(rdev->desc_nr >= mddev->max_disks ||
i > mddev->max_disks)) {
printk(KERN_WARNING
"md: %s: %s: only %d devices permitted\n",
mdname(mddev), bdevname(rdev->bdev, b),
mddev->max_disks);
md_kick_rdev_from_array(rdev);
continue;
}
if (rdev != freshest) {
if (super_types[mddev->major_version].
validate_super(mddev, rdev)) {
printk(KERN_WARNING "md: kicking non-fresh %s"
" from array!\n",
bdevname(rdev->bdev,b));
md_kick_rdev_from_array(rdev);
continue;
}
}
if (mddev->level == LEVEL_MULTIPATH) {
rdev->desc_nr = i++;
rdev->raid_disk = rdev->desc_nr;
set_bit(In_sync, &rdev->flags);
} else if (rdev->raid_disk >=
(mddev->raid_disks - min(0, mddev->delta_disks)) &&
!test_bit(Journal, &rdev->flags)) {
rdev->raid_disk = -1;
clear_bit(In_sync, &rdev->flags);
}
}
}
/* Read a fixed-point number.
* Numbers in sysfs attributes should be in "standard" units where
* possible, so time should be in seconds.
* However we internally use a a much smaller unit such as
* milliseconds or jiffies.
* This function takes a decimal number with a possible fractional
* component, and produces an integer which is the result of
* multiplying that number by 10^'scale'.
* all without any floating-point arithmetic.
*/
int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
{
unsigned long result = 0;
long decimals = -1;
while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
if (*cp == '.')
decimals = 0;
else if (decimals < scale) {
unsigned int value;
value = *cp - '0';
result = result * 10 + value;
if (decimals >= 0)
decimals++;
}
cp++;
}
if (*cp == '\n')
cp++;
if (*cp)
return -EINVAL;
if (decimals < 0)
decimals = 0;
while (decimals < scale) {
result *= 10;
decimals ++;
}
*res = result;
return 0;
}
static ssize_t
safe_delay_show(struct mddev *mddev, char *page)
{
int msec = (mddev->safemode_delay*1000)/HZ;
return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
}
static ssize_t
safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
{
unsigned long msec;
if (mddev_is_clustered(mddev)) {
pr_info("md: Safemode is disabled for clustered mode\n");
return -EINVAL;
}
if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
return -EINVAL;
if (msec == 0)
mddev->safemode_delay = 0;
else {
unsigned long old_delay = mddev->safemode_delay;
unsigned long new_delay = (msec*HZ)/1000;
if (new_delay == 0)
new_delay = 1;
mddev->safemode_delay = new_delay;
if (new_delay < old_delay || old_delay == 0)
mod_timer(&mddev->safemode_timer, jiffies+1);
}
return len;
}
static struct md_sysfs_entry md_safe_delay =
__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
static ssize_t
level_show(struct mddev *mddev, char *page)
{
struct md_personality *p;
int ret;
spin_lock(&mddev->lock);
p = mddev->pers;
if (p)
ret = sprintf(page, "%s\n", p->name);
else if (mddev->clevel[0])
ret = sprintf(page, "%s\n", mddev->clevel);
else if (mddev->level != LEVEL_NONE)
ret = sprintf(page, "%d\n", mddev->level);
else
ret = 0;
spin_unlock(&mddev->lock);
return ret;
}
static ssize_t
level_store(struct mddev *mddev, const char *buf, size_t len)
{
char clevel[16];
ssize_t rv;
size_t slen = len;
struct md_personality *pers, *oldpers;
long level;
void *priv, *oldpriv;
struct md_rdev *rdev;
if (slen == 0 || slen >= sizeof(clevel))
return -EINVAL;
rv = mddev_lock(mddev);
if (rv)
return rv;
if (mddev->pers == NULL) {
strncpy(mddev->clevel, buf, slen);
if (mddev->clevel[slen-1] == '\n')
slen--;
mddev->clevel[slen] = 0;
mddev->level = LEVEL_NONE;
rv = len;
goto out_unlock;
}
rv = -EROFS;
if (mddev->ro)
goto out_unlock;
/* request to change the personality. Need to ensure:
* - array is not engaged in resync/recovery/reshape
* - old personality can be suspended
* - new personality will access other array.
*/
rv = -EBUSY;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
mddev->reshape_position != MaxSector ||
mddev->sysfs_active)
goto out_unlock;
rv = -EINVAL;
if (!mddev->pers->quiesce) {
printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
mdname(mddev), mddev->pers->name);
goto out_unlock;
}
/* Now find the new personality */
strncpy(clevel, buf, slen);
if (clevel[slen-1] == '\n')
slen--;
clevel[slen] = 0;
if (kstrtol(clevel, 10, &level))
level = LEVEL_NONE;
if (request_module("md-%s", clevel) != 0)
request_module("md-level-%s", clevel);
spin_lock(&pers_lock);
pers = find_pers(level, clevel);
if (!pers || !try_module_get(pers->owner)) {
spin_unlock(&pers_lock);
printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
rv = -EINVAL;
goto out_unlock;
}
spin_unlock(&pers_lock);
if (pers == mddev->pers) {
/* Nothing to do! */
module_put(pers->owner);
rv = len;
goto out_unlock;
}
if (!pers->takeover) {
module_put(pers->owner);
printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
mdname(mddev), clevel);
rv = -EINVAL;
goto out_unlock;
}
rdev_for_each(rdev, mddev)
rdev->new_raid_disk = rdev->raid_disk;
/* ->takeover must set new_* and/or delta_disks
* if it succeeds, and may set them when it fails.
*/
priv = pers->takeover(mddev);
if (IS_ERR(priv)) {
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->raid_disks -= mddev->delta_disks;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
module_put(pers->owner);
printk(KERN_WARNING "md: %s: %s would not accept array\n",
mdname(mddev), clevel);
rv = PTR_ERR(priv);
goto out_unlock;
}
/* Looks like we have a winner */
mddev_suspend(mddev);
mddev_detach(mddev);
spin_lock(&mddev->lock);
oldpers = mddev->pers;
oldpriv = mddev->private;
mddev->pers = pers;
mddev->private = priv;
strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
mddev->level = mddev->new_level;
mddev->layout = mddev->new_layout;
mddev->chunk_sectors = mddev->new_chunk_sectors;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->degraded = 0;
spin_unlock(&mddev->lock);
if (oldpers->sync_request == NULL &&
mddev->external) {
/* We are converting from a no-redundancy array
* to a redundancy array and metadata is managed
* externally so we need to be sure that writes
* won't block due to a need to transition
* clean->dirty
* until external management is started.
*/
mddev->in_sync = 0;
mddev->safemode_delay = 0;
mddev->safemode = 0;
}
oldpers->free(mddev, oldpriv);
if (oldpers->sync_request == NULL &&
pers->sync_request != NULL) {
/* need to add the md_redundancy_group */
if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
printk(KERN_WARNING
"md: cannot register extra attributes for %s\n",
mdname(mddev));
mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
}
if (oldpers->sync_request != NULL &&
pers->sync_request == NULL) {
/* need to remove the md_redundancy_group */
if (mddev->to_remove == NULL)
mddev->to_remove = &md_redundancy_group;
}
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk < 0)
continue;
if (rdev->new_raid_disk >= mddev->raid_disks)
rdev->new_raid_disk = -1;
if (rdev->new_raid_disk == rdev->raid_disk)
continue;
sysfs_unlink_rdev(mddev, rdev);
}
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk < 0)
continue;
if (rdev->new_raid_disk == rdev->raid_disk)
continue;
rdev->raid_disk = rdev->new_raid_disk;
if (rdev->raid_disk < 0)
clear_bit(In_sync, &rdev->flags);
else {
if (sysfs_link_rdev(mddev, rdev))
printk(KERN_WARNING "md: cannot register rd%d"
" for %s after level change\n",
rdev->raid_disk, mdname(mddev));
}
}
if (pers->sync_request == NULL) {
/* this is now an array without redundancy, so
* it must always be in_sync
*/
mddev->in_sync = 1;
del_timer_sync(&mddev->safemode_timer);
}
blk_set_stacking_limits(&mddev->queue->limits);
pers->run(mddev);
set_bit(MD_CHANGE_DEVS, &mddev->flags);
mddev_resume(mddev);
if (!mddev->thread)
md_update_sb(mddev, 1);
sysfs_notify(&mddev->kobj, NULL, "level");
md_new_event(mddev);
rv = len;
out_unlock:
mddev_unlock(mddev);
return rv;
}
static struct md_sysfs_entry md_level =
__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
static ssize_t
layout_show(struct mddev *mddev, char *page)
{
/* just a number, not meaningful for all levels */
if (mddev->reshape_position != MaxSector &&
mddev->layout != mddev->new_layout)
return sprintf(page, "%d (%d)\n",
mddev->new_layout, mddev->layout);
return sprintf(page, "%d\n", mddev->layout);
}
static ssize_t
layout_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int err;
err = kstrtouint(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
if (mddev->pers->check_reshape == NULL)
err = -EBUSY;
else if (mddev->ro)
err = -EROFS;
else {
mddev->new_layout = n;
err = mddev->pers->check_reshape(mddev);
if (err)
mddev->new_layout = mddev->layout;
}
} else {
mddev->new_layout = n;
if (mddev->reshape_position == MaxSector)
mddev->layout = n;
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_layout =
__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
static ssize_t
raid_disks_show(struct mddev *mddev, char *page)
{
if (mddev->raid_disks == 0)
return 0;
if (mddev->reshape_position != MaxSector &&
mddev->delta_disks != 0)
return sprintf(page, "%d (%d)\n", mddev->raid_disks,
mddev->raid_disks - mddev->delta_disks);
return sprintf(page, "%d\n", mddev->raid_disks);
}
static int update_raid_disks(struct mddev *mddev, int raid_disks);
static ssize_t
raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int err;
err = kstrtouint(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers)
err = update_raid_disks(mddev, n);
else if (mddev->reshape_position != MaxSector) {
struct md_rdev *rdev;
int olddisks = mddev->raid_disks - mddev->delta_disks;
err = -EINVAL;
rdev_for_each(rdev, mddev) {
if (olddisks < n &&
rdev->data_offset < rdev->new_data_offset)
goto out_unlock;
if (olddisks > n &&
rdev->data_offset > rdev->new_data_offset)
goto out_unlock;
}
err = 0;
mddev->delta_disks = n - olddisks;
mddev->raid_disks = n;
mddev->reshape_backwards = (mddev->delta_disks < 0);
} else
mddev->raid_disks = n;
out_unlock:
mddev_unlock(mddev);
return err ? err : len;
}
static struct md_sysfs_entry md_raid_disks =
__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
static ssize_t
chunk_size_show(struct mddev *mddev, char *page)
{
if (mddev->reshape_position != MaxSector &&
mddev->chunk_sectors != mddev->new_chunk_sectors)
return sprintf(page, "%d (%d)\n",
mddev->new_chunk_sectors << 9,
mddev->chunk_sectors << 9);
return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
}
static ssize_t
chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long n;
int err;
err = kstrtoul(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
if (mddev->pers->check_reshape == NULL)
err = -EBUSY;
else if (mddev->ro)
err = -EROFS;
else {
mddev->new_chunk_sectors = n >> 9;
err = mddev->pers->check_reshape(mddev);
if (err)
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
} else {
mddev->new_chunk_sectors = n >> 9;
if (mddev->reshape_position == MaxSector)
mddev->chunk_sectors = n >> 9;
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_chunk_size =
__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
static ssize_t
resync_start_show(struct mddev *mddev, char *page)
{
if (mddev->recovery_cp == MaxSector)
return sprintf(page, "none\n");
return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
}
static ssize_t
resync_start_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long n;
int err;
if (cmd_match(buf, "none"))
n = MaxSector;
else {
err = kstrtoull(buf, 10, &n);
if (err < 0)
return err;
if (n != (sector_t)n)
return -EINVAL;
}
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
err = -EBUSY;
if (!err) {
mddev->recovery_cp = n;
if (mddev->pers)
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_resync_start =
__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
resync_start_show, resync_start_store);
/*
* The array state can be:
*
* clear
* No devices, no size, no level
* Equivalent to STOP_ARRAY ioctl
* inactive
* May have some settings, but array is not active
* all IO results in error
* When written, doesn't tear down array, but just stops it
* suspended (not supported yet)
* All IO requests will block. The array can be reconfigured.
* Writing this, if accepted, will block until array is quiescent
* readonly
* no resync can happen. no superblocks get written.
* write requests fail
* read-auto
* like readonly, but behaves like 'clean' on a write request.
*
* clean - no pending writes, but otherwise active.
* When written to inactive array, starts without resync
* If a write request arrives then
* if metadata is known, mark 'dirty' and switch to 'active'.
* if not known, block and switch to write-pending
* If written to an active array that has pending writes, then fails.
* active
* fully active: IO and resync can be happening.
* When written to inactive array, starts with resync
*
* write-pending
* clean, but writes are blocked waiting for 'active' to be written.
*
* active-idle
* like active, but no writes have been seen for a while (100msec).
*
*/
enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
write_pending, active_idle, bad_word};
static char *array_states[] = {
"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
"write-pending", "active-idle", NULL };
static int match_word(const char *word, char **list)
{
int n;
for (n=0; list[n]; n++)
if (cmd_match(word, list[n]))
break;
return n;
}
static ssize_t
array_state_show(struct mddev *mddev, char *page)
{
enum array_state st = inactive;
if (mddev->pers)
switch(mddev->ro) {
case 1:
st = readonly;
break;
case 2:
st = read_auto;
break;
case 0:
if (mddev->in_sync)
st = clean;
else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
st = write_pending;
else if (mddev->safemode)
st = active_idle;
else
st = active;
}
else {
if (list_empty(&mddev->disks) &&
mddev->raid_disks == 0 &&
mddev->dev_sectors == 0)
st = clear;
else
st = inactive;
}
return sprintf(page, "%s\n", array_states[st]);
}
static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
static int do_md_run(struct mddev *mddev);
static int restart_array(struct mddev *mddev);
static ssize_t
array_state_store(struct mddev *mddev, const char *buf, size_t len)
{
int err;
enum array_state st = match_word(buf, array_states);
if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
/* don't take reconfig_mutex when toggling between
* clean and active
*/
spin_lock(&mddev->lock);
if (st == active) {
restart_array(mddev);
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
wake_up(&mddev->sb_wait);
err = 0;
} else /* st == clean */ {
restart_array(mddev);
if (atomic_read(&mddev->writes_pending) == 0) {
if (mddev->in_sync == 0) {
mddev->in_sync = 1;
if (mddev->safemode == 1)
mddev->safemode = 0;
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
}
err = 0;
} else
err = -EBUSY;
}
spin_unlock(&mddev->lock);
return err ?: len;
}
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
switch(st) {
case bad_word:
break;
case clear:
/* stopping an active array */
err = do_md_stop(mddev, 0, NULL);
break;
case inactive:
/* stopping an active array */
if (mddev->pers)
err = do_md_stop(mddev, 2, NULL);
else
err = 0; /* already inactive */
break;
case suspended:
break; /* not supported yet */
case readonly:
if (mddev->pers)
err = md_set_readonly(mddev, NULL);
else {
mddev->ro = 1;
set_disk_ro(mddev->gendisk, 1);
err = do_md_run(mddev);
}
break;
case read_auto:
if (mddev->pers) {
if (mddev->ro == 0)
err = md_set_readonly(mddev, NULL);
else if (mddev->ro == 1)
err = restart_array(mddev);
if (err == 0) {
mddev->ro = 2;
set_disk_ro(mddev->gendisk, 0);
}
} else {
mddev->ro = 2;
err = do_md_run(mddev);
}
break;
case clean:
if (mddev->pers) {
err = restart_array(mddev);
if (err)
break;
spin_lock(&mddev->lock);
if (atomic_read(&mddev->writes_pending) == 0) {
if (mddev->in_sync == 0) {
mddev->in_sync = 1;
if (mddev->safemode == 1)
mddev->safemode = 0;
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
}
err = 0;
} else
err = -EBUSY;
spin_unlock(&mddev->lock);
} else
err = -EINVAL;
break;
case active:
if (mddev->pers) {
err = restart_array(mddev);
if (err)
break;
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
wake_up(&mddev->sb_wait);
err = 0;
} else {
mddev->ro = 0;
set_disk_ro(mddev->gendisk, 0);
err = do_md_run(mddev);
}
break;
case write_pending:
case active_idle:
/* these cannot be set */
break;
}
if (!err) {
if (mddev->hold_active == UNTIL_IOCTL)
mddev->hold_active = 0;
sysfs_notify_dirent_safe(mddev->sysfs_state);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_array_state =
__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
static ssize_t
max_corrected_read_errors_show(struct mddev *mddev, char *page) {
return sprintf(page, "%d\n",
atomic_read(&mddev->max_corr_read_errors));
}
static ssize_t
max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int rv;
rv = kstrtouint(buf, 10, &n);
if (rv < 0)
return rv;
atomic_set(&mddev->max_corr_read_errors, n);
return len;
}
static struct md_sysfs_entry max_corr_read_errors =
__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
max_corrected_read_errors_store);
static ssize_t
null_show(struct mddev *mddev, char *page)
{
return -EINVAL;
}
static ssize_t
new_dev_store(struct mddev *mddev, const char *buf, size_t len)
{
/* buf must be %d:%d\n? giving major and minor numbers */
/* The new device is added to the array.
* If the array has a persistent superblock, we read the
* superblock to initialise info and check validity.
* Otherwise, only checking done is that in bind_rdev_to_array,
* which mainly checks size.
*/
char *e;
int major = simple_strtoul(buf, &e, 10);
int minor;
dev_t dev;
struct md_rdev *rdev;
int err;
if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
return -EINVAL;
minor = simple_strtoul(e+1, &e, 10);
if (*e && *e != '\n')
return -EINVAL;
dev = MKDEV(major, minor);
if (major != MAJOR(dev) ||
minor != MINOR(dev))
return -EOVERFLOW;
flush_workqueue(md_misc_wq);
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->persistent) {
rdev = md_import_device(dev, mddev->major_version,
mddev->minor_version);
if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
struct md_rdev *rdev0
= list_entry(mddev->disks.next,
struct md_rdev, same_set);
err = super_types[mddev->major_version]
.load_super(rdev, rdev0, mddev->minor_version);
if (err < 0)
goto out;
}
} else if (mddev->external)
rdev = md_import_device(dev, -2, -1);
else
rdev = md_import_device(dev, -1, -1);
if (IS_ERR(rdev)) {
mddev_unlock(mddev);
return PTR_ERR(rdev);
}
err = bind_rdev_to_array(rdev, mddev);
out:
if (err)
export_rdev(rdev);
mddev_unlock(mddev);
return err ? err : len;
}
static struct md_sysfs_entry md_new_device =
__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
static ssize_t
bitmap_store(struct mddev *mddev, const char *buf, size_t len)
{
char *end;
unsigned long chunk, end_chunk;
int err;
err = mddev_lock(mddev);
if (err)
return err;
if (!mddev->bitmap)
goto out;
/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
while (*buf) {
chunk = end_chunk = simple_strtoul(buf, &end, 0);
if (buf == end) break;
if (*end == '-') { /* range */
buf = end + 1;
end_chunk = simple_strtoul(buf, &end, 0);
if (buf == end) break;
}
if (*end && !isspace(*end)) break;
bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
buf = skip_spaces(end);
}
bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
out:
mddev_unlock(mddev);
return len;
}
static struct md_sysfs_entry md_bitmap =
__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
static ssize_t
size_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)mddev->dev_sectors / 2);
}
static int update_size(struct mddev *mddev, sector_t num_sectors);
static ssize_t
size_store(struct mddev *mddev, const char *buf, size_t len)
{
/* If array is inactive, we can reduce the component size, but
* not increase it (except from 0).
* If array is active, we can try an on-line resize
*/
sector_t sectors;
int err = strict_blocks_to_sectors(buf, &sectors);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
err = update_size(mddev, sectors);
md_update_sb(mddev, 1);
} else {
if (mddev->dev_sectors == 0 ||
mddev->dev_sectors > sectors)
mddev->dev_sectors = sectors;
else
err = -ENOSPC;
}
mddev_unlock(mddev);
return err ? err : len;
}
static struct md_sysfs_entry md_size =
__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
/* Metadata version.
* This is one of
* 'none' for arrays with no metadata (good luck...)
* 'external' for arrays with externally managed metadata,
* or N.M for internally known formats
*/
static ssize_t
metadata_show(struct mddev *mddev, char *page)
{
if (mddev->persistent)
return sprintf(page, "%d.%d\n",
mddev->major_version, mddev->minor_version);
else if (mddev->external)
return sprintf(page, "external:%s\n", mddev->metadata_type);
else
return sprintf(page, "none\n");
}
static ssize_t
metadata_store(struct mddev *mddev, const char *buf, size_t len)
{
int major, minor;
char *e;
int err;
/* Changing the details of 'external' metadata is
* always permitted. Otherwise there must be
* no devices attached to the array.
*/
err = mddev_lock(mddev);
if (err)
return err;
err = -EBUSY;
if (mddev->external && strncmp(buf, "external:", 9) == 0)
;
else if (!list_empty(&mddev->disks))
goto out_unlock;
err = 0;
if (cmd_match(buf, "none")) {
mddev->persistent = 0;
mddev->external = 0;
mddev->major_version = 0;
mddev->minor_version = 90;
goto out_unlock;
}
if (strncmp(buf, "external:", 9) == 0) {
size_t namelen = len-9;
if (namelen >= sizeof(mddev->metadata_type))
namelen = sizeof(mddev->metadata_type)-1;
strncpy(mddev->metadata_type, buf+9, namelen);
mddev->metadata_type[namelen] = 0;
if (namelen && mddev->metadata_type[namelen-1] == '\n')
mddev->metadata_type[--namelen] = 0;
mddev->persistent = 0;
mddev->external = 1;
mddev->major_version = 0;
mddev->minor_version = 90;
goto out_unlock;
}
major = simple_strtoul(buf, &e, 10);
err = -EINVAL;
if (e==buf || *e != '.')
goto out_unlock;
buf = e+1;
minor = simple_strtoul(buf, &e, 10);
if (e==buf || (*e && *e != '\n') )
goto out_unlock;
err = -ENOENT;
if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
goto out_unlock;
mddev->major_version = major;
mddev->minor_version = minor;
mddev->persistent = 1;
mddev->external = 0;
err = 0;
out_unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_metadata =
__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
static ssize_t
action_show(struct mddev *mddev, char *page)
{
char *type = "idle";
unsigned long recovery = mddev->recovery;
if (test_bit(MD_RECOVERY_FROZEN, &recovery))
type = "frozen";
else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
(!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
type = "reshape";
else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
type = "resync";
else if (test_bit(MD_RECOVERY_CHECK, &recovery))
type = "check";
else
type = "repair";
} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
type = "recover";
else if (mddev->reshape_position != MaxSector)
type = "reshape";
}
return sprintf(page, "%s\n", type);
}
static ssize_t
action_store(struct mddev *mddev, const char *page, size_t len)
{
if (!mddev->pers || !mddev->pers->sync_request)
return -EINVAL;
if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
if (cmd_match(page, "frozen"))
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
else
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
mddev_lock(mddev) == 0) {
flush_workqueue(md_misc_wq);
if (mddev->sync_thread) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_reap_sync_thread(mddev);
}
mddev_unlock(mddev);
}
} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return -EBUSY;
else if (cmd_match(page, "resync"))
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
else if (cmd_match(page, "recover")) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (cmd_match(page, "reshape")) {
int err;
if (mddev->pers->start_reshape == NULL)
return -EINVAL;
err = mddev_lock(mddev);
if (!err) {
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
err = -EBUSY;
else {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
err = mddev->pers->start_reshape(mddev);
}
mddev_unlock(mddev);
}
if (err)
return err;
sysfs_notify(&mddev->kobj, NULL, "degraded");
} else {
if (cmd_match(page, "check"))
set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
else if (!cmd_match(page, "repair"))
return -EINVAL;
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
}
if (mddev->ro == 2) {
/* A write to sync_action is enough to justify
* canceling read-auto mode
*/
mddev->ro = 0;
md_wakeup_thread(mddev->sync_thread);
}
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
sysfs_notify_dirent_safe(mddev->sysfs_action);
return len;
}
static struct md_sysfs_entry md_scan_mode =
__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
static ssize_t
last_sync_action_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%s\n", mddev->last_sync_action);
}
static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
static ssize_t
mismatch_cnt_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)
atomic64_read(&mddev->resync_mismatches));
}
static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
static ssize_t
sync_min_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d (%s)\n", speed_min(mddev),
mddev->sync_speed_min ? "local": "system");
}
static ssize_t
sync_min_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int min;
int rv;
if (strncmp(buf, "system", 6)==0) {
min = 0;
} else {
rv = kstrtouint(buf, 10, &min);
if (rv < 0)
return rv;
if (min == 0)
return -EINVAL;
}
mddev->sync_speed_min = min;
return len;
}
static struct md_sysfs_entry md_sync_min =
__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
static ssize_t
sync_max_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d (%s)\n", speed_max(mddev),
mddev->sync_speed_max ? "local": "system");
}
static ssize_t
sync_max_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int max;
int rv;
if (strncmp(buf, "system", 6)==0) {
max = 0;
} else {
rv = kstrtouint(buf, 10, &max);
if (rv < 0)
return rv;
if (max == 0)
return -EINVAL;
}
mddev->sync_speed_max = max;
return len;
}
static struct md_sysfs_entry md_sync_max =
__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
static ssize_t
degraded_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d\n", mddev->degraded);
}
static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
static ssize_t
sync_force_parallel_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d\n", mddev->parallel_resync);
}
static ssize_t
sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
{
long n;
if (kstrtol(buf, 10, &n))
return -EINVAL;
if (n != 0 && n != 1)
return -EINVAL;
mddev->parallel_resync = n;
if (mddev->sync_thread)
wake_up(&resync_wait);
return len;
}
/* force parallel resync, even with shared block devices */
static struct md_sysfs_entry md_sync_force_parallel =
__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
sync_force_parallel_show, sync_force_parallel_store);
static ssize_t
sync_speed_show(struct mddev *mddev, char *page)
{
unsigned long resync, dt, db;
if (mddev->curr_resync == 0)
return sprintf(page, "none\n");
resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
dt = (jiffies - mddev->resync_mark) / HZ;
if (!dt) dt++;
db = resync - mddev->resync_mark_cnt;
return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
}
static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
static ssize_t
sync_completed_show(struct mddev *mddev, char *page)
{
unsigned long long max_sectors, resync;
if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return sprintf(page, "none\n");
if (mddev->curr_resync == 1 ||
mddev->curr_resync == 2)
return sprintf(page, "delayed\n");
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sectors = mddev->resync_max_sectors;
else
max_sectors = mddev->dev_sectors;
resync = mddev->curr_resync_completed;
return sprintf(page, "%llu / %llu\n", resync, max_sectors);
}
static struct md_sysfs_entry md_sync_completed =
__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
static ssize_t
min_sync_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)mddev->resync_min);
}
static ssize_t
min_sync_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long min;
int err;
if (kstrtoull(buf, 10, &min))
return -EINVAL;
spin_lock(&mddev->lock);
err = -EINVAL;
if (min > mddev->resync_max)
goto out_unlock;
err = -EBUSY;
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
goto out_unlock;
/* Round down to multiple of 4K for safety */
mddev->resync_min = round_down(min, 8);
err = 0;
out_unlock:
spin_unlock(&mddev->lock);
return err ?: len;
}
static struct md_sysfs_entry md_min_sync =
__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
static ssize_t
max_sync_show(struct mddev *mddev, char *page)
{
if (mddev->resync_max == MaxSector)
return sprintf(page, "max\n");
else
return sprintf(page, "%llu\n",
(unsigned long long)mddev->resync_max);
}
static ssize_t
max_sync_store(struct mddev *mddev, const char *buf, size_t len)
{
int err;
spin_lock(&mddev->lock);
if (strncmp(buf, "max", 3) == 0)
mddev->resync_max = MaxSector;
else {
unsigned long long max;
int chunk;
err = -EINVAL;
if (kstrtoull(buf, 10, &max))
goto out_unlock;
if (max < mddev->resync_min)
goto out_unlock;
err = -EBUSY;
if (max < mddev->resync_max &&
mddev->ro == 0 &&
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
goto out_unlock;
/* Must be a multiple of chunk_size */
chunk = mddev->chunk_sectors;
if (chunk) {
sector_t temp = max;
err = -EINVAL;
if (sector_div(temp, chunk))
goto out_unlock;
}
mddev->resync_max = max;
}
wake_up(&mddev->recovery_wait);
err = 0;
out_unlock:
spin_unlock(&mddev->lock);
return err ?: len;
}
static struct md_sysfs_entry md_max_sync =
__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
static ssize_t
suspend_lo_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
}
static ssize_t
suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long old, new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
if (mddev->pers == NULL ||
mddev->pers->quiesce == NULL)
goto unlock;
old = mddev->suspend_lo;
mddev->suspend_lo = new;
if (new >= old)
/* Shrinking suspended region */
mddev->pers->quiesce(mddev, 2);
else {
/* Expanding suspended region - need to wait */
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_suspend_lo =
__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
static ssize_t
suspend_hi_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
}
static ssize_t
suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long old, new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
if (mddev->pers == NULL ||
mddev->pers->quiesce == NULL)
goto unlock;
old = mddev->suspend_hi;
mddev->suspend_hi = new;
if (new <= old)
/* Shrinking suspended region */
mddev->pers->quiesce(mddev, 2);
else {
/* Expanding suspended region - need to wait */
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_suspend_hi =
__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
static ssize_t
reshape_position_show(struct mddev *mddev, char *page)
{
if (mddev->reshape_position != MaxSector)
return sprintf(page, "%llu\n",
(unsigned long long)mddev->reshape_position);
strcpy(page, "none\n");
return 5;
}
static ssize_t
reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
{
struct md_rdev *rdev;
unsigned long long new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EBUSY;
if (mddev->pers)
goto unlock;
mddev->reshape_position = new;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
rdev_for_each(rdev, mddev)
rdev->new_data_offset = rdev->data_offset;
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_reshape_position =
__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
reshape_position_store);
static ssize_t
reshape_direction_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%s\n",
mddev->reshape_backwards ? "backwards" : "forwards");
}
static ssize_t
reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
{
int backwards = 0;
int err;
if (cmd_match(buf, "forwards"))
backwards = 0;
else if (cmd_match(buf, "backwards"))
backwards = 1;
else
return -EINVAL;
if (mddev->reshape_backwards == backwards)
return len;
err = mddev_lock(mddev);
if (err)
return err;
/* check if we are allowed to change */
if (mddev->delta_disks)
err = -EBUSY;
else if (mddev->persistent &&
mddev->major_version == 0)
err = -EINVAL;
else
mddev->reshape_backwards = backwards;
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_reshape_direction =
__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
reshape_direction_store);
static ssize_t
array_size_show(struct mddev *mddev, char *page)
{
if (mddev->external_size)
return sprintf(page, "%llu\n",
(unsigned long long)mddev->array_sectors/2);
else
return sprintf(page, "default\n");
}
static ssize_t
array_size_store(struct mddev *mddev, const char *buf, size_t len)
{
sector_t sectors;
int err;
err = mddev_lock(mddev);
if (err)
return err;
if (strncmp(buf, "default", 7) == 0) {
if (mddev->pers)
sectors = mddev->pers->size(mddev, 0, 0);
else
sectors = mddev->array_sectors;
mddev->external_size = 0;
} else {
if (strict_blocks_to_sectors(buf, &sectors) < 0)
err = -EINVAL;
else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
err = -E2BIG;
else
mddev->external_size = 1;
}
if (!err) {
mddev->array_sectors = sectors;
if (mddev->pers) {
set_capacity(mddev->gendisk, mddev->array_sectors);
revalidate_disk(mddev->gendisk);
}
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_array_size =
__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
array_size_store);
static struct attribute *md_default_attrs[] = {
&md_level.attr,
&md_layout.attr,
&md_raid_disks.attr,
&md_chunk_size.attr,
&md_size.attr,
&md_resync_start.attr,
&md_metadata.attr,
&md_new_device.attr,
&md_safe_delay.attr,
&md_array_state.attr,
&md_reshape_position.attr,
&md_reshape_direction.attr,
&md_array_size.attr,
&max_corr_read_errors.attr,
NULL,
};
static struct attribute *md_redundancy_attrs[] = {
&md_scan_mode.attr,
&md_last_scan_mode.attr,
&md_mismatches.attr,
&md_sync_min.attr,
&md_sync_max.attr,
&md_sync_speed.attr,
&md_sync_force_parallel.attr,
&md_sync_completed.attr,
&md_min_sync.attr,
&md_max_sync.attr,
&md_suspend_lo.attr,
&md_suspend_hi.attr,
&md_bitmap.attr,
&md_degraded.attr,
NULL,
};
static struct attribute_group md_redundancy_group = {
.name = NULL,
.attrs = md_redundancy_attrs,
};
static ssize_t
md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
struct mddev *mddev = container_of(kobj, struct mddev, kobj);
ssize_t rv;
if (!entry->show)
return -EIO;
spin_lock(&all_mddevs_lock);
if (list_empty(&mddev->all_mddevs)) {
spin_unlock(&all_mddevs_lock);
return -EBUSY;
}
mddev_get(mddev);
spin_unlock(&all_mddevs_lock);
rv = entry->show(mddev, page);
mddev_put(mddev);
return rv;
}
static ssize_t
md_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
struct mddev *mddev = container_of(kobj, struct mddev, kobj);
ssize_t rv;
if (!entry->store)
return -EIO;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
spin_lock(&all_mddevs_lock);
if (list_empty(&mddev->all_mddevs)) {
spin_unlock(&all_mddevs_lock);
return -EBUSY;
}
mddev_get(mddev);
spin_unlock(&all_mddevs_lock);
rv = entry->store(mddev, page, length);
mddev_put(mddev);
return rv;
}
static void md_free(struct kobject *ko)
{
struct mddev *mddev = container_of(ko, struct mddev, kobj);
if (mddev->sysfs_state)
sysfs_put(mddev->sysfs_state);
if (mddev->queue)
blk_cleanup_queue(mddev->queue);
if (mddev->gendisk) {
del_gendisk(mddev->gendisk);
put_disk(mddev->gendisk);
}
kfree(mddev);
}
static const struct sysfs_ops md_sysfs_ops = {
.show = md_attr_show,
.store = md_attr_store,
};
static struct kobj_type md_ktype = {
.release = md_free,
.sysfs_ops = &md_sysfs_ops,
.default_attrs = md_default_attrs,
};
int mdp_major = 0;
static void mddev_delayed_delete(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, del_work);
sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
kobject_del(&mddev->kobj);
kobject_put(&mddev->kobj);
}
static int md_alloc(dev_t dev, char *name)
{
static DEFINE_MUTEX(disks_mutex);
struct mddev *mddev = mddev_find(dev);
struct gendisk *disk;
int partitioned;
int shift;
int unit;
int error;
if (!mddev)
return -ENODEV;
partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
shift = partitioned ? MdpMinorShift : 0;
unit = MINOR(mddev->unit) >> shift;
/* wait for any previous instance of this device to be
* completely removed (mddev_delayed_delete).
*/
flush_workqueue(md_misc_wq);
mutex_lock(&disks_mutex);
error = -EEXIST;
if (mddev->gendisk)
goto abort;
if (name) {
/* Need to ensure that 'name' is not a duplicate.
*/
struct mddev *mddev2;
spin_lock(&all_mddevs_lock);
list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
if (mddev2->gendisk &&
strcmp(mddev2->gendisk->disk_name, name) == 0) {
spin_unlock(&all_mddevs_lock);
goto abort;
}
spin_unlock(&all_mddevs_lock);
}
error = -ENOMEM;
mddev->queue = blk_alloc_queue(GFP_KERNEL);
if (!mddev->queue)
goto abort;
mddev->queue->queuedata = mddev;
blk_queue_make_request(mddev->queue, md_make_request);
blk_set_stacking_limits(&mddev->queue->limits);
disk = alloc_disk(1 << shift);
if (!disk) {
blk_cleanup_queue(mddev->queue);
mddev->queue = NULL;
goto abort;
}
disk->major = MAJOR(mddev->unit);
disk->first_minor = unit << shift;
if (name)
strcpy(disk->disk_name, name);
else if (partitioned)
sprintf(disk->disk_name, "md_d%d", unit);
else
sprintf(disk->disk_name, "md%d", unit);
disk->fops = &md_fops;
disk->private_data = mddev;
disk->queue = mddev->queue;
blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
/* Allow extended partitions. This makes the
* 'mdp' device redundant, but we can't really
* remove it now.
*/
disk->flags |= GENHD_FL_EXT_DEVT;
mddev->gendisk = disk;
/* As soon as we call add_disk(), another thread could get
* through to md_open, so make sure it doesn't get too far
*/
mutex_lock(&mddev->open_mutex);
add_disk(disk);
error = kobject_init_and_add(&mddev->kobj, &md_ktype,
&disk_to_dev(disk)->kobj, "%s", "md");
if (error) {
/* This isn't possible, but as kobject_init_and_add is marked
* __must_check, we must do something with the result
*/
printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
disk->disk_name);
error = 0;
}
if (mddev->kobj.sd &&
sysfs_create_group(&mddev->kobj, &md_bitmap_group))
printk(KERN_DEBUG "pointless warning\n");
mutex_unlock(&mddev->open_mutex);
abort:
mutex_unlock(&disks_mutex);
if (!error && mddev->kobj.sd) {
kobject_uevent(&mddev->kobj, KOBJ_ADD);
mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
}
mddev_put(mddev);
return error;
}
static struct kobject *md_probe(dev_t dev, int *part, void *data)
{
md_alloc(dev, NULL);
return NULL;
}
static int add_named_array(const char *val, const struct kernel_param *kp)
{
/* val must be "md_*" where * is not all digits.
* We allocate an array with a large free minor number, and
* set the name to val. val must not already be an active name.
*/
int len = strlen(val);
char buf[DISK_NAME_LEN];
while (len && val[len-1] == '\n')
len--;
if (len >= DISK_NAME_LEN)
return -E2BIG;
strlcpy(buf, val, len+1);
if (strncmp(buf, "md_", 3) != 0)
return -EINVAL;
return md_alloc(0, buf);
}
static void md_safemode_timeout(unsigned long data)
{
struct mddev *mddev = (struct mddev *) data;
if (!atomic_read(&mddev->writes_pending)) {
mddev->safemode = 1;
if (mddev->external)
sysfs_notify_dirent_safe(mddev->sysfs_state);
}
md_wakeup_thread(mddev->thread);
}
static int start_dirty_degraded;
int md_run(struct mddev *mddev)
{
int err;
struct md_rdev *rdev;
struct md_personality *pers;
if (list_empty(&mddev->disks))
/* cannot run an array with no devices.. */
return -EINVAL;
if (mddev->pers)
return -EBUSY;
/* Cannot run until previous stop completes properly */
if (mddev->sysfs_active)
return -EBUSY;
/*
* Analyze all RAID superblock(s)
*/
if (!mddev->raid_disks) {
if (!mddev->persistent)
return -EINVAL;
analyze_sbs(mddev);
}
if (mddev->level != LEVEL_NONE)
request_module("md-level-%d", mddev->level);
else if (mddev->clevel[0])
request_module("md-%s", mddev->clevel);
/*
* Drop all container device buffers, from now on
* the only valid external interface is through the md
* device.
*/
rdev_for_each(rdev, mddev) {
if (test_bit(Faulty, &rdev->flags))
continue;
sync_blockdev(rdev->bdev);
invalidate_bdev(rdev->bdev);
/* perform some consistency tests on the device.
* We don't want the data to overlap the metadata,
* Internal Bitmap issues have been handled elsewhere.
*/
if (rdev->meta_bdev) {
/* Nothing to check */;
} else if (rdev->data_offset < rdev->sb_start) {
if (mddev->dev_sectors &&
rdev->data_offset + mddev->dev_sectors
> rdev->sb_start) {
printk("md: %s: data overlaps metadata\n",
mdname(mddev));
return -EINVAL;
}
} else {
if (rdev->sb_start + rdev->sb_size/512
> rdev->data_offset) {
printk("md: %s: metadata overlaps data\n",
mdname(mddev));
return -EINVAL;
}
}
sysfs_notify_dirent_safe(rdev->sysfs_state);
}
if (mddev->bio_set == NULL)
mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
spin_lock(&pers_lock);
pers = find_pers(mddev->level, mddev->clevel);
if (!pers || !try_module_get(pers->owner)) {
spin_unlock(&pers_lock);
if (mddev->level != LEVEL_NONE)
printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
mddev->level);
else
printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
mddev->clevel);
return -EINVAL;
}
spin_unlock(&pers_lock);
if (mddev->level != pers->level) {
mddev->level = pers->level;
mddev->new_level = pers->level;
}
strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
if (mddev->reshape_position != MaxSector &&
pers->start_reshape == NULL) {
/* This personality cannot handle reshaping... */
module_put(pers->owner);
return -EINVAL;
}
if (pers->sync_request) {
/* Warn if this is a potentially silly
* configuration.
*/
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
struct md_rdev *rdev2;
int warned = 0;
rdev_for_each(rdev, mddev)
rdev_for_each(rdev2, mddev) {
if (rdev < rdev2 &&
rdev->bdev->bd_contains ==
rdev2->bdev->bd_contains) {
printk(KERN_WARNING
"%s: WARNING: %s appears to be"
" on the same physical disk as"
" %s.\n",
mdname(mddev),
bdevname(rdev->bdev,b),
bdevname(rdev2->bdev,b2));
warned = 1;
}
}
if (warned)
printk(KERN_WARNING
"True protection against single-disk"
" failure might be compromised.\n");
}
mddev->recovery = 0;
/* may be over-ridden by personality */
mddev->resync_max_sectors = mddev->dev_sectors;
mddev->ok_start_degraded = start_dirty_degraded;
if (start_readonly && mddev->ro == 0)
mddev->ro = 2; /* read-only, but switch on first write */
err = pers->run(mddev);
if (err)
printk(KERN_ERR "md: pers->run() failed ...\n");
else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
WARN_ONCE(!mddev->external_size, "%s: default size too small,"
" but 'external_size' not in effect?\n", __func__);
printk(KERN_ERR
"md: invalid array_size %llu > default size %llu\n",
(unsigned long long)mddev->array_sectors / 2,
(unsigned long long)pers->size(mddev, 0, 0) / 2);
err = -EINVAL;
}
if (err == 0 && pers->sync_request &&
(mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
struct bitmap *bitmap;
bitmap = bitmap_create(mddev, -1);
if (IS_ERR(bitmap)) {
err = PTR_ERR(bitmap);
printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
mdname(mddev), err);
} else
mddev->bitmap = bitmap;
}
if (err) {
mddev_detach(mddev);
if (mddev->private)
pers->free(mddev, mddev->private);
mddev->private = NULL;
module_put(pers->owner);
bitmap_destroy(mddev);
return err;
}
if (mddev->queue) {
mddev->queue->backing_dev_info.congested_data = mddev;
mddev->queue->backing_dev_info.congested_fn = md_congested;
}
if (pers->sync_request) {
if (mddev->kobj.sd &&
sysfs_create_group(&mddev->kobj, &md_redundancy_group))
printk(KERN_WARNING
"md: cannot register extra attributes for %s\n",
mdname(mddev));
mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
} else if (mddev->ro == 2) /* auto-readonly not meaningful */
mddev->ro = 0;
atomic_set(&mddev->writes_pending,0);
atomic_set(&mddev->max_corr_read_errors,
MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
mddev->safemode = 0;
if (mddev_is_clustered(mddev))
mddev->safemode_delay = 0;
else
mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
mddev->in_sync = 1;
smp_wmb();
spin_lock(&mddev->lock);
mddev->pers = pers;
mddev->ready = 1;
spin_unlock(&mddev->lock);
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0)
if (sysfs_link_rdev(mddev, rdev))
/* failure here is OK */;
if (mddev->degraded && !mddev->ro)
/* This ensures that recovering status is reported immediately
* via sysfs - until a lack of spares is confirmed.
*/
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
if (mddev->flags & MD_UPDATE_SB_FLAGS)
md_update_sb(mddev, 0);
md_new_event(mddev);
sysfs_notify_dirent_safe(mddev->sysfs_state);
sysfs_notify_dirent_safe(mddev->sysfs_action);
sysfs_notify(&mddev->kobj, NULL, "degraded");
return 0;
}
EXPORT_SYMBOL_GPL(md_run);
static int do_md_run(struct mddev *mddev)
{
int err;
err = md_run(mddev);
if (err)
goto out;
err = bitmap_load(mddev);
if (err) {
bitmap_destroy(mddev);
goto out;
}
if (mddev_is_clustered(mddev))
md_allow_write(mddev);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
set_capacity(mddev->gendisk, mddev->array_sectors);
revalidate_disk(mddev->gendisk);
mddev->changed = 1;
kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
out:
return err;
}
static int restart_array(struct mddev *mddev)
{
struct gendisk *disk = mddev->gendisk;
/* Complain if it has no devices */
if (list_empty(&mddev->disks))
return -ENXIO;
if (!mddev->pers)
return -EINVAL;
if (!mddev->ro)
return -EBUSY;
if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
struct md_rdev *rdev;
bool has_journal = false;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
if (test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags)) {
has_journal = true;
break;
}
}
rcu_read_unlock();
/* Don't restart rw with journal missing/faulty */
if (!has_journal)
return -EINVAL;
}
mddev->safemode = 0;
mddev->ro = 0;
set_disk_ro(disk, 0);
printk(KERN_INFO "md: %s switched to read-write mode.\n",
mdname(mddev));
/* Kick recovery or resync if necessary */
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread);
sysfs_notify_dirent_safe(mddev->sysfs_state);
return 0;
}
static void md_clean(struct mddev *mddev)
{
mddev->array_sectors = 0;
mddev->external_size = 0;
mddev->dev_sectors = 0;
mddev->raid_disks = 0;
mddev->recovery_cp = 0;
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
mddev->reshape_position = MaxSector;
mddev->external = 0;
mddev->persistent = 0;
mddev->level = LEVEL_NONE;
mddev->clevel[0] = 0;
mddev->flags = 0;
mddev->ro = 0;
mddev->metadata_type[0] = 0;
mddev->chunk_sectors = 0;
mddev->ctime = mddev->utime = 0;
mddev->layout = 0;
mddev->max_disks = 0;
mddev->events = 0;
mddev->can_decrease_events = 0;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->new_level = LEVEL_NONE;
mddev->new_layout = 0;
mddev->new_chunk_sectors = 0;
mddev->curr_resync = 0;
atomic64_set(&mddev->resync_mismatches, 0);
mddev->suspend_lo = mddev->suspend_hi = 0;
mddev->sync_speed_min = mddev->sync_speed_max = 0;
mddev->recovery = 0;
mddev->in_sync = 0;
mddev->changed = 0;
mddev->degraded = 0;
mddev->safemode = 0;
mddev->private = NULL;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.default_offset = 0;
mddev->bitmap_info.default_space = 0;
mddev->bitmap_info.chunksize = 0;
mddev->bitmap_info.daemon_sleep = 0;
mddev->bitmap_info.max_write_behind = 0;
}
static void __md_stop_writes(struct mddev *mddev)
{
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
flush_workqueue(md_misc_wq);
if (mddev->sync_thread) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_reap_sync_thread(mddev);
}
del_timer_sync(&mddev->safemode_timer);
bitmap_flush(mddev);
md_super_wait(mddev);
if (mddev->ro == 0 &&
((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
(mddev->flags & MD_UPDATE_SB_FLAGS))) {
/* mark array as shutdown cleanly */
if (!mddev_is_clustered(mddev))
mddev->in_sync = 1;
md_update_sb(mddev, 1);
}
}
void md_stop_writes(struct mddev *mddev)
{
mddev_lock_nointr(mddev);
__md_stop_writes(mddev);
mddev_unlock(mddev);
}
EXPORT_SYMBOL_GPL(md_stop_writes);
static void mddev_detach(struct mddev *mddev)
{
struct bitmap *bitmap = mddev->bitmap;
/* wait for behind writes to complete */
if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
mdname(mddev));
/* need to kick something here to make sure I/O goes? */
wait_event(bitmap->behind_wait,
atomic_read(&bitmap->behind_writes) == 0);
}
if (mddev->pers && mddev->pers->quiesce) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
md_unregister_thread(&mddev->thread);
if (mddev->queue)
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
}
static void __md_stop(struct mddev *mddev)
{
struct md_personality *pers = mddev->pers;
mddev_detach(mddev);
/* Ensure ->event_work is done */
flush_workqueue(md_misc_wq);
spin_lock(&mddev->lock);
mddev->ready = 0;
mddev->pers = NULL;
spin_unlock(&mddev->lock);
pers->free(mddev, mddev->private);
mddev->private = NULL;
if (pers->sync_request && mddev->to_remove == NULL)
mddev->to_remove = &md_redundancy_group;
module_put(pers->owner);
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
}
void md_stop(struct mddev *mddev)
{
/* stop the array and free an attached data structures.
* This is called from dm-raid
*/
__md_stop(mddev);
bitmap_destroy(mddev);
if (mddev->bio_set)
bioset_free(mddev->bio_set);
}
EXPORT_SYMBOL_GPL(md_stop);
static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
{
int err = 0;
int did_freeze = 0;
if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
did_freeze = 1;
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
if (mddev->sync_thread)
/* Thread might be blocked waiting for metadata update
* which will now never happen */
wake_up_process(mddev->sync_thread->tsk);
if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
return -EBUSY;
mddev_unlock(mddev);
wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
&mddev->recovery));
wait_event(mddev->sb_wait,
!test_bit(MD_CHANGE_PENDING, &mddev->flags));
mddev_lock_nointr(mddev);
mutex_lock(&mddev->open_mutex);
if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
(bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
printk("md: %s still in use.\n",mdname(mddev));
if (did_freeze) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
err = -EBUSY;
goto out;
}
if (mddev->pers) {
__md_stop_writes(mddev);
err = -ENXIO;
if (mddev->ro==1)
goto out;
mddev->ro = 1;
set_disk_ro(mddev->gendisk, 1);
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
sysfs_notify_dirent_safe(mddev->sysfs_state);
err = 0;
}
out:
mutex_unlock(&mddev->open_mutex);
return err;
}
/* mode:
* 0 - completely stop and dis-assemble array
* 2 - stop but do not disassemble array
*/
static int do_md_stop(struct mddev *mddev, int mode,
struct block_device *bdev)
{
struct gendisk *disk = mddev->gendisk;
struct md_rdev *rdev;
int did_freeze = 0;
if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
did_freeze = 1;
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
if (mddev->sync_thread)
/* Thread might be blocked waiting for metadata update
* which will now never happen */
wake_up_process(mddev->sync_thread->tsk);
mddev_unlock(mddev);
wait_event(resync_wait, (mddev->sync_thread == NULL &&
!test_bit(MD_RECOVERY_RUNNING,
&mddev->recovery)));
mddev_lock_nointr(mddev);
mutex_lock(&mddev->open_mutex);
if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
mddev->sysfs_active ||
mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
(bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
printk("md: %s still in use.\n",mdname(mddev));
mutex_unlock(&mddev->open_mutex);
if (did_freeze) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
return -EBUSY;
}
if (mddev->pers) {
if (mddev->ro)
set_disk_ro(disk, 0);
__md_stop_writes(mddev);
__md_stop(mddev);
mddev->queue->backing_dev_info.congested_fn = NULL;
/* tell userspace to handle 'inactive' */
sysfs_notify_dirent_safe(mddev->sysfs_state);
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0)
sysfs_unlink_rdev(mddev, rdev);
set_capacity(disk, 0);
mutex_unlock(&mddev->open_mutex);
mddev->changed = 1;
revalidate_disk(disk);
if (mddev->ro)
mddev->ro = 0;
} else
mutex_unlock(&mddev->open_mutex);
/*
* Free resources if final stop
*/
if (mode == 0) {
printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
bitmap_destroy(mddev);
if (mddev->bitmap_info.file) {
struct file *f = mddev->bitmap_info.file;
spin_lock(&mddev->lock);
mddev->bitmap_info.file = NULL;
spin_unlock(&mddev->lock);
fput(f);
}
mddev->bitmap_info.offset = 0;
export_array(mddev);
md_clean(mddev);
kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
if (mddev->hold_active == UNTIL_STOP)
mddev->hold_active = 0;
}
md_new_event(mddev);
sysfs_notify_dirent_safe(mddev->sysfs_state);
return 0;
}
#ifndef MODULE
static void autorun_array(struct mddev *mddev)
{
struct md_rdev *rdev;
int err;
if (list_empty(&mddev->disks))
return;
printk(KERN_INFO "md: running: ");
rdev_for_each(rdev, mddev) {
char b[BDEVNAME_SIZE];
printk("<%s>", bdevname(rdev->bdev,b));
}
printk("\n");
err = do_md_run(mddev);
if (err) {
printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
do_md_stop(mddev, 0, NULL);
}
}
/*
* lets try to run arrays based on all disks that have arrived
* until now. (those are in pending_raid_disks)
*
* the method: pick the first pending disk, collect all disks with
* the same UUID, remove all from the pending list and put them into
* the 'same_array' list. Then order this list based on superblock
* update time (freshest comes first), kick out 'old' disks and
* compare superblocks. If everything's fine then run it.
*
* If "unit" is allocated, then bump its reference count
*/
static void autorun_devices(int part)
{
struct md_rdev *rdev0, *rdev, *tmp;
struct mddev *mddev;
char b[BDEVNAME_SIZE];
printk(KERN_INFO "md: autorun ...\n");
while (!list_empty(&pending_raid_disks)) {
int unit;
dev_t dev;
LIST_HEAD(candidates);
rdev0 = list_entry(pending_raid_disks.next,
struct md_rdev, same_set);
printk(KERN_INFO "md: considering %s ...\n",
bdevname(rdev0->bdev,b));
INIT_LIST_HEAD(&candidates);
rdev_for_each_list(rdev, tmp, &pending_raid_disks)
if (super_90_load(rdev, rdev0, 0) >= 0) {
printk(KERN_INFO "md: adding %s ...\n",
bdevname(rdev->bdev,b));
list_move(&rdev->same_set, &candidates);
}
/*
* now we have a set of devices, with all of them having
* mostly sane superblocks. It's time to allocate the
* mddev.
*/
if (part) {
dev = MKDEV(mdp_major,
rdev0->preferred_minor << MdpMinorShift);
unit = MINOR(dev) >> MdpMinorShift;
} else {
dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
unit = MINOR(dev);
}
if (rdev0->preferred_minor != unit) {
printk(KERN_INFO "md: unit number in %s is bad: %d\n",
bdevname(rdev0->bdev, b), rdev0->preferred_minor);
break;
}
md_probe(dev, NULL, NULL);
mddev = mddev_find(dev);
if (!mddev || !mddev->gendisk) {
if (mddev)
mddev_put(mddev);
printk(KERN_ERR
"md: cannot allocate memory for md drive.\n");
break;
}
if (mddev_lock(mddev))
printk(KERN_WARNING "md: %s locked, cannot run\n",
mdname(mddev));
else if (mddev->raid_disks || mddev->major_version
|| !list_empty(&mddev->disks)) {
printk(KERN_WARNING
"md: %s already running, cannot run %s\n",
mdname(mddev), bdevname(rdev0->bdev,b));
mddev_unlock(mddev);
} else {
printk(KERN_INFO "md: created %s\n", mdname(mddev));
mddev->persistent = 1;
rdev_for_each_list(rdev, tmp, &candidates) {
list_del_init(&rdev->same_set);
if (bind_rdev_to_array(rdev, mddev))
export_rdev(rdev);
}
autorun_array(mddev);
mddev_unlock(mddev);
}
/* on success, candidates will be empty, on error
* it won't...
*/
rdev_for_each_list(rdev, tmp, &candidates) {
list_del_init(&rdev->same_set);
export_rdev(rdev);
}
mddev_put(mddev);
}
printk(KERN_INFO "md: ... autorun DONE.\n");
}
#endif /* !MODULE */
static int get_version(void __user *arg)
{
mdu_version_t ver;
ver.major = MD_MAJOR_VERSION;
ver.minor = MD_MINOR_VERSION;
ver.patchlevel = MD_PATCHLEVEL_VERSION;
if (copy_to_user(arg, &ver, sizeof(ver)))
return -EFAULT;
return 0;
}
static int get_array_info(struct mddev *mddev, void __user *arg)
{
mdu_array_info_t info;
int nr,working,insync,failed,spare;
struct md_rdev *rdev;
nr = working = insync = failed = spare = 0;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
nr++;
if (test_bit(Faulty, &rdev->flags))
failed++;
else {
working++;
if (test_bit(In_sync, &rdev->flags))
insync++;
else
spare++;
}
}
rcu_read_unlock();
info.major_version = mddev->major_version;
info.minor_version = mddev->minor_version;
info.patch_version = MD_PATCHLEVEL_VERSION;
info.ctime = mddev->ctime;
info.level = mddev->level;
info.size = mddev->dev_sectors / 2;
if (info.size != mddev->dev_sectors / 2) /* overflow */
info.size = -1;
info.nr_disks = nr;
info.raid_disks = mddev->raid_disks;
info.md_minor = mddev->md_minor;
info.not_persistent= !mddev->persistent;
info.utime = mddev->utime;
info.state = 0;
if (mddev->in_sync)
info.state = (1<<MD_SB_CLEAN);
if (mddev->bitmap && mddev->bitmap_info.offset)
info.state |= (1<<MD_SB_BITMAP_PRESENT);
if (mddev_is_clustered(mddev))
info.state |= (1<<MD_SB_CLUSTERED);
info.active_disks = insync;
info.working_disks = working;
info.failed_disks = failed;
info.spare_disks = spare;
info.layout = mddev->layout;
info.chunk_size = mddev->chunk_sectors << 9;
if (copy_to_user(arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
static int get_bitmap_file(struct mddev *mddev, void __user * arg)
{
mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
char *ptr;
int err;
file = kzalloc(sizeof(*file), GFP_NOIO);
if (!file)
return -ENOMEM;
err = 0;
spin_lock(&mddev->lock);
/* bitmap enabled */
if (mddev->bitmap_info.file) {
ptr = file_path(mddev->bitmap_info.file, file->pathname,
sizeof(file->pathname));
if (IS_ERR(ptr))
err = PTR_ERR(ptr);
else
memmove(file->pathname, ptr,
sizeof(file->pathname)-(ptr-file->pathname));
}
spin_unlock(&mddev->lock);
if (err == 0 &&
copy_to_user(arg, file, sizeof(*file)))
err = -EFAULT;
kfree(file);
return err;
}
static int get_disk_info(struct mddev *mddev, void __user * arg)
{
mdu_disk_info_t info;
struct md_rdev *rdev;
if (copy_from_user(&info, arg, sizeof(info)))
return -EFAULT;
rcu_read_lock();
rdev = md_find_rdev_nr_rcu(mddev, info.number);
if (rdev) {
info.major = MAJOR(rdev->bdev->bd_dev);
info.minor = MINOR(rdev->bdev->bd_dev);
info.raid_disk = rdev->raid_disk;
info.state = 0;
if (test_bit(Faulty, &rdev->flags))
info.state |= (1<<MD_DISK_FAULTY);
else if (test_bit(In_sync, &rdev->flags)) {
info.state |= (1<<MD_DISK_ACTIVE);
info.state |= (1<<MD_DISK_SYNC);
}
if (test_bit(Journal, &rdev->flags))
info.state |= (1<<MD_DISK_JOURNAL);
if (test_bit(WriteMostly, &rdev->flags))
info.state |= (1<<MD_DISK_WRITEMOSTLY);
} else {
info.major = info.minor = 0;
info.raid_disk = -1;
info.state = (1<<MD_DISK_REMOVED);
}
rcu_read_unlock();
if (copy_to_user(arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
{
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
struct md_rdev *rdev;
dev_t dev = MKDEV(info->major,info->minor);
if (mddev_is_clustered(mddev) &&
!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
pr_err("%s: Cannot add to clustered mddev.\n",
mdname(mddev));
return -EINVAL;
}
if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
return -EOVERFLOW;
if (!mddev->raid_disks) {
int err;
/* expecting a device which has a superblock */
rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
if (IS_ERR(rdev)) {
printk(KERN_WARNING
"md: md_import_device returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
if (!list_empty(&mddev->disks)) {
struct md_rdev *rdev0
= list_entry(mddev->disks.next,
struct md_rdev, same_set);
err = super_types[mddev->major_version]
.load_super(rdev, rdev0, mddev->minor_version);
if (err < 0) {
printk(KERN_WARNING
"md: %s has different UUID to %s\n",
bdevname(rdev->bdev,b),
bdevname(rdev0->bdev,b2));
export_rdev(rdev);
return -EINVAL;
}
}
err = bind_rdev_to_array(rdev, mddev);
if (err)
export_rdev(rdev);
return err;
}
/*
* add_new_disk can be used once the array is assembled
* to add "hot spares". They must already have a superblock
* written
*/
if (mddev->pers) {
int err;
if (!mddev->pers->hot_add_disk) {
printk(KERN_WARNING
"%s: personality does not support diskops!\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->persistent)
rdev = md_import_device(dev, mddev->major_version,
mddev->minor_version);
else
rdev = md_import_device(dev, -1, -1);
if (IS_ERR(rdev)) {
printk(KERN_WARNING
"md: md_import_device returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
/* set saved_raid_disk if appropriate */
if (!mddev->persistent) {
if (info->state & (1<<MD_DISK_SYNC) &&
info->raid_disk < mddev->raid_disks) {
rdev->raid_disk = info->raid_disk;
set_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
} else
rdev->raid_disk = -1;
rdev->saved_raid_disk = rdev->raid_disk;
} else
super_types[mddev->major_version].
validate_super(mddev, rdev);
if ((info->state & (1<<MD_DISK_SYNC)) &&
rdev->raid_disk != info->raid_disk) {
/* This was a hot-add request, but events doesn't
* match, so reject it.
*/
export_rdev(rdev);
return -EINVAL;
}
clear_bit(In_sync, &rdev->flags); /* just to be sure */
if (info->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
else
clear_bit(WriteMostly, &rdev->flags);
if (info->state & (1<<MD_DISK_JOURNAL))
set_bit(Journal, &rdev->flags);
/*
* check whether the device shows up in other nodes
*/
if (mddev_is_clustered(mddev)) {
if (info->state & (1 << MD_DISK_CANDIDATE))
set_bit(Candidate, &rdev->flags);
else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
/* --add initiated by this node */
err = md_cluster_ops->add_new_disk(mddev, rdev);
if (err) {
export_rdev(rdev);
return err;
}
}
}
rdev->raid_disk = -1;
err = bind_rdev_to_array(rdev, mddev);
if (err)
export_rdev(rdev);
if (mddev_is_clustered(mddev)) {
if (info->state & (1 << MD_DISK_CANDIDATE))
md_cluster_ops->new_disk_ack(mddev, (err == 0));
else {
if (err)
md_cluster_ops->add_new_disk_cancel(mddev);
else
err = add_bound_rdev(rdev);
}
} else if (!err)
err = add_bound_rdev(rdev);
return err;
}
/* otherwise, add_new_disk is only allowed
* for major_version==0 superblocks
*/
if (mddev->major_version != 0) {
printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
mdname(mddev));
return -EINVAL;
}
if (!(info->state & (1<<MD_DISK_FAULTY))) {
int err;
rdev = md_import_device(dev, -1, 0);
if (IS_ERR(rdev)) {
printk(KERN_WARNING
"md: error, md_import_device() returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
rdev->desc_nr = info->number;
if (info->raid_disk < mddev->raid_disks)
rdev->raid_disk = info->raid_disk;
else
rdev->raid_disk = -1;
if (rdev->raid_disk < mddev->raid_disks)
if (info->state & (1<<MD_DISK_SYNC))
set_bit(In_sync, &rdev->flags);
if (info->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
if (!mddev->persistent) {
printk(KERN_INFO "md: nonpersistent superblock ...\n");
rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
} else
rdev->sb_start = calc_dev_sboffset(rdev);
rdev->sectors = rdev->sb_start;
err = bind_rdev_to_array(rdev, mddev);
if (err) {
export_rdev(rdev);
return err;
}
}
return 0;
}
static int hot_remove_disk(struct mddev *mddev, dev_t dev)
{
char b[BDEVNAME_SIZE];
struct md_rdev *rdev;
int ret = -1;
if (!mddev->pers)
return -ENODEV;
rdev = find_rdev(mddev, dev);
if (!rdev)
return -ENXIO;
if (mddev_is_clustered(mddev))
ret = md_cluster_ops->metadata_update_start(mddev);
if (rdev->raid_disk < 0)
goto kick_rdev;
clear_bit(Blocked, &rdev->flags);
remove_and_add_spares(mddev, rdev);
if (rdev->raid_disk >= 0)
goto busy;
kick_rdev:
if (mddev_is_clustered(mddev) && ret == 0)
md_cluster_ops->remove_disk(mddev, rdev);
md_kick_rdev_from_array(rdev);
md_update_sb(mddev, 1);
md_new_event(mddev);
return 0;
busy:
if (mddev_is_clustered(mddev) && ret == 0)
md_cluster_ops->metadata_update_cancel(mddev);
printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
bdevname(rdev->bdev,b), mdname(mddev));
return -EBUSY;
}
static int hot_add_disk(struct mddev *mddev, dev_t dev)
{
char b[BDEVNAME_SIZE];
int err;
struct md_rdev *rdev;
if (!mddev->pers)
return -ENODEV;
if (mddev->major_version != 0) {
printk(KERN_WARNING "%s: HOT_ADD may only be used with"
" version-0 superblocks.\n",
mdname(mddev));
return -EINVAL;
}
if (!mddev->pers->hot_add_disk) {
printk(KERN_WARNING
"%s: personality does not support diskops!\n",
mdname(mddev));
return -EINVAL;
}
rdev = md_import_device(dev, -1, 0);
if (IS_ERR(rdev)) {
printk(KERN_WARNING
"md: error, md_import_device() returned %ld\n",
PTR_ERR(rdev));
return -EINVAL;
}
if (mddev->persistent)
rdev->sb_start = calc_dev_sboffset(rdev);
else
rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
rdev->sectors = rdev->sb_start;
if (test_bit(Faulty, &rdev->flags)) {
printk(KERN_WARNING
"md: can not hot-add faulty %s disk to %s!\n",
bdevname(rdev->bdev,b), mdname(mddev));
err = -EINVAL;
goto abort_export;
}
clear_bit(In_sync, &rdev->flags);
rdev->desc_nr = -1;
rdev->saved_raid_disk = -1;
err = bind_rdev_to_array(rdev, mddev);
if (err)
goto abort_export;
/*
* The rest should better be atomic, we can have disk failures
* noticed in interrupt contexts ...
*/
rdev->raid_disk = -1;
md_update_sb(mddev, 1);
/*
* Kick recovery, maybe this spare has to be added to the
* array immediately.
*/
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_new_event(mddev);
return 0;
abort_export:
export_rdev(rdev);
return err;
}
static int set_bitmap_file(struct mddev *mddev, int fd)
{
int err = 0;
if (mddev->pers) {
if (!mddev->pers->quiesce || !mddev->thread)
return -EBUSY;
if (mddev->recovery || mddev->sync_thread)
return -EBUSY;
/* we should be able to change the bitmap.. */
}
if (fd >= 0) {
struct inode *inode;
struct file *f;
if (mddev->bitmap || mddev->bitmap_info.file)
return -EEXIST; /* cannot add when bitmap is present */
f = fget(fd);
if (f == NULL) {
printk(KERN_ERR "%s: error: failed to get bitmap file\n",
mdname(mddev));
return -EBADF;
}
inode = f->f_mapping->host;
if (!S_ISREG(inode->i_mode)) {
printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
mdname(mddev));
err = -EBADF;
} else if (!(f->f_mode & FMODE_WRITE)) {
printk(KERN_ERR "%s: error: bitmap file must open for write\n",
mdname(mddev));
err = -EBADF;
} else if (atomic_read(&inode->i_writecount) != 1) {
printk(KERN_ERR "%s: error: bitmap file is already in use\n",
mdname(mddev));
err = -EBUSY;
}
if (err) {
fput(f);
return err;
}
mddev->bitmap_info.file = f;
mddev->bitmap_info.offset = 0; /* file overrides offset */
} else if (mddev->bitmap == NULL)
return -ENOENT; /* cannot remove what isn't there */
err = 0;
if (mddev->pers) {
mddev->pers->quiesce(mddev, 1);
if (fd >= 0) {
struct bitmap *bitmap;
bitmap = bitmap_create(mddev, -1);
if (!IS_ERR(bitmap)) {
mddev->bitmap = bitmap;
err = bitmap_load(mddev);
} else
err = PTR_ERR(bitmap);
}
if (fd < 0 || err) {
bitmap_destroy(mddev);
fd = -1; /* make sure to put the file */
}
mddev->pers->quiesce(mddev, 0);
}
if (fd < 0) {
struct file *f = mddev->bitmap_info.file;
if (f) {
spin_lock(&mddev->lock);
mddev->bitmap_info.file = NULL;
spin_unlock(&mddev->lock);
fput(f);
}
}
return err;
}
/*
* set_array_info is used two different ways
* The original usage is when creating a new array.
* In this usage, raid_disks is > 0 and it together with
* level, size, not_persistent,layout,chunksize determine the
* shape of the array.
* This will always create an array with a type-0.90.0 superblock.
* The newer usage is when assembling an array.
* In this case raid_disks will be 0, and the major_version field is
* use to determine which style super-blocks are to be found on the devices.
* The minor and patch _version numbers are also kept incase the
* super_block handler wishes to interpret them.
*/
static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
{
if (info->raid_disks == 0) {
/* just setting version number for superblock loading */
if (info->major_version < 0 ||
info->major_version >= ARRAY_SIZE(super_types) ||
super_types[info->major_version].name == NULL) {
/* maybe try to auto-load a module? */
printk(KERN_INFO
"md: superblock version %d not known\n",
info->major_version);
return -EINVAL;
}
mddev->major_version = info->major_version;
mddev->minor_version = info->minor_version;
mddev->patch_version = info->patch_version;
mddev->persistent = !info->not_persistent;
/* ensure mddev_put doesn't delete this now that there
* is some minimal configuration.
*/
mddev->ctime = get_seconds();
return 0;
}
mddev->major_version = MD_MAJOR_VERSION;
mddev->minor_version = MD_MINOR_VERSION;
mddev->patch_version = MD_PATCHLEVEL_VERSION;
mddev->ctime = get_seconds();
mddev->level = info->level;
mddev->clevel[0] = 0;
mddev->dev_sectors = 2 * (sector_t)info->size;
mddev->raid_disks = info->raid_disks;
/* don't set md_minor, it is determined by which /dev/md* was
* openned
*/
if (info->state & (1<<MD_SB_CLEAN))
mddev->recovery_cp = MaxSector;
else
mddev->recovery_cp = 0;
mddev->persistent = ! info->not_persistent;
mddev->external = 0;
mddev->layout = info->layout;
mddev->chunk_sectors = info->chunk_size >> 9;
mddev->max_disks = MD_SB_DISKS;
if (mddev->persistent)
mddev->flags = 0;
set_bit(MD_CHANGE_DEVS, &mddev->flags);
mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
mddev->bitmap_info.offset = 0;
mddev->reshape_position = MaxSector;
/*
* Generate a 128 bit UUID
*/
get_random_bytes(mddev->uuid, 16);
mddev->new_level = mddev->level;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->new_layout = mddev->layout;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
return 0;
}
void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
{
WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
if (mddev->external_size)
return;
mddev->array_sectors = array_sectors;
}
EXPORT_SYMBOL(md_set_array_sectors);
static int update_size(struct mddev *mddev, sector_t num_sectors)
{
struct md_rdev *rdev;
int rv;
int fit = (num_sectors == 0);
if (mddev->pers->resize == NULL)
return -EINVAL;
/* The "num_sectors" is the number of sectors of each device that
* is used. This can only make sense for arrays with redundancy.
* linear and raid0 always use whatever space is available. We can only
* consider changing this number if no resync or reconstruction is
* happening, and if the new size is acceptable. It must fit before the
* sb_start or, if that is <data_offset, it must fit before the size
* of each device. If num_sectors is zero, we find the largest size
* that fits.
*/
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
mddev->sync_thread)
return -EBUSY;
if (mddev->ro)
return -EROFS;
rdev_for_each(rdev, mddev) {
sector_t avail = rdev->sectors;
if (fit && (num_sectors == 0 || num_sectors > avail))
num_sectors = avail;
if (avail < num_sectors)
return -ENOSPC;
}
rv = mddev->pers->resize(mddev, num_sectors);
if (!rv)
revalidate_disk(mddev->gendisk);
return rv;
}
static int update_raid_disks(struct mddev *mddev, int raid_disks)
{
int rv;
struct md_rdev *rdev;
/* change the number of raid disks */
if (mddev->pers->check_reshape == NULL)
return -EINVAL;
if (mddev->ro)
return -EROFS;
if (raid_disks <= 0 ||
(mddev->max_disks && raid_disks >= mddev->max_disks))
return -EINVAL;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
mddev->reshape_position != MaxSector)
return -EBUSY;
rdev_for_each(rdev, mddev) {
if (mddev->raid_disks < raid_disks &&
rdev->data_offset < rdev->new_data_offset)
return -EINVAL;
if (mddev->raid_disks > raid_disks &&
rdev->data_offset > rdev->new_data_offset)
return -EINVAL;
}
mddev->delta_disks = raid_disks - mddev->raid_disks;
if (mddev->delta_disks < 0)
mddev->reshape_backwards = 1;
else if (mddev->delta_disks > 0)
mddev->reshape_backwards = 0;
rv = mddev->pers->check_reshape(mddev);
if (rv < 0) {
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
}
return rv;
}
/*
* update_array_info is used to change the configuration of an
* on-line array.
* The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
* fields in the info are checked against the array.
* Any differences that cannot be handled will cause an error.
* Normally, only one change can be managed at a time.
*/
static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
{
int rv = 0;
int cnt = 0;
int state = 0;
/* calculate expected state,ignoring low bits */
if (mddev->bitmap && mddev->bitmap_info.offset)
state |= (1 << MD_SB_BITMAP_PRESENT);
if (mddev->major_version != info->major_version ||
mddev->minor_version != info->minor_version ||
/* mddev->patch_version != info->patch_version || */
mddev->ctime != info->ctime ||
mddev->level != info->level ||
/* mddev->layout != info->layout || */
mddev->persistent != !info->not_persistent ||
mddev->chunk_sectors != info->chunk_size >> 9 ||
/* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
((state^info->state) & 0xfffffe00)
)
return -EINVAL;
/* Check there is only one change */
if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
cnt++;
if (mddev->raid_disks != info->raid_disks)
cnt++;
if (mddev->layout != info->layout)
cnt++;
if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
cnt++;
if (cnt == 0)
return 0;
if (cnt > 1)
return -EINVAL;
if (mddev->layout != info->layout) {
/* Change layout
* we don't need to do anything at the md level, the
* personality will take care of it all.
*/
if (mddev->pers->check_reshape == NULL)
return -EINVAL;
else {
mddev->new_layout = info->layout;
rv = mddev->pers->check_reshape(mddev);
if (rv)
mddev->new_layout = mddev->layout;
return rv;
}
}
if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
rv = update_size(mddev, (sector_t)info->size * 2);
if (mddev->raid_disks != info->raid_disks)
rv = update_raid_disks(mddev, info->raid_disks);
if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
rv = -EINVAL;
goto err;
}
if (mddev->recovery || mddev->sync_thread) {
rv = -EBUSY;
goto err;
}
if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
struct bitmap *bitmap;
/* add the bitmap */
if (mddev->bitmap) {
rv = -EEXIST;
goto err;
}
if (mddev->bitmap_info.default_offset == 0) {
rv = -EINVAL;
goto err;
}
mddev->bitmap_info.offset =
mddev->bitmap_info.default_offset;
mddev->bitmap_info.space =
mddev->bitmap_info.default_space;
mddev->pers->quiesce(mddev, 1);
bitmap = bitmap_create(mddev, -1);
if (!IS_ERR(bitmap)) {
mddev->bitmap = bitmap;
rv = bitmap_load(mddev);
} else
rv = PTR_ERR(bitmap);
if (rv)
bitmap_destroy(mddev);
mddev->pers->quiesce(mddev, 0);
} else {
/* remove the bitmap */
if (!mddev->bitmap) {
rv = -ENOENT;
goto err;
}
if (mddev->bitmap->storage.file) {
rv = -EINVAL;
goto err;
}
mddev->pers->quiesce(mddev, 1);
bitmap_destroy(mddev);
mddev->pers->quiesce(mddev, 0);
mddev->bitmap_info.offset = 0;
}
}
md_update_sb(mddev, 1);
return rv;
err:
return rv;
}
static int set_disk_faulty(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
int err = 0;
if (mddev->pers == NULL)
return -ENODEV;
rcu_read_lock();
rdev = find_rdev_rcu(mddev, dev);
if (!rdev)
err = -ENODEV;
else {
md_error(mddev, rdev);
if (!test_bit(Faulty, &rdev->flags))
err = -EBUSY;
}
rcu_read_unlock();
return err;
}
/*
* We have a problem here : there is no easy way to give a CHS
* virtual geometry. We currently pretend that we have a 2 heads
* 4 sectors (with a BIG number of cylinders...). This drives
* dosfs just mad... ;-)
*/
static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct mddev *mddev = bdev->bd_disk->private_data;
geo->heads = 2;
geo->sectors = 4;
geo->cylinders = mddev->array_sectors / 8;
return 0;
}
static inline bool md_ioctl_valid(unsigned int cmd)
{
switch (cmd) {
case ADD_NEW_DISK:
case BLKROSET:
case GET_ARRAY_INFO:
case GET_BITMAP_FILE:
case GET_DISK_INFO:
case HOT_ADD_DISK:
case HOT_REMOVE_DISK:
case RAID_AUTORUN:
case RAID_VERSION:
case RESTART_ARRAY_RW:
case RUN_ARRAY:
case SET_ARRAY_INFO:
case SET_BITMAP_FILE:
case SET_DISK_FAULTY:
case STOP_ARRAY:
case STOP_ARRAY_RO:
case CLUSTERED_DISK_NACK:
return true;
default:
return false;
}
}
static int md_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int err = 0;
void __user *argp = (void __user *)arg;
struct mddev *mddev = NULL;
int ro;
if (!md_ioctl_valid(cmd))
return -ENOTTY;
switch (cmd) {
case RAID_VERSION:
case GET_ARRAY_INFO:
case GET_DISK_INFO:
break;
default:
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
}
/*
* Commands dealing with the RAID driver but not any
* particular array:
*/
switch (cmd) {
case RAID_VERSION:
err = get_version(argp);
goto out;
#ifndef MODULE
case RAID_AUTORUN:
err = 0;
autostart_arrays(arg);
goto out;
#endif
default:;
}
/*
* Commands creating/starting a new array:
*/
mddev = bdev->bd_disk->private_data;
if (!mddev) {
BUG();
goto out;
}
/* Some actions do not requires the mutex */
switch (cmd) {
case GET_ARRAY_INFO:
if (!mddev->raid_disks && !mddev->external)
err = -ENODEV;
else
err = get_array_info(mddev, argp);
goto out;
case GET_DISK_INFO:
if (!mddev->raid_disks && !mddev->external)
err = -ENODEV;
else
err = get_disk_info(mddev, argp);
goto out;
case SET_DISK_FAULTY:
err = set_disk_faulty(mddev, new_decode_dev(arg));
goto out;
case GET_BITMAP_FILE:
err = get_bitmap_file(mddev, argp);
goto out;
}
if (cmd == ADD_NEW_DISK)
/* need to ensure md_delayed_delete() has completed */
flush_workqueue(md_misc_wq);
if (cmd == HOT_REMOVE_DISK)
/* need to ensure recovery thread has run */
wait_event_interruptible_timeout(mddev->sb_wait,
!test_bit(MD_RECOVERY_NEEDED,
&mddev->recovery),
msecs_to_jiffies(5000));
if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
/* Need to flush page cache, and ensure no-one else opens
* and writes
*/
mutex_lock(&mddev->open_mutex);
if (mddev->pers && atomic_read(&mddev->openers) > 1) {
mutex_unlock(&mddev->open_mutex);
err = -EBUSY;
goto out;
}
set_bit(MD_STILL_CLOSED, &mddev->flags);
mutex_unlock(&mddev->open_mutex);
sync_blockdev(bdev);
}
err = mddev_lock(mddev);
if (err) {
printk(KERN_INFO
"md: ioctl lock interrupted, reason %d, cmd %d\n",
err, cmd);
goto out;
}
if (cmd == SET_ARRAY_INFO) {
mdu_array_info_t info;
if (!arg)
memset(&info, 0, sizeof(info));
else if (copy_from_user(&info, argp, sizeof(info))) {
err = -EFAULT;
goto unlock;
}
if (mddev->pers) {
err = update_array_info(mddev, &info);
if (err) {
printk(KERN_WARNING "md: couldn't update"
" array info. %d\n", err);
goto unlock;
}
goto unlock;
}
if (!list_empty(&mddev->disks)) {
printk(KERN_WARNING
"md: array %s already has disks!\n",
mdname(mddev));
err = -EBUSY;
goto unlock;
}
if (mddev->raid_disks) {
printk(KERN_WARNING
"md: array %s already initialised!\n",
mdname(mddev));
err = -EBUSY;
goto unlock;
}
err = set_array_info(mddev, &info);
if (err) {
printk(KERN_WARNING "md: couldn't set"
" array info. %d\n", err);
goto unlock;
}
goto unlock;
}
/*
* Commands querying/configuring an existing array:
*/
/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
* RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
if ((!mddev->raid_disks && !mddev->external)
&& cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
&& cmd != GET_BITMAP_FILE) {
err = -ENODEV;
goto unlock;
}
/*
* Commands even a read-only array can execute:
*/
switch (cmd) {
case RESTART_ARRAY_RW:
err = restart_array(mddev);
goto unlock;
case STOP_ARRAY:
err = do_md_stop(mddev, 0, bdev);
goto unlock;
case STOP_ARRAY_RO:
err = md_set_readonly(mddev, bdev);
goto unlock;
case HOT_REMOVE_DISK:
err = hot_remove_disk(mddev, new_decode_dev(arg));
goto unlock;
case ADD_NEW_DISK:
/* We can support ADD_NEW_DISK on read-only arrays
* on if we are re-adding a preexisting device.
* So require mddev->pers and MD_DISK_SYNC.
*/
if (mddev->pers) {
mdu_disk_info_t info;
if (copy_from_user(&info, argp, sizeof(info)))
err = -EFAULT;
else if (!(info.state & (1<<MD_DISK_SYNC)))
/* Need to clear read-only for this */
break;
else
err = add_new_disk(mddev, &info);
goto unlock;
}
break;
case BLKROSET:
if (get_user(ro, (int __user *)(arg))) {
err = -EFAULT;
goto unlock;
}
err = -EINVAL;
/* if the bdev is going readonly the value of mddev->ro
* does not matter, no writes are coming
*/
if (ro)
goto unlock;
/* are we are already prepared for writes? */
if (mddev->ro != 1)
goto unlock;
/* transitioning to readauto need only happen for
* arrays that call md_write_start
*/
if (mddev->pers) {
err = restart_array(mddev);
if (err == 0) {
mddev->ro = 2;
set_disk_ro(mddev->gendisk, 0);
}
}
goto unlock;
}
/*
* The remaining ioctls are changing the state of the
* superblock, so we do not allow them on read-only arrays.
*/
if (mddev->ro && mddev->pers) {
if (mddev->ro == 2) {
mddev->ro = 0;
sysfs_notify_dirent_safe(mddev->sysfs_state);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
/* mddev_unlock will wake thread */
/* If a device failed while we were read-only, we
* need to make sure the metadata is updated now.
*/
if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
mddev_unlock(mddev);
wait_event(mddev->sb_wait,
!test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
!test_bit(MD_CHANGE_PENDING, &mddev->flags));
mddev_lock_nointr(mddev);
}
} else {
err = -EROFS;
goto unlock;
}
}
switch (cmd) {
case ADD_NEW_DISK:
{
mdu_disk_info_t info;
if (copy_from_user(&info, argp, sizeof(info)))
err = -EFAULT;
else
err = add_new_disk(mddev, &info);
goto unlock;
}
case CLUSTERED_DISK_NACK:
if (mddev_is_clustered(mddev))
md_cluster_ops->new_disk_ack(mddev, false);
else
err = -EINVAL;
goto unlock;
case HOT_ADD_DISK:
err = hot_add_disk(mddev, new_decode_dev(arg));
goto unlock;
case RUN_ARRAY:
err = do_md_run(mddev);
goto unlock;
case SET_BITMAP_FILE:
err = set_bitmap_file(mddev, (int)arg);
goto unlock;
default:
err = -EINVAL;
goto unlock;
}
unlock:
if (mddev->hold_active == UNTIL_IOCTL &&
err != -EINVAL)
mddev->hold_active = 0;
mddev_unlock(mddev);
out:
return err;
}
#ifdef CONFIG_COMPAT
static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case HOT_REMOVE_DISK:
case HOT_ADD_DISK:
case SET_DISK_FAULTY:
case SET_BITMAP_FILE:
/* These take in integer arg, do not convert */
break;
default:
arg = (unsigned long)compat_ptr(arg);
break;
}
return md_ioctl(bdev, mode, cmd, arg);
}
#endif /* CONFIG_COMPAT */
static int md_open(struct block_device *bdev, fmode_t mode)
{
/*
* Succeed if we can lock the mddev, which confirms that
* it isn't being stopped right now.
*/
struct mddev *mddev = mddev_find(bdev->bd_dev);
int err;
if (!mddev)
return -ENODEV;
if (mddev->gendisk != bdev->bd_disk) {
/* we are racing with mddev_put which is discarding this
* bd_disk.
*/
mddev_put(mddev);
/* Wait until bdev->bd_disk is definitely gone */
flush_workqueue(md_misc_wq);
/* Then retry the open from the top */
return -ERESTARTSYS;
}
BUG_ON(mddev != bdev->bd_disk->private_data);
if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
goto out;
err = 0;
atomic_inc(&mddev->openers);
clear_bit(MD_STILL_CLOSED, &mddev->flags);
mutex_unlock(&mddev->open_mutex);
check_disk_change(bdev);
out:
return err;
}
static void md_release(struct gendisk *disk, fmode_t mode)
{
struct mddev *mddev = disk->private_data;
BUG_ON(!mddev);
atomic_dec(&mddev->openers);
mddev_put(mddev);
}
static int md_media_changed(struct gendisk *disk)
{
struct mddev *mddev = disk->private_data;
return mddev->changed;
}
static int md_revalidate(struct gendisk *disk)
{
struct mddev *mddev = disk->private_data;
mddev->changed = 0;
return 0;
}
static const struct block_device_operations md_fops =
{
.owner = THIS_MODULE,
.open = md_open,
.release = md_release,
.ioctl = md_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = md_compat_ioctl,
#endif
.getgeo = md_getgeo,
.media_changed = md_media_changed,
.revalidate_disk= md_revalidate,
};
static int md_thread(void *arg)
{
struct md_thread *thread = arg;
/*
* md_thread is a 'system-thread', it's priority should be very
* high. We avoid resource deadlocks individually in each
* raid personality. (RAID5 does preallocation) We also use RR and
* the very same RT priority as kswapd, thus we will never get
* into a priority inversion deadlock.
*
* we definitely have to have equal or higher priority than
* bdflush, otherwise bdflush will deadlock if there are too
* many dirty RAID5 blocks.
*/
allow_signal(SIGKILL);
while (!kthread_should_stop()) {
/* We need to wait INTERRUPTIBLE so that
* we don't add to the load-average.
* That means we need to be sure no signals are
* pending
*/
if (signal_pending(current))
flush_signals(current);
wait_event_interruptible_timeout
(thread->wqueue,
test_bit(THREAD_WAKEUP, &thread->flags)
|| kthread_should_stop(),
thread->timeout);
clear_bit(THREAD_WAKEUP, &thread->flags);
if (!kthread_should_stop())
thread->run(thread);
}
return 0;
}
void md_wakeup_thread(struct md_thread *thread)
{
if (thread) {
pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
set_bit(THREAD_WAKEUP, &thread->flags);
wake_up(&thread->wqueue);
}
}
EXPORT_SYMBOL(md_wakeup_thread);
struct md_thread *md_register_thread(void (*run) (struct md_thread *),
struct mddev *mddev, const char *name)
{
struct md_thread *thread;
thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
if (!thread)
return NULL;
init_waitqueue_head(&thread->wqueue);
thread->run = run;
thread->mddev = mddev;
thread->timeout = MAX_SCHEDULE_TIMEOUT;
thread->tsk = kthread_run(md_thread, thread,
"%s_%s",
mdname(thread->mddev),
name);
if (IS_ERR(thread->tsk)) {
kfree(thread);
return NULL;
}
return thread;
}
EXPORT_SYMBOL(md_register_thread);
void md_unregister_thread(struct md_thread **threadp)
{
struct md_thread *thread = *threadp;
if (!thread)
return;
pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
/* Locking ensures that mddev_unlock does not wake_up a
* non-existent thread
*/
spin_lock(&pers_lock);
*threadp = NULL;
spin_unlock(&pers_lock);
kthread_stop(thread->tsk);
kfree(thread);
}
EXPORT_SYMBOL(md_unregister_thread);
void md_error(struct mddev *mddev, struct md_rdev *rdev)
{
if (!rdev || test_bit(Faulty, &rdev->flags))
return;
if (!mddev->pers || !mddev->pers->error_handler)
return;
mddev->pers->error_handler(mddev,rdev);
if (mddev->degraded)
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
if (mddev->event_work.func)
queue_work(md_misc_wq, &mddev->event_work);
md_new_event_inintr(mddev);
}
EXPORT_SYMBOL(md_error);
/* seq_file implementation /proc/mdstat */
static void status_unused(struct seq_file *seq)
{
int i = 0;
struct md_rdev *rdev;
seq_printf(seq, "unused devices: ");
list_for_each_entry(rdev, &pending_raid_disks, same_set) {
char b[BDEVNAME_SIZE];
i++;
seq_printf(seq, "%s ",
bdevname(rdev->bdev,b));
}
if (!i)
seq_printf(seq, "<none>");
seq_printf(seq, "\n");
}
static int status_resync(struct seq_file *seq, struct mddev *mddev)
{
sector_t max_sectors, resync, res;
unsigned long dt, db;
sector_t rt;
int scale;
unsigned int per_milli;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sectors = mddev->resync_max_sectors;
else
max_sectors = mddev->dev_sectors;
resync = mddev->curr_resync;
if (resync <= 3) {
if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
/* Still cleaning up */
resync = max_sectors;
} else
resync -= atomic_read(&mddev->recovery_active);
if (resync == 0) {
if (mddev->recovery_cp < MaxSector) {
seq_printf(seq, "\tresync=PENDING");
return 1;
}
return 0;
}
if (resync < 3) {
seq_printf(seq, "\tresync=DELAYED");
return 1;
}
WARN_ON(max_sectors == 0);
/* Pick 'scale' such that (resync>>scale)*1000 will fit
* in a sector_t, and (max_sectors>>scale) will fit in a
* u32, as those are the requirements for sector_div.
* Thus 'scale' must be at least 10
*/
scale = 10;
if (sizeof(sector_t) > sizeof(unsigned long)) {
while ( max_sectors/2 > (1ULL<<(scale+32)))
scale++;
}
res = (resync>>scale)*1000;
sector_div(res, (u32)((max_sectors>>scale)+1));
per_milli = res;
{
int i, x = per_milli/50, y = 20-x;
seq_printf(seq, "[");
for (i = 0; i < x; i++)
seq_printf(seq, "=");
seq_printf(seq, ">");
for (i = 0; i < y; i++)
seq_printf(seq, ".");
seq_printf(seq, "] ");
}
seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
(test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
"reshape" :
(test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
"check" :
(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
"resync" : "recovery"))),
per_milli/10, per_milli % 10,
(unsigned long long) resync/2,
(unsigned long long) max_sectors/2);
/*
* dt: time from mark until now
* db: blocks written from mark until now
* rt: remaining time
*
* rt is a sector_t, so could be 32bit or 64bit.
* So we divide before multiply in case it is 32bit and close
* to the limit.
* We scale the divisor (db) by 32 to avoid losing precision
* near the end of resync when the number of remaining sectors
* is close to 'db'.
* We then divide rt by 32 after multiplying by db to compensate.
* The '+1' avoids division by zero if db is very small.
*/
dt = ((jiffies - mddev->resync_mark) / HZ);
if (!dt) dt++;
db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
- mddev->resync_mark_cnt;
rt = max_sectors - resync; /* number of remaining sectors */
sector_div(rt, db/32+1);
rt *= dt;
rt >>= 5;
seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
((unsigned long)rt % 60)/6);
seq_printf(seq, " speed=%ldK/sec", db/2/dt);
return 1;
}
static void *md_seq_start(struct seq_file *seq, loff_t *pos)
{
struct list_head *tmp;
loff_t l = *pos;
struct mddev *mddev;
if (l >= 0x10000)
return NULL;
if (!l--)
/* header */
return (void*)1;
spin_lock(&all_mddevs_lock);
list_for_each(tmp,&all_mddevs)
if (!l--) {
mddev = list_entry(tmp, struct mddev, all_mddevs);
mddev_get(mddev);
spin_unlock(&all_mddevs_lock);
return mddev;
}
spin_unlock(&all_mddevs_lock);
if (!l--)
return (void*)2;/* tail */
return NULL;
}
static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct list_head *tmp;
struct mddev *next_mddev, *mddev = v;
++*pos;
if (v == (void*)2)
return NULL;
spin_lock(&all_mddevs_lock);
if (v == (void*)1)
tmp = all_mddevs.next;
else
tmp = mddev->all_mddevs.next;
if (tmp != &all_mddevs)
next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
else {
next_mddev = (void*)2;
*pos = 0x10000;
}
spin_unlock(&all_mddevs_lock);
if (v != (void*)1)
mddev_put(mddev);
return next_mddev;
}
static void md_seq_stop(struct seq_file *seq, void *v)
{
struct mddev *mddev = v;
if (mddev && v != (void*)1 && v != (void*)2)
mddev_put(mddev);
}
static int md_seq_show(struct seq_file *seq, void *v)
{
struct mddev *mddev = v;
sector_t sectors;
struct md_rdev *rdev;
if (v == (void*)1) {
struct md_personality *pers;
seq_printf(seq, "Personalities : ");
spin_lock(&pers_lock);
list_for_each_entry(pers, &pers_list, list)
seq_printf(seq, "[%s] ", pers->name);
spin_unlock(&pers_lock);
seq_printf(seq, "\n");
seq->poll_event = atomic_read(&md_event_count);
return 0;
}
if (v == (void*)2) {
status_unused(seq);
return 0;
}
spin_lock(&mddev->lock);
if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
seq_printf(seq, "%s : %sactive", mdname(mddev),
mddev->pers ? "" : "in");
if (mddev->pers) {
if (mddev->ro==1)
seq_printf(seq, " (read-only)");
if (mddev->ro==2)
seq_printf(seq, " (auto-read-only)");
seq_printf(seq, " %s", mddev->pers->name);
}
sectors = 0;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
char b[BDEVNAME_SIZE];
seq_printf(seq, " %s[%d]",
bdevname(rdev->bdev,b), rdev->desc_nr);
if (test_bit(WriteMostly, &rdev->flags))
seq_printf(seq, "(W)");
if (test_bit(Journal, &rdev->flags))
seq_printf(seq, "(J)");
if (test_bit(Faulty, &rdev->flags)) {
seq_printf(seq, "(F)");
continue;
}
if (rdev->raid_disk < 0)
seq_printf(seq, "(S)"); /* spare */
if (test_bit(Replacement, &rdev->flags))
seq_printf(seq, "(R)");
sectors += rdev->sectors;
}
rcu_read_unlock();
if (!list_empty(&mddev->disks)) {
if (mddev->pers)
seq_printf(seq, "\n %llu blocks",
(unsigned long long)
mddev->array_sectors / 2);
else
seq_printf(seq, "\n %llu blocks",
(unsigned long long)sectors / 2);
}
if (mddev->persistent) {
if (mddev->major_version != 0 ||
mddev->minor_version != 90) {
seq_printf(seq," super %d.%d",
mddev->major_version,
mddev->minor_version);
}
} else if (mddev->external)
seq_printf(seq, " super external:%s",
mddev->metadata_type);
else
seq_printf(seq, " super non-persistent");
if (mddev->pers) {
mddev->pers->status(seq, mddev);
seq_printf(seq, "\n ");
if (mddev->pers->sync_request) {
if (status_resync(seq, mddev))
seq_printf(seq, "\n ");
}
} else
seq_printf(seq, "\n ");
bitmap_status(seq, mddev->bitmap);
seq_printf(seq, "\n");
}
spin_unlock(&mddev->lock);
return 0;
}
static const struct seq_operations md_seq_ops = {
.start = md_seq_start,
.next = md_seq_next,
.stop = md_seq_stop,
.show = md_seq_show,
};
static int md_seq_open(struct inode *inode, struct file *file)
{
struct seq_file *seq;
int error;
error = seq_open(file, &md_seq_ops);
if (error)
return error;
seq = file->private_data;
seq->poll_event = atomic_read(&md_event_count);
return error;
}
static int md_unloading;
static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
{
struct seq_file *seq = filp->private_data;
int mask;
if (md_unloading)
return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
poll_wait(filp, &md_event_waiters, wait);
/* always allow read */
mask = POLLIN | POLLRDNORM;
if (seq->poll_event != atomic_read(&md_event_count))
mask |= POLLERR | POLLPRI;
return mask;
}
static const struct file_operations md_seq_fops = {
.owner = THIS_MODULE,
.open = md_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
.poll = mdstat_poll,
};
int register_md_personality(struct md_personality *p)
{
printk(KERN_INFO "md: %s personality registered for level %d\n",
p->name, p->level);
spin_lock(&pers_lock);
list_add_tail(&p->list, &pers_list);
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(register_md_personality);
int unregister_md_personality(struct md_personality *p)
{
printk(KERN_INFO "md: %s personality unregistered\n", p->name);
spin_lock(&pers_lock);
list_del_init(&p->list);
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(unregister_md_personality);
int register_md_cluster_operations(struct md_cluster_operations *ops,
struct module *module)
{
int ret = 0;
spin_lock(&pers_lock);
if (md_cluster_ops != NULL)
ret = -EALREADY;
else {
md_cluster_ops = ops;
md_cluster_mod = module;
}
spin_unlock(&pers_lock);
return ret;
}
EXPORT_SYMBOL(register_md_cluster_operations);
int unregister_md_cluster_operations(void)
{
spin_lock(&pers_lock);
md_cluster_ops = NULL;
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(unregister_md_cluster_operations);
int md_setup_cluster(struct mddev *mddev, int nodes)
{
if (!md_cluster_ops)
request_module("md-cluster");
spin_lock(&pers_lock);
/* ensure module won't be unloaded */
if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
pr_err("can't find md-cluster module or get it's reference.\n");
spin_unlock(&pers_lock);
return -ENOENT;
}
spin_unlock(&pers_lock);
return md_cluster_ops->join(mddev, nodes);
}
void md_cluster_stop(struct mddev *mddev)
{
if (!md_cluster_ops)
return;
md_cluster_ops->leave(mddev);
module_put(md_cluster_mod);
}
static int is_mddev_idle(struct mddev *mddev, int init)
{
struct md_rdev *rdev;
int idle;
int curr_events;
idle = 1;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
(int)part_stat_read(&disk->part0, sectors[1]) -
atomic_read(&disk->sync_io);
/* sync IO will cause sync_io to increase before the disk_stats
* as sync_io is counted when a request starts, and
* disk_stats is counted when it completes.
* So resync activity will cause curr_events to be smaller than
* when there was no such activity.
* non-sync IO will cause disk_stat to increase without
* increasing sync_io so curr_events will (eventually)
* be larger than it was before. Once it becomes
* substantially larger, the test below will cause
* the array to appear non-idle, and resync will slow
* down.
* If there is a lot of outstanding resync activity when
* we set last_event to curr_events, then all that activity
* completing might cause the array to appear non-idle
* and resync will be slowed down even though there might
* not have been non-resync activity. This will only
* happen once though. 'last_events' will soon reflect
* the state where there is little or no outstanding
* resync requests, and further resync activity will
* always make curr_events less than last_events.
*
*/
if (init || curr_events - rdev->last_events > 64) {
rdev->last_events = curr_events;
idle = 0;
}
}
rcu_read_unlock();
return idle;
}
void md_done_sync(struct mddev *mddev, int blocks, int ok)
{
/* another "blocks" (512byte) blocks have been synced */
atomic_sub(blocks, &mddev->recovery_active);
wake_up(&mddev->recovery_wait);
if (!ok) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
md_wakeup_thread(mddev->thread);
// stop recovery, signal do_sync ....
}
}
EXPORT_SYMBOL(md_done_sync);
/* md_write_start(mddev, bi)
* If we need to update some array metadata (e.g. 'active' flag
* in superblock) before writing, schedule a superblock update
* and wait for it to complete.
*/
void md_write_start(struct mddev *mddev, struct bio *bi)
{
int did_change = 0;
if (bio_data_dir(bi) != WRITE)
return;
BUG_ON(mddev->ro == 1);
if (mddev->ro == 2) {
/* need to switch to read/write */
mddev->ro = 0;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread);
did_change = 1;
}
atomic_inc(&mddev->writes_pending);
if (mddev->safemode == 1)
mddev->safemode = 0;
if (mddev->in_sync) {
spin_lock(&mddev->lock);
if (mddev->in_sync) {
mddev->in_sync = 0;
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
set_bit(MD_CHANGE_PENDING, &mddev->flags);
md_wakeup_thread(mddev->thread);
did_change = 1;
}
spin_unlock(&mddev->lock);
}
if (did_change)
sysfs_notify_dirent_safe(mddev->sysfs_state);
wait_event(mddev->sb_wait,
!test_bit(MD_CHANGE_PENDING, &mddev->flags));
}
EXPORT_SYMBOL(md_write_start);
void md_write_end(struct mddev *mddev)
{
if (atomic_dec_and_test(&mddev->writes_pending)) {
if (mddev->safemode == 2)
md_wakeup_thread(mddev->thread);
else if (mddev->safemode_delay)
mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
}
}
EXPORT_SYMBOL(md_write_end);
/* md_allow_write(mddev)
* Calling this ensures that the array is marked 'active' so that writes
* may proceed without blocking. It is important to call this before
* attempting a GFP_KERNEL allocation while holding the mddev lock.
* Must be called with mddev_lock held.
*
* In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
* is dropped, so return -EAGAIN after notifying userspace.
*/
int md_allow_write(struct mddev *mddev)
{
if (!mddev->pers)
return 0;
if (mddev->ro)
return 0;
if (!mddev->pers->sync_request)
return 0;
spin_lock(&mddev->lock);
if (mddev->in_sync) {
mddev->in_sync = 0;
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
set_bit(MD_CHANGE_PENDING, &mddev->flags);
if (mddev->safemode_delay &&
mddev->safemode == 0)
mddev->safemode = 1;
spin_unlock(&mddev->lock);
md_update_sb(mddev, 0);
sysfs_notify_dirent_safe(mddev->sysfs_state);
} else
spin_unlock(&mddev->lock);
if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
return -EAGAIN;
else
return 0;
}
EXPORT_SYMBOL_GPL(md_allow_write);
#define SYNC_MARKS 10
#define SYNC_MARK_STEP (3*HZ)
#define UPDATE_FREQUENCY (5*60*HZ)
void md_do_sync(struct md_thread *thread)
{
struct mddev *mddev = thread->mddev;
struct mddev *mddev2;
unsigned int currspeed = 0,
window;
sector_t max_sectors,j, io_sectors, recovery_done;
unsigned long mark[SYNC_MARKS];
unsigned long update_time;
sector_t mark_cnt[SYNC_MARKS];
int last_mark,m;
struct list_head *tmp;
sector_t last_check;
int skipped = 0;
struct md_rdev *rdev;
char *desc, *action = NULL;
struct blk_plug plug;
bool cluster_resync_finished = false;
/* just incase thread restarts... */
if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
return;
if (mddev->ro) {/* never try to sync a read-only array */
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
return;
}
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
desc = "data-check";
action = "check";
} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
desc = "requested-resync";
action = "repair";
} else
desc = "resync";
} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
desc = "reshape";
else
desc = "recovery";
mddev->last_sync_action = action ?: desc;
/* we overload curr_resync somewhat here.
* 0 == not engaged in resync at all
* 2 == checking that there is no conflict with another sync
* 1 == like 2, but have yielded to allow conflicting resync to
* commense
* other == active in resync - this many blocks
*
* Before starting a resync we must have set curr_resync to
* 2, and then checked that every "conflicting" array has curr_resync
* less than ours. When we find one that is the same or higher
* we wait on resync_wait. To avoid deadlock, we reduce curr_resync
* to 1 if we choose to yield (based arbitrarily on address of mddev structure).
* This will mean we have to start checking from the beginning again.
*
*/
do {
mddev->curr_resync = 2;
try_again:
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
goto skip;
for_each_mddev(mddev2, tmp) {
if (mddev2 == mddev)
continue;
if (!mddev->parallel_resync
&& mddev2->curr_resync
&& match_mddev_units(mddev, mddev2)) {
DEFINE_WAIT(wq);
if (mddev < mddev2 && mddev->curr_resync == 2) {
/* arbitrarily yield */
mddev->curr_resync = 1;
wake_up(&resync_wait);
}
if (mddev > mddev2 && mddev->curr_resync == 1)
/* no need to wait here, we can wait the next
* time 'round when curr_resync == 2
*/
continue;
/* We need to wait 'interruptible' so as not to
* contribute to the load average, and not to
* be caught by 'softlockup'
*/
prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
mddev2->curr_resync >= mddev->curr_resync) {
printk(KERN_INFO "md: delaying %s of %s"
" until %s has finished (they"
" share one or more physical units)\n",
desc, mdname(mddev), mdname(mddev2));
mddev_put(mddev2);
if (signal_pending(current))
flush_signals(current);
schedule();
finish_wait(&resync_wait, &wq);
goto try_again;
}
finish_wait(&resync_wait, &wq);
}
}
} while (mddev->curr_resync < 2);
j = 0;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
/* resync follows the size requested by the personality,
* which defaults to physical size, but can be virtual size
*/
max_sectors = mddev->resync_max_sectors;
atomic64_set(&mddev->resync_mismatches, 0);
/* we don't use the checkpoint if there's a bitmap */
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
j = mddev->resync_min;
else if (!mddev->bitmap)
j = mddev->recovery_cp;
} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sectors = mddev->resync_max_sectors;
else {
/* recovery follows the physical size of devices */
max_sectors = mddev->dev_sectors;
j = MaxSector;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < j)
j = rdev->recovery_offset;
rcu_read_unlock();
/* If there is a bitmap, we need to make sure all
* writes that started before we added a spare
* complete before we start doing a recovery.
* Otherwise the write might complete and (via
* bitmap_endwrite) set a bit in the bitmap after the
* recovery has checked that bit and skipped that
* region.
*/
if (mddev->bitmap) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
}
printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
printk(KERN_INFO "md: minimum _guaranteed_ speed:"
" %d KB/sec/disk.\n", speed_min(mddev));
printk(KERN_INFO "md: using maximum available idle IO bandwidth "
"(but not more than %d KB/sec) for %s.\n",
speed_max(mddev), desc);
is_mddev_idle(mddev, 1); /* this initializes IO event counters */
io_sectors = 0;
for (m = 0; m < SYNC_MARKS; m++) {
mark[m] = jiffies;
mark_cnt[m] = io_sectors;
}
last_mark = 0;
mddev->resync_mark = mark[last_mark];
mddev->resync_mark_cnt = mark_cnt[last_mark];
/*
* Tune reconstruction:
*/
window = 32*(PAGE_SIZE/512);
printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
window/2, (unsigned long long)max_sectors/2);
atomic_set(&mddev->recovery_active, 0);
last_check = 0;
if (j>2) {
printk(KERN_INFO
"md: resuming %s of %s from checkpoint.\n",
desc, mdname(mddev));
mddev->curr_resync = j;
} else
mddev->curr_resync = 3; /* no longer delayed */
mddev->curr_resync_completed = j;
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
md_new_event(mddev);
update_time = jiffies;
blk_start_plug(&plug);
while (j < max_sectors) {
sector_t sectors;
skipped = 0;
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
((mddev->curr_resync > mddev->curr_resync_completed &&
(mddev->curr_resync - mddev->curr_resync_completed)
> (max_sectors >> 4)) ||
time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
(j - mddev->curr_resync_completed)*2
>= mddev->resync_max - mddev->curr_resync_completed ||
mddev->curr_resync_completed > mddev->resync_max
)) {
/* time to update curr_resync_completed */
wait_event(mddev->recovery_wait,
atomic_read(&mddev->recovery_active) == 0);
mddev->curr_resync_completed = j;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
j > mddev->recovery_cp)
mddev->recovery_cp = j;
update_time = jiffies;
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
}
while (j >= mddev->resync_max &&
!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
/* As this condition is controlled by user-space,
* we can block indefinitely, so use '_interruptible'
* to avoid triggering warnings.
*/
flush_signals(current); /* just in case */
wait_event_interruptible(mddev->recovery_wait,
mddev->resync_max > j
|| test_bit(MD_RECOVERY_INTR,
&mddev->recovery));
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
sectors = mddev->pers->sync_request(mddev, j, &skipped);
if (sectors == 0) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
break;
}
if (!skipped) { /* actual IO requested */
io_sectors += sectors;
atomic_add(sectors, &mddev->recovery_active);
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
j += sectors;
if (j > max_sectors)
/* when skipping, extra large numbers can be returned. */
j = max_sectors;
if (j > 2)
mddev->curr_resync = j;
mddev->curr_mark_cnt = io_sectors;
if (last_check == 0)
/* this is the earliest that rebuild will be
* visible in /proc/mdstat
*/
md_new_event(mddev);
if (last_check + window > io_sectors || j == max_sectors)
continue;
last_check = io_sectors;
repeat:
if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
/* step marks */
int next = (last_mark+1) % SYNC_MARKS;
mddev->resync_mark = mark[next];
mddev->resync_mark_cnt = mark_cnt[next];
mark[next] = jiffies;
mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
last_mark = next;
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
/*
* this loop exits only if either when we are slower than
* the 'hard' speed limit, or the system was IO-idle for
* a jiffy.
* the system might be non-idle CPU-wise, but we only care
* about not overloading the IO subsystem. (things like an
* e2fsck being done on the RAID array should execute fast)
*/
cond_resched();
recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
/((jiffies-mddev->resync_mark)/HZ +1) +1;
if (currspeed > speed_min(mddev)) {
if (currspeed > speed_max(mddev)) {
msleep(500);
goto repeat;
}
if (!is_mddev_idle(mddev, 0)) {
/*
* Give other IO more of a chance.
* The faster the devices, the less we wait.
*/
wait_event(mddev->recovery_wait,
!atomic_read(&mddev->recovery_active));
}
}
}
printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
test_bit(MD_RECOVERY_INTR, &mddev->recovery)
? "interrupted" : "done");
/*
* this also signals 'finished resyncing' to md_stop
*/
blk_finish_plug(&plug);
wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
mddev->curr_resync > 2) {
mddev->curr_resync_completed = mddev->curr_resync;
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
}
/* tell personality and other nodes that we are finished */
if (mddev_is_clustered(mddev)) {
md_cluster_ops->resync_finish(mddev);
cluster_resync_finished = true;
}
mddev->pers->sync_request(mddev, max_sectors, &skipped);
if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
mddev->curr_resync > 2) {
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
if (mddev->curr_resync >= mddev->recovery_cp) {
printk(KERN_INFO
"md: checkpointing %s of %s.\n",
desc, mdname(mddev));
if (test_bit(MD_RECOVERY_ERROR,
&mddev->recovery))
mddev->recovery_cp =
mddev->curr_resync_completed;
else
mddev->recovery_cp =
mddev->curr_resync;
}
} else
mddev->recovery_cp = MaxSector;
} else {
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
mddev->curr_resync = MaxSector;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
mddev->delta_disks >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < mddev->curr_resync)
rdev->recovery_offset = mddev->curr_resync;
rcu_read_unlock();
}
}
skip:
set_bit(MD_CHANGE_DEVS, &mddev->flags);
if (mddev_is_clustered(mddev) &&
test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
!cluster_resync_finished)
md_cluster_ops->resync_finish(mddev);
spin_lock(&mddev->lock);
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
/* We completed so min/max setting can be forgotten if used. */
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
mddev->resync_min = mddev->curr_resync_completed;
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
mddev->curr_resync = 0;
spin_unlock(&mddev->lock);
wake_up(&resync_wait);
md_wakeup_thread(mddev->thread);
return;
}
EXPORT_SYMBOL_GPL(md_do_sync);
static int remove_and_add_spares(struct mddev *mddev,
struct md_rdev *this)
{
struct md_rdev *rdev;
int spares = 0;
int removed = 0;
rdev_for_each(rdev, mddev)
if ((this == NULL || rdev == this) &&
rdev->raid_disk >= 0 &&
!test_bit(Blocked, &rdev->flags) &&
(test_bit(Faulty, &rdev->flags) ||
(!test_bit(In_sync, &rdev->flags) &&
!test_bit(Journal, &rdev->flags))) &&
atomic_read(&rdev->nr_pending)==0) {
if (mddev->pers->hot_remove_disk(
mddev, rdev) == 0) {
sysfs_unlink_rdev(mddev, rdev);
rdev->saved_raid_disk = rdev->raid_disk;
rdev->raid_disk = -1;
removed++;
}
}
if (removed && mddev->kobj.sd)
sysfs_notify(&mddev->kobj, NULL, "degraded");
if (this && removed)
goto no_add;
rdev_for_each(rdev, mddev) {
if (this && this != rdev)
continue;
if (test_bit(Candidate, &rdev->flags))
continue;
if (rdev->raid_disk >= 0 &&
!test_bit(In_sync, &rdev->flags) &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags))
spares++;
if (rdev->raid_disk >= 0)
continue;
if (test_bit(Faulty, &rdev->flags))
continue;
if (test_bit(Journal, &rdev->flags))
continue;
if (mddev->ro &&
! (rdev->saved_raid_disk >= 0 &&
!test_bit(Bitmap_sync, &rdev->flags)))
continue;
rdev->recovery_offset = 0;
if (mddev->pers->
hot_add_disk(mddev, rdev) == 0) {
if (sysfs_link_rdev(mddev, rdev))
/* failure here is OK */;
spares++;
md_new_event(mddev);
set_bit(MD_CHANGE_DEVS, &mddev->flags);
}
}
no_add:
if (removed)
set_bit(MD_CHANGE_DEVS, &mddev->flags);
return spares;
}
static void md_start_sync(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, del_work);
int ret = 0;
if (mddev_is_clustered(mddev)) {
ret = md_cluster_ops->resync_start(mddev);
if (ret) {
mddev->sync_thread = NULL;
goto out;
}
}
mddev->sync_thread = md_register_thread(md_do_sync,
mddev,
"resync");
out:
if (!mddev->sync_thread) {
if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
printk(KERN_ERR "%s: could not start resync"
" thread...\n",
mdname(mddev));
/* leave the spares where they are, it shouldn't hurt */
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
wake_up(&resync_wait);
if (test_and_clear_bit(MD_RECOVERY_RECOVER,
&mddev->recovery))
if (mddev->sysfs_action)
sysfs_notify_dirent_safe(mddev->sysfs_action);
} else
md_wakeup_thread(mddev->sync_thread);
sysfs_notify_dirent_safe(mddev->sysfs_action);
md_new_event(mddev);
}
/*
* This routine is regularly called by all per-raid-array threads to
* deal with generic issues like resync and super-block update.
* Raid personalities that don't have a thread (linear/raid0) do not
* need this as they never do any recovery or update the superblock.
*
* It does not do any resync itself, but rather "forks" off other threads
* to do that as needed.
* When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
* "->recovery" and create a thread at ->sync_thread.
* When the thread finishes it sets MD_RECOVERY_DONE
* and wakeups up this thread which will reap the thread and finish up.
* This thread also removes any faulty devices (with nr_pending == 0).
*
* The overall approach is:
* 1/ if the superblock needs updating, update it.
* 2/ If a recovery thread is running, don't do anything else.
* 3/ If recovery has finished, clean up, possibly marking spares active.
* 4/ If there are any faulty devices, remove them.
* 5/ If array is degraded, try to add spares devices
* 6/ If array has spares or is not in-sync, start a resync thread.
*/
void md_check_recovery(struct mddev *mddev)
{
if (mddev->suspended)
return;
if (mddev->bitmap)
bitmap_daemon_work(mddev);
if (signal_pending(current)) {
if (mddev->pers->sync_request && !mddev->external) {
printk(KERN_INFO "md: %s in immediate safe mode\n",
mdname(mddev));
mddev->safemode = 2;
}
flush_signals(current);
}
if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
return;
if ( ! (
(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
(mddev->external == 0 && mddev->safemode == 1) ||
(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
&& !mddev->in_sync && mddev->recovery_cp == MaxSector)
))
return;
if (mddev_trylock(mddev)) {
int spares = 0;
if (mddev->ro) {
struct md_rdev *rdev;
if (!mddev->external && mddev->in_sync)
/* 'Blocked' flag not needed as failed devices
* will be recorded if array switched to read/write.
* Leaving it set will prevent the device
* from being removed.
*/
rdev_for_each(rdev, mddev)
clear_bit(Blocked, &rdev->flags);
/* On a read-only array we can:
* - remove failed devices
* - add already-in_sync devices if the array itself
* is in-sync.
* As we only add devices that are already in-sync,
* we can activate the spares immediately.
*/
remove_and_add_spares(mddev, NULL);
/* There is no thread, but we need to call
* ->spare_active and clear saved_raid_disk
*/
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_reap_sync_thread(mddev);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
goto unlock;
}
if (!mddev->external) {
int did_change = 0;
spin_lock(&mddev->lock);
if (mddev->safemode &&
!atomic_read(&mddev->writes_pending) &&
!mddev->in_sync &&
mddev->recovery_cp == MaxSector) {
mddev->in_sync = 1;
did_change = 1;
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
}
if (mddev->safemode == 1)
mddev->safemode = 0;
spin_unlock(&mddev->lock);
if (did_change)
sysfs_notify_dirent_safe(mddev->sysfs_state);
}
if (mddev->flags & MD_UPDATE_SB_FLAGS)
md_update_sb(mddev, 0);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
/* resync/recovery still happening */
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
goto unlock;
}
if (mddev->sync_thread) {
md_reap_sync_thread(mddev);
goto unlock;
}
/* Set RUNNING before clearing NEEDED to avoid
* any transients in the value of "sync_action".
*/
mddev->curr_resync_completed = 0;
spin_lock(&mddev->lock);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
spin_unlock(&mddev->lock);
/* Clear some bits that don't mean anything, but
* might be left set
*/
clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
goto not_running;
/* no recovery is running.
* remove any failed drives, then
* add spares if possible.
* Spares are also removed and re-added, to allow
* the personality to fail the re-add.
*/
if (mddev->reshape_position != MaxSector) {
if (mddev->pers->check_reshape == NULL ||
mddev->pers->check_reshape(mddev) != 0)
/* Cannot proceed */
goto not_running;
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if ((spares = remove_and_add_spares(mddev, NULL))) {
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (mddev->recovery_cp < MaxSector) {
set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
/* nothing to be done ... */
goto not_running;
if (mddev->pers->sync_request) {
if (spares) {
/* We are adding a device or devices to an array
* which has the bitmap stored on all devices.
* So make sure all bitmap pages get written
*/
bitmap_write_all(mddev->bitmap);
}
INIT_WORK(&mddev->del_work, md_start_sync);
queue_work(md_misc_wq, &mddev->del_work);
goto unlock;
}
not_running:
if (!mddev->sync_thread) {
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
wake_up(&resync_wait);
if (test_and_clear_bit(MD_RECOVERY_RECOVER,
&mddev->recovery))
if (mddev->sysfs_action)
sysfs_notify_dirent_safe(mddev->sysfs_action);
}
unlock:
wake_up(&mddev->sb_wait);
mddev_unlock(mddev);
}
}
EXPORT_SYMBOL(md_check_recovery);
void md_reap_sync_thread(struct mddev *mddev)
{
struct md_rdev *rdev;
/* resync has finished, collect result */
md_unregister_thread(&mddev->sync_thread);
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
/* success...*/
/* activate any spares */
if (mddev->pers->spare_active(mddev)) {
sysfs_notify(&mddev->kobj, NULL,
"degraded");
set_bit(MD_CHANGE_DEVS, &mddev->flags);
}
}
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
mddev->pers->finish_reshape)
mddev->pers->finish_reshape(mddev);
/* If array is no-longer degraded, then any saved_raid_disk
* information must be scrapped.
*/
if (!mddev->degraded)
rdev_for_each(rdev, mddev)
rdev->saved_raid_disk = -1;
md_update_sb(mddev, 1);
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
wake_up(&resync_wait);
/* flag recovery needed just to double check */
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
sysfs_notify_dirent_safe(mddev->sysfs_action);
md_new_event(mddev);
if (mddev->event_work.func)
queue_work(md_misc_wq, &mddev->event_work);
}
EXPORT_SYMBOL(md_reap_sync_thread);
void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
{
sysfs_notify_dirent_safe(rdev->sysfs_state);
wait_event_timeout(rdev->blocked_wait,
!test_bit(Blocked, &rdev->flags) &&
!test_bit(BlockedBadBlocks, &rdev->flags),
msecs_to_jiffies(5000));
rdev_dec_pending(rdev, mddev);
}
EXPORT_SYMBOL(md_wait_for_blocked_rdev);
void md_finish_reshape(struct mddev *mddev)
{
/* called be personality module when reshape completes. */
struct md_rdev *rdev;
rdev_for_each(rdev, mddev) {
if (rdev->data_offset > rdev->new_data_offset)
rdev->sectors += rdev->data_offset - rdev->new_data_offset;
else
rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
rdev->data_offset = rdev->new_data_offset;
}
}
EXPORT_SYMBOL(md_finish_reshape);
/* Bad block management.
* We can record which blocks on each device are 'bad' and so just
* fail those blocks, or that stripe, rather than the whole device.
* Entries in the bad-block table are 64bits wide. This comprises:
* Length of bad-range, in sectors: 0-511 for lengths 1-512
* Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
* A 'shift' can be set so that larger blocks are tracked and
* consequently larger devices can be covered.
* 'Acknowledged' flag - 1 bit. - the most significant bit.
*
* Locking of the bad-block table uses a seqlock so md_is_badblock
* might need to retry if it is very unlucky.
* We will sometimes want to check for bad blocks in a bi_end_io function,
* so we use the write_seqlock_irq variant.
*
* When looking for a bad block we specify a range and want to
* know if any block in the range is bad. So we binary-search
* to the last range that starts at-or-before the given endpoint,
* (or "before the sector after the target range")
* then see if it ends after the given start.
* We return
* 0 if there are no known bad blocks in the range
* 1 if there are known bad block which are all acknowledged
* -1 if there are bad blocks which have not yet been acknowledged in metadata.
* plus the start/length of the first bad section we overlap.
*/
int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
sector_t *first_bad, int *bad_sectors)
{
int hi;
int lo;
u64 *p = bb->page;
int rv;
sector_t target = s + sectors;
unsigned seq;
if (bb->shift > 0) {
/* round the start down, and the end up */
s >>= bb->shift;
target += (1<<bb->shift) - 1;
target >>= bb->shift;
sectors = target - s;
}
/* 'target' is now the first block after the bad range */
retry:
seq = read_seqbegin(&bb->lock);
lo = 0;
rv = 0;
hi = bb->count;
/* Binary search between lo and hi for 'target'
* i.e. for the last range that starts before 'target'
*/
/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
* are known not to be the last range before target.
* VARIANT: hi-lo is the number of possible
* ranges, and decreases until it reaches 1
*/
while (hi - lo > 1) {
int mid = (lo + hi) / 2;
sector_t a = BB_OFFSET(p[mid]);
if (a < target)
/* This could still be the one, earlier ranges
* could not. */
lo = mid;
else
/* This and later ranges are definitely out. */
hi = mid;
}
/* 'lo' might be the last that started before target, but 'hi' isn't */
if (hi > lo) {
/* need to check all range that end after 's' to see if
* any are unacknowledged.
*/
while (lo >= 0 &&
BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
if (BB_OFFSET(p[lo]) < target) {
/* starts before the end, and finishes after
* the start, so they must overlap
*/
if (rv != -1 && BB_ACK(p[lo]))
rv = 1;
else
rv = -1;
*first_bad = BB_OFFSET(p[lo]);
*bad_sectors = BB_LEN(p[lo]);
}
lo--;
}
}
if (read_seqretry(&bb->lock, seq))
goto retry;
return rv;
}
EXPORT_SYMBOL_GPL(md_is_badblock);
/*
* Add a range of bad blocks to the table.
* This might extend the table, or might contract it
* if two adjacent ranges can be merged.
* We binary-search to find the 'insertion' point, then
* decide how best to handle it.
*/
static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
int acknowledged)
{
u64 *p;
int lo, hi;
int rv = 1;
unsigned long flags;
if (bb->shift < 0)
/* badblocks are disabled */
return 0;
if (bb->shift) {
/* round the start down, and the end up */
sector_t next = s + sectors;
s >>= bb->shift;
next += (1<<bb->shift) - 1;
next >>= bb->shift;
sectors = next - s;
}
write_seqlock_irqsave(&bb->lock, flags);
p = bb->page;
lo = 0;
hi = bb->count;
/* Find the last range that starts at-or-before 's' */
while (hi - lo > 1) {
int mid = (lo + hi) / 2;
sector_t a = BB_OFFSET(p[mid]);
if (a <= s)
lo = mid;
else
hi = mid;
}
if (hi > lo && BB_OFFSET(p[lo]) > s)
hi = lo;
if (hi > lo) {
/* we found a range that might merge with the start
* of our new range
*/
sector_t a = BB_OFFSET(p[lo]);
sector_t e = a + BB_LEN(p[lo]);
int ack = BB_ACK(p[lo]);
if (e >= s) {
/* Yes, we can merge with a previous range */
if (s == a && s + sectors >= e)
/* new range covers old */
ack = acknowledged;
else
ack = ack && acknowledged;
if (e < s + sectors)
e = s + sectors;
if (e - a <= BB_MAX_LEN) {
p[lo] = BB_MAKE(a, e-a, ack);
s = e;
} else {
/* does not all fit in one range,
* make p[lo] maximal
*/
if (BB_LEN(p[lo]) != BB_MAX_LEN)
p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
s = a + BB_MAX_LEN;
}
sectors = e - s;
}
}
if (sectors && hi < bb->count) {
/* 'hi' points to the first range that starts after 's'.
* Maybe we can merge with the start of that range */
sector_t a = BB_OFFSET(p[hi]);
sector_t e = a + BB_LEN(p[hi]);
int ack = BB_ACK(p[hi]);
if (a <= s + sectors) {
/* merging is possible */
if (e <= s + sectors) {
/* full overlap */
e = s + sectors;
ack = acknowledged;
} else
ack = ack && acknowledged;
a = s;
if (e - a <= BB_MAX_LEN) {
p[hi] = BB_MAKE(a, e-a, ack);
s = e;
} else {
p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
s = a + BB_MAX_LEN;
}
sectors = e - s;
lo = hi;
hi++;
}
}
if (sectors == 0 && hi < bb->count) {
/* we might be able to combine lo and hi */
/* Note: 's' is at the end of 'lo' */
sector_t a = BB_OFFSET(p[hi]);
int lolen = BB_LEN(p[lo]);
int hilen = BB_LEN(p[hi]);
int newlen = lolen + hilen - (s - a);
if (s >= a && newlen < BB_MAX_LEN) {
/* yes, we can combine them */
int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
memmove(p + hi, p + hi + 1,
(bb->count - hi - 1) * 8);
bb->count--;
}
}
while (sectors) {
/* didn't merge (it all).
* Need to add a range just before 'hi' */
if (bb->count >= MD_MAX_BADBLOCKS) {
/* No room for more */
rv = 0;
break;
} else {
int this_sectors = sectors;
memmove(p + hi + 1, p + hi,
(bb->count - hi) * 8);
bb->count++;
if (this_sectors > BB_MAX_LEN)
this_sectors = BB_MAX_LEN;
p[hi] = BB_MAKE(s, this_sectors, acknowledged);
sectors -= this_sectors;
s += this_sectors;
}
}
bb->changed = 1;
if (!acknowledged)
bb->unacked_exist = 1;
write_sequnlock_irqrestore(&bb->lock, flags);
return rv;
}
int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
int is_new)
{
int rv;
if (is_new)
s += rdev->new_data_offset;
else
s += rdev->data_offset;
rv = md_set_badblocks(&rdev->badblocks,
s, sectors, 0);
if (rv) {
/* Make sure they get written out promptly */
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
md_wakeup_thread(rdev->mddev->thread);
}
return rv;
}
EXPORT_SYMBOL_GPL(rdev_set_badblocks);
/*
* Remove a range of bad blocks from the table.
* This may involve extending the table if we spilt a region,
* but it must not fail. So if the table becomes full, we just
* drop the remove request.
*/
static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
{
u64 *p;
int lo, hi;
sector_t target = s + sectors;
int rv = 0;
if (bb->shift > 0) {
/* When clearing we round the start up and the end down.
* This should not matter as the shift should align with
* the block size and no rounding should ever be needed.
* However it is better the think a block is bad when it
* isn't than to think a block is not bad when it is.
*/
s += (1<<bb->shift) - 1;
s >>= bb->shift;
target >>= bb->shift;
sectors = target - s;
}
write_seqlock_irq(&bb->lock);
p = bb->page;
lo = 0;
hi = bb->count;
/* Find the last range that starts before 'target' */
while (hi - lo > 1) {
int mid = (lo + hi) / 2;
sector_t a = BB_OFFSET(p[mid]);
if (a < target)
lo = mid;
else
hi = mid;
}
if (hi > lo) {
/* p[lo] is the last range that could overlap the
* current range. Earlier ranges could also overlap,
* but only this one can overlap the end of the range.
*/
if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
/* Partial overlap, leave the tail of this range */
int ack = BB_ACK(p[lo]);
sector_t a = BB_OFFSET(p[lo]);
sector_t end = a + BB_LEN(p[lo]);
if (a < s) {
/* we need to split this range */
if (bb->count >= MD_MAX_BADBLOCKS) {
rv = -ENOSPC;
goto out;
}
memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
bb->count++;
p[lo] = BB_MAKE(a, s-a, ack);
lo++;
}
p[lo] = BB_MAKE(target, end - target, ack);
/* there is no longer an overlap */
hi = lo;
lo--;
}
while (lo >= 0 &&
BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
/* This range does overlap */
if (BB_OFFSET(p[lo]) < s) {
/* Keep the early parts of this range. */
int ack = BB_ACK(p[lo]);
sector_t start = BB_OFFSET(p[lo]);
p[lo] = BB_MAKE(start, s - start, ack);
/* now low doesn't overlap, so.. */
break;
}
lo--;
}
/* 'lo' is strictly before, 'hi' is strictly after,
* anything between needs to be discarded
*/
if (hi - lo > 1) {
memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
bb->count -= (hi - lo - 1);
}
}
bb->changed = 1;
out:
write_sequnlock_irq(&bb->lock);
return rv;
}
int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
int is_new)
{
if (is_new)
s += rdev->new_data_offset;
else
s += rdev->data_offset;
return md_clear_badblocks(&rdev->badblocks,
s, sectors);
}
EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
/*
* Acknowledge all bad blocks in a list.
* This only succeeds if ->changed is clear. It is used by
* in-kernel metadata updates
*/
void md_ack_all_badblocks(struct badblocks *bb)
{
if (bb->page == NULL || bb->changed)
/* no point even trying */
return;
write_seqlock_irq(&bb->lock);
if (bb->changed == 0 && bb->unacked_exist) {
u64 *p = bb->page;
int i;
for (i = 0; i < bb->count ; i++) {
if (!BB_ACK(p[i])) {
sector_t start = BB_OFFSET(p[i]);
int len = BB_LEN(p[i]);
p[i] = BB_MAKE(start, len, 1);
}
}
bb->unacked_exist = 0;
}
write_sequnlock_irq(&bb->lock);
}
EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
/* sysfs access to bad-blocks list.
* We present two files.
* 'bad-blocks' lists sector numbers and lengths of ranges that
* are recorded as bad. The list is truncated to fit within
* the one-page limit of sysfs.
* Writing "sector length" to this file adds an acknowledged
* bad block list.
* 'unacknowledged-bad-blocks' lists bad blocks that have not yet
* been acknowledged. Writing to this file adds bad blocks
* without acknowledging them. This is largely for testing.
*/
static ssize_t
badblocks_show(struct badblocks *bb, char *page, int unack)
{
size_t len;
int i;
u64 *p = bb->page;
unsigned seq;
if (bb->shift < 0)
return 0;
retry:
seq = read_seqbegin(&bb->lock);
len = 0;
i = 0;
while (len < PAGE_SIZE && i < bb->count) {
sector_t s = BB_OFFSET(p[i]);
unsigned int length = BB_LEN(p[i]);
int ack = BB_ACK(p[i]);
i++;
if (unack && ack)
continue;
len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
(unsigned long long)s << bb->shift,
length << bb->shift);
}
if (unack && len == 0)
bb->unacked_exist = 0;
if (read_seqretry(&bb->lock, seq))
goto retry;
return len;
}
#define DO_DEBUG 1
static ssize_t
badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
{
unsigned long long sector;
int length;
char newline;
#ifdef DO_DEBUG
/* Allow clearing via sysfs *only* for testing/debugging.
* Normally only a successful write may clear a badblock
*/
int clear = 0;
if (page[0] == '-') {
clear = 1;
page++;
}
#endif /* DO_DEBUG */
switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
case 3:
if (newline != '\n')
return -EINVAL;
case 2:
if (length <= 0)
return -EINVAL;
break;
default:
return -EINVAL;
}
#ifdef DO_DEBUG
if (clear) {
md_clear_badblocks(bb, sector, length);
return len;
}
#endif /* DO_DEBUG */
if (md_set_badblocks(bb, sector, length, !unack))
return len;
else
return -ENOSPC;
}
static int md_notify_reboot(struct notifier_block *this,
unsigned long code, void *x)
{
struct list_head *tmp;
struct mddev *mddev;
int need_delay = 0;
for_each_mddev(mddev, tmp) {
if (mddev_trylock(mddev)) {
if (mddev->pers)
__md_stop_writes(mddev);
if (mddev->persistent)
mddev->safemode = 2;
mddev_unlock(mddev);
}
need_delay = 1;
}
/*
* certain more exotic SCSI devices are known to be
* volatile wrt too early system reboots. While the
* right place to handle this issue is the given
* driver, we do want to have a safe RAID driver ...
*/
if (need_delay)
mdelay(1000*1);
return NOTIFY_DONE;
}
static struct notifier_block md_notifier = {
.notifier_call = md_notify_reboot,
.next = NULL,
.priority = INT_MAX, /* before any real devices */
};
static void md_geninit(void)
{
pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
}
static int __init md_init(void)
{
int ret = -ENOMEM;
md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
if (!md_wq)
goto err_wq;
md_misc_wq = alloc_workqueue("md_misc", 0, 0);
if (!md_misc_wq)
goto err_misc_wq;
if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
goto err_md;
if ((ret = register_blkdev(0, "mdp")) < 0)
goto err_mdp;
mdp_major = ret;
blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
md_probe, NULL, NULL);
blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
md_probe, NULL, NULL);
register_reboot_notifier(&md_notifier);
raid_table_header = register_sysctl_table(raid_root_table);
md_geninit();
return 0;
err_mdp:
unregister_blkdev(MD_MAJOR, "md");
err_md:
destroy_workqueue(md_misc_wq);
err_misc_wq:
destroy_workqueue(md_wq);
err_wq:
return ret;
}
static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
struct md_rdev *rdev2;
int role, ret;
char b[BDEVNAME_SIZE];
/* Check for change of roles in the active devices */
rdev_for_each(rdev2, mddev) {
if (test_bit(Faulty, &rdev2->flags))
continue;
/* Check if the roles changed */
role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
if (test_bit(Candidate, &rdev2->flags)) {
if (role == 0xfffe) {
pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
md_kick_rdev_from_array(rdev2);
continue;
}
else
clear_bit(Candidate, &rdev2->flags);
}
if (role != rdev2->raid_disk) {
/* got activated */
if (rdev2->raid_disk == -1 && role != 0xffff) {
rdev2->saved_raid_disk = role;
ret = remove_and_add_spares(mddev, rdev2);
pr_info("Activated spare: %s\n",
bdevname(rdev2->bdev,b));
continue;
}
/* device faulty
* We just want to do the minimum to mark the disk
* as faulty. The recovery is performed by the
* one who initiated the error.
*/
if ((role == 0xfffe) || (role == 0xfffd)) {
md_error(mddev, rdev2);
clear_bit(Blocked, &rdev2->flags);
}
}
}
if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
/* Finally set the event to be up to date */
mddev->events = le64_to_cpu(sb->events);
}
static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
{
int err;
struct page *swapout = rdev->sb_page;
struct mdp_superblock_1 *sb;
/* Store the sb page of the rdev in the swapout temporary
* variable in case we err in the future
*/
rdev->sb_page = NULL;
alloc_disk_sb(rdev);
ClearPageUptodate(rdev->sb_page);
rdev->sb_loaded = 0;
err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
if (err < 0) {
pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
__func__, __LINE__, rdev->desc_nr, err);
put_page(rdev->sb_page);
rdev->sb_page = swapout;
rdev->sb_loaded = 1;
return err;
}
sb = page_address(rdev->sb_page);
/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
* is not set
*/
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
/* The other node finished recovery, call spare_active to set
* device In_sync and mddev->degraded
*/
if (rdev->recovery_offset == MaxSector &&
!test_bit(In_sync, &rdev->flags) &&
mddev->pers->spare_active(mddev))
sysfs_notify(&mddev->kobj, NULL, "degraded");
put_page(swapout);
return 0;
}
void md_reload_sb(struct mddev *mddev, int nr)
{
struct md_rdev *rdev;
int err;
/* Find the rdev */
rdev_for_each_rcu(rdev, mddev) {
if (rdev->desc_nr == nr)
break;
}
if (!rdev || rdev->desc_nr != nr) {
pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
return;
}
err = read_rdev(mddev, rdev);
if (err < 0)
return;
check_sb_changes(mddev, rdev);
/* Read all rdev's to update recovery_offset */
rdev_for_each_rcu(rdev, mddev)
read_rdev(mddev, rdev);
}
EXPORT_SYMBOL(md_reload_sb);
#ifndef MODULE
/*
* Searches all registered partitions for autorun RAID arrays
* at boot time.
*/
static LIST_HEAD(all_detected_devices);
struct detected_devices_node {
struct list_head list;
dev_t dev;
};
void md_autodetect_dev(dev_t dev)
{
struct detected_devices_node *node_detected_dev;
node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
if (node_detected_dev) {
node_detected_dev->dev = dev;
list_add_tail(&node_detected_dev->list, &all_detected_devices);
} else {
printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
}
}
static void autostart_arrays(int part)
{
struct md_rdev *rdev;
struct detected_devices_node *node_detected_dev;
dev_t dev;
int i_scanned, i_passed;
i_scanned = 0;
i_passed = 0;
printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
i_scanned++;
node_detected_dev = list_entry(all_detected_devices.next,
struct detected_devices_node, list);
list_del(&node_detected_dev->list);
dev = node_detected_dev->dev;
kfree(node_detected_dev);
rdev = md_import_device(dev,0, 90);
if (IS_ERR(rdev))
continue;
if (test_bit(Faulty, &rdev->flags))
continue;
set_bit(AutoDetected, &rdev->flags);
list_add(&rdev->same_set, &pending_raid_disks);
i_passed++;
}
printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
i_scanned, i_passed);
autorun_devices(part);
}
#endif /* !MODULE */
static __exit void md_exit(void)
{
struct mddev *mddev;
struct list_head *tmp;
int delay = 1;
blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
unregister_blkdev(MD_MAJOR,"md");
unregister_blkdev(mdp_major, "mdp");
unregister_reboot_notifier(&md_notifier);
unregister_sysctl_table(raid_table_header);
/* We cannot unload the modules while some process is
* waiting for us in select() or poll() - wake them up
*/
md_unloading = 1;
while (waitqueue_active(&md_event_waiters)) {
/* not safe to leave yet */
wake_up(&md_event_waiters);
msleep(delay);
delay += delay;
}
remove_proc_entry("mdstat", NULL);
for_each_mddev(mddev, tmp) {
export_array(mddev);
mddev->hold_active = 0;
}
destroy_workqueue(md_misc_wq);
destroy_workqueue(md_wq);
}
subsys_initcall(md_init);
module_exit(md_exit)
static int get_ro(char *buffer, const struct kernel_param *kp)
{
return sprintf(buffer, "%d", start_readonly);
}
static int set_ro(const char *val, const struct kernel_param *kp)
{
return kstrtouint(val, 10, (unsigned int *)&start_readonly);
}
module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MD RAID framework");
MODULE_ALIAS("md");
MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);